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Abstract
The end-to-end performance of pervasive mobile sys-
tems is commonly dictated by the availability of re-
sources at the weakest link. However, a number of run-
time adaptations or morphing steps can be performed to
tune the system performance. In this paper, we present
M-ECho, a middleware for system morphing. M-ECho
is designed with focus on data streaming applications,
specifically in the field of pervasive mobile systems. We
consider an autonomous robotics application comprising
of a set of cooperating mobile robots to demonstrate and
evaluate M-ECho’s system morphing capabilities. Op-
timizations are based upon metrics of average instanta-
neous power consumption at a single node (local) as well
as the power consumed by all participants (global). Ex-
perimental results show that M-ECho is able to achieve
improved end-to-end performance with its dynamic code
morphing techniques.

1 Introduction

Pervasive mobile systems are often comprised of re-
source limited mobile nodes. These nodes can be char-
acterized by decreased computing and communication
capabilities, as well as limited battery power. Due to
continuous environmental changes and changing system
objectives, it is required that these systems adapt them-
selves in order to optimize their resource usage and per-
formance.
In this paper, we present M-ECho, a middleware that
provides support for continuous system adaptation and
evolution, termed system morphing. In particular, M-
ECho focuses on data streaming applications in per-
vasive domain. Specifically, the middleware (1) pro-
vides mechanisms for runtime behavioral changes and
(re)deployment of program components and (2) makes
middleware, and thereby applications, aware of current
resources. Resource awareness involves runtime interac-

tions between middleware and the underlying distributed
platform. Code morphing is the runtime alteration of
the implementations of specific program components,
the goal being to dynamically create components with
the properties that best match the system’s resource us-
age directives. Code morphing is carried out by actions
that include runtime code generation, code deployment
or re-deployment, and by change transactions [8] that
guarantee desired safety properties when distributed pro-
grams are changed at runtime. Morphing is triggered by
changes in program objectives or behavior and/or in cur-
rently available resources.
Apart from traditional end-to-end performance crite-
rion, such as increasing achievable bandwidth and reduc-
ing latency, efficient energy usage is an important objec-
tive for pervasive mobile systems since it directly relates
to the longevity of the system. In this work, we focus on
this criteria for evaluating the morphing capabilities of
M-ECho for target systems.
Past research on energy efficiency in mobile systems
has typically sought to prolong the battery lives of in-
dividual devices. Recent results extend to entire sys-
tems. An example is message routing in ad-hoc net-
works, where cooperative routing is performed to route
messages to avoid using power-poor devices, thereby
permitting the entire system to continue its operation [4].
Our work addresses the system-wide power consumed
by the processing and communication actions of a dis-
tributed application. We focus on power and not on en-
ergy since (1) we assume that our tasks are long run-
ning and (2) available energy (battery power) is not a
monotonically decreasing resource in the system. There
might be opportunities for charging batteries in future
or change in the total number of nodes comprising the
system. The premise is that the application can func-
tion only as long as the weakest (the power poorest)
device hosting its components. There is a variety of
techniques to deal with predictable device failures due
to power paucity, including migrating functionality par-
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tially or completely onto different devices. Instead of re-
quiring an application to explicitly implement such tech-
niques, our research is creatingmiddleware solutions that
make it easier for developers to implement such tech-
niques or even to automate their use.
The key advantage of code morphing over per de-
vice or per subsystem techniques for managing power
is the ability to integrate application-level changes with
system-level behavior changes. To evaluate and quan-
tify this advantage, we have implemented code morph-
ing in the M-ECho middleware. M-ECho implements
a publish/subscribe paradigm of inter-machine commu-
nication, mapping the logical channels to link cooper-
ating devices for inter-device communication. The data
traversing these channels is described as events, where
event providers, consumers, or intermediates can oper-
ate on events using well-defined event handlers. Event
handlers are the software components for which we im-
plement code morphing. Such handler morphing differs
from prior work in application adaptation due to its abil-
ity to re-deploy handlers on demand and as currently
needed by the application or its execution environment.
The redeployment uses either dynamic compilation and
code generation or static code repository. In a sense, han-
dler morphing combines the abilities of compilers to gen-
erate the code most suitable for a platform (and its cur-
rent resources) with parameterization or system-based
techniques for dynamic program adaptation.
While M-ECho’s implementation of code morphing
targets event handlers, the idea of code morphing gen-
eralizes to other systems. Class and agent based migra-
tion has been used in Java and Corba frameworks [9, 7].
Tempo [14] uses code parameterization and compiler as-
sisted code specialization for runtime optimization.
This paper makes two key contributions.

