
Linux* Storage Stack performance

Kristen Carlson Accardi
Matthew Wilcox

Open Source Technology Centre

Legal Information

Intel is a trademark of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008, Intel Corporation. All rights are protected.

Facts and Speculation about Solid State
Drives (SSD)
1/5th the power consumption of a mechanical disk

200X (+) the performance

Same price?

Better performance, low power, competitive pricing make SSDs
“disruptive technology”

By 2010, SSDs will:
– be 20% of the laptop market
– have “significant penetration” into the data center

SSDs will place much higher demands on storage stack than traditional
disks.

– The Zeus IOPS - 52,000 IOPS
– Mtron – 78,000/16,000 IOPS

These numbers are going to increase rapidly over time as more players
arrive in this huge potential market.

–

Problem

As IOPS increases, CPU overhead, per I/O, becomes significant and a
bottleneck.

Latency issues in the Linux* storage stack could make software a
bottleneck.

Storage stacks are optimized for seek avoidance
– CPU time spent avoiding seeks is wasted.

SSDs are still fairly expensive and uncommon, making it hard for the
Linux community to measure and optimize for them.

“SSD” for everyone

•Simulate SSD with a RAM driver
● The first step to reducing latency is finding out how bad it is. The

only way to keep latency low is to allow everybody to measure the
latency, and avoid changes to the kernel which would increase
latency.

● The ‘rd’ ram disc driver does not behave like a driver for real
hardware, and is not a good simulator for our purposes.

•Put relevant measurement data together in a tool that's easy to use.

Test Setup

Fake Drivers
● The ‘scsi_ram’ and ‘ata_ram’ drivers are, respectively, scsi and ata

drivers for the Linux kernel, which simulate really fast discs by
storing data in memory.

● These drivers will allow us to measure latency all the way down
into the ATA layer.

Real Measurements
● The ‘iolat’ tool generates random disk I/O while simultaneously

profiling the kernel.
● It reports the number of IOPS (I/O operations per second) that it

achieves and where the kernel is spending its time.

Linux storage stack

User Application (iolat)

File System (ext2)

Block

sd

SCSI midlayer

scsi_ram

ata_ram

libata

rd

Driver details

The scsi_ram driver is designed to behave like a driver for a real SCSI
card. It accepts SCSI commands and, instead of sending them to a
piece of hardware, it queues them to a thread. The thread, typically
running on a different CPU, copies data to or from an array of pages,
then reports success.

The ata_ram driver is similar to the scsi_ram driver. The ATA
command set is different from the SCSI command set, and the
interface to libata is different from the interface to the SCSI midlayer,
but the design of the driver is virtually unchanged.

Both drivers have options to help pinpoint performance issues. For
example, the actual data copies can be disabled, removing that factor
from the performance profile.

Iolat details

Generate Traffic and measure IOPS
– Random reads and writes
– Single large test file
– Size of read/write configurable
– Compare to “reference” data

Profile Kernel
– Uses /proc/profile

Classify functions profiled
– Hand classified, stored in a text file

Generates Reports
– IOPS measurement
– Classification report

More Tester details

Types of tests:
– Read
– Write
– Mixed reads and write

Can do Direct I/O, and Cached I/O
– Cached I/O tests will fdatasync() every 10 iterations.
– Direct I/O tests wait for previous I/O to complete before submitting next

I/O. No batching or merging can occur in the driver.

Small_write
Medium_write

Small_direct_read
Small_direct_write

Medium_direct_read
Medium_direct_write

0

50000

100000

150000

200000

250000

300000

350000

IOPS

ata_ram
scsi_ram
rd
disk

Each layer subtracts performance

scsi_ram much slower than rd

ata_ram 10% slower than scsi_ram
– Medium direct reads 50% slower??

Neither scsi nor ata layers can handle SSD IOPS

scsi_ram Direct IO Profile

scsi_ram_driver

scsi
block
scheduler
fs

mm
data_copy
primitives
pro file

Focus performance work on SCSI layer
rather than Block Layer

scsi_ram is much slower than rd on small direct reads and small direct
writes test

Profile data indicates a much greater % of time spent in block layer,
and that the scsi layer adds significant overhead over just the block
layer.

Next Steps

Investigate reducing SCSI layer overhead by:
– Digging down in the profiles to find hot spots
– Optimizing host lock acquisition

Take Performance analysis down to ATA layer with ata_ram
– libata uses the SCSI layer, then translates to ATA commands
– Many SSDs will interface as SATA devices

Investigate using different elevators
– Existing elevators are optimised for avoiding seeks. This is wasted work

when seeks are cheap.

Move libata away from SCSI
– If it were to interface directly to the block layer, we could avoid the SCSI-

to-ATA translation layer.
• Need to be careful with drivers that support SAS and SATA drives

Backup

Ram Disk (rd) Direct IO Profile

scsi_ram_driver

scsi
block
scheduler
fs

mm
data_copy
primitives

pro file

scsi_ram - Cached I/O Profile

ram_disk_driver

scsi_ram_driver
data_copy
mm
fs

block
scsi
primitives

scheduler
pro file
elevator
interrupt_handling

rd - Cached I/O Profile

ram_disk_driver
scsi_ram_driver
data_copy

mm
fs
block
scsi

primitives
scheduler
pro file

elevato r
interrupt_handling

