
Reducing Business Surprises through Proactive,
Real-Time Sensing and Alert Management

Mitchell A. Cohen, Jakka Sairamesh, Mao Chen
IBM T. J. Watson Research Center

Hawthorne, NY, 10532
{macohen, jramesh, maochen}@us.ibm.com

Abstract
OEMs need to transform the way they do business in order to ensure better quality of products and services. Crucial
failure symptom information is lost between the end consumers of products and the manufacturers. Manufacturers
have access to this information but are typically unable to handle its volume in a timely fashion. However, using
this data properly can result in diminished labor time in issue resolution, decreased warranty costs for manufacturers
and improved customer retention. In this paper, we present a novel system for Proactive Real-Time Event and Alert
Processing, which enhances an enterprise’s ability to monitor, analyze and detect critical business events and
situations. This capability can help improve operational efficiencies, reduce costs, streamline processing of business
alerts, and enable the enterprise to react in a more timely fashion. The system can enable monitoring of near real-
time, low-level, industrial sensor and controller events, and high-level events from underlying structured and semi-
structured data. The alert system uses domain knowledge to enable processing the events in real-time, performing
the appropriate analytics and evaluation on the events and alerting the right set of users. The alert and event
processing system has been deployed and validated in real pilots with industry specific data. We are currently
validating the scalability and performance of the alert system with many different information sources and high
volume sensor information.

1. Introduction

Over the last ten years we have been witnessing a
transformation in the structure and daily operations of
large and small enterprises because of the drive to
lower costs, leverage the Internet for business
operations, and integrate better with their supply chains.
Increasingly, enterprises are dependent on their supply
and value chains to build products and deliver services
respectively. This has a profound impact as the
streamlined flow of information and services in the
supply and demand chains is crucial to manufacturers
and enterprises wishing to capture the product feedback
needed to improve product quality and increase
customer satisfaction. For example, in the automotive
industry, information disconnection in the demand
chain is causing slower product feedback, rising
warranty costs and declining customer satisfaction in
spite of the advances in vehicle technology. Sensing
and alert management in such demand chains can
provide accurate and faster feedback, improve quality
and reduce costs. In the following, we present the
motivation for scalable sensing and alert management.

Rising warranty costs: It is estimated that in the US
alone, the warranty costs in the automotive industry are

around 3% of the OEMs (manufacturers) revenue, and
the total costs for 2003 are estimated at 12 Billion
USDi, and rising. The same issues are being grappled
with in the Electronics, Aerospace and Heavy
Engineering industries. Manufacturers are extremely
concerned about the rising warranty costs, and are
determined to reduce them as much as possible through
sensing product information (e.g., vehicles) and their
status in real time.

Lack of visibility into operations: Most enterprises do
not have deep visibility (at a fine grained level),
controllable operational models and flexible and easily
modifiable business operations. With sensors and
actuators the right capabilities for monitoring
operational performance, integration and control can be
enabled for businesses to sense and adapt their daily
operations in a timely manner. In the world of
industrial sensors, the model of top-down design
becomes critical as the right sensing of the operations
can provide crucial information for optimizing business
operations. The business metrics for enterprise
operations can include improving the current cycle
times of the core business processes in manufacturing,
production, parts, inventory and sales. Shrinking the
cycle times necessitates deeper and better visibility in

1EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association 43

the enterprise operations. In this paper, we discuss
various business scenarios, challenges and technology
components that can enable such monitoring and
evaluation in a scalable fashion.

Several papers and articles in the literature ([1], [2], [3],
[4], and [5]) present novel event stream processing
work. However, they have primarily focused on ad hoc
communication domains or domain agnostic systems,
and very few have focused on using semantics for event
processing. The fundamental difference in our work is
combining domain knowledge structures with sensor
information to extract meaningful information in order
to generate real alerts and take actions through complex
decision processes or activate additional monitoring
processes.

1.1. Business Metrics and Challenges

In order to enable monitoring of business operations,
specific business metrics need to be defined for
capturing the state of the business operations, current
performance and trends. Tracking these metrics
enables gathering of intelligence and predicting future
trends in order to make timely decisions. For example,
metrics are defined for managing the life-cycle of
products from the production phase to the delivery and
service phases. The following are typical examples of
business metrics: a) Production and product life-cycle
process times; b) Down time of assets in production and
assembly lines; and c) Cost of monitoring production
processes through automation. The challenging
problems include identifying the metrics (assets or
processes), sensing the data for the metrics in a scalable
fashion, controlling the sampling rate dynamically, and
evaluating the data to extract critical alert information.