• It describes the code morphing mechanisms pro-
vided byM-ECho, where event handlers are dynam-
ically modified in order to achieve desired changes
in application behavior in response to system-wide
changes in energy resources.

• Experimentation with a realistic, distributed appli-
cation in the autonomous robotics domain both mo-
tivates this work and provides insights into the util-
ity and limitations of middleware-level techniques
like code morphing to improve performance. In
this application, a team of autonomous robots must
communicate environment information like images
or laser data to each other, in order to attain some
joint goal, such as foraging for resources. Attaining
such a goal requires cooperation and joint actions,
including tasks like motion and path planning.

An interesting insight derived from the use of M-ECho
with the robotics application is a differentiation of node

local from system global instantaneous power consump-
tion as target performancemetric. This is particularly rel-
evant in mobile applications in which there are future op-
portunities for re-charging batteries (e.g., consider robots
docking at a re-charging station). An interesting exam-
ple in the robotics application is the use of compression
techniques for image sensor data. JPEG compression, for
instance, can reduce the instantaneous power consump-
tion of the overall system by approximately ∼ 5%, even
when we keep the full quality. If we reduce the quality
to 75%, the overall system power consumption reduces
to ∼ 8%. However, if the data provider (i.e., server) has
the opportunity to re-charge its batteries in the near fu-
ture, whereas the client does not, then it may be better to
use simpler data reduction techniques, such as an 8 bpp
(bits per pixel) grayscale conversion of a 24 bpp color
image. This reduces client’s power consumption up to
∼ 17%, at the cost of increasing server’s power con-
sumption by ∼ 10%. This tradeoff is entirely reasonable
when server vs. client initial energy levels differ (and
both should run out of power at approximately the same
time) and/or when the server has future opportunities to
re-charge whereas the client does not.

2 Issues with Power Consumption in Au-
tonomous Robotics

Energy conservation has always been a goal for mobile
devices due to their limited battery power. In distributed
mobile systems, a range of techniques is used to conserve
system-wide energy and ensure application longevity,
ranging from node-level methods like dynamic voltage
scaling [17], periodic sleeping or frequency scaling to
reduce idle times, to compiler techniques such as gener-
ating energy-efficient code [11], to OS specific methods
like power-aware scheduling [20], to application-level
methods like agent migration [9] and changing attributes
such as fidelity [6]. Amongst such techniques, online
methods for power management typically address spe-
cific subsystems, beginning with early work on power-
aware communication [10], to recent work on power-
aware routing in wireless ad-hoc networks [18]. Such
methods can take advantage of the fact that participating
nodes tend to be freely interchangeable, so that one node
can transparently replace another. In comparison, in the
robotics applications addressed by our work, nodes have
certain roles, which must be taken into account explicitly
when applications are adapted.
Our target application domain is distributed au-
tonomous robotics. Our specific application is one in
which a team of robots cooperated to execute some com-
mon task, an example being disaster recovery and relief.
Each rescue robot can performmultiple actions (i.e., play
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different roles), constrained by the availability of certain
peripherals. An example is a robot equipped with a laser
but not with odometry capabilities, which means that the
robot can perform environment sensing but not localiza-
tion (i.e., help the team determine its robots’ respective
positions). Other constraints are due to current applica-
tion or environment state. A robot with a good view of a
disaster site, for instance, may have to maintain its criti-
cally important role as a sentry, despite its ability to also
perform other tasks. Another interesting characteristic
of this application is that energy need not be a uniformly
decreasing resource. A robot may be able to increase
its energy resources due to the availability of an external
source of energy. The robot may be able to move towards
an external power source and charge its batteries without
causing a disruption of service in the system. Or, a robot
may have solar batteries, which can be re-charged when
the robot enters a sunny environment.
The specific prototype application being constructed
by collaborating robotics researchers [1] will consist of
up to 100 mobile robots equipped with diverse sensors
such as laser, sonar and cameras, 802.11b-based wireless
communication device(s) and Intel XScale based CPUs.
This paper focuses on the robot team’s IT infrastructure,
in anticipation of future micro-robots and current micro-
sensor-based systems where power consumption is dom-
inated by the IT infrastructure’s actions and behavior.
The experiments conducted in this paper implement a
sample collaborative task, using video streams to emu-
late sensor communications across different robots and
power behavior of a localization algorithm.
The following list concisely articulates the energy-
related goals of code morphing pursued for our mobile
application. The objective is to extend the application’s
longevity.
1. Maintain suitable per device power health by mod-
ifying application behavior subject to current robot
roles, device state, and application state. The goal
is to always run application codes where most ap-
propriate for the entire application, thereby opti-
mizing application-wide metrics of utility/power. A
sample method is to offload (i.e., delegate) tasks to
the most appropriate robots, based on their current
power health, capabilities, and application state.

