Linux™ Storage Stack performance

Kristen Carlson Accardi
Matthew Wilcox

Open Source Technology Centre

Legal Information

Intel is a trademark of Intel Corporation in the U.S. and other countries.

*0Other names and brands may be claimed as the property of others.

Copyright © 2008, Intel Corporation. All rights are protected.

Facts and Speculation about Solid State
Drives (SSD)

1/5™ the power consumption of a mechanical disk
200X (+) the performance
Same price?

Better performance, low power, competitive pricing make SSDs
“disruptive technology”

By 2010, SSDs will:
- be 20% of the laptop market
— have "significant penetration” into the data center

SSDs will place much higher demands on storage stack than traditional
disks.

— The Zeus IOPS - 52,000 IOPS

- Mtron - 78,000/16,000 IOPS

These numbers are going to increase rapidly over time as more players
arrive in this huge potential market.

Problem

As IOPS increases, CPU overhead, per I/O, becomes significant and a
bottleneck.

Latency issues in the Linux* storage stack could make software a
bottleneck.

Storage stacks are optimized for seek avoidance
— CPU time spent avoiding seeks is wasted.

SSDs are still fairly expensive and uncommon, making it hard for the
Linux community to measure and optimize for them.

“SSD” for everyone

eSimulate SSD with a RAM driver

* The first step to reducing latency is finding out how bad it is. The
only way to keep latency low is to allow everybody to measure the

latency, and avoid changes to the kernel which would increase
latency.

* The ‘rd’ ram disc driver does not behave like a driver for real
hardware, and is not a good simulator for our purposes.

ePut relevant measurement data together in a tool that's easy to use.

Test Setup

Fake Drivers

* The 'scsi_ram’ and ‘ata_ram’ drivers are, respectively, scsi and ata

drivers for the Linux kernel, which simulate really fast discs by
storing data in memory.

* These drivers will allow us to measure latency all the way down
into the ATA layer.

Real Measurements

* The ‘iolat’ tool generates random disk I/O while simultaneously
profiling the kernel.

* It reports the number of IOPS (I/O operations per second) that it
achieves and where the kernel is spending its time.

Linux storage stack

User Application (iolat)

File System (ext2)

Block
rd sd
SCSI midlayer
Scsi_ram libata

ata_ram

Driver details

The scsi_ram driver is designed to behave like a driver for a real SCSI
card. It accepts SCSI commands and, instead of sending them to a
piece of hardware, it queues them to a thread. The thread, typically
running on a different CPU, copies data to or from an array of pages,
then reports success.

The ata_ram driver is similar to the scsi_ram driver. The ATA
command set is different from the SCSI command set, and the
interface to libata is different from the interface to the SCSI midlayer,
but the design of the driver is virtually unchanged.

Both drivers have options to help pinpoint performance issues. For
example, the actual data copies can be disabled, removing that factor
from the performance profile.

Iolat details

Generate Traffic and measure IOPS
— Random reads and writes
- Single large test file
— Size of read/write configurable
— Compare to “reference” data

Profile Kernel
— Uses /proc/profile

Classify functions profiled
— Hand classified, stored in a text file

Generates Reports
— IOPS measurement
— Classification report

More Tester details

Types of tests:
- Read
- Write
- Mixed reads and write

Can do Direct I/O, and Cached I/0
— Cached I/0 tests will fdatasync() every 10 iterations.

— Direct I/0 tests wait for previous I/O to complete before submitting next
I/0. No batching or merging can occur in the driver.

Eile Edit Wiew IJTerminal Tabs Help
I0PSMeasure version 8.3 (C}) 2088 Intel Corporation -

Test Name Direct bytes I0PS +/- Avg. reg time
Small direct read Yes 4096 98044 %-3 8.18899
Small direct write Yes 4096 85578 %-2 B8.11536
Medium _direct read Yes 131872 22893 %0 B.45172
Medium_direct write Yes 131872 13302 %0 B.96110
3352 scsi_ram_read scsl_ram driver 28.3545
3127 scsl_ram _write scsl 14.9986
2451 scsi_request fn block 11.5588
838 scsi dispatch_cmd scheduler 9.4738
748 blk_end io mm 8.3916
581 blk_done_softirg fs 8.3428
458 _ make_request data_copy 2.1948
458 blockdev_direct 10 primatives 1.3418
370 bio_alloc bioset elevator B.6268
354 *unknown#* * Unclassified 14.7285

350 end that request first
277 get_request

206 _ find get block

198 _ bio_add page

159 generic_make reguest

158 _ might sleep

350000

300000

250000

200000

150000

100000

50000

i |

Medium_ write
Small_write Small_direct read

IOPS

 ull

Small_direct write

M ata_ram
M scsi_ram
“rd

B disk

 mm

Medium_direct_write

Medium_direct read

Each layer subtracts performance

scsi_ram much slower than rd

ata_ram 10% slower than scsi_ram
— Medium direct reads 50% slower??

