
SPONSORED BY

in cooperation with

LOPSA

conference

proceedings

LISA ’11: 25th Large
Installation System
Administration
Conference

Boston, Massachusetts
December 4–9, 2011

Proceedings of LISA ’11: 25th Large Installation System
 A

dm
inistration Conference

Boston, M
assachusetts, Decem

ber 4–9, 2011

© 2011 by The USENIX Association
All Rights Reserved

ISBN 978-931971-88-1

This volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. Permission is granted to print, primarily for one person’s
exclusive use, a single copy of these Proceedings.

USENIX acknowledges all trademarks herein.

USENIX Association

Proceedings of LISA ’11:

25th Large Installation System

Administration Conference

December 4–9, 2011

Boston, Massachusetts

Conference Organizers
Program Co-Chairs
Thomas A. Limoncelli, Google, Inc.
Doug Hughes, D. E. Shaw Research, LLC

Program Committee
Narayan Desai, Argonne National Lab
Andrew Hume, AT&T Labs—Research
Duncan Hutty, ZOLL Medical Corporation
Dinah McNutt, Google, Inc.
Tim Nelson, Worcester Polytechnic Institute
Mario Obejas, Raytheon
Mark Roth, Google, Inc.
Carolyn Rowland, National Institute of Standards and

Technology (NIST)
Federico D. Sacerdoti, Aien Capital & Aien Technology
Marc Stavely, Consultant
Nicole Forsgren Velasquez, Pepperdine University
Avleen Vig, Etsy, Inc.
David Williamson, Microsoft Tellme

Invited Talks Coordinators
Æleen Frisch, Exponential Consulting
Kent Skaar, VMware, Inc.

Workshops Coordinator
Cory Lueninghoener, Los Alamos National Laboratory

Guru Is In Coordinator
Chris St. Pierre, Oak Ridge National Laboratory

Poster Session Coordinator
Matt Disney, Oak Ridge National Laboratory

Work-in-Progress Reports (WiPs)
Coordinator
William Bilancio, Arora and Associates, P.C.

Training Program
Daniel V. Klein, USENIX Association

USENIX Board Liaison
David N. Blank-Edelman, Northeastern University

Steering Committee
Paul Anderson, University of Edinburgh
David N. Blank-Edelman, Northeastern University
Mark Burgess, CFEngine
Alva L. Couch, Tufts University
Rudi van Drunen, Competa IT
Æleen Frisch, Exponential Consulting
Xev Gittler, Morgan Stanley
William LeFebvre, Digital Valence, LLC
Mario Obejas, Raytheon
Ellie Young, USENIX Association
Elizabeth Zwicky, Consultant

The USENIX Association Staff

Paul Armstrong
Derek J. Balling
Steve Barber
Matthew Barr
Lois Bennett
Ken Breeman
Travis Campbell
Brent Chapman
Marc Chiarini
Alva L. Couch
Matt Disney
Rudi van Drunen

Bill Lefebvre
Cory Lueninghoener
Chris McEniry
Adam Moskowitz
Mario Obejas
Tobias Oetiker
Cat Okita
Eric Radman
Benoit Sigoure
Josh Simon
Kent Skaar
Ozan Yigit

External Reviewers

USENIX Association LISA ’11: 25th Large Installation System Administration Conference iii

LISA ’11:
25th Large Installation System Administration Conference

December 4–9, 2011
Boston, Massachusetts

Message from the Program Co-Chairs . vii

Wednesday, December 7

Perspicacious Packaging

Staging Package Deployment via Repository Management .1
Chris St. Pierre and Matt Hermanson, Oak Ridge National Laboratory

CDE: Run Any Linux Application On-Demand Without Installation .9
Philip J. Guo, Stanford University

Improving Virtual Appliance Management through Virtual Layered File Systems .25
Shaya Potter and Jason Nieh, Columbia University

Clusters and Configuration Control

Sequencer: Smart Control of Hardware and Software Components in Clusters (and Beyond) 39
Pierre Vignéras, Bull, Architect of an Open World

Automated Planning for Configuration Changes .57
Herry Herry, Paul Anderson, and Gerhard Wickler, University of Edinburgh

Fine-grained Access-control for the Puppet Configuration Language .69
Bart Vanbrabant, Joris Peeraer, and Wouter Joosen, DistriNet, K.U. Leuven

Security 1

Tiqr: A Novel Take on Two-Factor Authentication .81
Roland M. van Rijswijk and Joost van Dijk, SURFnet BV

Building Useful Security Infrastructure for Free (Practice & Experience Report) .99
Brad Lhotsky, National Institutes on Health, National Institute on Aging, Intramural Research Program

Local System Security via SSHD Instrumentation .109
Scott Campbell, National Energy Research Scientific Computing Center, Lawrence Berkeley National Lab

iv LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Thursday, December 8

From Small Migration to Big Iron

Adventures in (Small) Datacenter Migration (Practice & Experience Report) . .121
Jon Kuroda, Jeff Anderson-Lee, Albert Goto, and Scott McNally, University of California, Berkeley

Bringing Up Cielo: Experiences with a Cray XE6 System, or, Getting Started with Your New
140k Processor System (Practice & Experience Report) .131
Cory Lueninghoener, Daryl Grunau, Timothy Harrington, Kathleen Kelly, and Quellyn Snead, Los Alamos
National Laboratory

Backup Bonanza

Capacity Forecasting in a Backup Storage Environment (Practice & Experience Report) 141
Mark Chamness, EMC

Content-aware Load Balancing for Distributed Backup .151
Fred Douglis and Deepti Bhardwaj, EMC; Hangwei Qian, Case Western Reserve University; Philip Shilane,
EMC

To the Cloud!

Getting to Elastic: Adapting a Legacy Vertical Application Environment for Scalability 169
Eric Shamow, Puppet Labs

Scaling on EC2 in a Fast-Paced Environment (Practice & Experience Report) . 179
Nicolas Brousse, TubeMogul, Inc.

Honey and Eggs: Keeping Out the Bad Guys with Food

DarkNOC: Dashboard for Honeypot Management .189
Bertrand Sobesto and Michel Cukier, University of Maryland; Matti Hiltunen, Dave Kormann, and Gregg
Vesonder, AT&T Labs Research; Robin Berthier, University of Illinois

A Cuckoo’s Egg in the Malware Nest: On-the-fly Signature-less Malware Analysis, Detection,
and Containment for Large Networks .201
Damiano Bolzoni and Christiaan Schade, University of Twente; Sandro Etalle, University of Twente and
Eindhoven Technical University

Seriously Snooping Packets

Auto-learning of SMTP TCP Transport-Layer Features for Spam and Abusive Message Detection 217
Georgios Kakavelakis, Robert Beverly, and Joel Young, Naval Postgraduate School

Using Active Intrusion Detection to Recover Network Trust .227
John F. Williamson and Sergey Bratus, Dartmouth College; Michael E. Locasto, University of Calgary; Sean W.
Smith, Dartmouth College

USENIX Association LISA ’11: 25th Large Installation System Administration Conference v

Friday, December 9

Network Security

Community-based Analysis of Netflow for Early Detection of Security Incidents .241
Stefan Weigert, TU Dresden; Matti A. Hiltunen, AT&T Labs Research; Christof Fetzer, TU Dresden

WCIS: A Prototype for Detecting Zero-Day Attacks in Web Server Requests .253
Melissa Danforth, California State University, Bakersfield

Networking 1

Automating Network and Service Configuration Using NETCONF and YANG .267
Stefan Wallin, Luleå University of Technology; Claes Wikström, Tail-f Systems AB

Deploying IPv6 in the Google Enterprise Network: Lessons Learned .281
Haythum Babiker, Irena Nikolova, and Kiran Kumar Chittimaneni, Google

Experiences with BOWL: Managing an Outdoor WiFi Network (or How to Keep Both Internet
Users and Researchers Happy?) (Practice & Experience Report) .287
T. Fischer, T. Hühn, R. Kuck, R. Merz, J. Schulz-Zander, and C. Sengul, TU Berlin/Deutsche Telekom
Laboratories

Migrations, Mental Maps, and Make Modernization

Why Do Migrations Fail and What Can We Do about It? .293
Gong Zhang and Ling Liu, Georgia Institute of Technology

Provenance for System Troubleshooting .311
Marc Chiarini, Harvard SEAS

Debugging Makefiles with remake .323
Rocky Bernstein

USENIX Association LISA ’10: 24th Large Installation System Administration Conference vii

Message from the Program Co-Chairs

Dear LISA ’11 Attendee,

There are two kinds of LISA attendees: those who read this letter at the conference and those who read it after
they’ve returned home. To the first group, get ready for six days of brain-filling, technology-packed, geek-centric
tutorials, speakers, papers, and more! To those that are reading this after the conference, we ask, “What’s it like
living in the future? How was the conference? What cool tips and tools did you take home with you to make your
job easier?”

Being a sysadmin is kind of like living in the future. You work with technology every day that would make Buck
Rogers jealous. Most of our friends are jealous, too. When LISA started 25 years ago, a “large site” had 10 comput-
ers, each the size of a dishwasher, with a few gigabytes of combined storage. Today our cell phones have 32GB of
“compact flash,” which is often more than the NFS quota we give our users.

Attending LISA is kind of like spending a week living in the future. We learn technologies that are cutting-edge—
little known now, but next year everyone will be talking about them. When we return from LISA we sound like
time travelers visiting from the future talking about new and futuristic stuff. LISA makes us look good.

LISA rarely has a cohesive conference theme, but this year we thought it was important to highlight DevOps, as it
is a significant cultural change. Although DevOps is often thought of as “something big Web sites do,” the lessons
learned transfer well to enterprise computing.

LISA has always been assembled using the sweat of many dedicated volunteers. It takes a lot of effort to put a
conference like this together, and this year is no different. Most prominent are the Invited Talks committee (Æleen
Frisch and Kent Skaar) and the Program Committee (Narayan Desai, Andrew Hume, Duncan Hutty, Dinah
McNutt, Tim Nelson, Mario Obejas, Mark Roth, Carolyn Rowland, Federico D. Sacerdoti, Marc Stavely, Nicole
Forsgren Velasquez, Avleen Vig, and David Williamson), but also important are the Workshops Coordinator (Cory
Lueninghoener), the Guru Is In Coordinator (Chris St. Pierre), the Poster Session Coordinator (Matt Disney), and
the Work-in-Progress Reports Coordinator (William Bilancio). We couldn’t have done it without every one of them.
Of course, nothing would happen without the leadership of the USENIX staff. We are indebted to you all!

Of the 63 papers submitted, we accepted 28. These papers represent the best “deep thought” research, as well as
Practice and Experience Reports that tell the stories from people “in the trenches.” We encourage you to read them
all. However, the power of LISA is the personal interaction: introduce yourself to the attendees standing in line
near you, strike up a conversation with the person sitting next to you. And remember to have fun!

Sincerely,
Thomas A. Limoncelli, Google, Inc.
Doug Hughes, D. E. Shaw Research, LLC
Program Co-Chairs

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 1

Staging Package Deployment via Repository Management

Chris St. Pierre - stpierreca@ornl.gov
Matt Hermanson - mjhermanson@ornl.gov
National Center for Computational Sciences

Oak Ridge National Laboratory
Oak Ridge, TN, USA∗

Abstract

This paper describes an approach for managing package versions and updates in a homogenous manner
across a heterogenous environment by intensively managing a set of software repositories rather than by
managing the clients. This entails maintaining multiple local mirrors, each of which is aimed at a different
class of client: One is directly synchronized from the upstream repositories, while others are maintained
from that repository according to various policies that specify which packages are to be automatically
pulled from upstream (and therefore automatically installed without any local vetting) and which are to
be considered more carefully – likely installed in a testing environment, for instance – before they are
deployed widely.

Background

It is important to understand some points about our
environment, as they provide important constraints
to our solution.

We are lucky enough to run a fairly homoge-
nous set of operating systems consisting primarily of
Red Hat Enterprise Linux and CentOS servers, with
fair numbers of Fedora and SuSE outliers. In short,
we are dealing entirely with RPM-based packaging,
and with operating systems that are capable of using
yum [12]. As yum is the default package manage-
ment utility for the majority of our servers, we opted
to use yum rather than try to switch to another pack-
age management utility.

For configuration management, we chose to use
Bcfg2 [3] for reasons wholly unrelated to package and
software management. Bcfg2 is a Python and XML-
based configuration management engine that “helps
system administrators produce a consistent, repro-
ducible, and verifiable description of their environ-
ment” [3]. It is in particular the focus on repro-
ducibility and verification that forced us to consider
updating and patching anew.

In order to guarantee that a given configuration –

where a “configuration” is defined as the set of paths,
files, packages, and so forth, that describes a single
system – is fully replicable, Bcfg2 ensures that ev-
ery package specified for a system is the latest avail-
able from that system’s software repositories [8]. (As
will be noted, this can be overridden by specifying
an explicit package version.) This grants the system
administrator two important abilities: to provision
identical machines that will remain identical; and to
reprovision machines to the exact same state they
were previously in. But it also makes it unreasonable
to simply use the vendor’s software repositories (or
other upstream repositories), since all updates will be
installed immediately without any vetting. The same
problem presents itself even with a local mirror.

Bcfg2 can also use “the client’s response to the
specification ... to assess the completeness of the
specification” [3]. For this to happen, the Bcfg2
server must be able to understand what a “com-
plete” specification entails, and so the server does
not entirely delegate package installation to the Bcfg2
client. Instead, it performs package dependency res-
olution on the server rather than allowing the client
to set its own configuration. This necessitates en-
suring that the Bcfg2 Packages plugin uses the same

∗This paper has been authored by contractors of the U.S. Government under Contract No. DE-AC05-00OR22725. Ac-
cordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.

1

2 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

yum configuration as the clients; Bcfg2 has support
for making this rather simple [8], but the Packages
plugin does not support the full range of yum func-
tionality, so certain functions like the “versionlock”
plugin and even package excludes, are not available.
Due to the architecture of Bcfg2 – architecture de-
signed to guarantee replicability and verification of
server configurations – it is not feasible or, in most
cases, possible to do client-based package and repos-
itory management. This became critically important
in selecting a solution.

Other Solutions

There are a vast number of potential solutions to this
problem that would seem to be low-hanging fruit –
far simpler to implement, at least initially, than our
ultimate solution – but that would not work, for var-
ious reasons.

Yum Excludes

A core yum feature is the ability to exclude certain
packages from updates or installation [13]. At first,
this would seem to be a solution to the problem of
package versioning: simply install the package version
you want, and then exclude it from further updates.
But this has several issues that made it unsuitable
for our use (or, we believe, this use case in general):

• It does not (and cannot) guarantee a specific
version. Using excludes to set a version depends
on that version being installed (manually) prior
to adding the package to the exclude list.

• There is no guarantee that the package is still in
the repository. Many mainstream repositories1

do not retain older versions in the same repos-
itory as current packages. Consequently, when
reinstalling a machine where yum excludes have
been used to set package versions (or when at-
tempting to duplicate such a machine), there is
no guarantee that the package version expected
will even be available.

• In order to use yum excludes to control package
versions, a very specific order of events must oc-
cur: first, the machine must be installed with-
out the target package included (as Kickstart,
the RHEL installation tool, does not support
installing a specific version of a package [1]);

next, the correct package version must be in-
stalled; and finally, the package must be added
to the exclude list. If this happens out of order,
then the wrong version of the package might be
installed, or the package might not be installed
at all.

• Supplying a permitted update to a package is
even more difficult, as it involves removing the
package exclusion, updating to the correct ver-
sion, and then restoring the exclusion. A config-
uration management system would have to have
tremendously granular control over the order in
which actions are performed to accomplish this
delicate goal.

• As discussed earlier, Bcfg2 performs depen-
dency resolution on the server side in order to
provide a guarantee that a client’s configura-
tion is fully specified. By using yum excludes –
which cannot be configured in Bcfg2’s internal
dependency resolver – the relationship between
the client and the server is broken, and Bcfg2
will in perpetuity claim that the client is out of
sync with the server, thus reducing the useful-
ness of the Bcfg2 reporting tools.

While yum excludes appear at first to be a viable
option, their use to set package versions is not repli-
cable, consistent, and cannot be trivially automated.

Specifying Versions in Bcfg2

Bcfg2 is capable of specifying specific versions of
packages in the specification, e.g.:

<BoundPackage name="glibc" type="yum">

<Instance version="2.13" release="1"

arch="i686"/>

<Instance version="2.13" release="1"

arch="x86_64"/>

</BoundPackage>

This is obviously quite verbose (more so because
the example uses a multi-arch package), and as a re-
sult of its verbosity it is also error-prone. Having
to recopy the version, release, and architecture of a
package – separately – is not always a trivial process,
and the relatively few constraints of version and re-
lease strings makes it less so. For instance, given the
package:

iomemory-vsl-2.6.35.12-88.fc14.x86_64-

2.3.0.281-1.0.fc14.x86_64.rpm

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 3

The package name is “iomemory-vsl-2.6.35.12-
88.fc14.x86 64” (which refers to the specific kernel for
which it was built), the version is “2.3.0.281” and the
release is “1.0.fc14”.2 This can be clarified through
use of the --queryformat option to rpm, but the fact
that more advanced RPM commands are necessary
makes it clear that this approach is untenable in gen-
eral. Even more worrisome is the package epoch, a
sort of “super-version,” which RPM cleverly hides by
default, but could cause a newer package to be in-
stalled if it was not specified properly.

Maintenance is also tedious, as it involves end-
lessly updating verbose version strings; recall that a
given version is just shorthand for what we actually
care about – that a package works.

This approach also does not abrogate the use of
yum on a system to update it beyond the appropriate
point. The only thing keeping a package at the chosen
version is Bcfg2’s own self-restraint; if an admin on
a machine lacks that same self-restraint, then he or
she could easily update a package that was not to be
updated, whereupon Bcfg2 would try to downgrade
it.

Finally, this approach presents specific difficulties
for us, as our adoption of Bcfg2 is far from com-
plete; large swaths of the center still use Cfengine 2,
and some machines – particularly compute and stor-
age platforms – operate in a diskless manner and do
not use configuration management tools in a tradi-
tional manner. They depend entirely on their images
for package versions, so specifying versions in Bcfg2
would not help.

To clarify, using Bcfg2 forced us to reconsider this
problem, and any solution must be capable of work-
ing with Bcfg2, but it cannot be assumed that the
solution may leverage Bcfg2.

