
2005-02-25

Nicholas A. Bellinger
Linux-iSCSI.org

Linux/iSCSI and a Generic 
Target Mode Storage Engine 
for Linux v2.6



2

Lecture Outline

ISCSI Introduction
ISCSI basics
ISCSI advanced features
Linux/iSCSI Target projects status
LIO-SE and LIO-Target design
The case for a generic target mode storage engine in 
Linux
Kernel vs. User and the Target storage engine
Other Linux-iSCSI.org Projects
Questions and Thanks



3

ISCSI Introduction

ISCSI interest is growing..
Use within virtualization environments
Use within clusters that depend upon shared storage
Use within high end database deployments (will become 
real alternative with iSER and 10 Gb/sec)
Large and small customers are coming to Linux-ISCSI.org 
at an increasing rate for code and information.

At the same time..
There are no less than four (4) iSCSI Target Projects on 
Linux.
All are out of tree, with the expection of STGT (userspace)
Some share iSCSI target code, while focusing development 
on target mode storage engine.



4

ISCSI: Basics

Mapping of SCSI Architecture Model to IP
Basic In-band discovery for small deployments
Authentication via CHAP for small deployments
Single communicaton path between Initiator and Target 
(SC/S)
ISCSI provides Command Sequence Number (CmdSN) 
ordering to ensure delivery of tasks from Initiator to Target 
Port.
Targets provide Network Portals, Target Portal Groups, 
and SCSI Target Port Endpoints..



5



6

ISCSI: Advanced features

ErrorRecoveryLevel=2 for active-active fabric level 
recovery

Completely OS independent! (same benefits as multipath, 
but WITHOUT OS dependent software requirements on 
initiator side).
This makes fabric redundancy easier for admins.
ERL=2 and OS dependent multipath work great together!

Multiple Connections per Session (MC/S)
Multiple communication paths between Initiator and Target 
can be added/removed on the fly across subnets.
Faster across multiple 1 Gb/sec ports than ethernet bonding



7

ISCSI: Advanced features cont.

ISER (RFC-5045) for scaling to 10 Gb/sec and beyond
Direct Data Placement (RFC-504[0,4]) on Internet Protocol
Infiniband

ISNS (RFC-4171) for discovery for large deployments
Allows for much cleaner handling of typical fabric and node 
changes
Exentisble for other storage fabrics



8

Linux/iSCSI Target Projects Status

STGT
New userspace design for Linux v2.6.

SCST
Older design, original focus on fabrics other than iSCSI.

LIO-SE and LIO-Target
Code released in Fall of 2007, in development since Fall of 
2001.
Runs Linux-iSCSI.org cluster and a bunch of sexy 
embedded Linux hardware..

IET
Included in some distributions, but little development.
A lot of users end up on the IET mailing list asking 
questions



9

Linux/iSCSI Project Status: STGT

Support for traditional iSCSI (from IET).
Support for hardware accelerated traditional iSCSI 
(Qlogic)
Initial support for FcoE from Intel code
Support for iSCSI Extentions for RDMA using IB hardware 
with OpenFabrics stack.
Userspace design
Merged User <-> Kernel SCSI task submission API
Small development community 
Included in CentOS 5u1



10

Linux/iSCSI Project Status: SCST

Supports traditional iSCSI (from IET) and SRP.
Only project to support PSCSI, FC and SAS Target mode 
(with out of tree hardware drivers)
Initial FcoE code from Intel is based on SCST
Hardware drivers for target mode operation not supported 
by vendors (assuming because they are out of tree)
Extensive emulation of very SCSI specific control CDBs
Kernelspace design
Small development community



11

Linux/iSCSI Project Status: LIO-SE and LIO-Target

Most complete support for traditional iSCSI (MC/S and 
ERL=2)
Mature API for interaction with Linux storage subsystems 
(SCSI, BLOCK, FILE)
Kernel level design with authentication in userspace.
Very small development community
Interest of merging LIO-Target and pieces of LIO-SE is 
starting to increase
Merge of iSCSI Target code will most likely wait until a 
proper generic target mode is merged..



12

LIO-SE and LIO-Target design

ISCSI Target logic is independent of LIO Storage Engine
LIO Storage Engine is capable of export of any storage 
object from any storage subsystem.
LIO Storage Engine allows for memory allocation from 
storage transport (RDMA hardware) or internally 
(traditional iSCSI w/ Linux IP stack)
Memory is allocated into linked list scatterlists, then 
mapped to a subsystem dependent method, usually a 
contigious array of scatterlists for SCSI or BLOCK.
LIO Storage Engine algorithms handle every possible 
combination of MaxSector + SectorSize requests.
Storage Engine controls TCQ depth based on values from 
hardware and Linux storage subsystems.