1.2. Contributions

Summary of the Alert-Event System: In this paper,
we describe a unified semantic event stream system that
continuously monitors diverse data sources and
generates alerts based on domain specific rules. This
system can enable manufacturers to closely monitor
critical business events (reducing surprises) and gather
business intelligence from information such as product
failures, warranty intelligence, field events, sales
transactions, asset performance and others. Our
solution is currently undergoing field trials and pilot
deployments. This paper discusses the system design,
methodology, reliability and scalability. A
mathematical foundation is being worked on, but is
beyond the scope of this paper.

2. Business Scenarios

In this section, we present two business processes and
then describe the business and technical challenges.

2.1. Production, Engineering and Service

Production processes and asset-management:
Enterprises are investing in sensor systems to enable the
monitoring of the production processes, production
assets and product lifecycles in the factory
environment. The deployed sensors in the production
environment capture daily production data and quality
information in near real-time for the production
engineers and specialists to keep a close watch on the
manufacturing processes and assets involved in the
process (e.g., robots on an assembly line).

Industrial Sector Demand Chain: In the Automotive
Sector, manufacturers must manage rich relationships
with dealers, fleets, and independent repair shops to
support vehicle service lifecycles and build aftermarket
revenue streams. Optimizing these aftermarket
relationships requires OEMs to effectively support a
wide range of critical business activities including real-
time sensing of inventory replenishment, logistics, parts
tracking, product behavior, retail performance
management and others.

3. Technical Challenges

Real-time integration of diverse sensors and data
types: Integration of a multitude of events and data
from various sensors in various formats is a complex
challenge. Sensors of various kinds are being deployed
at every operational manufacturing site. These sensors
are built by third-party vendors who have custom ways
of sensing, sampling and generating the events. The
data rates could range from 1-50 megabytes per second.
The monitoring, integration, analysis and distribution of
event information based on the data are critical for
enterprises to streamline their manufacturing processes.

Programmability of controllers and actuators:
Current pervasive systems are focused towards light-
weight middleware layers over mobile devices with
programming frameworks such as MIDPs, SMF, OSGi,
J2ME and others. For a service oriented model, where
sensor controllers and actuators offer services to higher
level applications access (e.g., sampling rate), new
models of programmability with messaging controller
interfaces (e.g., Web Services) are needed.

Service-Oriented abstraction: With heterogeneity of
various applications, information sources, sensors, and

2
EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association44

sensor controllers, there is a need to abstract away the
underlying sensor components and interfaces into a
collection of services for higher level applications to
use and configure. Each device controller can be
defined by a service interface to enable regional or local
computing servers to access and integrate with the
controller.

4. Event Stream Processor Overview

At the center of the system solution is an Event Stream
Processor which handles all events, ultimately deciding
on the actions that need to be taken. Every kind of
message coming from external systems, sensors and
devices are treated as events. When running, the Event
Stream Processor steps through following for each
event: a) Event message receipt; b) Event
transformation; c) Metric calculation; d) Metric
evaluation; and e) Action invocation. The first 2 steps
are performed at a message adapter layer.

Figure 1. Flow of Event Stream Processing

4.1. Event Message Receipt

The Event Stream Processor has adapters for receiving
messages. Adapters determine the transport mechanism
for the group of senders (HTTP, JMS, etc). We have
created adapters which have web services that can be
called from clients. We also have adapters which can
pull events by polling a potential event source. Here
web services can be used to.

4.2. Event Message Transformation

Each adapter is capable of handling different formats of
event messages. During transformation the messages
are converted into a common format. Many different
transformations are supported. The preferred method of
transformation is via a web service call. The actual
transformation can be done via any of the commonly

accepted transformation techniques including XSLT,
translator packages, and straight Java code.

4.3. Metric Calculation

Metrics are calculated measures based on incoming
events. Metric calculations can go beyond the scope of
events, potentially accessing other systems for
additional data input or for additional calculations.
Rules engine integration falls into the calculation
category. Computations can range from mathematical
calculations to text analytics including syntax and
semantic analysis. For the automotive industry, we have
created metrics for: a) Fleet management or individual
vehicle monitoring, e.g., “running average of vehicle
speed”; b) Complaint management, e.g., “warranty
claim symptom”; and c) Class of vehicle performance,
e.g., “percentage of vehicles within a class (Make,
Model, Year, Trim combination) with warranty claims
on a particular subcomponent.”ii

Metrics can be processed on both structured and
unstructured information. Telematics systems in
automobiles collect many (anywhere from thirty to over
100) different parameters from vehicles. The telematics
systems take snapshots of how the vehicle is being used
and is performing. Values such as engine speed, vehicle
speed, and tire pressure are collected multiple times per
second. These values are well-structured real numbers.
Metrics based on telematics data can be as simple as the
value itself, such as “tire pressure” or can be
calculations based on current and previous values, such
as “running average of the vehicle speed to engine
speed ratio.” Calculations can include multiple different
types of values, common with ratios, or even values
from external sources.