Neither scsi nor ata layers can handle SSD IOPS

Eile Edit View Terminal Tabs Help
I0PSMeasure verslion 8.3 (C) 2008 Intel Corporation -

Test Name Direct bytes I0PS +/- Avg. req time
Small direct read Yes 4096 89944 %-3 B.10843
Small direct write Yes 4096 85774 %-2 8.11414
Medium direct read Yes 131672 22704 %-1 8.40915
Medium direct write Yes 131872 130186 %-2 8.69613
9241 scsi_ram_read scsl _ram driver 27.7452
8809 scsl _ram write scsl 14.9654
7068 scsl_request fn block 11.1748
2357 scsi_dispatch_cmd scheduler 16 .8787
2080 blk end 1o mm 8.5664
1580 blk done softirg fs 8.2771
1372 blockdev _direct IO data_ copy 2.1303
1359 make_ request primatives 1.2933
1626 end that reguest first elevator @.5323
998 bio alloc bioset Unclassified 15.2365
909 *unknown* *

829 get_reguest

604 bio add page

531 find get block

448 might sleep

429 generic_make request

File Edt View Terminal Tabs Help
I0PSMeasure version 8.4 (C) 2008 Intel Corporation

Test Name Direct bytes I10PS +/- Avg. req time
Small direct read Yes 4096 62022 %-11 0.12420
small direct write Yes 4096 77907 %-11 0.13057
Medium direct read Yes 131072 12321 %-46 0.53577
Medium direct write Yes 1316072 12436 %-6 0.53186
1440 scsl_request fn SCS1 22.5076
1170 ata_ram_read ata_ram _driver 21.0077
1650 ata_ram write scheduler 12.5522
892 scsi dispatch _cmd block 11.9045
432 blk end 1o Ts 7.4762
281 blk done_softirg mm 6.9612
178 blockdev direct IO data_copy 1.5829
1660 kmem cache free primitives 1.1768
157 get reqguest interrupt _handling 0.4297
152 kmem _cache alloc elevator 0.3483
136 end that request first libata 0.2869
116 follow page 1dle 0.1294
109 bio alloc bioset Unclassified 13.6374

93 blk recalc_rg segments

scsi_ram Direct 10 Profile

M scsi_ram_driver
M scsi

I block

M scheduler

M fs

T mm

M data_copy

I primitives

M profile

Focus performance work on SCSI layer
rather than Block Layer

scsi_ram is much slower than rd on small direct reads and small direct
writes test

Profile data indicates a much greater % of time spent in block layer,
and that the scsi layer adds significant overhead over just the block

layer.

Next Steps

Investigate reducing SCSI layer overhead by:
— Digging down in the profiles to find hot spots
— Optimizing host lock acquisition

Take Performance analysis down to ATA layer with ata_ram
— libata uses the SCSI layer, then translates to ATA commands
— Many SSDs will interface as SATA devices

Investigate using different elevators

— Existing elevators are optimised for avoiding seeks. This is wasted work
when seeks are cheap.

Move libata away from SCSI

- If it were to interface directly to the block layer, we could avoid the SCSI-
to-ATA translation layer.

* Need to be careful with drivers that support SAS and SATA drives

Backup

Ram Disk (rd) Direct 10 Profile

M scsi_ram_driver
W scsi

“Iblock

M scheduler

M fs

“Imm

M data_copy

= primitives

B profile

scsi_ram - Cached |I/O Profile

B ram_disk_driver
M scsi_ram_driver
] data_copy

BH mm

M fs

I block

M scsi

I primitives

M scheduler

= profile

M elevator

M interrupt_handling

rd - Cached I/O Profile

B ram_disk_driver
M scsi_ram_driver
] data_copy

B mm

M fs

] block

M scsi

1 primitives

B scheduler

[profile

M clevator

M interrupt_handling