Yum versionlock

Using yum’s own version locking system would ap-
pear to improve upon pegging versions in Bcfg2:
it works on all systems, regardless of whether or
not they use Bcfg2; and a shortcut command, yum
versionlock <package-name>, is provided to make
the process of maintaining versions less error-prone.3

It also solves many of the problems of yum ex-
cludes, but suffers from a critical flaw in that ap-
proach: by setting package versions on the client,
the relationship between the Bcfg2 client and server
would be broken.

Combinations of these three approaches merely
exhibit combinations of their flaws. For instance,

the promising combination of yum’s versionlock plu-
gin and specifying the version in Bcfg2 would ensure
that the Bcfg2 client and server were of a mind about
package versions, and would work on non-Bcfg2 ma-
chines; however, it would forfeit versionlock’s ease of
use and require the administrator to once again man-
ually copy package versions.

Spacewalk

Spacewalk was the first full-featured solution we
looked at that aims to replace the mirroring portion
of this relationship; all of the other potential solu-
tions listed thus far have attempted to work with a
“dumb” mirror and use yum features to work around
the problem we have described. Spacewalk is a local
mirror system that “manages software content up-
dates for Red Hat derived [sic] distributions” [10]; it
is a tremendously full-featured system, with support
for custom “channels,” collections of packages assem-
bled in an ad-hoc basis.

Unfortunately, Spacewalk was a non-starter for us
for the same reason that it has failed to gain much
traction in the community at large: of the two ver-
sions of Spacewalk, only the Oracle version actually
implements all of the features; the PostgreSQL ver-
sion is deeply underfeatured, even after several years
of work by the Spacewalk team to port all of the Or-
acle stored procedures.

As it turns out, Red Hat has a successor in
mind for Spacewalk and Satellite: CloudForms [14].
The content management portion of CloudForms –
roughly corresponding to the mirror and repository
management functionality of Spacewalk – is Pulp.

A solution: Pulp

Pulp is a tool “for managing software repositories
and their associated content, such as packages, er-
rata, and distributions” [7]. It is, as noted, the spir-
itual successor to Spacewalk, and so implements the
vast majority of Spacewalk’s repository management
features without the dependency on Oracle.

Pulp’s usage model involves syncing multiple up-
stream repositories locally; these repositories can
then be cloned, which uses hard links to sync them
locally with almost no disk space used. This allows
us to sync a repository once, then duplicate it as
many times as necessary to support multiple teams
and multiple stability levels. The sync process sup-
ports filters, which allow us to blacklist or whitelist

3

4 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

packages and thus exclude “impactful” packages from
automatic updates.

Pulp also supports manually adding packages to
and removing packages from repositories, so we can
later update a given package across all machines that
use a repository with a single command. Adding and
removing also tracks dependencies, so it’s not possi-
ble to add a package to a repository without adding
the dependencies necessary to install it.4

Workflow

Pulp provides us with the framework to implement
a solution to the problem outlined earlier, but even
as featureful as it is it remains a fairly basic tool.
Our workflow – enforced by the features Pulp pro-
vides, by segregating repositories, by policy, and by
a nascent in-house web interface – provides the bulk
of the solution. Briefly, we segregate repositories by
tier to test packages before site-wide roll-outs, and by
team to ensure operational separation. Packages are
automatically synced between tiers based on package
filters, which blacklist certain packages that must be
promoted manually. This ensures that most packages
benefit from up to two weeks of community testing
before being deployed site-wide, and packages that
we have judged to be more potentially “impactful”
from more focused local testing as well.

Tiered Repositories

We maintain different repository sets for different
“levels” of stability. We chose to maintain three tiers:

live Synced daily from upstream repositories; not
used on any machines, but maintained due to
operational requirements within Pulp5 and for
reference.

unstable Synced daily from live, with the excep-
tion of selected “impactful” packages (more
about which shortly), which can be manually
promoted from live.

stable Synced daily from unstable, with the excep-
tion of the same “impactful” packages, which
can be manually promoted from unstable.

This three-tiered approach guarantees that pack-
ages in stable are at least two days old, and “im-
pactful” packages have been in testing by machines
using the unstable branch. When a package is re-
leased from upstream and sync to public mirrors,

those packages are pulled down into local reposito-
ries. From then on the package in under the control
of Pulp. Initially, a package is considered unstable
and is only deployed to those systems that look at
the repositories in the unstable tier. After a period
of time, the package is then promoted into the stable
repositories, and thus to production machines.

In order to ensure that packages in unstable re-
ceive ample testing before being promoted to stable,
we divide machines amongst those two tiers thusly:

• All internal test machines – that is, all machines
whose sole purpose is to provide test and de-
velopment platforms to customers within the
group – use the unstable branch. Many of
these machines are similar, if not identical, to
production or external test machines.

• Where multiple identical machines exist for a
single purpose, whether in an active-active or
active-passive configuration, exactly one ma-
chine will use the unstable branch and the rest
will use the stable branch.

Additionally, we maintain separate sets of repos-
itories, branched from live, for different teams or
projects that require different patching policies ap-
propriate to the needs of those teams or projects.
Pulp has strong built-in ACLs that support these di-
visions.

In order to organize multiple tiers across multi-
ple groups, we use a strict convention to specify the
repository ID, which acts as the primary key across
all repositories6, namely:

<team name>-<tier>-<os name>-<os version>-

<arch>-<repo name>

For example,
infra-unstable-centos-6-x86 64-updates would
denote the Infrastructure team’s unstable tier of the
64-bit CentOS 6 “updates” repository. This allows us
to tell at a glance the parent-child relationships be-
tween repositories.

Sync Filters

The syncs between the live and unstable and be-
tween unstable and stable tiers are mediated by
filters7. Filters are regular expression lists of pack-
ages to either blacklist from the sync, or whitelist in
the sync; in our workflow, only blacklists are used. A
package filtered from the sync may still remain in the

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 5

repository; that is, if we specify ^kernel(-.*)? as a
blacklist filter, that does not remove kernel packages
from the repository, but rather refuses to sync new
kernel packages from the repository’s parent. This
is critical to our version-pegging system.

Given our needs, whitelist filters are unnecessary;
our systems tend to fall into one of two types:

• Systems where we generally want updates to
be installed insofar as is reasonable, with some
prudence about installing updates to “impact-
ful” packages.

• Systems where, due to vendor requirements, we
must set all packages to a specific version. Most
often this is in the form of a requirement for a
minor release of RHEL8, in which case there are
no updates we wish to install on an automatic
basis. (We may wish to update specific pack-
ages to respond to security threats, but that
happens with manual package promotion, not
with a sync; this workflow gives us the flexibil-
ity necessary to do so.)

A package that may potentially cause issues when
updated can be blacklisted on a per-team basis9.
Since the repositories are hierarchically tiered, a
package that is blacklisted from the unstable tier
will never make it to the stable tier.

Manual Package Promotion and Removal

The lynchpin of this process is manually reviewing
packages that have been blacklisted from the syncs
and promoting them manually as necessary. For in-
stance, if a filter for a set of repositories blacklisted
^kernel(-.*)? from the sync, without manually
promoting new kernel packages no new kernel would
ever be installed.

To accomplish this, we use Pulp’s add package
functionality, exposed via the REST API as a POST
to
/repositories/<id>/add package/, via the
Python client API as
pulp.client.api.repository.RepositoryAPI.

add package(), and via the CLI as pulp-admin

repo add package. In the CLI implementation,
add package follows dependencies, so promoting a
package will promote everything that package re-
quires that is not already in the target repository.
This helps ensure that each repository stays consis-
tent even as we manipulate it to contain only a subset
of upstream packages10.

Conversely, if a package is deployed and is later
found to cause problems it can be removed from the
tier and the previous version, if such is available in
the repository, will be (re)installed. Bcfg2 will help-
fully flag machines where a newer package is installed
than is available in that machine’s repositories, and
will try to downgrade packages appropriately. Pulp
can be configured to retain old packages when it per-
forms a sync; this is helpful for repositories like EPEL
that remove old packages themselves, and guarantees
that a configurable number of older package versions
are available to fall back on.

The remove package functionality is exposed via
Pulp’s REST API as a POST to
/repositories/<id>/delete package/, via the
Python client API as
pulp.client.api.repository.RepositoryAPI.

remove package(), and via the CLI as pulp-admin
repo remove package. As with add package, the
CLI implementation follows dependencies and will
try to remove packages that require the package
being removed; this also helps ensure repository con-
sistency.

Optimally, security patches are applied 10 or 30
days after the initial patch release [2]; this workflow
allows us to follow these recommendations to some
degree, promoting new packages to the unstable tier
on an approximately weekly basis. Packages that
have been in the unstable tier for at least a week
are also promoted to the stable tier every week; in
this we deviate from Beattie et al.’s recommendations
somewhat, but we do so because the updates being
promoted to stable have been vetted and tested by
the machines using the unstable tier.

This workflow also gives us something very impor-
tant: the ability to install updates across all machines
much sooner than the optimal 10- or 30-day period.
High profile vulnerabilities require immediate action
– even to the point of imperiling uptime – and by pro-
moting a new package immediately to both stable

and unstable tiers we can ensure that it is installed
across all machines in our environment in a timely
fashion.

Selecting “impactful” packages

Throughout this paper, we have referred to “impact-
ful” packages – those to which automatic updates
we determined to be particularly dangerous – as a
driving factor. Were it not for our reticence to au-
tomatically update all packages, we could have sim-
ply used an automatic update facility – yum-cron or

5

6 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

yum-updatesd are both popular – and been done with
it.

We didn’t feel that was appropriate, though. For
instance, installing a new kernel can be problematic
– particularly in an environment with a wide variety
of third-party kernel modules and other kernel-space
modifications – and we wanted much closer control
over that process. We flagged packages as “impact-
ful” according to a simple set of criteria:

• The kernel, and packages otherwise directly tied
to kernel space (e.g., kernel modules and Dy-
namic Kernel Module Support (DKMS) pack-
ages);

• Packages that provide significant, customer-
facing services. On the Infrastructure team,
this included packages like bind, httpd (and
related modules), mysql, and so on.

• Packages related to InfiniBand and Lustre [9];
as one of the world’s largest unclassified Lustre
installations, it’s very important that the Lus-
tre versions on our systems stay in lockstep with
all other systems in the center. Parts of Lus-
tre reside directly in kernel space, an additional
consideration.

The first two criteria provided around 20 packages
to be excluded – a tiny fraction of the total packages
installed across all of our machines. The vast major-
ity of supporting packages continue to be automati-
cally updated, albeit with a slight time delay for the
multiple syncs that must occur.

Results

Our approach produces results in a number of ar-
eas that are difficult to quantify: improved au-
tomation reduces the amount of time we spend in-
stalling patches; not installing patches immediately
improves patch quality and reduces the likelihood of
flawed patches [2]; and increased compartmentaliza-
tion makes it easier for our diverse teams to work
to different purposes without stepping on toes. But
it also provides testable, quantifiable improvements:
since replacing a manual update process with Pulp
and Bcfg2’s automated update process, we can see
that the number of available updates has decreased
and remained low on the machines using Pulp.

 0

 2

 4

 6

 8

 10

 12

 14

 16

08/05 08/12 08/19 08/26 09/02 09/09

U
p
d
a
te

d
 p

a
c
k
a
g
e
s
 a

v
a
ila

b
le

Date

Total updates available

Servers using Pulp
Servers not using Pulp

The practice of staging package deployment
makes is difficult to quantify just how out of date
a client is, as yum on the client will only report the
number of updates available from the repositories in
yum.conf. To find the number of updates available
from upstream, we collect an aggregate of all the
package differences starting at the client and going
up the heirarchy to the upstream repository. E.g.,
for a machine using the unstable tier, we calculate
the number of updates available on the machine it-
self, and then the number of updates available to the
unstable tier from the live tier.

The caveat to this approach is when, for instance,
a package splits into two new packages. This results
in two new packages, and one missing package, total-
ing three “updates” according to yum check-update,
or zero “updates” when comparing repositories them-
selves, when in reality it is a single package update.
For example, if package foo recieves an update that
results in packages foo-client and foo-server, this
could result in a margin of error of -1 or +2. This
gives a slight potential benefit to machines using Pulp
in our metrics, as updates of this sort are underesti-
mated when calculating the difference between repos-
itories, but overestimated when using yum to report
on updates available to a machine. In practice, this is
extremely rare, though, and should not significantly
affect the results.

Ensuring, with a high degree of confidence, that
updates are installed is wonderful, but even more
important is ensuring that vulnerabilities are being
mitigated. Using the data from monthly Nessus [11]
vulnerability scans, we can see that machines using
Pulp do indeed reap the benefits of being patched
with more frequency:11

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 7

 0

 5

 10

 15

 20

 25

Servers using Pulp Servers not using Pulp

V
u
ln

e
ra

b
ili

ti
e
s

Low
Medium

High

This graph is artificially skewed against Pulp due
to the sorts of things Nessus scans for; for instance,
web servers are more likely to be using Pulp at this
time simply due to our implementation plan, and
they also have disproportionately more vulnerabili-
ties in Nessus because they have more services ex-
posed.

Future Development

Sponge

At this time, Pulp is very early code; it has been in
use in another Red Hat product for a while, so certain
paths are well-tested, but other paths are pre-alpha.
Consequently, its command line interface lacks pol-
ish, and many tasks within Pulp require extraordi-
nary verbosity to accomplish. It is also not clear if
Pulp is intended for standalone use, although such is
possible.

To ease management of Pulp, we have written a
web frontend for management of Pulp and its objects,
called “Sponge.” Sponge, powered by the Django [4]
web framework, provides views into the state of Pulp
repositories along with the ablity to manage its con-
tents. Sponge leverages Pulp’s Python client API to
provide convience functions that ease our workflow.

By presenting the information visually, Sponge
makes repository management much more intuitive.
Sponge extends the functionality of Pulp by display-
ing the differences between a repository and its parent
in the form of a diff. These diffs give greater insight
into exactly how stable, unstable, and live tiers
differ. They also provide insight into the implications
of a package promotion or removal.

This is particularly important with package re-
moval, since, as noted, removing a package will also

remove anything that requires that specific package.
Without Sponge’s diff feature and a confirmation
step, that is potentially very dangerous; Pulp itself
only gives you confirmation of the packages removed
without an opportunity to confirm or reject a re-
moval. The contrapositive situation – promoting a
package pulling in unintended dependencies – is also
potentially dangerous, albeit less so. Sponge helps
avert both dangers.

Guaranteeing a minimum package age

As Beattie at al. observe [2], the optimal time to ap-
ply security patches is either 10 or 30 days after the
patches have been released. Our workflow currently
doesn’t provide any way to guarantee this; our weekly
manual promotion of new packages merely suggests
that a patch be somewhere between 0 and 6 days old
before it is promoted to unstable, and 7 and 13 days
old before being promoted to stable. We plan to add
a feature – either to Sponge or to Pulp – to promote
packages only once they have aged properly.

Other packaging formats

In this paper we have dealt with systems using yum
and RPM, but the approach can, at least in theory, be
expanded to other packaging systems. Pulp intends
eventually to support not only Debian packages, but
actually any sort of generic content at all [6], mak-
ing it useful for any packaging system. Bcfg2, for
its part, already has package drivers for a wide array
of packaging systems, including APT, Solaris pack-
ages (Blastwave- or SystemV-style), Encap, FreeBSD
packages, IPS, Mac Ports, Pacman, and Portage.
This gives a hint of the future potential for this ap-
proach.

Availability

Most of the software involved in the approach dis-
cussed in this paper is free and open source. The
various elements of our solution can be found at:

Pulp http://pulpproject.org

Bcfg2 http://trac.mcs.anl.gov/projects/

bcfg2

Yum http://yum.baseurl.org/

7

8 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Sponge, the web UI to Pulp listed in the Future
Development section, is currently incomplete and un-
released. We have already worked closely with the
Pulp developers to incorporate features into the Pulp
core itself, and we will continue to do so. We hope
that Sponge will become unnecessary as Pulp ma-
tures.

Author Information

Chris St. Pierre leads the Infrastructure team of the
HPC Operations group at the National Center for
Computational Sciences at Oak Ridge National Lab-
oratory in Oak Ridge, Tennessee. He is deeply in-
volved with the development of Bcfg2, contributing
in particular to the specification validation tool and
Packages plugin for the upcoming 1.2.0 release. He
has taught widely on internal documentation, LDAP,
and spam. Chris serves on the LOPSA Board of Di-
rectors.

Matt Hermanson is a member of the Infrastruc-
ture team of the HPC Operations group at the Na-
tional Center for Computational Sciences at Oak
Ridge National Laboratory in Oak Ridge, Tennessee.
He holds a B.A. in Computer Science from Tennessee
Technological University.

References
[1] Anaconda/Kickstart. http://fedoraproject.org/wiki/

Anaconda/Kickstart#Chapter_3._Package_Selection.

[2] Beattie, S., Arnold, S., Cowan, C., Wagle, P.,
Wright, C., and Shostack, A. Timing the Application
of Security Patches for Optimal Uptime. Proceedings of
LISA ’02: Sixteenth Systems Administration Conference,
USENIX, pp. 233–42.

[3] Desai, N. Bcfg2. http://trac.mcs.anl.gov/projects/

bcfg2.

[4] Django Software Foundation. Django — The Web
framework for perfectionists with deadlines. https://

www.djangoproject.com/.

[5] Dobies, J. GCRepoApis. https://fedorahosted.org/

pulp/wiki/GCRepoApis.

[6] Dobies, J. Generic Content Support.
http://blog.pulpproject.org/2011/08/08/

generic-content-support/.

[7] Dobies, J. Pulp - Juicy software repository management.
http://pulproject.org.

[8] Jerome, S., Laszlo, T., and St. Pierre, C.
Packages. http://docs.bcfg2.org/server/plugins/

generators/packages.html.

[9] Oracle Corporation. Lustre. http://wiki.lustre.

org/index.php/Main_Page.

[10] Red Hat, Inc. Spacewalk: Free & Open Source Linux
Systems Management. http://spacewalk.redhat.com/.

[11] Tenable Network Security. Tenable Nessus. http:

//www.tenable.com/products/nessus.

[12] Vidal, S. yum. http://yum.baseurl.org/.

[13] Vidal, S. yum.conf - configuration file for yum(8). man

5 yum.conf.

[14] Warner, T., and Sanders, T. The Future of RHN Satel-
lite: A New Architecture Enabling the Traditional Data
Center and the Cloud. Red Hat Summit, Red Hat, Inc.

Notes
1For instance, Extra Packages for Enterprise Linux (EPEL)

and the CentOS repositories themselves.
2Admittedly, this is a non-standard naming scheme, but

no solution can be predicated on the idea that all RPMs are
well-built.

