
A File System Abstraction for Sense and Respond Systems

Sameer Tilak1, Bhanu Pisupati2, Kenneth Chiu1, Geoffrey Brown2, Nael Abu-Ghazaleh1

1Computer Science Department, State University of New York (SUNY) at Binghamton
2Computer Science Department, Indiana University

Abstract— The heterogeneity and resource constraints of
sense-and-respond systems significantly challenge system
and application development. In this paper, we present
a flexible, intuitive file system abstraction for organizing
and managing sense-and-respond systems based on the
Plan 9 design principles. A key feature is the support of
multiple views of the system via filesystem namespaces.
Constructed logical views present an application-specific
representation of the network, thus enabling high-level pro-
gramming. Concurrently, structural views of the network
enable resource-efficient planning and execution of tasks.
We present and motivate the design using several examples,
outline research challenges and our plan to address them,
and describe the current implementation state.

I. INTRODUCTION

The heterogeneity and resource constraints of typical
sense-and-respond (S&R) systems pose daunting chal-
lenges to system and application development. These
challenges are further exacerbated by the lack of sim-
ple abstractions for the use and development of these
systems. In this paper, we show how the principles of
Plan 9 [1] can be applied to S&R systems, resulting
in flexible, intuitive systems supporting multiple logical
views. Applications can then use the view with the most
appropriate organization and abstraction.

Sense-and-respond systems typically comprise a di-
verse set of hardware and software elements. Hardware
elements include a wide variety of different sensor and
actuator types, ranging from COTS to highly-specialized,
one-of-a-kind parts. Software elements draw from nu-
merous domains, including the natural sciences, artificial
intelligence, sensor networks, and embedded systems.
Further increasing the diversity is the various ways in
which the software and hardware elements may interact,
such as event-driven, polled data, or data streams. This
heterogeneity greatly complicates the development of
reliable, effective S&R systems.

A crucial component of many S&R systems is wireless
sensor and actuator networks. These networks promise
to revolutionize sensing in a wide range of civil, scien-
tific, military, and industrial applications. For example,
numerous sensors may be deployed around a city to
monitor chemical and biological threats, or in the wild
to monitor ecological events in migration patterns [2],

This work was partially supported by NSF Award SCI-0330568, NSF
Award DBI-0446298, and NSF Award EIA-0202048.

E
q g

Z

E

v
Cluster Head

Sensor

Water

Fig. 1. An example wireless sensor network in a zoo. Sensors track
animal locations and resources such as food and water. The network
is divided into two clusters, each consisting of a cluster head.

or to track a smoldering forest fire for conditions that
might lead to an outbreak. Responses may range from
alerts to the use of actuators to mitigate the damage.

The inherent resource constraints of WSNs pose sig-
nificant challenges to this vision. Wireless sensors are
limited in power, weight, and size; also, communication
is often unreliable. These constraints exacerbate the
problems created by the heterogeneity of S&R systems.

Successfully addressing these multi-dimensional chal-
lenges relies crucially on developing an effective ab-
straction for sensor networks. A simple and well un-
derstood abstraction can significantly ease both system
and application development. Many sensor networks are
deployed by scientists and researchers whose expertise
is not computer science. Providing these scientists with
a simple and intuitive interface to program, access,
configure, and debug sensors can facilitate deployment
of large scale sensor networks to a great extent.

Motivated by this need, we propose a simple yet
powerful filesystem-based abstraction of sensor networks
based on Plan 9, which espouses that the file system
metaphor (as seen, for example, in the /proc file
system) can be adopted for almost all aspects of system
design and development. Not only can files be used to
store a named sequence of bytes, but also to replace
many aspects of communication and control that are
typically performed using system calls. A key feature of
our proposed solution is the ability of the application
to define multiple namespaces to organize the sensor

EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association 1

network in an application specific manner. Another ad-
vantage is that we can now exploit, perhaps with some
adaptation, much of the work in distributed file systems,
such as Coda [3] to address various systems issues such
as consistency models.

