
Filebench

Spencer Shepler
Eric Kustarz
Andrew Wilson
[Richard McDougall]

Filebench Discussion

• Filebench motivation
• Filebench description
• Issues
• What next?

Testing filesystem performance

• Dd
• Tar
• mkfile
• Bonnie
• Iozone
• And on and on…

– fsstress, ffsb, fsrandom, mongo, iometer

Why invest in a File System Perf
Framework?

• Need complete test coverage for file level applications
– Current coverage is mostly micro benchmarks:

• bonnie, iozone, mongo

– Coverage was very limited (less than 10% of important
application cases covered)

– Current approach is to use benchmark full application suites: e.g.
Oracle using TPC-C: expensive, labor intensive

– Up to 100 different benchmarks are required to accurately report
on filesystem performance today

• For NFS use, SPECsfs is limited to NFS Version 3

Model based methodology study

Filebench Architecture

Model Allows Complex/Important
Scaling Curves

• For example:
– Throughput/latency vs. working set size
– Throughput/latency vs. # of users
– CPU efficiency vs. throughput
– Caching efficiency vs. working set

size/memsize

Flow States: Open Ended Flow

Characterize and Simulate via
Cascades of Workload Flows:

Flow States: Synchronized Flow

Examples of Per-flow Operations
• Types

– Read
– Write
– Create
– Delete
– Append
– Getattr
– Setattr
– Readdir
– Semaphore block/post
– Rate limit
– Throughput limit

• Attributes
– Sync_data
– Sync_metadata
– IO Size
– IO Pattern,

probabilities
– Working set size
– Etc.

Simple Random I/O Workload
Description

define file name=bigfile0,path=$dir,size=$filesize,prealloc,reuse,paralloc

define process name=rand-read,instances=1
{
 thread name=rand-thread,memsize=5m,instances=$nthreads
 {
 flowop read name=rand-read1,filename=bigfile0,iosize=$iosize,random
 flowop eventlimit name=rand-rate
 }
}

Filesets
Filesets: a definition of a set of files

– A fractal tree of files
– A fileset has a depth and size, width of

directories is computed from these
– Can also have a depth of 1 to make one large

directory
– Can have uniform sizes, depths, widths or

configured as a [gamma] distribution
– Filesets that mimic file servers typically use

gamma distribution for size and depth

Running a single Filebench
workload

Example varmail run:

filebench> load varmail

 Varmail personality successfully loaded
 Usage: set $dir=<dir>
 set $filesize=<size> defaults to 16384
 set $nfiles=<value> defaults to 1000
 set $dirwidth=<value> defaults to 20
 set $nthreads=<value> defaults to 1
 set $meaniosize=<value> defaults to 16384
 run <runtime>

filebench> set $dir=/tmp

filebench> run 10

 Fileset mailset: 1000 files, avg dir = 20, avg depth = 2.3,mbytes=15
 Preallocated fileset mailset in 1 seconds
 Starting 1 filereader instances
 Starting 1 filereaderthread threads
 Running for 10 seconds...
 IO Summary: 21272 iops 2126.0 iops/s, (1063/1063 r/w) 32.1mb/s,338us cpu/op, 0.3ms latency

OLTP Program - benchmark results
large_db_oltp_2k_cached

Flowop totals:
random-rate 0ops/s 0.0mb/s 0.0ms/op 0us/op-cpu
shadow-post-dbwr 9774ops/s 0.0mb/s 18.0ms/op 25us/op-cpu
shadow-post-lg 9775ops/s 0.0mb/s 0.1ms/op 5us/op-cpu
shadowhog 9775ops/s 0.0mb/s 0.1ms/op 27us/op-cpu
shadowread 9792ops/s 19.1mb/s 1.8ms/op 15us/op-cpu
dbwr-aiowait 98ops/s 0.0mb/s 27.8ms/op 93us/op-cpu
dbwr-block 98ops/s 0.0mb/s 64.2ms/op 163us/op-cpu
dbwr-hog 98ops/s 0.0mb/s 0.0ms/op 16us/op-cpu
dbwrite-a 9774ops/s 19.1mb/s 0.1ms/op 9us/op-cpu
lg-block 3ops/s 0.0mb/s 320.8ms/op 487us/op-cpu
lg-aiowait 3ops/s 0.0mb/s 4.4ms/op 24us/op-cpu
lg-write 3ops/s 0.8mb/s 0.2ms/op 23us/op-cpu

IO Summary: 2376841 ops 19669.9 ops/s, 9792/9777 r/w 39.0mb/s,
 91uscpu/op

Filebench pre-defined workloads
• “File Macro”

– Small database
– Large database
– Multi-threaded web

server
– Multi-threaded proxy

server
– Home directory server
– NFS mail server
– DB Mail server
– Video server

• “File Micro”
– Sequential read/write
– Multistream read/write
– Allocating writes
– Reallocating writes
– Random read/write
– MT random read/write
– File create/delete
– File meta-data ops
– I/O types: O_DSYNC, etc.
– Directory size scaling

Filebench Features in Development
• Random Variables
• Composite Flowops
• NFS / CIFS Plugins
• Multi-client Framework
• Scalability Issues

Documentation / Discussion
• http://sourceforge.net/projects/filebench/
• http://opensolaris.org/os/community/performance/
• http://www.solarisinternals.com/wiki/index.php/FileBench
• http://www.solarisinternals.com/wiki/index.php/Filebench_for_Programmers
• http://www.solarisinternals.com/wiki/index.php/FileBench_Workload_Language