3The command in question merely maintains a local file on
a machine, so that file would still have to be copied into the
Bcfg2 specification, but we believe this would be less error-
prone than copying package version details.

4This is actually only true if the package is being added
from another repository; it is possible to add a package di-
rectly from the filesystem, in which case dependency checking
is not performed. This is not a use case for us, though.

5In Pulp, filters can only be applied to repositories with
local feeds.

6This may change in future versions of Pulp, as multiple
users, ourselves included, have asked for stronger grouping
functionality [5].

7As noted earlier, in Pulp, filters can only be applied to
repositories with local feeds, so no filter mediates the sync be-
tween upstream and live.

8It is lost on many vendors that it is unreasonable and fool-
ish to require a specific RHEL minor release. As much work
as has gone into this solution, it is still less than would be
required to convince most vendors of this fact, though.

9Technically, filters can be applied on a per-repository basis,
so black- and whitelists can be applied to individual reposito-
ries. This is very rare in our workflow, though.

10It is true that our approach does not guarantee consistency.
A repository sync might result in an inconsistency if a package
that was not listed on that sync’s blacklist required a package
that was listed on the blacklist. In practice this can be limited
by using regular expressions to filter families of packages (e.g.,
^mysql.* or ^(.*-)?mysql.* to blacklist all MySQL-related
packages rather than just blacklisting the mysql-server pack-
age itself

11Unfortunately long-term data was not available for vul-
nerabilities for a number of reasons: CentOS 5 stopped ship-
ping updates in their mainline repositories between July 21st
and September 14th; the August security scan was partially
skipped; and Pulp hasn’t been in production long enough to
get meaningful numbers prior to that. Still, the snapshot of
data is compelling.

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 9

CDE: Run Any Linux Application On-Demand Without Installation

Philip J. Guo
Stanford University
pg@cs.stanford.edu

Abstract

There is a huge ecosystem of free software for Linux, but
since each Linux distribution (distro) contains a differ-
ent set of pre-installed shared libraries, filesystem layout
conventions, and other environmental state, it is difficult
to create and distribute software that works without has-
sle across all distros. Online forums and mailing lists
are filled with discussions of users’ troubles with com-
piling, installing, and configuring Linux software and
their myriad of dependencies. To address this ubiqui-
tous problem, we have created an open-source tool called
CDE that automatically packages up the Code, Data, and
Environment required to run a set of x86-Linux pro-
grams on other x86-Linux machines. Creating a CDE
package is as simple as running the target application un-
der CDE’s monitoring, and executing a CDE package re-
quires no installation, configuration, or root permissions.
CDE enables Linux users to instantly run any application
on-demand without encountering “dependency hell”.

1 Introduction

The simple-sounding task of taking software that runs on
one person’s machine and getting it to run on another
machine can be painfully difficult in practice. Since no
two machines are identically configured, it is hard for
developers to predict the exact versions of software and
libraries already installed on potential users’ machines
and whether those conflict with the requirements of their
own software. Thus, software companies devote con-
siderable resources to creating and testing one-click in-
stallers for products like Microsoft Office, Adobe Pho-
toshop, and Google Chrome. Similarly, open-source de-
velopers must carefully specify the proper dependencies
in order to integrate their software into package manage-
ment systems [4] (e.g., RPM on Linux, MacPorts on Mac
OS X). Despite these efforts, online forums and mail-
ing lists are still filled with discussions of users’ troubles

with compiling, installing, and configuring software and
their myriad of dependencies. For example, the official
Google Chrome help forum for “install/uninstall issues”
has over 5800 threads.

In addition, a study of US labor statistics predicts that
by 2012, 13 million American workers will do program-
ming in their jobs, but amongst those, only 3 million will
be professional software developers [24]. Thus, there are
potentially millions of people who still need to get their
software to run on other machines but who are unlikely
to invest the effort to create one-click installers or wres-
tle with package managers, since their primary job is not
to release production-quality software. For example:

• System administrators often hack together ad-
hoc utilities comprised of shell scripts and custom-
compiled versions of open-source software, in or-
der to perform system monitoring and maintenance
tasks. Sysadmins want to share their custom-built
tools with colleagues, quickly deploy them to other
machines within their organization, and “future-
proof” their scripts so that they can continue func-
tioning even as the OS inevitably gets upgraded.

• Research scientists often want to deploy their com-
putational experiments to a cluster for greater per-
formance and parallelism, but they might not have
permission from the sysadmin to install the required
libraries on the cluster machines. They also want to
allow colleagues to run their research code in order
to reproduce and extend their experiments.

• Software prototype designers often want clients to
be able to execute their prototypes without the has-
sle of installing dependencies, in order to receive
continual feedback throughout the design process.

In this paper, we present an open-source tool called
CDE [1] that makes it easy for people of all levels of
IT expertise to get their software running on other ma-
chines without the hassle of manually creating a robust

10 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Your Linux
machine

Ubuntu

Fedora

SUSE

Debian

CentOS

...

Figure 1: CDE enables users to package up any Linux
application and deploy it to all modern Linux distros.

installer or dealing with user complaints about depen-
dencies. CDE automatically packages up the Code, Data,
and Environment required to run a set of x86-Linux pro-
grams on other x86-Linux machines without any instal-
lation (see Figure 1). To use CDE, the user simply:

1. Prepends any set of Linux commands with the cde
executable. cde executes the commands and uses
ptrace system call interposition to collect all the
code, data files, and environment variables used
during execution into a self-contained package.

2. Copies the resulting CDE package to an x86-Linux
machine running any distro from the past ∼5 years.

3. Prepends the original packaged commands with the
cde-exec executable to run them on the target
machine. cde-exec uses ptrace to redirect file-
related system calls so that executables can load
the required dependencies from within the package.
Execution can range from ∼0% to ∼30% slower.

The main benefits of CDE are that creating a package
is as easy as executing the target program under its super-
vision, and that running a program within a package re-
quires no installation, configuration, or root permissions.

The design philosophy underlying CDE is that people
should be able to package up their Linux software and
deploy it to other Linux machines with as little effort as
possible. However, CDE is not meant to replace tradi-
tional installers or package managers; its intended role is
to serve as a convenient ad-hoc solution for people like
sysadmins, research scientists, and prototype makers.

Since its release in Nov. 2010, CDE has been down-
loaded over 3,000 times [1]. We have exchanged hun-
dreds of emails with users throughout both academia and
industry. In the past year, we have made several signifi-
cant enhancements to the base CDE system in response to
user feedback. Although we introduced an early version

Your Linux
machine

Ubuntu

Fedora
SUSE

Debian
CentOS

"The cloud"

Figure 2: CDE’s streaming mode enables users to run any
Linux application on-demand by fetching the required
files from a farm of pre-installed distros in the cloud.

of CDE in a short paper [20], this paper presents a more
complete CDE system with three new features:

• To overcome CDE’s primary limitation of only be-
ing able to package dependencies collected on exe-
cuted paths, we introduce new tools and heuristics
for making CDE packages complete (Section 3).

• To make CDE-packaged programs behave just like
native applications on the target machine rather than
executing in an isolated sandbox, we introduce a
new seamless execution mode (Section 4).

• Finally, to enable users to run any Linux application
on-demand, we introduce a new application stream-
ing mode (Section 5). Figure 2 shows its high-level
architecture: The system administrator first installs
multiple versions of many popular Linux distros in
a “distro farm” in the cloud (or an internal com-
pute cluster). The user connects to that distro farm
via an ssh-based protocol from any x86-Linux ma-
chine. The user can now run any application avail-
able within the package managers of any of the dis-
tros in the farm. CDE’s streaming mode fetches the
required files on-demand, caches them locally on
the user’s machine, and creates a portable distro-
independent execution environment. Thus, Linux
users can instantly run the hundreds of thousands of
applications already available in the package man-
agers of all distros without being forced to use one
specific release of one specific distro1.

This paper continues with descriptions of real-world
use cases (Section 6), evaluations of portability and per-
formance (Section 7), comparisons to related work (Sec-
tion 8), and concludes with discussions of design philos-
ophy, limitations, and lessons learned (Section 9).

1The package managers included in different releases of the same
Linux distro often contain incompatible versions of many applications!

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 11

cde-package/
 cde-root/
 usr/
 lib/

/usr/lib/logutils.so

logutils.so

cde <command>

open()

copy

cde-package/
 cde-root/
 usr/
 lib/

/usr/lib/logutils.so

logutils.so

cde-exec <command>

redirect open()

Bob's computer

Alice's computer

filesystem

filesystem

1.

3.

2.

Figure 3: Example use of CDE: 1.) Alice runs her com-
mand with cde to create a package, 2.) Alice sends her
package to Bob’s computer, 3.) Bob runs command with
cde-exec, which redirects file accesses into package.

2 CDE system overview

We described the details of CDE’s design and implemen-
tation in a prior paper and its accompanying technical
report [20]. We will now summarize the core features of
CDE using an example.

Suppose that Alice is a system administrator who is
developing a Python script to detect anomalies in net-
work log files. She normally runs her script using this
Linux command:

python detect_anomalies.py net.log

Suppose that Alice’s script (detect anomalies.py)
imports some 3rd-party Python extension modules,
which consist of optimized C++ log parsing code com-
piled into shared libraries. If Alice wants her colleague
Bob to be able to run her analysis, then it is not sufficient
to just send her script and net.log data file to him.

Even if Bob has a compatible version of Python on his
Linux machine, he will not be able to run her script until
he compiles, installs, and configures the exact extension
modules that her script used (and all of their transitive
dependencies). Since Bob is probably using a different
Linux distribution (distro) than Alice, even if Alice pre-
cisely recalled all of the steps involved in installing all of
the original dependencies on her machine, those instruc-
tions probably will not work on Bob’s machine.

kernel

cde

program

open()

open file

copy file into package

Figure 4: Timeline of control flow between target pro-
gram, kernel, and cde process during an open syscall.

2.1 Creating a new CDE package
To create a self-contained package with all of the depen-
dencies required to run her anomaly detection script on
another Linux machine, Alice simply prepends her com-
mand with the cde executable:

cde python detect_anomalies.py net.log

cde runs her command normally and uses the Linux
ptrace system call to monitor all of the files it ac-
cesses throughout execution. cde creates a new sub-
directory called cde-package/cde-root/ and copies
all of those accessed files into there, mirroring the orig-
inal directory structure. Figure 4 shows an overview of
the control flow between the target program, Linux ker-
nel, and cde during a file-related system call.

For example, if Alice’s script dynamically
loads an extension module as a shared library
named /usr/lib/logutils.so (i.e., log pars-
ing utility code), then cde will copy it to
cde-package/cde-root/usr/lib/logutils.so

(see Figure 3). cde also saves the values of environment
variables in a text file within cde-package/.

When execution terminates, the cde-package/ sub-
directory (which we call a “CDE package”) contains all
of the files required to run Alice’s original command.

2.2 Executing a CDE package
Alice zips up the cde-package/ directory and transfers
it to Bob’s Linux machine. Now Bob can run Alice’s
anomaly detection script without first installing anything
on his machine. To do so, he unzips the package, changes
into the sub-directory containing the script, and prepends
her original command with the cde-exec executable
(also included in the package):

cde-exec python detect_anomalies.py net.log

cde-exec sets up the environment variables saved
from Alice’s machine and executes the versions of
python and its extension modules that are located within
the package. cde-exec uses ptrace to monitor all

12 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

kernel

cde-exec

program

open()

open file
from package

rewrite open() argument

Figure 5: Timeline of control flow between target pro-
gram, kernel, and cde-exec during an open syscall.

system calls that access files and dynamically rewrites
their path arguments to the corresponding paths within
the cde-package/cde-root/ sub-directory. Figure 5
shows the control flow between the target program, ker-
nel, and cde-exec during a file-related system call.

For example, when her script requests to load the
/usr/lib/logutils.so library using an open sys-
tem call, cde-exec rewrites the path argument of
the open call to cde-package/cde-root/usr/lib/

logutils.so (see Figure 3). This run-time path redi-
rection is essential, because /usr/lib/logutils.so

probably does not exist on Bob’s machine.

2.3 CDE package portability

Alice’s CDE package can execute on any Linux ma-
chine with an architecture and kernel version that are
compatible with its constituent binaries. CDE currently
works on 32-bit and 64-bit variants of the x86 archi-
tecture (i386 and x86-64, respectively). In general, a
32-bit cde-exec can execute 32-bit packaged applica-
tions on 32- and 64-bit machines. A 64-bit cde-exec
can execute both 32-bit and 64-bit packaged applications
on a 64-bit machine. Extending CDE to other architec-
tures (e.g., ARM) is straightforward because the strace
tool that CDE is built upon already works on many archi-
tectures. However, CDE packages cannot be transported
across architectures without using a CPU emulator.

Our portability experiments (§7.1) show that pack-
ages are portable across Linux distros released within 5
years of the distro where the package originated. Besides
sharing with colleagues like Bob, Alice can also deploy
her package to run on a cluster for more computational
power or to a public-facing server machine for real-time
online monitoring. Since she does not need to install any-
thing as root, she does not risk perturbing existing soft-
ware on those machines. Also, having her script and all
of its dependencies (including the Python interpreter and
extension modules) encapsulated within a CDE package
makes it somewhat “future-proof” and likely to continue
working on her machine even when its version of Python
and associated extensions are upgraded in the future.

cde-root usr bin java

Figure 6: The result of copying a file named
/usr/bin/java into the cde-root/ directory.

3 Semi-automated package completion

CDE’s primary limitation is that it can only package up
files accessed on executed program paths. Thus, pro-
grams run from within a CDE package will fail when exe-
cuting paths that access new files (e.g., libraries, configu-
ration files) that the original execution(s) did not access.

Unfortunately, no automatic tool (static or dynamic)
can find and package up all the files required to suc-
cessfully execute all possible program paths, since that
problem is undecidable in general. Similarly, it is also
impossible to automatically quantify how “complete” a
CDE package is or determine what files are missing,
since every file-related system call instruction could be
invoked with complex or non-deterministic arguments.
For example, the Python interpreter executable has only
one dlopen call site for dynamically loading extension
modules, but that dlopen could be called many times
with different dynamically-generated string arguments
derived from script variables or configuration files.

There are two ways to cope with this package incom-
pleteness problem. First, if the user executes additional
program paths, then CDE will add new files into the same
cde-package/ directory. However, making repeated
executions can get tedious, and it is unclear how many
or which paths are necessary to complete the package2.

Another way to make CDE packages more com-
plete is by manually copying additional files and sub-
directories into cde-package/cde-root/. For exam-
ple, while executing a Python script, CDE might au-
tomatically copy the few Python standard library files
it accesses into, say, cde-package/cde-root/usr/
lib/python/. To complete the package, the user
could copy the entire /usr/lib/python/ directory
into cde-package/cde-root/ so that all Python li-
braries are present. A user can usually make his/her
package complete by copying only a few crucial direc-
tories into the package, since programs store all of their
files in several top-level directories (see Section 3.3).

However, programs also depend on shared libraries
that reside in system-wide directories like /lib and
/usr/lib. Copying all the contents of those directo-
ries into a package results in lots of wasted disk space.
In Section 3.2, we present an automatic heuristic tech-
nique that finds nearly all shared libraries that a program
requires and copies them into the package.

2similar to trying to achieve 100% coverage during software testing

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 13

cde-root

usr

etc

bin

lib

alternatives

java

jvm

java

java

jre-1.6.0-openjdk

java-1.6.0-openjdk-1.6.0.0

jre bin

Figure 7: The result of using OKAPI to deep-copy a single /usr/bin/java file into cde-root/, preserving the
exact symlink structure from the original directory tree. Boxes are directories (solid arrows point to their contents),
diamonds are symlinks (dashed arrows point to their targets), and the bold ellipse is the actual java executable file.

3.1 The OKAPI utility for deep file copying

Before describing our heuristics for completing CDE
packages, we first introduce a utility library we built
called OKAPI (pronounced “oh-copy”), which performs
detailed copying of files, directories, and symlinks.
OKAPI does one seemingly-simple task that turns out to
be tricky in practice: copying a filesystem entity (i.e.,
a file, directory, or symlink) from one directory to an-
other while fully preserving its original sub-directory and
symlink structure (a process that we call deep-copying).
CDE uses OKAPI to copy files into the cde-root/ sub-
directory when creating a new package, and the support
scripts of Sections 3.2 and 3.3 also use OKAPI.

For example, suppose that CDE needs to copy the
/usr/bin/java executable file into cde-root/ when
it is packaging a Java application. The straightforward
way to do this is to use the standard mkdir and cp utili-
ties. Figure 6 shows the resulting sub-directory structure
within cde-root/, with the boxes representing direc-
tories and the bold ellipse representing the copy of the
java executable file located at cde-root/usr/bin/
java. However, it turns out that if CDE were to use
this straightforward copying method, the Java applica-
tion would fail to run from within the CDE package! This
failure occurs because the java executable introspects
its own path and uses it as the search path for finding
the Java standard libraries. On our Fedora Core 9 ma-
chine, the Java standard libraries are actually installed
in /usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0,
so when java reads its own path as /usr/bin/java, it
cannot possibly use that path to find its standard libraries.

In order for Java applications to properly run from
within CDE packages, all of their constituent files must
be “deep-copied” into the package while replicating
their original sub-directory and symlink structures. Fig-
ure 7 illustrates the complexity of deep-copying a single
file, /usr/bin/java, into cde-root/. The diamond-
shaped nodes represent symlinks, and the dashed arrows
point to their targets. Notice how /usr/bin/java is a

symlink to /etc/alternatives/java, which is itself
a symlink to /usr/lib/jvm/jre-1.6.0-openjdk/

bin/java. Another complicating factor is that /usr/
lib/jvm/jre-1.6.0-openjdk is itself a symlink
to the /usr/lib/jvm/java-1.6.0-openjdk-1.6.

0.0/jre/ directory, so the actual java executable
resides in /usr/lib/jvm/java-1.6.0-openjdk-1.

6.0.0/jre/bin/. Java can only find its standard li-
braries when these paths are all faithfully replicated
within the CDE package.

The OKAPI utility library automatically performs the
deep-copying required to generate the filesystem struc-
ture of Figure 7. Its interface is as simple as ordinary cp:
The caller simply requests for a path to be copied into a
target directory, and OKAPI faithfully replicates the sub-
directory and symlink structure.