Another commonly proposed abstraction of WSNs is
that of a database [4]. Typically, these databases present
application-level information, isolated from the resources
providing the data. Upstream data acquistion and pro-
cessing then lacks resource knowledge, precluding the
application of the end-to-end principle and complicating
efficient implementations. Infrastructure services also
cannot be built on the database abstraction, since by
nature these require low-level resource information. In
contrast, by providing logical and structural namespaces,
our file system abstraction can present information at
a wide variety of levels, making it suitable both for
building applications and infrastructure.

We model a sensor network as a set of clusters,
each with a cluster head. Cluster membership is nor-
mally determined geographically. Our model is intended
merely to provide a concrete basis for demonstrating
the utility of our file system abstraction, and not as an
end in itself. With this abstraction, an application might
access sensor data geographically by reading from a
path /location/54W/35N/data, or logically such
as /data/temperature/snakes.

This paper contributes a file system abstraction for
sensor networks and a proof-of-concept implementation
within the ns-2 simulator. The Plan 9 protocol for im-
plementing the file system abstraction, Styx, has already
been well-researched on various distributed computing
platforms. We thus focus our attention on its implemen-
tation in sensor networks.

II. PROPOSED FILESYSTEM ABSTRACTION

The application of file system abstractions to sensor
networks is inspired by the tenets of the Plan 9 and
Inferno operating systems [1][5], whose defining feature
is the uniform treatment of devices and files. This
section describes the use of the file system abstraction
as a convenient and efficient means to view, access and
program sensor networks.

Figure 1 shows a sample network deployed in a zoo,
with sensors tracking animals and resources such as food
and water. The network is divided into two clusters each
consisting of a cluster head. The sensors themselves may
each differ in functionality (temperature/position), hard-
ware type (MSP/AVR), and software platform. Figure 2
shows a typical directory layout for such a network.

The file system representation naturally captures the
structure of the network in addition to depicting logical
attributes such as aggregation properties and groupings.
The root directory network encapsulates the whole

/network

/cluster1 /cluster2
..........

/sensors

/s1
S7 S8

S5 S6
S3 S4

S1 S2

/Location /aggrData

avgTemp
/groups

/hippoGroup

/si

/farmGroup

/sp

/Remaining Energy

reading control/debug

registers memory

/LOW

S5 S4

/HIGH

S1 S3 S6 S7S2

avgLight

Fig. 2. Namespace for a sensor network.

network. It has a subdirectory for each cluster, each
which in turn has three subdirectories named sensors,
aggrData, and groups. The sensors directory
provides direct access to the sensors and has one di-
rectory corresponding to each. A lot of sensor network
applications are data centric and often however, rather
than the individual sensor values, what is of interest is
the aggregate value of a property observed at different
sensors. These cluster-wide properties can be readily re-
trieved via the aggrData directory, which contains files
avgTemp and avgLight, representing the average
temperator and average light readings, respectively. We
thus embed “intelligence” into the file system, enabling it
to process and interpret data (such as averaging individ-
ual readings), rather than just storing and presenting it.
Finally, the groups directories demonstrate the logical
grouping of the sensors according to specific criteria.
The grouping shown is based on animal type, but could
have been based on geographic location of the sensors.

The task of locating and denoting a sensor
device effectively reduces to finding the path
for its corresponding file in the namespace.
Sensor 1’s value, for instance, is read from
/network/cluster1/sensors/s1/reading.
The low level operations inherent in retrieving the
values are cleanly abstracted by the file interface, which
also conceals heterogeneity among sensors.

Another example of using this interface is that of
configuration and debugging of sensors. The file system
can translate writes to the control file to control
operations on the sensor, such as reset, wakeup, or
sleep. The file system may also facilitate debugging
by exposing the sensors’ registers and memory as
files. An external debugger can then use the file system
interface to debug software executing on the sensors.
described in the next section.

The file system approach can flexibly partition func-
tionality at different levels of the network, such as at
the sensor, cluster head, or client; thus providing a
single paradigm even for end sensor devices that may be

EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association2

computationally lightweight. Logically combining mul-
tiple networks now becomes analogous to mounting the
networks’ file system representations under a common
directory.

III. ARCHITECTURE

As in Plan 9 and Inferno [1][5], all resources are
named and accessed as files within a hierarchical di-
rectory structure, implemented using the Styx protocol
from Inferno[6]. Systems can overlay arbitrarily complex
data and sensor policies using multiple simultaneous
namespaces, each providing a different perspective of
the same physical sensor network.

