

ceph distributed file system

sage weil

lsf’08

outline

• quick overview
• kernel client
• object storage
• roadmap

architecture

• userspace daemons
– monitors – config/state info
– mds – namespace
– osds – data/metadata

• cluster sizes are dynamic
• anything can(/will) fail

• osds are “intelligent”
– consistent/safe replicated writes
– failure recovery/data migration

• mds cluster
– fast
– scalable
– highly available

monitors

mds cluster

osd cluster

client

mds

• embed inodes inside directory (first
dentry)
– load entire directory’s inodes with single io

• long (100MB+) journal to aggregate
changes and limit directory metadata
writes

• adaptive hierarchical partitioning of
workload across mds nodes

• replication across mds caches

osd

• objects replicated across dynamic cluster
– flexible specification mapping n replicas across failure domains,

tiered storage, etc.

• osds actively collaborate to handle
– consistent replication
– failure detection
– data migration/recovery
– strong replication consistency

• minimal central management
– monitors update osdmap to reflect osd state changes
– map distributed efficiently and lazily

• mds, clients treat cluster as single logical object pool

kernel client

• basically functional
– still missing

• parts of io path
• sync mode (e.g. write sharing)

– metadata behavior initially similar to nfs
• lookup/revalidate succeed based on timeout
• moving toward more stateful protocol with strong

consistency

• lots to come later…
– locking, directio, …
– behave on clients with 32bit inos

some issues

• near-oom
– more complicated communication model

makes memory reservation difficult
– semi-arbitrary osd cluster topology changes are

possible
– need to receive/process map updates

• dual write ack
– ack -> serialized, in osd ram
– commit -> safe on disk

object storage
• requirements

– compound atomic transactions
– async notification of commits

• i.e. immediate return when cache is updated + eventual callback indicating
update has flushed to disk

• currently use ebofs
– works, performs well
– generic auxiliary journaling

• low latency commits, esp with NVRAM
– will currently fall over for large volumes of small objects
– more code to maintain

• alternatives
– layer over existing file systems

• fsync incurs degenerate behavior in most fs’s
• something more like a sync inotify?

– libbtrfs, libzfs

roadmap

• “complete” kernel client
• usability, tools

• quotas
– voucher based
– distributed, scalable, etc.

• directory- or file-granularity snapshots
– rely on per-object COW semantics in object store
– versioned dentries in MDS

• http://ceph.sf.net
• ceph-devel@lists.sf.net
• #ceph on oftc.net

mailto:ceph-devel@lists.sf.net

