
Scalability in the Linux Storage
Subsystem

Overview

● Not an overview of what we can do
● Random thoughts on where I think we
have problems

● A few words on the biggest challenge I
think we face in terms of scalability

Random Thought #1

● Direct I/O scalability is a solved problem
● We're into micro-optimisations now

– controlling submission/completion CPUs to
minimise cacheline bouncing

– Need to be careful optimising direct I/O
doesn't regress other types of I/O

● Implies block and driver layer scalability
is good

● Large single I/Os can be easily issued

Random Thought #2

● Need to expose geometry and status of
the underlying storage topology
– to both userspace and kernel interfaces
– independent failure domains
– stripe/concat geometry
– load feedback

● Needs to be dynamic
– automatic filesystem grow
– loss of redundancy -> data redistribution

Random Thought #3

● writeback doesn't scale
– inefficient within a filesystem

– optimised for filesystems that don't do I/O on inode
writeback in ->write_inode

– single threaded within a filesystem
– not NUMA aware
– Different filesystems use different amounts of
CPU time in writeback

– delayed allocation consumed more CPU

– Lacks alignment of I/O to underlying storage

Random Thought #4

● Error handling is suboptimal
– can't scale effectively if error paths are not
robust

– In complex topologies, errors are common
and not the exception

– Filesystems are often blamed for “hanging”
when the real culprit if an undelivered error
from the lower layers

Random Thought #5

● DM/MD are not really useful on common
hardware RAID configurations
– power of 2 chunk size prevents effective use
of non-power of 2 RAID3/4/5/6 back end data
disks

● 8/12/14/16/24/48 disk trays don't match at all

– complex toplogies with different geometries
are difficult to express and expose to the
filesystem correctly

The IOPS Challenge

● SSDs
– Ready for 50,000 IOPS/s per disk?

● >200,000 ctxsw/s per disk
● 50,000 intr/s per disk
● Does not scale to many disks

– Raw IOP capacity per HBA
● will be a limiting factor
● driver design will need to focus on IOPS
optimisations, not achieving max bandwidth

– CPU overhead will be high

The IOPS Challenge

● Looks more like the network problem
– similar “packet” rates to gigabit ethernet per
disk

– many, many more “interfaces” than a typical
network stack

– HBAs with multiple disks will have to handle
packet rates closer to 10Gb ethernet

– similar interrupt scaling tricks will be needed
● MSI-X directed interrupts

– one vector per disk behind the HBA?
● polling rather than interrupt driven

The IOPS Challenge

● Will require both hardware and software
to evolve

● Not going to happen overnight
● Twoorders of magnitude increase in
performance is a big disconnect

● Optimisations being made for current
(cheap) SSDs have a short life
– random write performance is not a limiting
factor at the high end....