OKAPI performs one additional task: rewriting the
contents of symlinks to transform absolute path targets
into relative path targets within the destination directory
(e.g., cde-root/). In our example, /usr/bin/java
is a symlink to /etc/alternatives/java. However,
OKAPI cannot simply create the cde-root/usr/bin/

java symlink to also point to /etc/alternatives/

java, since that target path is outside of cde-root/.
Instead, OKAPI must rewrite the symlink target so that
it actually refers to ../../etc/alternatives/java,
which is a relative path that points to cde-root/etc/

alternatives/java.
The details of this particular example are not impor-

tant, but the high-level message that Figure 7 conveys
is that deep-copying even a single file can lead to the
creation of over a dozen sub-directories and (possibly-
rewritten) symlinks. The problem that OKAPI solves is
not Java-specific; we have observed that many real-world
Linux applications fail to run from within CDE packages
unless their files are deep-copied in this detailed way.

OKAPI is also available as a free standalone command-
line tool [1]. To our knowledge, no other Linux file copy-
ing tool (e.g., cp, rsync) can perform the deep-copying
and symlink rewriting that OKAPI does.

14 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

3.2 Heuristics for copying shared libraries

When Linux starts executing a dynamically-linked ex-
ecutable, the dynamic linker (e.g., ld-linux*.so*)
finds and loads all shared libraries that are listed in a spe-
cial .dynamic section within the executable file. Run-
ning the ldd command on the executable shows these
start-up library dependencies. When CDE is executing a
target program to create a package, CDE finds all of these
dependencies as well because they are loaded at start-up
time via open system calls.

However, programs sometimes load shared libraries in
the middle of execution using, say, the dlopen function.
This run-time loading occurs mostly in GUI programs
with a plug-in or extension architecture. For example,
when the user instructs Firefox to visit a web page with
a Flash animation, Firefox will use dlopen to load the
Adobe Flash Player shared library. ldd will not find that
dependency since it is not hard-coded in the .dynamic

section of the Firefox executable, and CDE will only
find that dependency if the user actually visits a Flash-
enabled web page while creating a package for Firefox.

We have created a simple heuristic-based script that
finds most or all shared libraries that a program requires3.
The user first creates a base CDE package by executing
the target program once (or a few times) and then runs
our script, which works as follows:

1. Find all ELF binaries (executables and shared li-
braries) within the package using the Linux find

and file utilities.

2. For each binary, find all constant strings using the
strings utility, and look for strings containing
“.so” since those are likely to be shared libraries.

3. Call the locate utility on each candidate shared li-
brary string, which returns the full absolute paths of
all installed shared libraries that match each string.

4. Use OKAPI to copy each library into the package.

5. Repeat this process until no new libraries are found.

This heuristic technique works well in practice be-
cause programs often list all of their dependent shared
libraries in string constants within their binaries. The
main exception occurs in dynamic languages like Python
or MATLAB, whose programs often dynamically gener-
ate shared library paths based on the contents of scripts
and configuration files.

Another limitation of this technique is that it is overly
conservative and can create larger-than-needed pack-
ages, since the locate utility can find more libraries
than the target program actually needs.

3always a superset of the shared libraries that ldd finds

3.3 OKAPI-based directory copying script
In general, running an application once under CDE mon-
itoring only packages up a subset of all required files. In
our experience, the easiest way to make CDE packages
complete is to copy entire sub-directories into the pack-
age. To facilitate this process, we created a script that
repeatedly calls OKAPI to copy an entire directory at a
time into cde-root/, automatically following symlinks
to other directories and recursively copying as needed.

Although this approach might seem primitive, it is ef-
fective in practice because applications often store all of
their files in a few top-level directories. When a user
inspects the directory structure within cde-root/, it
is usually obvious where the application’s files reside.
Thus, the user can run our OKAPI-based script to copy
the entirety of those directories into the package.

Evaluation: To demonstrate the efficacy of this ap-
proach, we have created complete self-contained CDE
packages for six of the largest and most popular Linux
applications. For each app, we made an initial packag-
ing run with cde, inspected the package contents, and
copied at most three directories into the package. The
entire packaging process took several minutes of human
effort per application. Here are our full results:

• AbiWord is a free alternative to Microsoft Word.
After an initial packaging run, we saw that some
plug-ins were included in the cde-root/usr/

lib/abiword-2.8/plugins and cde-root/

usr/lib/goffice/0.8.1/plugins directories.
Thus, we copied the entirety of those two original
directories into cde-root/ to complete its pack-
age, thereby including all AbiWord plug-ins.

• Eclipse is a sophisticated IDE and software de-
velopment platform. We completed its package
by copying the /usr/lib/eclipse and /usr/

share/eclipse directories into cde-root/.

• Firefox is a popular web browser. We completed its
package by copying /usr/lib/firefox-3.6.18
and /usr/lib/firefox-addons into
cde-root/ (plus another directory for the
third-party Adobe Flash player plug-in).

• GIMP is a sophisticated graphics editing tool.
We completed its package by copying /usr/lib/

gimp/2.0 and /usr/share/gimp/2.0.

• Google Earth is an interactive 3D mapping ap-
plication. We completed its package by copying
/opt/google/earth into cde-root/.

• OpenOffice.org is a free alternative to the Mi-
crosoft Office productivity suite. We completed its
package by copying the /usr/lib/openoffice

directory into cde-root/.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 15

Alice's CDE package

/

home

var

bob
cde-package cde-root usr

lib

lib

bin

libc.so.6

libpython2.6.so

logutils.so

python

log httpd access_log

error_log

Figure 8: Example filesystem layout on Bob’s machine after he receives a CDE package from Alice (boxes are direc-
tories, ellipses are files). CDE’s seamless execution mode enables Bob to run Alice’s packaged script on the log files
in /var/log/httpd/ without first moving those files inside of cde-root/.

4 Seamless execution mode

When executing a program from within a package,
cde-exec redirects all file accesses into the package
by default, thereby creating a chroot-like sandbox with
cde-package/cde-root/ as the pseudo-root direc-
tory (see Figure 3, Step 3). However, unlike chroot, CDE
does not require root access to run, and its sandbox poli-
cies are flexible and user-customizable [20].

This default chroot-like execution mode is fine for run-
ning self-contained GUI applications like games or web
browsers, but it is a somewhat awkward way to run most
types of UNIX-style command-line programs that sys-
tem administrators, developers, and hackers often prefer.
If users are running, say, a compiler or command-line im-
age processing utility from within a CDE package, they
would need to first move their input data files into the
package, run the target program using cde-exec, and
then move the resulting output data files back out of the
package, which is a cumbersome process.

In our Alice-and-Bob example from Section 2 (see
Figure 3), if Bob wants to run Alice’s anomaly detec-
tion script on his own log data (e.g., bob.log), he
needs to first move his data file inside of cde-package/
cde-root/, change into the appropriate sub-directory
deep within the package, and then run:

cde-exec python detect_anomalies.py bob.log

In contrast, if Bob had actually installed the proper
version of Python and its required extension modules on
his machine, then he could run Alice’s script from any-
where on his filesystem with no restrictions. Some CDE
users wanted CDE-packaged programs to behave just like
regularly-installed programs rather than requiring input

files to be moved inside of a cde-package/cde-root/
sandbox, so we implemented a new seamless execution
mode that largely achieves this goal.

Seamless execution mode works using a simple
heuristic: If cde-exec is being invoked from a di-
rectory not in the CDE package (i.e., from somewhere
else on the user’s filesystem), then only redirect a path
into cde-package/cde-root/ if the file that the path
refers to actually exists within the package. Otherwise
simply leave the path unmodified so that the program can
access the file normally. No user intervention is needed
in the common case.

The intuition behind why this heuristic works is
that when programs request to load libraries and other
mandatory components, those files must exist within the
package, so their paths are redirected. On the other hand,
when programs request to load an input file passed via,
say, a command-line argument, that file does not exist
within the package, so the original path is used to retrieve
it from the native filesystem.

In the example shown in Figure 8, if Bob ran Alice’s
script to analyze an arbitrary log file on his machine (e.g.,
his web server log, /var/log/httpd/access log),
then cde-exec will redirect Python’s request for its own
libraries (e.g., /lib/libpython2.6.so and /usr/

lib/logutils.so) inside of cde-root/ since those
files exist within the package, but cde-exec will not
redirect /var/log/httpd/access log and instead
load the real file from its original location.

Seamless execution mode fails when the user
wants the packaged program to access a file from
the native filesystem, but an identically-named
file actually exists within the package. In the
above example, if cde-package/cde-root/var/

16 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

sshfs mount of a remote Linux distro's root FS

Local cache (mirrors remote FS)

/ home alice

cde-remote-root

cde-root

bin

usr

bin

usr

eclipse

lib

share

eclipse

lib

share

eclipse-3.6

eclipse-3.6

...

...

eclipse-3.6

eclipse-3.6

...

...

Figure 9: An example use of CDE’s streaming mode to run Eclipse 3.6 on any Linux machine without installation.
cde-exec fetches all dependencies on-demand from a remote Linux distro and stores them in a local cache.

log/httpd/access_log existed, then that file
would be processed by the Python script instead of
/var/log/httpd/access log. There is no auto-
mated way to resolve such name conflicts, but cde-exec
provides a “verbose mode” where it prints out a log
of what paths were redirected within the package.
The user can inspect that log and then manually write
redirection/ignore rules in a configuration file to control
which paths cde-exec redirects into cde-root/. For
instance, the user could tell cde-exec to not redirect
any paths starting with /var/log/httpd/*.

Using seamless execution mode, our users have been
able to run software such as programming language in-
terpreters and compilers, scientific research tools, and
sysadmin scripts from CDE packages and have them be-
have just like regularly-installed programs.

5 On-demand application streaming

We now introduce a new application streaming mode
where CDE users can instantly run any Linux application
on-demand without having to create, transfer, or install
any packages. Figure 2 shows a high-level architectural
overview. The basic idea is that a system administra-
tor first installs multiple versions of many popular Linux
distros in a “distro farm” in the cloud (or an internal com-
pute cluster). When a user wants to run some application
that is available on a particular distro, they use sshfs (an
ssh-based network filesystem [9]) to mount the root di-
rectory of that distro into a special cde-remote-root/
mountpoint on their Linux machine. Then the user can
use CDE’s streaming mode to run any application from
that distro locally on their own machine.

5.1 Implementation and example

Figure 9 shows an example of streaming mode. Let’s say
that Alice wants to run the Eclipse 3.6 IDE on her Linux
machine, but the particular distro she is using makes it
difficult to obtain all the dependencies required to install
Eclipse 3.6. Rather than suffering through dependency
hell, Alice can simply connect to a distro in the farm that
contains Eclipse 3.6 and then use CDE’s streaming mode
to “harvest” the required dependencies on-demand.

Alice first mounts the root directory of the re-
mote distro at cde-remote-root/. Then she
runs “cde-exec -s eclipse” (-s activates
streaming mode). cde-exec finds and executes
cde-remote-root/bin/eclipse. When that exe-
cutable requests shared libraries, plug-ins, or any other
files, cde-exec will redirect the respective paths into
cde-remote-root/, thereby executing the version of
Eclipse 3.6 that resides in the cloud distro. However,
note that the application is running locally on Alice’s
machine, not in the cloud.

An astute reader will immediately realize that running
applications in this manner can be slow, since files are be-
ing accessed from a remote server. While sshfs performs
some caching, we have found that it does not work well
enough in practice. Thus, we have implemented our own
caching layer within CDE: When a remote file is accessed
from cde-remote-root/, cde-exec uses OKAPI to
make a deep-copy into a local cde-root/ directory and
then redirects that file’s path into cde-root/. In stream-
ing mode, cde-root/ initially starts out empty and then
fills up with a subset of files from cde-remote-root/

that the target program has accessed.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 17

To avoid unnecessary filesystem accesses, CDE’s
cache also keeps a list of file paths that the target program
tried to access from the remote server, even keeping paths
for non-existent files. On subsequent runs, when the pro-
gram tries to access one of those paths, cde-exec will
redirect the path into the local cde-root/ cache. It is
vital to track non-existent files since programs often try
to access non-existent files at start-up while doing, say, a
search for shared libraries by probing a list of directories
in a search path. If CDE did not track non-existent files,
then the program would still access the directory entries
on the remote server before discovering that those files
still do not exist, thus slowing down performance.

With this cache in place, the first time an application is
run, all of its dependencies must be downloaded, which
could take several seconds to minutes. This one-time de-
lay is unavoidable. However, subsequent runs simply use
the files already in the local cache, so they execute at
regular cde-exec speeds. An added bonus is that even
running a different application for the first time might
still result in some cache hits for, say, generic libraries
like libc, so the entire application does not need to be
downloaded.

Finally, the package incompleteness problem faced by
regular CDE (see Section 3) no longer exists in streaming
mode. When the target application needs to access new
files that do not yet exist in the local cache (e.g., Alice
loads a new Eclipse plug-in), those files are transparently
fetched from the remote server and cached.

5.2 Synergy with package managers

Nearly all Linux users are currently running one partic-
ular distro with one default package manager that they
use to install software. For instance, Ubuntu users must
use APT, Fedora users must use YUM, SUSE users must
use Zypper, Gentoo users must use Portage, etc. More-
over, different releases of the same distro contain differ-
ent software package versions, since distro maintainers
add, upgrade, and delete packages in each new release4.

As long as a piece of software and all of its depen-
dencies are present within the package manager of the
exact distro release that a user happens to be using, then
installation is trivial. However, as soon as even one de-
pendency cannot be found within the package manager,
then users must revert to the arduous task of compiling
from source (or configuring a custom package manager).

CDE’s streaming mode frees Linux users from this
single-distro restriction and allows them to run software

4We once tried installing a machine learning application that de-
pended on the libcv computer vision library. The required libcv
version was found in the APT repository on Ubuntu 10.04, but it
was not found in the repositories on the two immediately neighboring
Ubuntu releases: 9.10 and 10.10.

that is available within the package manager of any distro
in the cloud distro farm. The system administrator is re-
sponsible for setting up the farm and provisioning access
rights (e.g., ssh keys) to users. Then users can directly in-
stall packages in any cloud distro and stream the desired
applications to run locally on their own machines.

Philosophically, CDE’s streaming mode maximizes
user freedom since users are now free to run any appli-
cation in any package manager from the comfort of their
own machines, regardless of which distro they choose
to use. CDE complements traditional package managers
by leveraging all of the work that the maintainers of
each distro have already done and opening up access to
users of all other distros. This synergy can potentially
eliminate quasi-religious squabbles and flame-wars over
the virtues of competing distros or package management
systems. Such fighting is unnecessary since CDE allows
users to freely choose from amongst all of them.

6 Real-world use cases

Since we released the first version of CDE on Novem-
ber 9, 2010, it has been downloaded at least 3,000 times
as of September 2011 [1]. We cannot track how many
people have directly checked out its source code from
GitHub, though. We have exchanged hundreds of emails
with CDE users and discovered six salient real-world use
cases as a result of these discussions. Table 1 shows that
we used 16 CDE packages, mostly sent in by our users,
as benchmarks in the experiments reported in Section 7.
They contain software written in diverse programming
languages and frameworks. We now summarize the use
case categories and benchmarks (highlighted in bold).

Distributing research software: The creators of two
research tools found CDE online and used it to create
portable packages that they uploaded to their websites:

The website for graph-tool, a Python/C++ module
for analyzing graphs, lists these (direct) dependencies:
“GCC 4.2 or above, Boost libraries, Python 2.5 or above,
expat library, NumPy and SciPy Python modules, GCAL
C++ geometry library, and Graphviz with Python bind-
ings enabled.” [11] Unsurprisingly, lots of people had
trouble compiling it: 47% of all messages on its mailing
list (137 out of 289) were questions related to compila-
tion problems. The author of graph-tool used CDE
to automatically create a portable package (containing
149 shared libraries and 1909 total files) and uploaded
it to his website so that users no longer needed to suffer
through the pain of manually compiling it.
arachni, a Ruby-based tool that audits web appli-

cation security [10], requires six hard-to-compile Ruby
extension modules, some of which depend on versions
of Ruby and libraries that are not available in the pack-

18 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Package name Description Dependencies Creator

Distributing research software

arachni Web app. security scanner framework [10] Ruby (+ extensions) security researcher
graph-tool Lib. for manipulation & analysis of graphs [11] Python, C++, Boost math researcher
pads Language for processing ad-hoc data [19] Perl, ML, Lex, Yacc self
saturn Static program analysis framework [13] Perl, ML, Berkeley DB self

Running production software on incompatible distros

meld Interactive visual diff and merge tool for text Python, GTK+ software engineer
bio-menace Classic video game within a MS-DOS emulator DOSBox, SDL game enthusiast
google-earth 3D interactive map application by Google shell scripts, OpenGL self

Creating reproducible computational experiments

kpiece Robot motion planning algorithm [26] C++, OpenGL robotics researcher
gadm Genetic algorithm for social networks [21] C++, make, R self

Deploying computations to cluster or cloud

ztopo Batch processing of topological map images C++, Qt graduate student
klee Automatic bug finder & test case generator [16] C++, LLVM, µClibc self

Submitting executable bug reports

coq-bug-2443 Incorrect output by Coq proof assistant [2] ML, Coq bug reporter
gcc-bug-46651 Causes GCC compiler to segfault [3] gcc bug reporter
llvm-bug-8679 Runs LLVM compiler out of memory [5] C++, LLVM bug reporter

Collaborating on class programming projects

email-search Natural language semantic email search Python, NLTK, Octave college student
vr-osg 3D virtual reality modeling of home appliances C++, OpenSceneGraph college student

Table 1: CDE packages used as benchmarks in our experiments, grouped by use cases. ‘self’ in the ‘Creator’ column
means package was created by the author; all other packages created by CDE users (mostly people we have never met).

age managers of most modern Linux distributions. Its
creator, a security researcher, created and uploaded CDE
packages and then sent us a grateful email describing
how much effort CDE saved him: “My guess is that it
would take me half the time of the development process
to create a self-contained package by hand; which would
be an unacceptable and truly scary scenario.”

In addition, we used CDE to create portable binary
packages for two of our Stanford colleagues’ research
tools, which were originally distributed as tarballs of
source code: pads [19] and saturn [13]. 44% of
the messages on the pads mailing list (38 / 87) were
questions related to troubles with compiling it (22% for
saturn). Once we successfully compiled these projects
(after a few hours of improvising our own hacks since the
instructions were outdated), we created CDE packages by
running their regression test suites, so that others do not
need to suffer through the compilation process.

Even the saturn team leader admitted in a public
email, “As it stands the current release likely has prob-
lems running on newer systems because of bit rot — some

libraries and interfaces have evolved over the past cou-
ple of years in ways incompatible with the release.” [7]
In contrast, our CDE packages are largely immune to “bit
rot” (until the user-kernel ABI changes) because they
contain all required dependencies.