A client that wishes to interact with a sensor network
mounts the associated file system from a server and
executes the appropriate file operations. The client and
server interact using the Styx messaging protocol to en-
code the various file operations. Message are always ex-
changed in pairs, with the client initiating the exchange
and the server responding. The client starts a session
by connecting to a server using a Tattach message. The
client may then navigate the directory tree using the
Twalk message (analogous to the UNIX cd command).
Other standard operations such as opening, reading, and
writing to files are performed using the Topen, Tread,
and Twrite messages respectively. These operations may
block, but multiple outstanding requests may be issued
to compensate.

Client applications do not directly issue Styx mes-
sages, but rather use a software library we provide.
The interface consists of typical file operations such
as open, read, and write. Details of the underlying
messaging protocol are completely concealed from the
client application.

The file server implementation of sensor networks has
two components in its core, namely device-level file
servers and multiplexers. Device-level servers reside in
the leaf sensors, and define a static directory structure
and methods for accessing individual files (really named
resources). These fundamental servers provide the most
basic interactions with the sensors such as reading the
value and primitive control operations. Correspondingly,
these servers store minimal dynamic state about them-
selves and and active clients, and hence require limited
runtime memory.

Multiplexers merge different device-level file systems,
and would typically reside in the cluster heads to pro-
vide a cluster-level namespace. At startup time, the
multiplexer engages a discovery process to determine
the topology of its associated sensors. It then reads
the static directory structure from the device level file
systems of all sensors to create cluster-level file system
hierarchy. When a client requests a file operation, the
multiplexer uses the file descriptor in the request to

map (multiplex) and reissue the request to a particular
device file system in its namespace. Multiplexers can
receive and process new requests while waiting for a
reply from an outstanding request to a device file server.
A multiplexer also has other responsibilities including
collection of data from multiple sensors and applying
aggregation functions (such as average) to it. It manages
logical groups of sensors shown in the groups directory
in Figure 2. Sensors are sorted into groups during startup
and also afterwards when new sensors come online.

Multiplexers offer great flexibility in partitioning ap-
plication, configuration, and debugging functionality be-
tween different components of the sensor network. Con-
sider a debugger application that is debugging code exe-
cuting on a sensor node. The debugger typically requires
access to registers and memory on the sensor. Instead
of implementing the low-level functionality to retrieve
these values in the debugger itself, the functionality can
instead be implemented in the device-level servers as
files, with the multiplexer in the cluster head providing
higher-level organization. The debugger then accesses
the registers and memory indirectly by reading and
writing to these files, upon which the device-level server
performs the necessary low level procedures. As another
example, migration from a simulated sensor network to
a real network is straightforward. The device file servers
can present the same file interface to the application
regardless of whether the server is accessing a simulated
sensor or a real sensor.

IV. RESEARCH CHALLENGES

We have identified following research challenges spe-
cific to using the file system abstraction in a sensor
network environment.

Supporting resource efficient operation: Abstraction
such as those mentioned in Section II hide complexities
of the underlying system, and provide rich and intuitive
interfaces to the end user. Since wireless sensors are of-
ten resource-constrained, however, the implementation of
the file system abstraction must be reasonably efficient;
and thus the protocols must be designed to operate within
severe constraints on computational power, energy, and
storage. We selected the Styx protocol in part because it
is lightweight, and does not impose excessive overhead,
as detailed in Section VII.

Application-level operations must also be resource-
efficient, and so we propose the construction of a stan-
dard resource namespace that exposes resource informa-
tion to the application, such as the available energy or
storage space on a given sensor node. The following
challenges are identified.

Supporting resource efficient operation: Abstraction
such as those mentioned in Section II hide complexities
of the underlying system, and provide rich and intuitive

EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association 3

interfaces to the end user. Since wireless sensors are of-
ten resource-constrained, however, the implementation of
the file system abstraction must be reasonably efficient;
and thus the protocols must be designed to operate within
severe constraints on computational power, energy, and
storage. We selected the Styx protocol in part because it
is lightweight, and does not impose excessive overhead,
as detailed in Section VII.