2. Reducing application communication overheads,
the method being to dynamically eliminate unnec-
essary data from event communications, thereby re-
ducing power usage. This implies placing appropri-
ate code (i.e., M-ECho event handlers and filters)
onto data-providers (e.g., robots with sensors).

3. Create application-level overlays to help with task
offloading, where codes ordinarily running on sin-
gle nodes are morphed to processing pipelines

OS

Middleware

Information Flow
Info−fabric

Information Flow
Q−fabricd−proc kernel service

Application

M−Echo

Codelet
cache

ApplicationApplication

Codelet Repository
server

Figure 1: M-ECho Architecture

mapped across multiple, network-connected ma-
chines. In comparison to prior work on network-
level message routing, our work creates middle-
ware overlays that route and process events, match-
ing robots’ power levels and processing capabilities.
This is akin to assigning roles to sensor nodes in a
wireless sensor network [16].

3 System Morphing with M-ECho

3.1 M-ECho Software Architecture
The M-ECho framework (refer to figure 1) consists of
the following components:

1. InfoFabric Middleware Platform. The InfoFab-
ric middleware platform is based on the ECho [5]
publish/subscribe middleware which presents a dis-
tributed source/sink view for the whole system. In-
formation is exchanged between source and sink
nodes in form of events. Event handlers are de-
ployed at the sink node to respond to specific
events, while filters are deployed at either source or
sink nodes to perform information filtering. These
event handlers and filters are application specific.
The middleware platform also interacts with kernel-
level d-proc monitoring service which is part of
Q-Fabric [15] infrastructure to receive information
about system level events such as the remaining bat-
tery power at a node. Infofabric enables data aggre-
gation at nodes, much in the same way provided by
DFuse [12] and TAG [13]. The key difference is
that the unit of aggregation are ECho events vs. raw
sensor data.

Since M-ECho utilizes the publish/subscribe
paradigm of communication, a straightforward
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representation of morphable components are the
handlers and filters applied to the data events that
traverse M-ECho-based applications. In fact, M-
ECho’s implementation of filters and handlers (also
termed as code segments or codelets hereafter) sim-
plifies morphing by limiting the generality of code
and state compared to that of arbitrary program
components. The codelets are either compiled
dynamically using dynamic code generation or a
suitable binary version is obtained from the codelet
repository service, described below.

2. Codelet Repository Service (CRS). The CRS func-
tions as a repository for codelets. Codelets are
stored along with multiple attributes. Examples of
these attributes include the format such as binary
vs. ECL source (ECL is a subset of C language [5],
OS/platform and a cryptographic signature hash.
The service provides a traditional FTP like get/put
interface for obtaining/publishing codelets. By stor-
ing some pre-compiled versions of a codelet on the
repository, we can save on the cost of dynamic code
generation wherever possible.