Running software on incompatible distros: Even
production-quality software might be hard to install on
Linux distros with older kernel or library versions, espe-
cially when system upgrades are infeasible. For exam-
ple, an engineer at Cisco wanted to run some new open-
source tools on his work machines, but the IT department
mandated that those machines run an older, more secure
enterprise Linux distro. He could not install the tools
on those machines because that older distro did not have
up-to-date libraries, and he was not allowed to upgrade.
Therefore, he installed a modern distro at home, ran CDE
on there to create packages for the tools he wanted to
port, and then ran the tools from within the packages
on his work machines. He sent us one of the packages,
which we used as a benchmark: the meld visual diff tool.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 19

Hobbyists applied CDE in a similar way: A game en-
thusiast could only run a classic game (bio-menace)
within a DOS emulator on one of his Linux machines,
so he used CDE to create a package and can now play the
game on his other machines. We also helped a user create
a portable package for the Google Earth 3D map applica-
tion (google-earth), so he can now run it on older dis-
tros whose libraries are incompatible with Google Earth.

Reproducible computational experiments: A funda-
mental tenet of science is that colleagues should be able
to reproduce the results of one’s experiments. In the past
few years, science journals and CS conferences (e.g.,
SIGMOD, FSE) have encouraged authors of published
papers to put their code and datasets online, so that oth-
ers can independently re-run, verify, and build upon their
experiments. However, it can be hard for people to set up
all of the (often-undocumented) dependencies required
to re-run experiments. In fact, it can even be difficult
to re-run one’s own experiments in the future, due to in-
evitable OS and library upgrades. To ensure that he could
later re-run and adjust experiments in response to re-
viewer critiques for a paper submission [16], our group-
mate Cristian took the hard drive out of his computer at
paper submission time and archived it in his drawer!

In our experience, the results of many computational
science experiments can be reproduced within CDE pack-
ages since the programs are output-deterministic [15], al-
ways producing the same outputs (e.g., statistics, graphs)
for a given input. A robotics researcher used CDE to
make the experiments for his motion planning paper
(kpiece) [26] fully-reproducible. Similarly, we helped a
social networking researcher create a reproducible pack-
age for his genetic algorithm paper (gadm) [21].

Deploying computations to cluster or cloud: People
working on computational experiments on their desktop
machines often want to run them on a cluster for greater
performance and parallelism. However, before they can
deploy their computations to a cluster or cloud comput-
ing (e.g., Amazon EC2), they must first install all of the
required executables and dependent libraries on the clus-
ter machines. At best, this process is tedious and time-
consuming; at worst, it can be impossible, since regular
users often do not have root access on cluster machines.

A user can create a self-contained package using CDE
on their desktop machine and then execute that package
on the cluster or cloud (possibly many instances in par-
allel), without needing to install any dependencies or to
get root access on the remote machines. For instance, our
colleague Peter wanted to use a department-administered
100-CPU cluster to run a parallel image processing job
on topological maps (ztopo). However, since he did not
have root access on those older machines, it was nearly
impossible for him to install all of the dependencies re-

quired to run his computation, especially the image pro-
cessing libraries. Peter used CDE to create a package by
running his job on a small dataset on his desktop, trans-
ferred the package and the complete dataset to the cluster,
and then ran 100 instances of it in parallel there.

Similarly, we worked with lab-mates to use CDE to de-
ploy the CPU-intensive klee [16] bug finding tool from
the desktop to Amazon’s EC2 cloud computing service
without needing to compile Klee on the cloud machines.
Klee can be hard to compile since it depends on LLVM,
which is very picky about specific versions of GCC and
other build tools being present before it will compile.

Submitting executable bug reports: Bug reporting is
a tedious manual process: Users submit reports by writ-
ing down the steps for reproduction, exact versions of
executables and dependent libraries, (e.g., “I’m running
Java version 1.6.0 13, Eclipse SDK Version 3.6.1, . . . ”),
and maybe attaching an input file that triggers the bug.
Developers often have trouble reproducing bugs based
on these hand-written descriptions and end up closing re-
ports as “not reproducible.”

CDE offers an easier and more reliable solution: The
bug reporter can simply run the command that triggers
the bug under CDE supervision to create a CDE package,
send that package to the developer, and the developer can
re-run that same command on their machine to reproduce
the bug. The developer can also modify the input file and
command-line parameters and then re-execute, in order
to investigate the bug’s root cause.

To show that this technique works, we asked peo-
ple who recently reported bugs to popular open-source
projects to use CDE to create executable bug reports.
Three volunteers sent us CDE packages, and we were
able to reproduce all of their bugs: one that causes
the Coq proof assistant to produce incorrect output
(coq-bug-2443) [2], one that segfaults the GCC com-
piler (gcc-bug-46651) [3], and one that makes the
LLVM compiler allocate an enormous amount of mem-
ory and crash (llvm-bug-8679) [5].

Since CDE is not a record-replay tool, it is not guar-
anteed to reproduce non-deterministic bugs. However, at
least it allows the developer to run the exact versions of
the faulting executables and dependent libraries.

Collaborating on class programming projects: Two
users sent us CDE packages they created for collaborat-
ing on class assignments. Rahul, a Stanford grad student,
was using NLTK [22], a Python module for natural lan-
guage processing, to build a semantic email search en-
gine (email-search) for a machine learning class. De-
spite much struggle, Rahul’s two teammates were unable
to install NLTK on their Linux machines due to conflict-
ing library versions and dependency hell. This meant
that they could only run one instance of the project at a

20 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

time on Rahul’s laptop for query testing and debugging.
When Rahul discovered CDE, he created a package for
their project and was able to run it on his two teammates’
machines, so that all three of them could test and debug
in parallel. Joshua, an undergrad from Mexico, emailed
us a similar story about how he used CDE to collaborate
on and demo his virtual reality class project (vr-osg).

7 Evaluation

7.1 Evaluating CDE package portability
To show that CDE packages can successfully execute on
a wide range of Linux distros and kernel versions, we
tested our benchmark packages on popular distros from
the past 5 years. We installed fresh copies of these dis-
tros (listed with the versions and release dates of their
kernels) on a 3GHz Intel Xeon x86-64 machine:

• Sep 2006 — CentOS 5.5 (Linux 2.6.18)

• Oct 2007 — Fedora Core 8 (Linux 2.6.23)

• Oct 2008 — openSUSE 11.1 (Linux 2.6.27)

• Sep 2009 — Ubuntu 9.10 (Linux 2.6.31)

• Feb 2010 — Mandriva Free Spring (Linux 2.6.33)

• Aug 2010 — Linux Mint 10 (Linux 2.6.35)

We installed 32-bit and 64-bit versions of each distro
and executed our 32-bit benchmark packages (those cre-
ated on 32-bit distros) on the 32-bit versions, and our
64-bit packages on the 64-bit versions. Although all of
these distros reside on one physical machine, none of our
benchmark packages were created on that machine: CDE
users created most of the packages, and we made sure to
create our own packages on other machines.

Results: Out of the 96 unique configurations we tested
(16 CDE packages each run on 6 distros), all executions
succeeded except for one5. By “succeeded”, we mean
that the programs ran correctly, as far as we could ob-
serve: Batch programs generated identical outputs across
distros; regression tests passed; we could interact nor-
mally with the GUI programs; and we could reproduce
the symptoms of the executable bug reports.

In addition, we were able to successfully execute all
of our 32-bit packages on the 64-bit versions of CentOS,
Mandriva, and openSUSE (the other 64-bit distros did
not support executing 32-bit binaries).

In sum, we were able to use CDE to successfully exe-
cute a diverse set of programs (Table 1) “out-of-the-box”
on a variety of Linux distributions from the past 5 years,
without performing any installation or configuration.

5vr-osg failed on Fedora Core 8 with a known error related to
graphics drivers.

7.2 Comparing against a one-click installer
To show that the level of portability that CDE enables
is substantive, we compare CDE against a representative
one-click installer for a commercial application. We in-
stalled and ran Google Earth (Version 5.2.1, Sep 2010)
on our 6 test distros using the official 32-bit installer from
Google. Here is what happened on each distro:

• CentOS (Linux 2.6.18) — installs fine but Google
Earth crashes upon start-up with variants of this
error message repeated several times, because the
GNU Standard C++ Library on this OS is too old:

/usr/lib/libstdc++.so.6:
version ‘GLIBCXX_3.4.9’ not found
(required by ./libgoogleearth_free.so)

• Fedora (Linux 2.6.23) — same error as CentOS

• openSUSE (Linux 2.6.27) — installs and runs fine

• Ubuntu (Linux 2.6.31) — installs and runs fine

• Mandriva (Linux 2.6.33) — installs fine but Google
Earth crashes upon start-up with this error message
because a required graphics library is missing:

error while loading shared libraries:
libGL.so.1: cannot open shared object
file: No such file or directory

• Linux Mint (Linux 2.6.35) — installer program
crashes with this cryptic error message because the
XML processing library on this OS is too new and
thus incompatible with the installer:

setup.data/setup.xml:1: parser error :
Document is empty

setup.data/setup.xml:1: parser error :
Start tag expected, ’<’ not found

Couldn’t load ’setup.data/setup.xml’

In summary, on 4 out of our 6 test distros, a bi-
nary installer for the fifth major release of Google Earth
(v5.2.1), a popular commercial application developed by
a well-known software company, failed in its sole goal
of allowing the user to run the application, despite adver-
tising that it should work on any Linux 2.6 machine.

If a team of professional Linux developers had this
much trouble getting a widely-used commercial applica-
tion to be portable across distros, then it is unreasonable
to expect researchers or hobbyists to be able to easily
create portable Linux packages for their prototypes.

In contrast, once we were able to install Google
Earth on just one machine (Dell desktop running Ubuntu
8.04), we ran it under CDE supervision to create a self-
contained package, copied the package to all 6 test dis-
tros, and successfully ran Google Earth on all of them
without any installation or configuration.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 21

Native CDE slowdown
Benchmark run time pack exec

400.perlbench 23.7s 3.0% 2.5%
401.bzip2 47.3s 0.2% 0.1%
403.gcc 0.93s 2.7% 2.2%
410.bwaves 185.7s 0.2% 0.3%
416.gamess 129.9s 0.1% 0%
429.mcf 16.2s 2.7% 0%
433.milc 15.1s 2% 0.6%
434.zeusmp 36.3s 0% 0%
435.gromacs 133.9s 0.3% 0.1%
436.cactusADM 26.1s 0% 0%
437.leslie3d 136.0s 0.1% 0%
444.namd 13.9s 3% 0.3%
445.gobmk 97.5s 0.4% 0.2%
447.dealII 28.7s 0.5% 0.2%
450.soplex 5.7s 2.2% 1.8%
453.povray 7.8s 2.2% 1.9%
454.calculix 1.4s 5% 4%
456.hmmer 48.2s 0.2% 0.1%
458.sjeng 121.4s 0% 0.2%
459.GemsFDTD 55.2s 0.2% 1.6%
462.libquantum 1.8s 2% 0.6%
464.h264ref 87.2s 0% 0%
465.tonto 229.9s 0.8% 0.4%
470.lbm 31.9s 0% 0%
471.omnetpp 51.0s 0.7% 0.6%
473.astar 103.7s 0.2% 0%
481.wrf 161.6s 0.2% 0%
482.sphinx3 8.8s 3% 0%
483.xalancbmk 58.0s 1.2% 1.8%

Table 2: Quantifying run-time slowdown of CDE
package creation and execution within a package on the
SPEC CPU2006 benchmarks, using the “train” datasets.

7.3 Evaluating CDE run-time slowdown
The primary drawback of executing a CDE-packaged ap-
plication is the run-time slowdown due to extra user-
kernel context switches. Every time the target applica-
tion issues a system call, the kernel makes two extra con-
text switches to enter and then exit the cde-exec mon-
itoring process, respectively. cde-exec performs some
computations to calculate path redirections, but its run-
time overhead is dominated by context switching6.

We informally evaluated the run-time slowdown of
cde and cde-exec on 34 diverse Linux applications. In
summary, for CPU-bound applications, CDE causes al-
most no slowdown, but for I/O-bound applications, CDE
causes a slowdown of up to ∼30%.

We first ran CDE on the entire SPEC CPU2006
6Disabling path redirection still results in similar overheads.

Native CDE slowdown Syscalls
Command time pack exec per sec

gadm (algorithm) 4187s 0%† 0%† 19
pads (inferencer) 18.6s 3%† 1%† 478
klee 7.9s 31% 2%† 260
gadm (make plots) 7.2s 8% 2%† 544
gadm (C++ comp) 8.5s 17% 5% 1459
saturn 222.7s 18% 18% 6477
google-earth 12.5s 65% 19% 7938
pads (compiler) 1.7s 59% 28% 6969

Table 3: Quantifying run-time slowdown of CDE
package creation and execution within a package. Each
entry reports the mean taken over 5 runs; standard devi-
ations are negligible. Slowdowns marked with † are not
statistically significant at p < 0.01 according to a t-test.

benchmark suite (both integer and floating-point bench-
marks) [8]. We chose this suite because it contains CPU-
bound applications that are representative of the types
of programs that computational scientists and other re-
searchers are likely to run with CDE. For instance, SPEC
CPU2006 contains benchmarks for video compression,
molecular dynamics simulation, image ray-tracing, com-
binatorial optimization, and speech recognition.

We ran these experiments on a Dell machine with a
2.67GHz Intel Xeon CPU running a 64-bit Ubuntu 10.04
distro (Linux 2.6.32). Each trial was run three times, but
the variances in running times were negligible.

Table 2 shows the percentage slowdowns incurred
by using cde to create each package (the ‘pack’ col-
umn) and by using cde-exec to execute each package
(the ‘exec’ column). The ‘exec’ column slowdowns are
shown in bold since they are more important for our
users: A package is only created once but executed mul-
tiple times. In sum, slowdowns ranged from non-existent
to ∼4%, which is unsurprising since the SPEC CPU2006
benchmarks were designed to be CPU-bound and not
make much use of system calls.

To test more realistic I/O-bound applications, we mea-
sured running times for executing the following com-
mands in the five CDE packages that we created (those
labeled with “self” in the “Creator” column of Table 1):

• pads — Compile a PADS [19] specification into C
code (the “pads (compiler)” row in Table 3), and
then infer a specification from a data file (the “pads
(inferencer)” row in Table 3).

• gadm — Reproduce the GADM experiment [21]:
Compile its C++ source code (‘C++ comp’), run ge-
netic algorithm (‘algorithm’), and use the R statis-
tics software to visualize output data (‘make plots’).

22 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

• google-earth — Measure startup time by
launching it and then quitting as soon as the initial
Earth image finishes rendering and stabilizes.

• klee — Use Klee [16] to symbolically execute a
C target program (a STUN server) for 100,000 in-
structions, which generates 21 test cases.

• saturn — Run the regression test suite, which con-
tains 69 tests (each is a static program analysis).

We measured the following on a Dell desktop (2GHz
Intel x86, 32-bit) running Ubuntu 8.04 (Linux 2.6.24):
number of seconds it took to run the original command
(‘Native time’), percent slowdown vs. native when run-
ning a command with cde to create a package (‘pack’),
and percent slowdown when executing the command
from within a CDE package with cde-exec (‘exec’). We
ran each benchmark five times under each condition and
report mean running times. We used an independent two-
group t-test [17] to determine whether each slowdown
was statistically significant (i.e., whether the means of
two sets of runs differed by a non-trivial amount).

Table 3 shows that the more system calls a program
issues per second, the more CDE causes it to slow down
due to the extra context switches. Creating a CDE pack-
age (‘pack’ column) is slower than executing a program
within a package (‘exec’ column) because CDE must cre-
ate new sub-directories and copy files into the package.

CDE execution slowdowns ranged from negligible (not
statistically significant) to ∼30%, depending on system
call frequency. As expected, CPU-bound workloads like
the gadm genetic algorithm and the pads inferencer ma-
chine learning algorithm had almost no slowdown, while
those that were more I/O- and network-intensive (e.g.,
google-earth) had the largest slowdowns.

When using CDE to run GUI applications, we did not
notice any loss in interactivity due to the slowdowns.
When we navigated around the 3D maps within the
google-earthGUI, we felt that the CDE-packaged ver-
sion was just as responsive as the native version. When
we ran GUI programs from CDE packages that users sent
to us (the bio-menace game, meld visual diff tool, and
vr-osg), we also did not perceive any visible lag.

The main caveat of these experiments is that they are
informal and meant to characterize “typical-case” behav-
ior rather than being stress tests of worst-case behavior.
One could imagine developing adversarial I/O intensive
benchmarks that issue tens or hundreds of thousands of
system calls per second, which would lead to greater
slowdowns. We have not run such experiments yet.

Finally, we also ran some informal performance tests
of cde-exec’s seamless execution mode. As expected,
there were no noticeable differences in running times
versus regular cde-exec, since the context-switching
overhead dominates cde-exec computation overhead.

8 Related work

We know of no published system that automatically cre-
ates portable software packages in situ from a live run-
ning machine like CDE does. Existing tools for creating
self-contained applications all require the user to manu-
ally specify dependencies at package creation time. For
example, Mac OS X programmers can create application
bundles using Apple’s developer tools IDE [6]. Research
prototypes like PDS [14], which creates self-contained
Windows apps, and the Collective [23], which aggregates
a set of software into a portable virtual appliance, also
require the user to manually specify dependencies.

VMware ThinApp is a commercial tool that automat-
ically creates self-contained portable Windows applica-
tions. However, a user can only create a package by
having ThinApp monitor the installation of new soft-
ware [12]. Unlike CDE, ThinApp cannot be used to cre-
ate packages from existing software already installed on
a live machine, which is our most common use case.

Package management systems are often used to install
open-source software and their dependencies. Generic
package managers exist for all major operating systems
(e.g., RPM for Linux, MacPorts for Mac OS X, Cygwin
for Windows), and specialized package managers ex-
ist for ecosystems surrounding many programming lan-
guages (e.g., CPAN for Perl, RubyGems for Ruby) [4].

From the package creator’s perspective, it takes time
and expertise to manually bundle up one’s software and
list all dependencies so that it can be integrated into a
specific package management system. A banal but tricky
detail that package creators must worry about is adhering
to platform-specific idioms for pathnames and avoiding
hard-coding non-portable paths into their programs [25].
In contrast, creating a CDE package is as easy as running
the target program, and hard-coded paths are fine since
cde-exec redirects all file accesses into the package.

From the user’s perspective, package managers work
great as long as the exact desired versions of software
exist within the system. However, version mismatches
and conflicts are common frustrations, and installing new
software can lead to a library upgrade that breaks existing
software [18]. The Nix package manager is a research
project that tries to eliminate dependency conflicts via
stricter versioning, but it still requires package creators to
manually specify dependencies at creation time [18]. In
contrast, CDE packages can be run without any installa-
tion, configuration, or risk of breaking existing software.