Unstructured information may come in on events which
contain text fields. For instance, automobile warranty
claims come from dealers containing service technician
write-ups. The text fields contain brief descriptions of
the symptom and cause of a problem as well as the
action taken. Each of symptom, cause and action can be
metrics that are “calculated.” In this case the calculation
consists of syntactic and semantic analysis of the text
using glossaries of categorized terms, abbreviations,
and common misspellings.

4.4. Metric Evaluation

Prior to the Event Stream Processor being run, an
expert (or a group of experts) with a great knowledge of
the data, expected event arrivals, and normal overall
system behavior creates rules based on the metrics.
These rules are used in both the Metric Calculation and

3
EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association 45

Metric Evaluation phases of the processing. An
example of such a rule on (structured) telemetric data in
written form is “the twenty minute running average of
vehicle speed should not exceed 75 miles per hour.”
Rules are actually stored in XML form. An example of
a rule on the (unstructured) text of warranty claims
using metrics described previously could be “there
should never be a warranty claim where the symptom
was fire” which will enable a quality analyst to be
immediately alerted if such an unfortunate incident
should occur.
Figure 2 shows each of the steps taken by the Event
Stream Processor. Each step has a well-defined
interface that is implemented by a local web service.
Using such a Service Oriented Architecture allows easy
modification of the processor’s behavior through simple
plug-and-play.

Figure 2. Services Oriented Architecture of the Event Stream
Processor

Upon arrival, events are passed to the Event
Transformation Service to be converted into the
standard format used by the rest of the event processor.
Based on the incoming event, the Event Correlation
Service retrieves a list of metrics which need to get
calculated. For a metric involving past values, the
service also retrieves the relevant session. The values
contained in the event are then used in calls to the
Metric Calculation Service. The Event Stream
Processor invokes the Session Update Service to update
the session to ensure the current event is included in
future metric calculations. The Metric Evaluation
Service determines what actions if any need to be taken
based on the newly calculated metric. These actions are
taken with calls to the Actions Instantiation Service.

5. Scalability

Scalability is a key design point for the Event Stream
Processor. The ability to handle large numbers of
events has become paramount in the new world of

sensors and actuators. For scalability, we need to look
at the Event Stream Processor as well as the systems it
uses. For the processor itself, there are two issues
preventing simple replication of the server to allow any
number of instances of it working in parallel, i.e., direct
scalability. The preventative issues are session
management and event listening.

The Event Stream Processor continuously calculates
metrics, which get updated as events arrive.
Calculations of metrics often depend on having
sessions. That is, we need to store information about
past events to calculate metrics based on new incoming
events. A common example is with the calculation of
running averages. Consider the metric of a running
average of engine speed, a common value supplied by
telemetry, for a particular vehicle. If the running
average is over a ten minute period, then all data
coming in over the last 10 minutes must be stored. All
the data for a particular vehicle is needed together in the
session to be able to do the calculation. As each new
triplet of vehicle, timestamp, and engine speed arrives
for a particular vehicle:

1. The session for the engine speeds for that
vehicle is retrieved.

2. Data no longer needed (older than ten minutes
in this case) is removed from the session.

3. The incoming timestamp and value are stored.
(Steps 2 and 3 can be implemented with a
circular array of session data.)

4. The running average metric is calculated.
5. Rules are applied to the calculated metric to

determine if a warning needs to be indicated.

Figure 3. Assigning Event Creators with Their Own
Processors with Local Sessions

4
EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association46

Scalability can only be enabled by ensuring the current
version of the session is available at the instance
processing the event. One option for solving this
problem is to have a common store for the sessions. As
shown in Figure 4, the sessions can be stored in a
Database Management System or a data grid. Each
instance of the Event Stream Processor would retrieve
and update the sessions as needed. Both database
managers and data grids are often wrapped in web
services. Another option for ensuring session
availability, shown in Figure 3, is to assign each session
to a particular Event Stream Processor instance.
Sessions can then be stored and managed locally by
each processor.

Figure 4. Using a Router to Pass Events to Processors with
Shared Sessions

Message receipt remains separate from event
processing allowing multiple nodes to handle the
processing. In one instantiation of our system, we route
incoming events based on the session to which they
belong. Each event processing node handles the events
for a group of sessions. There are two main factors in
deciding how to partition the sessions across the event
processing nodes:

1. Can we separate the sessions in a way so that
all the metric calculation can be done locally?
That is, can the data existing within the Event
Stream Processor be collocated within nodes
so that metric calculation can be done locally?