Application-level operations must also be resource-
efficient, and so we propose the construction of a stan-
dard resource namespace that exposes resource informa-
tion to the application, such as the available energy or
storage space on a given sensor node. Section VI de-
scribes an example of resource-efficient query execution.

While the filesystem abstraction provides mechanisms
for creating and maintaining namespaces, it does not
define how they should be organized (separation of
policy from mechanism).

Consistency models: By nature, WSNs are dynamic,
concurrent systems. Thus, clients’ view of the namespace
and even data may be inconsistent with respect to the
current actual state. For example, a client may use
the namespace to determine that a particular mobile
sensor is in a specific region, but discover when it
actually reads data from the sensor, that it has moved out
of the previously determined region. Or, stale, cached
sensor readings may be sent to a client as a result of
transmission interruptions.

Strong consistency models could be implemented us-
ing distributed locks and other techniques, but the nature
of WSN applications generally suits weak consistency
models. Sensor data is by nature unreliable, and applica-
tions usually do not rely on high-quality, consistent oper-
ation. Adopting the file system abstraction, also allows
us to apply existing research in distributed file system
consistency models [3] to sensor network domain.

Managing streaming data: Sensors typically produce
stream data representing their samples over time. Stream
data is not directly supported in the Styx framework; ex-
tensions to the file system abstraction to model streaming
devices may be required. We are currently working on
extending Styx protocol so that streaming data can be
handled more efficiently.

Supporting in-network application-specific pro-
cessing: Our framework supports in-network aggregation
in the following two ways. In the first approach, a user
can extend the existing Styx server to incorporate the
required functionality. The Styx server implementation
is fairly simple and easy to extend. In the second
approach, the user implements the functionality within
an independent dynamic library. The Styx server then
loads the dynamic library at run time as needed, and
unloads them when unneeded to free up memory.

For applications with relatively static requirements,

such as a debugging application which needs access to
sensor registers and memory, the first design choice is
a better option. Also, very commonly used aggregation
functions including average, min, max can be imple-
mented within the Styx server. However, for applications
that require more sophisticated in-network processing
or whose functionality changes more often, the second
design choice is a better option.

Tolerating network unreliability: Wireless channels
are susceptible to fading and interference. Furthermore,
to conserve energy, sensors often turn off their radios for
extended periods of time. This intermittent connectivity
poses unique challenges to filesystem design. One partial
solution is to cache relatively static sensor information
in the cluster head, which can then respond to queries
even when communication to the sensor is interrupted.

V. ADDITIONAL CAPABILITIES

Using a file system abstraction offers additional ad-
vantages for application developers in a sensor network.
Some of these are reviewed in this section.

Ease of application development: The file system
interface is well understood (both semantically and syn-
tactically) by application developers and system pro-
grammers. This interface can be easily used by scientists
and researchers who are not familiar with the intricacies
and low-level details of sensor network systems.

Access control via file permissions: File systems
incorporate simple but flexible access control mecha-
nisms via file permissions. For example, the permissions
on a sensor control file might grant write access to
the administrator group to allow calibration, while only
granting read access to normal users to allow querying
the current device state.

Ease of integration: We believe that tools designed
in other contexts can be easily made available to use in
sensor network environments. This includes, for exam-
ple, development and visualization tools developed for
desktops, PDAs, or even distributed systems. These tools
can then be ported to the proposed file system abstraction
with an effort significantly lower than having to develop
them from scratch.

Portability across sensor architectures and proto-
cols: The file system abstraction using the Styx protocol
can serve as a bridging layer for interoperating hetero-
geneous sensors as well as interactions with external
devices. In this sense, it plays a role similar to that played
by IP in interconnecting heterogeneous networks. Once a
new device has support for file system/Styx primitives, it
is able to interoperate with the remainder of the system.

VI. EXAMPLES

In this section we demonstrate the capabilities of the
file system abstraction with three examples.

EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association4

A. Sensor Monitoring and Calibration

Monitoring the resource state of sensors is an im-
portant capability for sensor networks [7]. Moreover,
sensor calibration is essential for reducing the noise in
the sensor data [8]. The file system provides mechanisms
to discover sensors, as well as read and write their
state, which allow the application developers to rapidly
and even interactively monitor and calibrate the sensor
network. For example, the following commands can be
issued by a client to discover the temperature sensors in
an area, read the remaining energy of one of the sensors,
and then write a parameter to calibrate another.

mount /dev/network /network
ls /network/cluster1/sensors/
cat /network/cluster1/s1/energy
echo 2.5 > /network/cluster1/s1/control

Note that an application-specific namespace can pro-
vide S&R functionality similarly to the example above.
We may monitor for sensors reading a temperature
higher than a threshold, look for actuators near them,
and then control the actuators, for example, to initiate a
cooling response in those areas.

B. Data-Centric Application

The second example illustrates how the filesystem ab-
straction supports a data-centric operation representative
of a S&R system. Effective S&R operation requires in-
network processing to localize interactions and reduce
the size of the data transmitted by the sensors [9]. For
example, data from multiple sensors can be aggregated
to reduce the overall data size transported to an observer.
Or, the data may be analyzed to detect events and initiate
responses close to the event location, reducing the cost
of data transmission and enhancing response time.

Consider an example where the average temperature
in a region (region 10) is periodically reported to a mon-
itoring stationg. We describe the planning and execution
of this task from a centralized server perspective for
simplicity; however, the namespaces may be maintained,
and the task planning carried out, hierarchically and in
a distributed fashion

First, the application namespaces are consulted
to discover the sensors in that region by using
ls /network/location/region-10/*. This
determines that cluster 1 is within the area of interest.
The location information in the namespace is now
used to find a set of sensors with the appropriate
coverage. In addition, we may consult an energy-based
namespace where sensors are categorized in terms of
their remaining energy. This allows the application to
avoid selecting sensors with low available energy (e.g.,
S4 and S5) leaving only high remaining energy sensors
who satisfy the coverage requirements (S1, S3, S6, S7).

/mnt/Emergency/devices

Actuator

Response Generation System

Alarm Page SMS Email

PC PDA

Fig. 3. An S&R system.

Resource namespaces can also support detailed query
planning by tracking network-level resources—in our
case to determine the routing and aggregating nodes
in the network. These namespaces may include sensor
connectivity, bandwidth availability, and resource avail-
ability. At the end of this step, the task planning is
accomplished, and a suitable set of sensors, the dataflow
in the network, and in-network processing is determined.

The query is executed as follows. The source sensors
are tasked with an appropriate reporting rate (which can
later be adapted) to their upstream neighbors as per the
determined dataflow path. Basic sensors have support for
sending and receiving packets, but some sensors (e.g.,
cluster heads) support Styx servers and act as multiplex-
ers. Communication between the sensors forming the
dataflow is set up using Styx. Application specific in-
network processing can be accomplished by customizing
packet handlers in these multiplexer nodes. This can be
done dynamically (allowing specialized handlers to be
moved to appropriate places in the network), statically
(at compile time, or within the Styx protocol), or by
allowing the application to select among a menu of
predetermined handlers.

C. Heterogenous Response System Architecture

In the first example, we demonstrated how we can
control actuators embedded with the sensor network
to generate the required response. In this example, we
describe the flexibility of the proposed framework in
terms of incorporating a wide range of heterogenous de-
vices. As an example, consider a S&R system (Figure 3)
deployed in a chemical factory to detect any gas leakage.
The response generation system takes input from a range
of chemical sensors, processes it and then generates
the necessary response. The response might include
local activities such as controlling actuators embedded
within the sensor network or it might include contacting
external entities and authorities or both.

If the system is built using the file system abstraction,
it might have a directory called /mnt/Emergency and
the response generation system might organize different

EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association 5

responses under this directory. For example, upon de-
tecting gas leakage, it might set an alarm to alert local
workers and activate the actuators on a sprinkler in order
to turn it off. In addition, it might SMS events to medical
professionals and e-mail other local authorities.

In many cases, the task force is formed in an ad
hoc fashion without any knowledge about underlying
sensing infrastructure [10]. With the proposed framework
a new device can be mounted on the fly under the
/mnt/Emergency directory and the concerned authority
can start getting the notification messages immediately.
Also, inter-organization communication can be accom-
plished more easily using simple file commands.