Virtual machine snapshots achieve CDE’s main goal
of capturing all dependencies required to execute a set of
programs on another machine. However, they require the
user to always be working within a VM from the start of
a project (or else re-install all of their software within a
new VM). Also, VM snapshot disk images are (by defi-

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 23

nition) larger than the corresponding CDE packages since
they must also contain the OS kernel and other extrane-
ous applications. CDE is a more lightweight solution be-
cause it enables users to create and run packages natively
on their own machines rather than through a VM.

9 Discussion and conclusions

Our design philosophy underlying CDE is that people
should be able to package up their Linux software and
deploy it to run on other Linux machines with as little ef-
fort as possible. However, we are not proposing CDE as
a replacement for traditional software installation. CDE
packages have a number of limitations. Most notably,

• They are not guaranteed to be complete.

• Their constituent shared libraries are “frozen” and
do not receive regular security updates. (Static link-
ing also shares this limitation.)

• They run slower than native applications due to
ptrace overhead. We measured slowdowns of
up to 28% in our informal experiments (§7.3), but
slowdowns can be worse for I/O-heavy programs.

Software engineers who are releasing production-
quality software should obviously take the time to cre-
ate and test one-click installers or integrate with package
managers. But for the millions of system administra-
tors, research scientists, prototype designers, program-
ming course students and teachers, and hobby hackers
who just want to deploy their ad-hoc software as quickly
as possible, CDE can emulate many of the benefits of tra-
ditional software distribution with much less required la-
bor: In just minutes, users can create a base CDE pack-
age by running their program under CDE supervision, use
our semi-automated heuristic tools to make the package
complete, deploy to the target Linux machine, and then
execute it in seamless execution mode to make the target
program behave like it was installed normally.

In particular, we believe that the lightweight nature of
CDE makes it a useful tool in the Linux system admin-
istrator’s toolbox. Sysadmins need to rapidly and ef-
fectively respond to emergencies, hack together scripts
and other utilities on-demand, and run diagnostics with-
out compromising the integrity of production machines.
Ad-hoc scripts are notoriously brittle and non-portable
across Linux distros due to differences in interpreter ver-
sions (e.g., bash vs. dash shell, Python 2.x vs. 3.x), sys-
tem libraries, and availability of the often-obscure pro-
grams that the scripts invoke. Encapsulating scripts and
their dependencies within a CDE package can make them
portable across distros and minor kernel versions; we
have been able to take CDE packages created on 2010-
era Linux distros and run them on 2006-era distros [20].

Lessons learned: We would like to conclude by shar-
ing some generalizable system design lessons that we
learned throughout the past year of developing CDE.

• First and foremost, start with a conceptually-clear
core idea, make it work for basic non-trivial cases,
document the still-unimplemented tricky cases,
launch your system, and then get feedback from real
users. User feedback is by far the easiest way for
you to discover what bugs are important to fix and
what new features to add next.

• A simple and appealing quick-start webpage guide
and screencast video demo are essential for attract-
ing new users. No potential user is going to read
through dozens of pages of an academic research
paper before deciding to try your system. In short,
even hackers need to learn to be great salespeople.

• To maximize your system’s usefulness, you must
design it to be easy-to-use for beginners but also to
allow advanced users to customize it to their liking.
One way to accomplish this goal is to have well-
designed default settings, which can be adjusted via
command-line options or configuration files. The
defaults must work well “out-of-the-box” without
any tuning, or else beginners will get frustrated.

• Resist the urge to add new features just because
they’re “interesting”, “cool”, or “potentially use-
ful”. Only add new features when there are com-
pelling real users who demand it. Instead, focus
your development efforts on fixing bugs, writing
more test cases, improving your documentation,
and, most importantly, attracting new users.

• Users are the best sources of bug reports, since they
often stress your system in ways that you could have
never imagined. Whenever a user reports a bug, try
to create a representative minimal test case and add
it to your regression test suite.

• If a user has a conceptual misunderstanding of how
your system works, then think hard about how you
can improve your documentation or default settings
to eliminate this misunderstanding.

In sum, get real users, make them happy, and have fun!

Acknowledgments

Special thanks to Dawson Engler for supporting my ef-
forts on this project throughout the past year, to Bill
Howe for inspiring me to develop CDE’s streaming mode,
to Yaroslav Bulatov for being a wonderful CDE power-
user and advocate, to Federico D. Sacerdoti (my pa-
per shepherd) for his insightful critiques that greatly im-
proved the prose, and finally to the NSF fellowship for
funding this portion of my graduate studies.

24 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

References
[1] CDE public source code repository, https://github.com/

pgbovine/CDE.

[2] Coq proof assistant: Bug 2443, http://coq.inria.fr/
bugs/show_bug.cgi?id=2443.

[3] GCC compiler: Bug 46651, http://gcc.gnu.org/
bugzilla/show_bug.cgi?id=46651.

[4] List of software package management systems, http:
//en.wikipedia.org/wiki/List_of_software_
package_management_systems.

[5] LLVM compiler: Bug 8679, http://llvm.org/bugs/
show_bug.cgi?id=8679.

[6] Mac OS X Bundle Programming Guide: Introduction,
http://developer.apple.com/library/mac/
#documentation/CoreFoundation/Conceptual/
CFBundles/Introduction/Introduction.html.

[7] Saturn online discussion thread, https://mailman.
stanford.edu/pipermail/saturn-discuss/
2009-August/000174.html.

[8] Spec cpu2006 benchmarks, http://www.spec.org/
cpu2006/.

[9] SSH Filesystem, http://fuse.sourceforge.net/
sshfs.html.

[10] arachni project home page, https://github.com/
Zapotek/arachni.

[11] graph-tool project home page, http://projects.
skewed.de/graph-tool/.

[12] VMware ThinApp User’s Guide, http://www.vmware.
com/pdf/thinapp46_manual.pdf.

[13] AIKEN, A., BUGRARA, S., DILLIG, I., DILLIG, T., HACK-
ETT, B., AND HAWKINS, P. An overview of the Saturn project.
PASTE ’07, ACM, pp. 43–48.

[14] ALPERN, B., AUERBACH, J., BALA, V., FRAUENHOFER, T.,
MUMMERT, T., AND PIGOTT, M. PDS: A virtual execution envi-
ronment for software deployment. VEE ’05, ACM, pp. 175–185.

[15] ALTEKAR, G., AND STOICA, I. ODR: output-deterministic re-
play for multicore debugging. SOSP ’09, ACM, pp. 193–206.

[16] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: unassisted
and automatic generation of high-coverage tests for complex sys-
tems programs. OSDI ’08, USENIX Association, pp. 209–224.

[17] CHAMBERS, J. M. Statistical Models in S. CRC Press, Inc.,
Boca Raton, FL, USA, 1991.

[18] DOLSTRA, E., DE JONGE, M., AND VISSER, E. Nix: A safe
and policy-free system for software deployment. In LISA ’04, the
18th USENIX conference on system administration (2004).

[19] FISHER, K., AND GRUBER, R. PADS: a domain-specific lan-
guage for processing ad hoc data. PLDI ’05, ACM, pp. 295–304.

[20] GUO, P. J., AND ENGLER, D. CDE: Using system call interpo-
sition to automatically create portable software packages (short
paper). In USENIX Annual Technical Conference (June 2011).

[21] LAHIRI, M., AND CEBRIAN, M. The genetic algorithm as a
general diffusion model for social networks. In Proc. of the 24th
AAAI Conference on Artificial Intelligence (2010), AAAI Press.

[22] LOPER, E., AND BIRD, S. NLTK: The Natural Language
Toolkit. In In ACL Workshop on Effective Tools and Method-
ologies for Teaching NLP and Computational Linguistics (2002).

[23] SAPUNTZAKIS, C., BRUMLEY, D., CHANDRA, R., ZEL-
DOVICH, N., CHOW, J., LAM, M. S., AND ROSENBLUM, M.
Virtual appliances for deploying and maintaining software. In
LISA ’03, the 17th USENIX conference on system administration
(2003).

[24] SCAFFIDI, C., SHAW, M., AND MYERS, B. Estimating the num-
bers of end users and end user programmers. In IEEE Symposium
on Visual Languages and Human-Centric Computing (2005).

[25] STAELIN, C. mkpkg: A software packaging tool. In LISA ’98,
the 12th USENIX conference on system administration (1998).

[26] SUCAN, I. A., AND KAVRAKI, L. E. Kinodynamic motion plan-
ning by interior-exterior cell exploration. In Int’l Workshop on the
Algorithmic Foundations of Robotics (2008), pp. 449–464.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 25

Improving Virtual Appliance Management through
Virtual Layered File Systems

Shaya Potter Jason Nieh
Computer Science Department

Columbia University
{spotter, nieh}@cs.columbia.edu

Abstract
Managing many computers is difficult. Recent virtual-
ization trends exacerbate this problem by making it easy
to create and deploy multiple virtual appliances per phys-
ical machine, each of which can be configured with dif-
ferent applications and utilities. This results in a huge
scaling problem for large organizations as management
overhead grows linearly with the number of appliances.

To address this problem, we introduce Strata, a system
that combines unioning file system and package manage-
ment semantics to enable more efficient creation, pro-
visioning and management of virtual appliances. Un-
like traditional systems that depend on monolithic file
systems, Strata uses a collection of individual sotware
layers that are composed together into the Virtual Lay-
ered File System (VLFS) to provide the traditional file
system view. Individual layers are maintained in a cen-
tral repository and shared across all file systems that use
them. Layer changes and upgrades only need to be done
once in the repository and are then automatically propa-
gated to all virtual appliances, resulting in management
overhead independent of the number of appliances. Our
Strata Linux prototype requires only a single loadable
kernel module providing the VLFS support and doesn’t
require any application or source code level kernel mod-
ifications. Using this prototype, we demonstrate how
Strata enables fast system provisioning, simplifies sys-
tem maintenance and upgrades, speeds system recovery
from security exploits, and incurs only modest perfor-
mance overhead.

1 Introduction

A key problem organizations face is how to efficiently
provision and maintain the large number of machines de-
ployed throughout their organizations. This problem is
exemplified by the growing adoption and use of virtual
appliances (VAs). VAs are pre-built software bundles run
inside virtual machines (VMs). Since VAs are often tai-
lored to a specific application, these configurations can
be smaller and simpler, potentially resulting in reduced
resource requirements and more secure deployments.

While VAs simplify application deployment and de-
crease hardware costs, they can tremendously increase
the human cost of administering these machines As VAs
are cloned and modified, organizations that once had a
few hardware machines to manage now find themselves
juggling many more VAs with diverse system configura-
tions and software installations.

This causes many management problems. First, as
these VAs share a lot of common data, they are inefficient
to store, as there are multiple copies of many common
files. Second, by increasing the number of systems in
use, we increase the number of systems needing security
updates. Finally, machine sprawl, especially non actively
maintained machines, can give attackers many places to
hide as well as make attack detection more difficult. In-
stead of a single actively used machine, administrators
now have to monitor many irregularly used machines.

Many approaches have been used to address these
problems, including diskless clients [5], traditional pack-
age management systems [6, 1], copy-on-write disks [9],
deduplication [16] and new VM storage formats [12, 4].
Unfortunately, they suffer from various drawbacks that
limit their utility and effectiveness in practice. They ei-
ther do not directly help with management, incur man-
agement overheads that grow linearly with the number of
VAs, or require a homogenous configuration, eliminating
the main advantages of VAs.

The fundamental problem with previous approaches is
that they are based on a monolithic file system or block
device. These file systems and block devices address
their data at the block layer and are simply used as a stor-
age entity. They have no direct concept of what the file
system contains or how it is modified. However, man-
aging VAs is essentially done by making changes to the
file system. As a result, any upgrade or maintenance op-
eration needs to be done to each VA independently, even
when they all need the same maintenance.

We present Strata, a novel system that integrates file
system unioning with package management semantics
and uses the combination to solve VA management prob-
lems. Strata makes VA creation and provisioning fast.
It automates the regular maintenance and upgrades that
must be performed on provisioned VA instances. Finally,

1

26 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

it improves the ability to detect and recover from security
exploits.

Strata achieves this by providing three architectural
components: layers, layer repositories, and the Virtual
Layered File System (VLFS). A layer is a set of files that
are installed and upgraded as a unit. Layers are analo-
gous to software packages in package management sys-
tems. Like software packages, a layer may require other
layers to function correctly, just as applications often re-
quire various system libraries to run. Strata associates
dependency information with each layer that defines re-
lationships among distinct layers. Unlike software pack-
ages, which are installed into each VA’s file system, lay-
ers can be shared directly among multiple VAs.

Layer repositories are used to store layers centrally
within a virtualization infrastructure, enabling them to
be shared among multiple VAs. Layers are updated and
maintained in the layer repository. When a new version
of an application becomes available, due to added fea-
tures or a security patch, a new layer is added to the
repository. Different versions of the same application
may be available through different layers in the layer
repository. The layer repository is typically stored in a
shared storage infrastructure accessible by the VAs, such
as an SAN. Storing layers on the SAN does not impact
VA performance because an SAN is where a traditional
VA’s monolithic file system is stored.

The VLFS implements Strata’s unioning mechanism
and provides the file system for each VA. Like a tradi-
tional unioning file system, it is a collection of individual
layers composed into a single view. It enables, a file sys-
tem to be built out of many shared read-only layers while
providing each file system with its own private read-write
layer to contain all file system modifications that occur
during runtime. In addition, it provides new semantics
that enable unioning file systems to be used as the ba-
sis for package management type system. These include
how layers get added and removed from the union struc-
ture as well as how the file system handles files deleted
from a read-only layer.

Strata, by combining the unioning and package man-
agement semantics, provides a number of management
benefits. First, Strata is able to create and provision
VAs quickly and easily. By leveraging each layer’s de-
pendency information, Strata allows an administrator to
quickly create template VAs by only needing to explicitly
select the application and tool layers of interest. These
template VAs can then be instantly provisioned by end
users as no copying or on demand paging is needed to
instantiate any file system as all the layers are accessed
from the shared layer repository.

Second, Strata automates upgrades and maintenance
of provisioned VAs. If a layer contains a bug to be fixed,
the administrator only updates the template VA with a

replacement layer containing the fix. This automatically
informs all provisioned VAs to incorporate the updated
layer into their VLFS’s namespace view, thereby requir-
ing the fix to only be done once no matter how many
VAs are deployed. Unlike traditional VAs, who are up-
dated by replacing an entire file system [12, 4], Strata
does not need to be rebooted to have these changes take
effect. Unlike package management, all VLFS changes
are atomic as no time is spent deleting and copying files.

Finally, this semantic allows Strata to easily recover
VAs in the presence of security exploits. The VLFS al-
lows Strata to distinguish between files installed via its
package manager, which are stored in a shared read-only
layer, and the changes made over time, which are stored
in the private read-write layer. If a VA is compromised,
the modifications will be confined to the VLFS’s pri-
vate read-write layer, thereby making the changes easy
to both identify and remove.

We have implemented a Strata Linux prototype with-
out any application or source code operating system ker-
nel changes and provide the VLFS as a loadable kernel
module. We show that by combining traditional pack-
age management with file system unioning we provide
powerful new functionality that can help automate many
machine management tasks. We have used our proto-
type with VMware ESX virtualization infrastructure to
create and manipulate a variety of desktop and server
VAs to demonstrate its utility for system provisioning,
system maintenance and upgrades, and system recovery.
Our experimental results show that Strata can provision
VAs in only a few seconds, can upgrade a farm of fifty
VAs with several different configurations in less than two
minutes, and has scalable storage requirements and mod-
est file system performance overhead.

2 Related Work

The most common way to provision and maintain ma-
chines today is using the package management system
built into the operating system [6, 1]. Package manage-
ment provides a number of benefits. First, it divides the
installable software into independent chunks called pack-
ages. When one wants to install a piece of software or
upgrade an already installed piece of software, all one
has to do is download and install that single item. Sec-
ond, these packages can include dependency information
that instructs the system about what other packages must
be installed with this package. This enables tools [2, 10]
to automatically determine the entire set of packages one
needs to install when one wants to install a piece of soft-
ware, making it significantly easier for an end-user to in-
stall software.

However, package managers view the file system as a
simple container for files and not as a partner in the man-

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 27

agement of the machine. This causes them to suffer from
a number of flaws in their management of large numbers
of VAs. They are not space or time efficient, as each pro-
visioned VA requires time-consuming copying of many
megabytes or gigabytes into each VA’s file system. These
inefficiencies affect both provisioning and updating of a
system as a lot of time is spent, downloading, extract-
ing and installing the individual packages into the many
independent VAs.

As the package manager does not work in partnership
with the file system, the file system does not distinguish
between a file installed from a package and a file modi-
fied or created in the course of usage. Specialized tools
are needed to traverse the entire file system to determine
if a file has been modified and therefore compromised.
Finally, package management systems work in the con-
text of a running system to modify the file system di-
rectly. These tools often cannot not work if the VA is
suspended or turned off.

For local scenarios, the size and time efficiencies of
provisioning a VA can be improved by utilizing copy-
on-write (COW) disks, such as QEMU’s QCOW2 [9]
format. These enables VAs to be provisioned quickly,
as little data has to be written to disk immediately due
to the COW property. However, once provisioned, each
COW copy is now fully independent from the original, is
equivalent to a regular copy, and therefore suffers from
all the same maintenance problems as a regular VA. Even
if the original disk image is updated, the changes would
be incompatible with the cloned COW images. This is
because COW disks operate at the block level. As files
get modified, they use different blocks on their underly-
ing device. Therefore, it is likely that the original and
cloned COW images address the same blocks for differ-
ent pieces of data. For similar reasons, COW disks do not
help with VA creation, as multiple COW disks cannot be
combined together into a single disk image.

Both the Collective [4] and Ventana [12] attempt to
solve the VA maintenance problem by building upon
COW concepts. Both systems enable VAs to be provi-
sioned quickly by performing a COW copy of each VA’s
system file system. However, they suffer from the fact
that they manage this file system at either the block de-
vice or monolithic file system level, providing users with
only a single file system. While ideally an administra-
tor could supply a single homogeneous shared image for
all users, in practice, users want access to many heteroge-
neous images that must be maintained independently and
therefore increase the administrator’s work. The same
is true for VAs provisioned by the end user, while they
both enable the VAs to maintain a separate disk from the
shared system disk that persists beyond upgrades.

