Scalability in the Linux Storage Subsystem

Overview

- Not an overview of what we can do
- Random thoughts on where I think we have problems
- A few words on the biggest challenge I think we face in terms of scalability

- Direct I/O scalability is a solved problem
- We're into micro-optimisations now
 - controlling submission/completion CPUs to minimise cacheline bouncing
 - Need to be careful optimising direct I/O doesn't regress other types of I/O
- Implies block and driver layer scalability is good
- Large single I/Os can be easily issued

- Need to expose geometry and status of the underlying storage topology
 - to both userspace and kernel interfaces
 - independent failure domains
 - stripe/concat geometry
 - load feedback
- Needs to be dynamic
 - automatic filesystem grow
 - loss of redundancy -> data redistribution

- writeback doesn't scale
 - inefficient within a filesystem
 - optimised for filesystems that don't do I/O on inode writeback in ->write_inode
 - single threaded within a filesystem
 - not NUMA aware
 - Different filesystems use different amounts of CPU time in writeback

- delayed allocation consumed more CPU

Lacks alignment of I/O to underlying storage

- Error handling is suboptimal
 - can't scale effectively if error paths are not robust
 - In complex topologies, errors are common and not the exception
 - Filesystems are often blamed for "hanging" when the real culprit if an undelivered error from the lower layers

- DM/MD are not really useful on common hardware RAID configurations
 - power of 2 chunk size prevents effective use of non-power of 2 RAID3/4/5/6 back end data disks
 - 8/12/14/16/24/48 disk trays don't match at all
 - complex toplogies with different geometries are difficult to express and expose to the filesystem correctly

The IOPS Challenge

- SSDs
 - Ready for 50,000 IOPS/s per disk?
 - >200,000 ctxsw/s per disk
 - 50,000 intr/s per disk
 - Does not scale to many disks
 - Raw IOP capacity per HBA
 - will be a limiting factor
 - driver design will need to focus on IOPS optimisations, not achieving max bandwidth
 - CPU overhead will be high

The IOPS Challenge

- Looks more like the network problem
 - similar "packet" rates to gigabit ethernet per disk
 - many, many more "interfaces" than a typical network stack
 - HBAs with multiple disks will have to handle packet rates closer to 10Gb ethernet
 - similar interrupt scaling tricks will be needed
 - MSI-X directed interrupts
 - one vector per disk behind the HBA?
 - polling rather than interrupt driven

The IOPS Challenge

- Will require both hardware and software to evolve
- Not going to happen overnight
- Two orders of magnitude increase in performance is a big disconnect
- Optimisations being made for current (cheap) SSDs have a short life
 - random write performance is not a limiting factor at the high end....