VII. IMPLEMENTATION

We have implemented a prototype which integrates
the Styx protocol library with the ns-2 simulator [11].
In the current implementation, during the initialization
phase, the cluster head (CH) discovers the neighboring
sensors and since the CH is running the Styx file
server, it simulates sensing devices as files in a file
system hierarchy. In the current implementation, we
have incorporated the support for constructing various
namespaces within the Styx server. Then the client starts
the session with the CH by calling the attach function
exposed by the client-side Styx library. The client-side
Styx library then encodes this command into a low-
level Styx message which is sent over the wireless
channel. The Styx server running on the CH interprets
this incoming Styx message, processes it, and sends a
pointer to its root directory to the client, again using
the Styx protocol. It should be noted that, the client-side
Styx library exposes a clean file system interface and
hides all the low-level details of the Styx protocol from
the client. Upon getting the pointer to the root directory,
the client is able to navigate this directory structure using
the walk command and it reads the files using the read
command. In essence, the simulation set-up supports the
capability required by the sensor network monitoring
example described in Section VI. In addition, with our
simulated prototype, we are able to simulate a sensor
network consisting of at least few hundred sensors.

We have also developed the basic infrastructure for
implementing the file system abstraction on real sensors
such as the Stargate and Berkeley motes. We have
developed a lightweight file server model suitable for
the Motes, which consists of about 1000 lines of code
and is less than 8KB in size. Our design incorporates
the fact that these Motes have reasonable about of flash
memory (a few KB) but much less RAM (few hundred
bytes), by extensive use of static structures such as
device tables and by judicious use of dynamic memory.
We have also adopted the less demanding event-driven
model as opposed to using runtime threads. Once this

implementation is complete we hope to start using it
in problems concerning resource monitoring, calibration,
and distributed debugging all leading to more complex
data centric applications.

VIII. CONCLUSION

Sense-and-respond systems are typically heteroge-
neous and resource-constrained. Under these conditions,
system and application development is difficult, espe-
cially for domain experts and other developers whose
specialty may not be embedded systems. In this paper
we have demonstrated how a simple and well-known
abstraction, that of a file system, hides much of the
underlying complexity, allowing developers to focus on
the fundamental challenges of S&R systems. Our initial
results with a prototype on the ns-2 simulator suggest
that such an abstraction can be practically implemented.
Our next step is to port our implementation to a physical
WSN such as one constructed from Stargate and Motes.

REFERENCES

[1] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson,
H. Trickey, and P. Winterbottom, “Plan 9 from Bell Labs,”
Computing Systems, vol. 8, no. 3, pp. 221–254, Summer 1995.

[2] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and
D. Rubenstein, “Energy-efficient computing for wildlife tracking:
design tradeoffs and early experiences with zebranet,” in In Prof.
of ASPLOS 2002.

[3] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in
the coda file system,” ACM Trans. Comput. Syst., 1992.

[4] Y. Yao and J. Gehrke, “The cougar approach to in-network query
processing in sensor networks,” SIGMOD Record, 2002.

[5] S. M. Dorward, R. Pike, D. L. Presotto, D. M. Ritchie, H. W.
Trickey, and P. Winterbottom, “The inferno operating system,”
Bell Labs Technical Journal, Winter 1997.

[6] R. Pike and D. M. Ritchie, “The styx architecture for distributed
systems,” Bell Labs Technical Journal, 1999.

[7] Y. Zhao, R. Govindan, and D. Estrin, “Residual energy scans
for monitoring wireless sensor networks,” in IEEE Wireless
Communications and Networking Conference (WCNC’02).

[8] K. Whitehouse and D. Culler, “Calibration as parameter esti-
mation in sensor networks,” in Workshop on Wireless Sensor
Networks and Applications (WSNA) 02, 2002.

[9] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next
century challenges: Scalable coordination in sensor networks,” in
Proc. 5th ACM International Conference on Mobile Computing
and Networking (Mobicom), 1999.

[10] K. M. Chandy, B. E. Aydemir, E. M. Karpilovsky, and D. M.
Zimmerman, “Event webs for crisis management,” in Presented
at the 2nd IASTED International Conference on Communica-
tions, Internet and Information Technology, 2003.

[11] “Network Simulator,” http://isi.edu/nsnam/ns.

EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association6