13

The case for a Generic Target Mode SE: Why?

Provide a single target mode engine design for:
All current and future Linux Storage Subsystems

drivers/scsi (real SCSI hardware, LibATA, USB, FW)
Block via BIO (MD and LVM)
FileIO (same as Block, but with buffered IO or O_DIRECT)
New request API for >= 2.6.26..?

All current and future Storage Fabrics
Parallel SCSI, Fibre Channel, SAS, SRP, FCoE
Traditional ISCSI (hardware and software)
Non SCSI (AoE and NBD)

Increase participation amongst the different protects into a 
single codebase
Reduce confusion amongst users and potential developers



14

iSCSI
(Trad. Software)

SAS

Fibre Channel

Parallel SCSI

Storage Engine:

Manages Physical and Virtual
Storage Resources.  

Determines limitations
from each Storage

Object using Transport API

Memory Allocation:
From frontend allocated

 by HBA for RDMA, or
SE internally allocated:
sockets, sendpage(), or

struct sock_op rx zero-copy

Memory Map:
Generates TPI dependent DMA
based on sector size, size of 
Initiator Mode Request, and

device/HBA TCQ depth

Target mode Frontend API
(Different wire formats)

Transport API
(Different types of
Storage Objects)

iSER/iWARP

AoE *

SoE

* Not SAM based Target Transport

Frontend:

Encodes/Decodes Storage
 Traffic. Makes SE calls to 

handle target mode
request/response.

Frontend:

Encodes/Decodes Storage
 Traffic. Makes SE calls to 

handle target mode
request/response.

Frontends:

Encodes/Decodes Storage
 Traffic from fabric.

Makes SE calls to handle
target mode request/response.

Support transparent internexus
 recovery. (ERL=2)

Linux v2.6

pSCSI to
struct

scsi_device

iSER/IB

iSCSI
(Trad. Hardware)

struct page
(bandwidth test)

Passthrough
to userspace

FILEIO to
struct file w/

O_DIRECT

iBlock to 
struct

block_device



15

The case for a Generic Target Mode SE: How?

Determine the strengths of each project is the challenge..
LIO-SE for memory mapping model and subsystem 
interaction API
Create common code for SCSI control path emulation

Some of this logic will be VERY SCSI-centric
Reduce duplicated CDB emulation code when talking to not 
“genuine” SCSI devices. (BLOCK, FILEIO, LIBATA, USB)

Use STGT / SCST Transport <-> Storage Engine API as 
base
The kernel-level requirement will probably NEVER go 
away, especially in the vendor community.



16

Kernelspace vs. Userspace for Generic Target Mode SE:

Performance Case
Still undecided how much additional overhead will be added 
in various use cases.
Keeping kernel component small at risk of sacrificing 
performance and latency..?

Complexity Case
Difficulty of pushing PSCSI, FC, SAS and RNIC Target 
mode drivers to userspace
Debugging is easier is userspace (with VM and KDB these 
days, not really true anymore IMHO)

Historical Cases of Kernel vs. User (from Linus)
The only split that has worked pretty well is “connection 
initiaton/setup in user space, actual data tranfers in kernel 
space”



17

Kernelspace vs. Userspace (from Linus) cont.

Pure user space solutions work, but tend to eventually be 
turned into kernel space if they are simple enough and 
really do have throughput and latency considerations 
(nfsd) and aren't quite complex and crazy enough to have 
a large impedance-matching problem for basic IO stuff 
(samba).
Totally pure kernel solutions work only if there are very 
stable standards and no major authentication or 
connection setup issues.
So just by going what has happened in the past, I'd 
assume that iSCSI would eventually turn into 
“connecting/authentication in userspace” with “data 
transfers in kernel space”. But only if it really does end up 
mattering enough.



18

Other Linux-iSCSI.org Projects

LIO-VM
Self configuring iSCSI Target VM that allows export of 
storage on both Linux and non Linux hosts!
Virtual Machines available for Vmware, KVM and Qemu

iSCSI/HD
Allows export of commercial HD media to any environment 
capable of running an iSCSI Initiator and HD playback.
Linux/iSCSI on the Playstation 3.

ISCSI on Handheld and Mobile Devices
Releases for Nokia and OpenMoko Devices

ISCSI on NeurosOSD
Use of iSCSI with an OSS Personal Video Recorder!



19

Discussion and Thanks

Linux-iSCSI.org
SBEi and Onestop Systems
Mike Mazarick, Bryan Black

Linux/iSCSI Development Community
Fujita Tomonori, Mike Christie, Ming Zhang

Kernel Development Community
H. Peter Anvin, Christoph Hellwig, James Bottomley, and 
many, many more

Vendor Community
Neterion and Leonid Grossman