Mirage [17] attempts to improve the disk image sprawl
problem by introducing a new storage format, the Mi-

rage Index Format (MIF), to enumerate what files be-
long to a package. However, it does not help with the
actual image sprawl in regard to machine maintenance,
because each machine reconstituted by Mirage still has a
fully independent file system, as each image has its own
personal copy. Although each provisioned machine can
be tracked, they are now independent entities and suffer
from the same problems as a traditional VA.

Stork [3] improves on package management for
container-based systems by enabling containers to hard
link to an underlying shared file system so that files are
only stored once across all containers. By design, it can-
not help with managing independent machines, virtual
machines, or VAs, because hard links are a function in-
ternal to a specific file system and not usable between
separate file systems.

Union file systems [11, 19] provide the ability to com-
pose multiple different file namespaces into a single
view. Unioning file systems are commonly used to pro-
vide a COW file system from a read-only copy, such as
with Live-CDs. However, unioning file system by them-
selves do not directly help with VA management, as the
underlying file system has to be maintained using regular
tools. Strata builds upon and leverages this mechanism
by improving its ability to handle deleted files as well
as managing the layers that belong to the union. This
allows Strata to provide a solution that enables efficient
provisioning and management of VAs.

Strata focuses on improving virtual appliance manage-
ment, but the VLFS idea can be used to address other
management and security problems as well. For exam-
ple, our previous work on Apiary [14] demonstrates how
the VLFS can be combined with containers to provide
a transparent desktop application fault containment ar-
chitecture that is effective at limiting the damage from
exploits to enable quick recovery while being as easy to
use as a traditional desktop system.

3 Strata Basics

Figure 1 shows Strata’s three architectural components:
layers, layer repositories, and VLFSs. A layer is a dis-
tinct self-contained set of files that corresponds to a spe-
cific functionality. Strata classifies layers into three cat-
egories: software layers with self-contained applications
and system libraries, configuration layers with configu-
ration file changes for a specific VA, and private layers
allowing each provisioned VA to be independent. Lay-
ers can be mixed and matched, and may depend on other
layers. For example, a single application or system li-
brary is not fully independent, but depends on the pres-
ence of other layers, such as those that provide needed
shared libraries. Strata enables layers to enumerate their
dependencies on other layers. This dependency scheme

3

28 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

MySQL

Apache

Firefox

OpenOffice

Gnome

Template VLFSs/

Appliances

MySQL Config Layer

MySQL

.

Apache Config Layer

Apache

.

Private Layer

MySQL Template

Private Layer

MySQL+Apache Template

Private Layer

Apache Template

Private Layer

MySQL+Apache Template

/usr/sbin/mysqld, /etc/init.d/mysql,..

1) Layer

MySQL

Template

Apache

Template

MySQL+Apache Config Layer

MySQL Config Layer

Apache Config Layer

MySQL

Apache

.

MySQL+Apache

Template

Provisioned VLFSs/

Appliances

3) VLFS

2) Layer

Repository

Figure 1: How Strata’s Components Fit Together

allows automatic provisioning of a complete, fully con-
sistent file system by selecting the main features desired
within the file system.

Layers are provided through layer repositories. As
Figure 1 shows, a layer repository is a file system share
containing a set of layers made available to VAs. When
an update is available, the old layer is not overwritten.
Instead, a new version of the layer is created and placed
within the repository, making it available to Strata’s
users. Administrators can also remove layers from the
repository, e.g., those with known security holes, to pre-
vent them from being used. Layer repositories are gen-
erally stored on centrally managed file systems, such as
a SAN or NFS, but they can also be provided by proto-
cols such as FTP and HTTP and mirrored locally. Layers
from multiple layer repositories can form a VLFS as long
as they are compatible with one another. This allows lay-
ers to be provided in a distributed manner. Layers pro-
vided by different maintainers can have the same layer
names, causing a conflict. This, however, is no different
from traditional package management systems as pack-
ages with the same package name, but different function-
ality, can be provided by different package repositories.

As Figure 1 shows, a VLFS is a collection of layers
from layer repositories that are composed into a single
file system namespace. The layers making up a particu-
lar VLFS are defined by the VLFS’s layer definition file
(LDF), which enumerates all the layers that will be com-
posed into a single VLFS instance. To provision a VLFS,
an administrator selects software layers that provide the
desired functionality and lists them in the VLFS’s LDF.

Within a VLFS, layers are stacked on top of another
and composed into a single file system view. An impli-
cation of this composition mechanism is that layers on
top can obscure files on layers below them, only allow-
ing the contents of the file instance contained within the

higher level to be used. This means that files in the pri-
vate or configuration layers can obscure files in lower
layers, such as when one makes a change to a default
version of a configuration file located within a software
layer. However, to prevent an ambiguous situation from
occurring, where the file system’s contents depend on the
order of the software layers, Strata prevents software lay-
ers that contain a subset of the same file from being com-
posed into a single VLFS.

4 Using Strata

Strata’s usage model is centered around the usage of lay-
ers to quickly create VLFSs for VAs as shown in Fig-
ure 1. Strata allows an administrator to compose together
layers to form template VAs. These template VAs can be
used to form other template appliances that extend their
functionality, as well as to provide the VA that end users
will provision and use. Strata is designed to be used
within the same setup as a traditional VM architecture.
This architecture includes a cluster of physical machines
that are used to host VM execution as well as a shared
SAN that stores all of the VM images. However, instead
of storing complete disk images on the SAN, Strata uses
the SAN to store the layers that will be used by the VMs
it manages.

4.1 Creating Layers and Repositories

Layers are first created and stored in layer repositories.
Layer creation is similar to the creation of packages in
a traditional package management system, where one
builds the software, installs it into a private directory,
and turns that directory into a package archive, or in
Strata’s case, a layer. For instance, to create a layer
that contains the MySQL SQL server, the layer main-
tainer would download the source archive for MySQL,
extract it, and build it normally. However, instead of in-
stalling it into the system’s root directory, one installs
it into a virtual root directory that becomes the file sys-
tem component of this new layer. The layer maintainer
then defines the layer’s metadata, including its name
(mysql-server in this case) and an appropriate ver-
sion number to uniquely identify this layer. Finally, the
entire directory structure of the layer is copied into a file
system share that provides a layer repository, making the
layer available to users of that repository.

4.2 Creating Appliance Templates

Given a layer repository, an administrator can then cre-
ate template VAs. Creating a template VA involves: (1)
Creating the template VA with an identifiable name. (2)

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 29

Determining what repositories are available to it. (3) Se-
lecting a set of layers that provide the functionality de-
sired.

To create a template VA that provides a MySQL
SQL server, an administrator creates an appliance/VLFS
named sql-server and selects the layers needed for a
fully functional MySQL server file system, most impor-
tantly, the mysql-server layer. Strata composes these lay-
ers together into the VLFS in a read-only manner along
with a read-write private layer, making the VLFS us-
able within a VM. The administrator boots the VM and
makes the appropriate configuration changes to the tem-
plate VA, storing them within the VLFS’s private layer.
Finally, the private layer belonging to the template appli-
ance’s VLFS is converted into the template’s read-only
configuration layer by being moved to a SAN file-system
that the VAs can only access in a read-only manner. As
another example, to create an Apache web server appli-
ance, an administrator creates an appliance/VLFS named
web-server, and selects the layers required for an
Apache web server, most importantly, the layer contain-
ing the Apache program.

Strata extends this template model by allowing multi-
ple template VAs to be composed together into a single
new template. An administrator can create a new tem-
plate VA/VLFS, sql+web-server, composed of the
MySQL and Apache template VAs. The resulting VLFS
has the combined set of software layers from both tem-
plates, both of their configuration layers, and a new con-
figuration layer containing the configuration state that in-
tegrates the two services together, for a total of three con-
figuration layers.

4.3 Provisioning and Running Appliance
Instances

In Strata, a VLFS can be created by building off a pre-
viously defined VLFS set of layers and combining those
layers with a new read-write private layer. Therefore,
given previously defined templates, Strata enables VAs
to be efficiently and quickly provisioned and deployed
by end users. Provisioning a VA involves (1) creating
a virtual machine container with a network adapter and
an empty virtual disk, (2) using the network adapter’s
unique MAC address as the machine’s identifier for iden-
tifying the VLFS created for this machine, and (3) form-
ing the VLFS by referencing the already existing respec-
tive template VLFS and combining the template’s read-
only software and configuration layers with a read-write
private layer provided by the VM’s virtual disk.

As each VM managed by Strata does not have a phys-
ical disk off which to boot, Strata network boots each
VM. When the VM boots, its BIOS discovers a network
boot server which provides it with a boot image, includ-

ing a base Strata environment. The VM boots this base
environment, which then determines which VLFS should
be mounted for the provisioned VM using the MAC ad-
dress of the machine. Once the proper VLFS is mounted,
the machine transitions to using it as its root file system.

4.4 Updating Appliances
Strata upgrades provisioned VAs efficiently using a sim-
ple three-step process. First, an updated layer is installed
into a shared layer repository. Second, administrators are
able to modify the template appliances under their con-
trol to incorporate the update. Finally, all provisioned
VAs based on that template will automatically incorpo-
rate the update as well. Note that updating appliances
is much simpler than updating generic machines, as ap-
pliances are not independently managed machines. This
means that extra software that can conflict with an up-
grade will not be installed into a centrally managed ap-
pliance. Centrally managed appliance updates are lim-
ited to changes to their configuration files and what data
files they store.

Strata’s updates propagate automatically even if the
VA is not currently running. If a provisioned VA is shut
down, the VA will compose whatever updates have been
applied to its templates automatically, never leaving the
file system in a vulnerable state, because it composes its
file system afresh each time it boots. If it is suspended,
Strata delays the update to when the VA is resumed, as
updating layers is a quick task. Updating is significantly
quicker than resuming, so this does not add much to its
cost.

Furthermore, VAs are upgraded atomically, as Strata
adds and removes all the changed layers in a single oper-
ation. In contrast, traditional package management sys-
tem, when upgrading a package, first uninstalls it before
reinstalling the newer version. This traditional method
leaves the file system in an inconsistent state for a short
period of time. For instance, when the libc package is up-
graded, its contents are first removed from the file system
before being replaced. Any application that tries to exe-
cute during the interim will fail to dynamically link be-
cause the main library on which it depends is not present
within the file system at that moment.

4.5 Improving Security
Strata makes it much easier to manage VAs that have had
their security compromised. By dividing a file system
into a set of shared read-only layers and storing all file
system modifications inside the private read-write layer,
Strata separates changes made to the file system via layer
management from regular runtime modifications. This
enables Strata to easily determine when system files have

5

30 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

been compromised, because making a compromise per-
sistent requires the file system be modified, modifying or
adding files to the file system to create a compromise will
be readily visible in the private layer. This allows Strata
to not rely on tools like Tripwire [8] or maintain sepa-
rate databases to determine if files have been modified
from their installed state. Similarly, this check can be
run external to the VA, as it just needs access to the pri-
vate layer, thereby preventing an attacker from disabling
it. This reduces management load due to not requiring
any external databases be kept in sync with the file sys-
tem state as it changes. While an attacker could try to
compromise files on the shared layers, they would have
to exploit the SAN containing the layer repository. In
a regular virtualization architecture, if an attacker could
exploit the SAN, he would also have access to all

This segregation of modified file system state also en-
ables quick recovery from a compromised system. By
sreplacing the VA’s private layer with a fresh private
layer, the compromised system is immediately fixed and
returned to its default, freshly provisioned state. How-
ever, unlike reinstalling a system from scratch, replacing
the private layer does not require throwing away the con-
tents of the old private layer. Strata enables the layer
to be mounted within the file system, enabling admin-
istrators to have easy access to the files located within
it to move the uncompromised files back to their proper
place.

5 Strata Architecture

Strata introduces the concept of a virtual layered file
system in place of traditional monolithic file systems.
Strata’s VLFS allows file systems to be created by com-
posing layers together into a single file system names-
pace view. Strata allows these layers to be shared by
multiple VLFSs in a read-only manner or to remain read-
write and private to a single VLFS.

Every VLFS is defined by a layer definition file, which
specifies what software layers should be composed to-
gether. An LDF is a simple text file that lists the layers
and their respective repositories. The LDF’s layer list
syntax is repository/layer version and can be
proceeded by an optional modifier command. When an
administrator wants to add or remove software from the
file system, instead of modifying the file system directly,
they modify the LDF by adding or removing the appro-
priate layers.

Figure 2 contains an example LDF for a MySQL SQL
server template appliance. The LDF lists each individual
layer included in the VLFS along with its correspond-
ing repository. Each layer also has a number indicating
which version will be composed into the file system. If
an updated layer is made available, the LDF is updated

main/mysql-server 5.0.51a-3

main/base 1
main/libdb4.2 4.2.52-18
main/apt-utils 0.5.28.6
main/liblocale-gettext-perl 1.01-17
main/libtext-charwidth-perl 0.04-1
main/libtext-iconv-perl 1.2-3
main/libtext-wrapi18n-perl 0.06-1
main/debconf 1.4.30.13
main/tcpd 7.6-8
main/libgdbm3 1.8.3-2
main/perl 5.8.4-8
main/psmisc 21.5-1
main/libssl0.9.7 0.9.7e-3
main/liblockfile1 1.06
main/adduser 3.63
main/libreadline4 4.3-11
main/libnet-daemon-perl 0.38-1
main/libplrpc-perl 0.2017-1
main/libdbi-perl 1.46-6
main/ssmtp 2.61-2
=main/mailx 3a8.1.2-0.20040524cvs-4

Figure 2: LDF for MySQL Server Template

to include the new layer version instead of the old one.
If the administrator of the VLFS does not want to up-
date the layer, they can hold a layer at a specific version,
with the = syntax element. This is demonstrated by the
mailx layer in Figure 2, which is being held at the ver-
sion listed in the LDF.

Strata allows an administrator to select explicitly only
the few layers corresponding to the exact functionality
desired within the file system. Other layers needed in
the file system are implicitly selected by the layers’ de-
pendencies as described in Section 5.2. Figure 2 shows
how Strata distinguishes between explicitly and implic-
itly selected layers. Explicitly selected layers are listed
first and separated from the implicitly selected layers
by a blank line. In this case, the MySQL server has
only one explicit layer, mysql-server, but has 21 implic-
itly selected layers. These include utilities such as Perl
and TCP Wrappers (tcpd), as well as libraries such as
OpenSSL (libssl). Like most operating systems that re-
quire a minimal set of packages to always be installed,
Strata also always includes a minimal set of shared layers
that are common to all VLFSs that it denotes as base. In
our Strata prototype, these are the layers that correspond
to packages that Debian makes essential and are there-
fore not removable. Strata also distinguishes explicit lay-
ers from implicit layers to allow future reconfigurations
to remove one implicit layer in favor of another if depen-
dencies need to change.

When an end user provisions an appliance by cloning a
template, an LDF is created for the provisioned VA. Fig-

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 31

@main/sql-server

Figure 3: LDF for Provisioned MySQL Server VA

ure 3 shows an example introducing another syntax ele-
ment, @, that instructs Strata to reference another VLFS’s
LDF as the basis for this VLFS. This lets Strata clone the
referenced VLFS by including its layers within the new
VLFS. In this case, because the user wants only to de-
ploy the SQL server template, this VLFS LDF only has
to include the single @ line. In general, a VLFS can refer-
ence more than one VLFS template, assuming that layer
dependencies allow all the layers to coexist.

5.1 Layers
Strata’s layers are composed of three components: meta-
data files, the layer’s file system, and configuration
scripts. They are stored on disk as a directory tree
named by the layer’s name and version. For instance,
version 5.0.51a of the MySQL server, with a strata
layer version of 3, would be stored under the directory
mysql-server 5.0.51a-3. Within this directory,
Strata defines a metadata file, a filesystem di-
rectory, and a scripts directory corresponding to the
layer’s three components.

The metadata files define the information that de-
scribes the layer. This includes its name, version, and
dependency information. This information is impor-
tant to ensure that a VLFS is composed correctly. The
metadata file contains all the metadata that is speci-
fied for the layer. Figure 4 shows an example metadata
file. Figure 5 shows the full metadata syntax. The meta-
data file has a single field per line with two elements, the
field type and the field contents. In general, the metadata
file’s syntax is Field Type: value, where value
can be either a single entry or a comma-separated list of
values.

The layer’s file system is a self-contained set of files
providing a specific functionality. The files are the indi-
vidual items in the layer that are composed into a larger
VLFS. There are no restrictions on the types of files that
can be included. They can be regular files, symbolic
links, hard links, or device nodes. Similarly, each di-
rectory entry can be given whatever permissions are ap-
propriate. A layer can be seen as a directory stored on
the shared file system that contains the same file and di-
rectory structure that would be created if the individual
items were installed into a traditional file system. On a
traditional UNIX system, the directory structure would
typically contain directories such as /usr, /bin and
/etc. Symbolic links work as expected between layers
since they work on path names, but one limitation is that
hard links cannot exist between layers.

The layer’s configuration scripts are run when a layer

Layer: mysql-server
Version: 5.0.51a-3
Depends: ..., perl (>= 5.6),
tcpd (>= 7.6-4),...

Figure 4: Metadata for MySQL-Server Layer

Layer: Layer Name
Version: Version of Layer Unit
Conflicts: layer1 (opt. constraint), ...
Depends: layer1 (...),

layer2 (...) | layer3, ...
Pre-Depends: layer1 (...), ...
Provides: virtual_layer, ...

Figure 5: Metadata Specification

is added or removed from a VLFS to allow proper in-
tegration of the layer within the VLFS. Although many
layers are just a collection of files, other layers need to
be integrated into the system as a whole. For example,
a layer that provides mp3 file playing capability should
register itself with the system’s MIME database to allow
programs contained within the layer to be launched au-
tomatically when a user wants to play an mp3 file. Simi-
larly, if the layer were removed, it should remove the pro-
grams contained within itself from the MIME database.

Strata supports four types of configuration scripts: pre-
remove, post-remove, pre-install, and post-install. If they
exist in a layer, the appropriate script is run before or
after a layer is added or removed. For example, a pre-
remove script can be used to shut down a daemon before
it is actually removed, while a post-remove script can
be used to clean up file system modifications in the pri-
vate layer. Similarly, a pre-install script can ensure that
the file system is as the layer expects, while the post-
install script can start daemons included in the layer. The
configuration scripts can be written in any scripting lan-
guage. The layer must include the proper dependencies
to ensure that the scripting infrastructure is composed
into the file system in order to allow the scripts to run.