2. Can we separate the sessions so they are split
up so that messages of the same type go to
different event processing nodes? Messages
are typically skewed by type. For instance, if
metric calculations are mostly at the vehicle
level, “change in transmission gear” events are

much more common than “engine on”
messages. Routing messages by vehicle will
avoid workload problems caused by the
difference in the volume of messages by
message type.iii

6. Routing

There are two methods for handling the message
routing:
1. Using a conventional message router
2. Assigning target web services for each of the

different sessions
Message routers are well understood, but we’ll explain
further on the use of web services. Each different
session can have its own web service. Each event
creator can then be assigned a specific web service to
call based on the session needed for its events. This
type of mapping of event to sessions only works when
sessions are only needed at the creator granularity. The
metrics being calculated dictate the granularity. As long
as a group of sessions rely only a specific set of event
creators, those creators can use the same web service.

Figure 5. Using a Service Locator to Allow Event Creators to
Send to a Processor

A more elaborate scheme to allow creators to send
different types of events to different nodes consists of
two steps. Prior to sending the event, a service is called
to determine where to send the event. This routing
decision can be based on the message itself. This
mechanism pushes some of the routing processing onto
the event creator. This approach has been described
extensively in The Integrated Building Design
Environment by Fenves et al [6]. A key ability of the
Event Stream Processor is how at each step in its event

5
EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association 47

processing, it can integrate with external systems. In
one particular instance we integrate with a semantic text
analytics engine. Every time a warranty claim event is
processed, it is passed along to the semantic text
analytics engine to pull out symptoms, causes, and
actions from text entered by the service technician at
the automotive dealership. The integration can be done
synchronously or asynchronously as shown in the
figures below.

Figure 6. Synchronous Integration of External System

With synchronous integration, as shown in Figure 6,
during event processing the call to the external system
is made and the processor thread making the call awaits
a response. Choosing synchronous integration makes
most sense when integrating with external systems that
respond quickly relative the needed response time.

The asynchronous integration shown in Figure 7 allows
processing to continue prior to getting the result of the
call. When the processing of the call is completed, the
system creates a new event which allows processing to
continue.

Figure 7. Asynchronous Integration with an External System

7. Conclusion

In this paper, we described a novel unified semantic
event stream processing system for general critical
alerts that enhances manufacturer process efficiency in
quality, service, and warranty management. This

system improves visibility into critical alerts and
reduces surprises on warranty costs. It allows business
early access to information and trends. Our alert and
event system is undergoing field trials. A version of the
solution has already been deployed and functional on
real industrial data. The system is written in Java with
XML and Web Services as the support for semantic
data structures, rules, configuration and evaluation.
The performance has been excellent on real-time
information streams. Flexibility allows multiple
deployment scenarios enabling the system to be
optimized for various event evaluation mechanisms.
Various techniques are deployed to allow for scalability
with the metric types and data patterns determining
which technique is to be used. Further validation on the
scalability and routing is being done in real pilots and
engagements.

References

[1] Daniel J Abadi et. al., The Design of the Borealis
Stream Processing Engine, Second Biennial Conference
on Innovative Data Systems Research (CIDR 2005),
Asilomar, CA, January 2005.

[2] C. McGregor and Josef Schiefer, A Web-Service based
framework for analyzing and measuring business
performance, Information Systems and E-Business
Management, Volume 2, Issue 1, Apr 2004, pp. 89-110.

[3] Tivoli Risk Manager, Event Correlation Engine, 2003.
http://www.ibm.com/tivoli.

[4] David Luckham and Mark Palmer, Separating the
Wheat from the Chaff, RFID Journal, 2004.

[5] Rajit Manohar and K. Mani Chandy, Dataflow
Networks for Event Stream Processing, 16th IASTED
International Conference on Parallel and Distributed
Computing and Systems, November 2004.

[6] S. Fenves, U. Flemming, C. Hendrickson, M. Maher, R.
Quadrel, M. Terk, and R. Woodbury. Concurrent
Computer-Integrated Building Design. Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 07632, 1998.

i Estimate is from AMR Research – on the web at
http://www.advmfg.com/content/resourcecenter.asp?id=440.
ii Automotive components include high level systems such as Engine,
Transmission, and Body. Subcomponents are subsystems within the
components. For instance, a subcomponent within the Engine
component is the High Pressure Oil System.
iii Of course, there can be skew in the messages created for different
vehicles. A whole paper (or perhaps even a text book) can be written
on dealing with message skew.

6
EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association48