3.2 Code Morphing Techniques
Our morphing work takes an overall system approach to
dynamic adaptation. In other words, based upon sys-
tem requirements (these requirements may be local or
global), we adapt the application components (including
middleware) and the environment components (such as
OS and network). In the presented work, we focus on
morphing in M-ECho via adaptation of application com-
ponents.
Following are the specific morphing techniques that
M-ECho currently implements:

• Code parameterization. We modify particular pa-
rameters to affect the outcome of a certain codelet
such as changing the number of items that a aggre-
gating function might be using, changing the quality
parameter that dictates the computation being per-
formed by a codelet and changing the rate of events
to be generated.

• Code substitution. We replace one codelet by an-
other. This is assisted via dynamic code generation
for the specific platform or via CRS, as described
above.

• Code migration. We use dynamic (re)partitioning
and (re)deployment of application components
based on environmental attributes provided by the
Q-Fabric infrastructure such as available network
bandwidth and remaining node power.

We collectively refer to the morphing techniques used
by M-ECho as code morphing. The current version of
M-ECho supports all the code morphing techniques de-
scribed above. As we show later, with code morphing
alone we are able to achieve goals 1 and 2 as stated in
section 2.

4 Experimental Results

Our experimental scenarios are based upon a set of robots
exchanging sensor information in order to perform local-
ization and path planning. Power measurements focus
on typical robotic computing subsystems. In particular,
we use PXA255 XScale CPU based evaluation boards
and StrongARMCPU based iPAQs to mimic the comput-
ing system of a robot. Power measurements are obtained
by monitoring current with a measurement circuit based
upon a current sensor IC, and simultaneously measuring
voltage. These values are measured with the Picoscope
212/50 PC-oscilloscope [2]. In the applied mode, the os-
cilloscope returns an average of a set of samples obtained
at 50 million samples per second every 1ms to measure
single shot signals. We report the average of these power
values as average instantaneous power.
We enhanced the commonly used Player/Stage
robotics framework [3] to use M-ECho middleware. The
current implementation of Player/Stage uses parame-
terization to perform limited morphing, adapting event
rate(s) and event type. Using M-ECho, we are able to
enhance the capabilities of the framework (1) to perform
codelet substitution and (2) to perform codelet (task) mi-
gration across robots, all of which directly affect power
usage. The goal is to improve energy usage for all de-
vices participating in the application, that is, to extend
the ability of all devices to continue to pursue their joint
application-level tasks. In this context, we look at two
energy-intensive tasks of this application, the acquisition
and exchange of sensor data and the task of localization.
In our experimentation, former is implemented as the
exchange and processing of video images captured by
device-mounted cameras. Code morphing techniques
such as code parameterization and code substitution are
used to utilize diverse data encoding and compression
techniques in order to control energy usage at informa-
tion providers vs. consumers. For the latter task, we use
a localization application which is part of the enhanced
player/stage framework. The application uses the adap-
tive monte-carlo algorithm [19] and continuously tries to
localize the robot based on the sensor data. We use a log
of laser readings obtained from one random walk of the
robot in a synthetic environment. The localization appli-
cation reads sensor data from this log and computes the
localization information. We use code migration to show
that it is possible to achieve power savings along with
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better QoS when localization is run locally on the robot
vs. off-board.

4.1 Code Parameterization and Substitu-
tion

To simulate sensor date exchange between robots, we
use a media application running on iPAQs, in which a
source sends out raw 24-bit color 352X240 PPM cam-
era images over a 802.11b wireless network and a client
(or sink) displays them. The application utilizes sev-
eral data reduction methods for system morphing. These
methods include JPEG compression and image transcod-
ing such as grayscale (GRAY) and black&white (BW)
conversion and image cropping (CROP). System morph-
ing techniques used are code parameterization, such as
changing the JPEG compression level, and code substi-
tution, such as changing data reduction methods (which
requires changing the filters and handlers at source and
sink respectively).
Table 1 shows the average instantaneous power con-
sumed (in watts) by the a source and a sink node. Idle
shows the base case power consumption for both nodes
when they are idle. When the application is running,
source sends data as fast as it can, assuming that it al-
ways has information to communicate. The table lists
power values for different data reduction methods. Nu-
meric value adjacent to JPEG denotes the quality param-
eter value used by the JPEG compression. The frame
rate observed by the sink and the normalized power con-
sumption for the desired rate of 1 frame per second (refer
to the discussion below) are also shown.
We compare the differentmethods as following. Given
a method can achieve more QoS (in our case, frame rate)
than desired, we compute the normalized power as fol-
lowing:

Norm power(i) = F/T ∗ 1/ri ∗ (Pi − I) + I

where ri is the QoS (achieved frame rate) and Pi is the
average instantaneous power for method i, I is the idle
power and F/T is the desired frame rate. To obtain sys-
tem power, we add respective power values for source
and sink nodes. If the frame rate achievable is less than
desired, the normalized power at a node is Pi (as is the
case for BW and GRAY). However this implies a lower
utility for the application (we assume that utility is a
smooth monotonically decreasing function and not a unit
step function).
These experiments demonstrate that the choice of mor-
phing technique and corresponding method depends on
the objective. For a desired QoS of 1 frame per second
for our application, if the objective is to optimize client
average power usage (regardless of the utility), morph-
ing system can use code substitution to employ encoding

CPU Local Remote
Freq (MHz) P (W) T (s) P (W) T (s)
400 4.24 39 3.37 38
300 3.75 59 3.2 38
200 3.62 78 3.16 38

Table 2: Average instantaneous power usage and run
time for a localization application on a node where lo-
calization algorithm is run locally vs. on a remote node

methods such as BW or GRAY. If the objective is to opti-
mize global average power usage, then code substitution
can be used to employ JPEG compression. Furthermore,
if we can tolerate some image quality loss, code param-
eterization can be employed to use 75% quality for opti-
mal overall average system power usage.

4.2 Code Migration

A common approach to reducing local power con-
sumption at a node is to take advantage of CPU fre-
quency/voltage scaling [17]. However, a reduced fre-
quency often results in an impact to QoS. For example,
for a localization application running on the evaluation
board, table 2 shows that the local average instantaneous
power consumption (Local P (W)) decreases with lower
frequency (the processor automatically scales to the low-
est voltage to support the desired frequency). However,
the time (T) required to compute localization increases,
thereby nullifying any gains obtained from frequency
scaling. For our application, this effect is magnified due
to the architectural characteristics of the PXA255 CPU.
The localization algorithm requires floating point oper-
ations which are not supported in hardware. For all FP
operations, the hardware traps to the OS and software
libraries are used to perform the actual operations. This
overhead can dominate performance for floating point in-
tensive applications.
Assuming that the environment consists of some
power and performance rich nodes that have the abil-
ity to periodically recharge themselves (i.e. their power
consumption is not of concern in the performance of the
system) and can process data faster than the local node,
we demonstrate that the localization application can di-
rectly benefit from code migration. Table 2 shows the
local node’s average instantaneous power consumption
when the localization algorithm is run remotely (Remote
P (W)). In this case, local node not only uses less power
with lower frequency, it can still finish the desired task
in almost the same time as with higher frequencies. This
also serves as an example of system morphing due to re-
stricted node capabilities.
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Method Inst. Power (W) Frame Rate Normalized power (W)
Sink Source (Sink) Sink Source

Idle 1.66 1.49 0 1.66 1.49
Nocomp 2.16 1.96 1.9200 1.92 1.73
JPEG 100 2.3 2.12 3.9000 1.82 1.65
JPEG 5 2.32 1.91 6.6250 1.76 1.55
JPEG 75 2.33 1.97 6.1000 1.77 1.57
BW 1.59 2.01 0.3797 1.59 2.01
GRAY 1.63 1.94 0.3750 1.63 1.94
CROP 2.14 2.05 14.1375 1.69 1.53

Table 1: Source and sink power consumption for parameterization and substitution code morphing techniques

5 Conclusions and Future Work

In this paper, we present the design of M-ECho and
its code morphing capabilities. Using M-ECho for an
autonomous robotics application in a pervasive mobile
domain, we demonstrate power performance benefits of
code morphing techniques.
Our future efforts are focused on:

• Using compiler assisted techniques for the dynamic
compilation of codelets for achieving power bene-
fits, such as mixed code generation [11].

• Quantifying the energy cost of dynamic compilation
of codelets vs. the use of CRS.

• Building morphable application level overlays
based on node’s capabilities to achieve goal 3 as
stated in section 2.
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