5.2 Dependencies

A key Strata metadata element is enumeration of the de-
pendencies that exist between layers. Strata’s depen-
dency scheme is heavily influenced by the dependency
scheme in Linux distributions such as Debian and Red
Hat. In Strata, every layer composed into Strata’s VLFS
is termed a layer unit. Every layer unit is defined by its
name and version. Two layer units that have the same
name but different layer versions are different units of
the same layer. A layer refers to the set of layer units
of a particular name. Every layer unit in Strata has a
set of dependency constraints placed within its metadata.
There are four types of dependency constraints: (a) de-

7

32 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

pendency, (b) pre-dependency, (c) conflict and (d) pro-
vide.

Dependency and Pre-Dependency: Dependency and
pre-dependency constraints are similar in that they re-
quire another layer unit to be integrated at the same
time as the layer unit that specifies them. They differ
only in the order the layer’s configuration scripts are ex-
ecuted to integrate them into the VLFS. A regular de-
pendency does not dictate order of integration. A pre-
dependency dictates that the dependency has to be inte-
grated before the dependent layer. Figure 4 shows that
the MySQL layer depends on TCP Wrappers, (tcpd),
because it dynamically links against the shared library
libwrap.so.0 provided by TCP Wrappers. MySQL
cannot run without this shared library, so the layer units
that contain MySQL must depend on a layer unit contain-
ing an appropriate version of the shared library. These
constraints can also be versioned to further restrict which
layer units satisfy the constraint. For example, shared
libraries can add functionality that breaks their applica-
tion binary interface (ABI), breaking in turn any applica-
tions that depend on that ABI. Since MySQL is compiled
against version 0.7.6 of the libwrap library, the depen-
dency constraint is versioned to ensure that a compatible
version of the library is integrated at the same time.

Conflict: Conflict constraints indicate that layer units
cannot be integrated into the same VLFS. There are mul-
tiple reasons this can occur, but it is generally because
they depend on exclusive access to the same operating
system resource. This can be a TCP port in the case of
an Internet daemon, or two layer units that contain the
same file pathnames and therefore would obscure each
other. For this reason, Strata defines that two layer units
of the same layer are by definition in conflict because
they will contain some of the same files.

An example of this constraint occurs when the ABI
of a shared library changes without any source code
changes, generally due to an ABI change in the tool
chain that builds the shared library. Because the ABI
has changed, the new version can no longer satisfy any
of the previous dependencies. But because nothing else
has changed, the file on disk will usually not be renamed
either. A new layer must then be created with a different
name, ensuring that the library with the new ABI is never
used to satisfy an old dependency on the original layer.
Because the new layer contains the same files as the old
layer, it must conflict with the older layer to ensure that
they are not integrated into the same file system.

Provide: Provide dependency constraints introduce
virtual layers. A regular layer provides a specific set of
files, but a virtual layer indicates that a layer provides
a particular piece of general functionality. Layer units
that depend on a certain piece of general functionality
can depend on a specific virtual layer name in the normal

manner, while layer units that provide that functionality
will explicitly specify that they do. For example, layer
units that provide HTML documentation depend on the
presence of a web server to enable a user to view them,
but which one is not important. Instead of depending
on a particular web server, they depend on the virtual
layer name httpd. Similarly, layer units containing a
web server and obeying system policy for the location of
static html content, such as Apache or Boa, are defined
to provide the httpd virtual layer name and therefore
satisfy those dependencies. Unlike regular layer units,
virtual layers are not versioned.

Example: Figure 2 shows how dependencies can af-
fect a VLFS in practice. This VLFS has only one ex-
plicit layer, mysql-server, but 21 implicitly selected lay-
ers. The mysql-server layer itself has a number of di-
rect dependencies, including Perl, TCP Wrappers, and
the mailx program. These dependencies in turn de-
pend on the Berkeley DB library and the GNU dbm li-
brary, among others. Using its dependency mechanism,
Strata is able to automatically resolve all the other lay-
ers needed to create a complete file system by specifying
just a single layer

Returning to Figure 4, this example defines a subset
of the layers that the mysql-server layer requires to be
composed into the same VLFS to allow MySQL to run
correctly. More generally, Figure 5 shows the complete
syntax for the dependency metadata. Provides is the sim-
plest, with only a comma separated list of virtual layer
names. Conflicts adds an optional version constraint to
each conflicted layer to limit the layer units that are actu-
ally in conflict. Depends and Pre-Depends add a boolean
OR of multiple layers in their dependency constraints to
allow multiple layers to satisfy the dependency.

Resolving Dependencies: To allow an administra-
tor to select only the layers explicitly desired within the
VLFS, Strata automatically resolves dependencies to de-
termine which other layers must be included implicitly.

Linux distributions already face this problem and tools
have been developed to address it, such as Apt [2] and
Smart [10]. To leverage Smart, Strata adopts the same
metadata database format that Debian uses for packages
for its own layers. In Strata, when an administrator
requests that a layer be added to or removed from a tem-
plate appliance, Smart also evaluates if the operation can
succeed and what is the best set of layers to add or re-
move. Instead of acting directly on the contents of the
file system, however, Strata only has to update the tem-
plate’s VLFS’s definition file with the set of layers to be
composed into the file system.

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 33

5.3 Layer Creation

Strata allows layers to be created in two ways. First,
Strata allows the .deb packages used by Debian-derived
distributions and the .rpm packages used by RedHat-
derived distributions to be converted into layers that
Strata users can use. Strata converts packages into lay-
ers in two steps. First, Strata extracts the relevant meta-
data from the package, including its name and version.
Second, Strata extracts the package’s file contents into a
private directory that will be the layer’s file system com-
ponents. When using converted packages, Strata lever-
ages the underlying distribution’s tools to run the con-
figuration scripts belonging to the newly created layers
correctly. Instead of using the distribution’s tools to un-
pack the software package, Strata composes the layers
together and uses the distribution’s tools as though the
packages have already been unpacked. Although Strata
is able to convert packages from different Linux distri-
butions, it cannot mix and match them because they are
generally ABI incompatible with one another.

More commonly, Strata leverages existing packaging
methodologies to simplify the creation of layers from
scratch. In a traditional system, when administrators in-
stall a set of files, they copy the files into the correct
places in the file system using the root of the file sys-
tem tree as their starting point. For instance, an admin-
istrator might run make install to install a piece of
software compiled on the local machine. But in Strata
layer creation is a three step process. First, instead of
copying the files into the root of the local file system,
the layer creator installs the files into their own specific
directory tree. That is, they make a blank directory to
hold a new file system tree that is created by having the
make install copy the files into a tree rooted at that
directory, instead of the actual file system root.

Second, the layer maintainer extracts programs that in-
tegrate the files into the underlying file system and cre-
ates scripts that run when the layer is added to and re-
moved from the file system. Examples of this include
integration with Gnome’s GConf configuration system,
creation of encryption keys, or creation of new local
users and groups for new services that are added. This
leverages skills that package maintainers in a traditional
package management world already have.

Finally, the layer maintainer needs to set up the meta-
data correctly. Some elements of the metadata, such as
the name of the layer and its version, are simple to set,
but dependency information can be much harder. But
because package management tools have already had to
address this issue, Strata is able to leverage the tools they
have built. For example, package management systems
have created tools that infer dependencies using an exe-
cutable dynamically linking against shared libraries [15].

Instead of requiring the layer maintainer to enumerate
each shared library dependency, we can programmati-
cally determine which shared libraries are required and
populate the dependency fields based on those versions
of the library currently installed on the system where the
layer is being created.

5.4 Layer Repositories

Strata provides local and remote layer repositories. Local
layer repositories are provided by locally accessible file
system shares made available by a SAN. They contain
layer units to be composed into the VLFS. This is sim-
ilar to a regular virtualization infrastructure in which all
the virtual machines’ disks are stored on a shared SAN.
Each layer unit is stored as its own directory; a local layer
repository contains a set of directories, each of which
corresponds to a layer unit. The local layer repository’s
contents are enumerated in a database file providing a
flat representation of the metadata of all the layer units
present in the repository. The database file is used for
making a list of what layers can be installed and their de-
pendency information. By storing the shared layer repos-
itory on the SAN, Strata lets layers be shared securely
among different users’ appliances. Even if the machine
hosting the VLFS is compromised, the read-only layers
will stay secure, as the SAN will enforce the read-only
semantic independently of the VLFS.

Remote layer repositories are similar to local layer
repositories, but are not accessible as file system shares.
Instead, they are provided over the Internet, by protocols
such as FTP and HTTP, and can be mirrored into a local
layer repository. Instead of mirroring the entire remote
repository, Strata allows on-demand mirroring, where all
the layers provided by the remote repository are acces-
sible to the VAs, but must be mirrored to the local mir-
ror before they can be composed into a VLFS. This al-
lows administrators to store only the needed layers while
maintaining access to all the layers and updates that the
repository provides. Administrators can also filter which
layers should be available to prevent end users from us-
ing layers that violate administration policy. In general,
an administrator will use these remote layer repositories
to provide the majority of layers, much as administrators
use a publicly managed package repository from a regu-
lar Linux distribution.

Layer repositories let Strata operate within an enter-
prise environment by handling three distinct yet related
issues. First, Strata has to ensure that not all end users
have access to every layer available within the enterprise.
For instance, administrators may want to restrict certain
layers to certain end users for licensing or security rea-
sons. Second, as enterprises get larger, they gain levels
of administration. Strata must support the creation of an

9

34 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

enterprise-wide policy while also enabling small groups
within the enterprise to provide more localized admin-
istration. Third, larger enterprises supporting multiple
operating systems cannot rely on a single repository of
layers because of inherent incompatibilities among oper-
ating systems.

By allowing a VLFS to use multiple repositories,
Strata solves these three problems. First, multiple reposi-
tories let administrators compartmentalize layers accord-
ing to the needs of their end users. By providing end
users with access only to needed repositories, organiza-
tions prevent their end users from using the other layers.
Strata depends on traditional file system access control
mechanisms to enforce these permissions. Second, by al-
lowing sub-organizations to set up their own repositories,
Strata lets a sub-organization’s administrator provide the
layers that end users need without requiring intervention
by administrators of global repositories. Finally, multi-
ple repositories allow Strata to support multiple operat-
ing systems, as each distinct operating system has its own
set of layer repositories.

5.5 VLFS Composition

To create a VLFS, Strata has to solve a number of file
system-related problems. First, Strata has to support the
ability to combine numerous distinct file system layers
into a single static view. This is equivalent to installing
software into a shared read-only file system. Second, be-
cause users expect to treat the VLFS as a normal file sys-
tem, for instance, by creating and modifying files, Strata
has to let VLFSs be fully modifiable. By the same token,
users must also be able to delete files that exist on the
read-only layer.

By basing the VLFS on top of unioning file sys-
tems [11, 19], Strata solves all these problems. Unioning
file systems join multiple layers into a single namespace.
Unioning file systems have been extended to apply at-
tributes such as read-only and read-write to their layers.
The VLFS leverages this property to force shared lay-
ers to be read-only, while the private layer remains read-
write. If a file from a shared read-only layer is mod-
ified, it is copied-on-write (COW) to the private read-
write layer before it is modified. For example, Live-CDs
use this functionality to provide a modifiable file system
on top of the read-only file system provided by the CD.
Finally, unioning file systems use white-outs to obscure
files located on lower layers. For example, if a file lo-
cated on a read-only layer is deleted, a white-out file will
be created on the private read-write layer. This file is in-
terpreted specially by the file-system and is not revealed
to the user while also preventing the user from seeing
files with the same name.

But end users need to be able to recover deleted files

by reinstalling or upgrading the layer containing them.
This is equivalent to deleting a file from a traditional
monolithic file system, but reinstalling the package con-
taining the file in order to recover it. Also, Strata sup-
ports adding and removing layers dynamically without
taking the file system off line. This is equivalent to
installing, removing, or upgrading a software package
while a monolithic file system is online.

Unlike a traditional file system, where deleted system
files can be recovered simply by reinstalling the package
containing that file, in Strata, white-outs in the private
layer persist and continue to obscure the file even if the
layer is replaced. To solve this problem, Strata provides
a VLFS with additional writeable layers associated with
each read-only shared layer. Instead of containing file
data, as does the topmost private writeable layer, these
layers just contain white-out marks that will obscure files
contained within their associated read-only layer. The
user can delete a file located in a shared read-only layer,
but the deletion only persists for the lifetime of that par-
ticular instance of the layer. When a layer is replaced
during an upgrade or reinstall, a new empty white-out
layer will be associated with the replacement, thereby
removing any preexisting white-outs. In a similar way,
Strata handles he case where a file belonging to a shared
read-only layer is modified and therefore copied to the
VLFS’s private read-write layer. Strata provides a revert
command that lets the owner of a file that has been mod-
ified revert the file to its original pristine state. While a
regular VLFS unlink operation would have removed the
modified file from the private layer and created a white-
out mark to obscure the original file, revert only removes
the copy in the private layer, thereby revealing the origi-
nal below it.

Strata also allows a VLFS to be managed while be-
ing used. Some upgrades, specifically of the kernel, will
require the VA to be rebooted, but most should be able
to occur without taking the VA off line. However, if a
layer is removed from a union, the data is effectively re-
moved as well because unions operate only on file system
namespaces and not on the data the underlying files con-
tain. If an administrator wants to remove a layer from
the VLFS, they must take the VA off line, because layers
cannot be removed while in use.

To solve this problem, Strata emulates a traditional
monolithic file system. When an administrator deletes
a package containing files in use, the processes that are
currently using those files will continue to work. This
occurs by virtue of unlink’s semantic of first removing
a file from the file system’s namespace, and only remov-
ing its data after the file is no longer in use. This lets
processes continue to run because the files they need will
not be removed until after the process terminates. This
creates a semantic in which a currently running program

10

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 35

can be using versions of files no longer available to other
programs.

Existing package managers use this semantic to allow
a system to be upgraded online, and it is widely under-
stood. Strata applies the same semantic to layers. When
a layer is removed from a VLFS, Strata marks the layer
as unlinked, removing it from the file system names-
pace. Although this layer is no longer part of the file
system namespace and thus cannot be used by any oper-
ations such as open that work on the namespace, it does
remain part of the VLFS, enabling data operations such
as read and write to continue working correctly for
previously opened files.

6 Experimental Results

We have implemented Strata’s VLFS as a loadable kernel
module on an unmodified Linux 2.6 series kernel as well
as a set of userspace management tools. The file system
is a stackable file system and is an extended version of
UnionFS [19]. We present experimental results using our
Strata Linux prototype to manage various VAs, demon-
strating its ability to reduce management costs while
incurring only modest performance overhead. Experi-
ments were conducted on VMware ESX 3.0 running on
an IBM BladeCenter with 14 IBM HS20 eServer blades
with dual 3.06 GHz Intel Xeon CPUs, 2.5 GB RAM,
and a Q-Logic Fibre Channel 2312 host bus adapter con-
nected to an IBM ESS Shark SAN with 1 TB of disk
space. The blades were connected by a gigabit Ether-
net switch. This is a typical virtualization infrastructure
in an enterprise computing environment where all vir-
tual machines are centrally stored and run. We compare
plain Linux VMs with a virtual block device stored on
the SAN and formatted with the ext3 file system to VMs
managed by Strata with the layer repository also stored
on the SAN. By storing both the plain VM’s virtual block
device and Strata’s layers on the SAN, we eliminate any
differences in performance due to hardware architecture.

To measure management costs, we quantify the time
taken by two common tasks, provisioning and updating
VAs. We quantify the storage and time costs for pro-
visioning many VAs and the performance overhead for
running various benchmarks using the VAs. We ran ex-
periments on five VAs: an Apache web server, a MySQL
SQL server, a Samba file server, an SSH server provid-
ing remote access, and a remote desktop server provid-
ing a complete GNOME desktop environment. While the
server VAs had relatively few layers, the desktop VA has
very many layers. This enables the experiments to show
how the VLFS performance scales as the number of lay-
ers increases. To provide a basis for comparison, we pro-
visioned these VAs using (1) the normal VMware virtu-
alization infrastructure and plain Debian package man-

Apache MySQL Samba SSH Desktop
Plain 184s 179s 183s 174s 355s
Strata 0.002s 0.002s 0.002s 0.002s 0.002s
QCOW2 0.003s 0.003s 0.003s 0.003s 0.003s

Table 1: VA Provisioning Times

agement tools, and (2) Strata. To make a conservative
comparison to plain VAs and to test larger numbers of
plain VAs in parallel, we minimized the disk usage of
the VAs. The desktop VA used a 2 GB virtual disk, while
all others used a 1 GB virtual disk.

6.1 Reducing Provisioning Times
Table 1 shows how long it takes Strata to provision VAs
versus regular and COW copying. To provision a VA us-
ing Strata, Strata copies a default VMware VM with an
empty sparse virtual disk and provides it with a unique
MAC address. It then creates a symbolic link on the
shared file system from a file named by the MAC address
to the layer definition file that defines the configuration
of the VA. When the VA boots, it accesses the file de-
noted by its MAC address, mounts the VLFS with the
appropriate layers, and continues execution from within
it. To provision a plain VA using regular methods, we
use QEMU’s qemu-img tool to create both raw copies
and COW copies in the QCOW2 disk image format.

Our measurements for all five VAs show that using
COW copies and Strata takes about the same amount of
time to provision VAs, while creating a raw image takes
much longer. Creating a raw image for a VAs takes 3 to
almost 6 minutes and is dominated by the cost of copy-
ing data to create a new instance of the VA. For larger
VAs, these provisioning times would only get worse. In
contrast, Strata provisions VAs in only a few millisec-
onds because a null VMware VM has essentially no data
to copy. Layers do not need to be copied, so copying
overhead is essentially zero. While COW images can
be created in a similar amount of time, they do not pro-
vide any of the management benefits of Strata, as each
new COW image is independent of the base image from
which it was created.

6.2 Reducing Update Times
Table 2 shows how long it takes to update VAs us-
ing Strata versus traditional package management. We
provisioned ten VA instances each of Apache, MySQL,
Samba, SSH, and Desktop for a total of 50 provisioned
VAs. All were kept in a suspended state. When a se-
curity patch was made available for the tar package
installed in all the VAs, we updated them [18]. Strata
simply updates the layer definition files of the VM tem-
plates, which it can do even when the VAs are not active.
When the VA is later resumed during normal operation,

11

36 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

1.0

10.0

100.0

1000.0

10000.0

100000.0

1 VM 5 VMs 50 VMs

S
iz

e
 (

M
B

)
Raw VM Disk

COW VM Disk
Strata

Figure 6: Storage Requirements

it automatically checks to see if the layer definition file
has been updated and updates the VLFS namespace view
accordingly, an operation that is measured in microsec-
onds. To update a plain VA using normal package man-
agement tools, each VA instance needs to be resumed and
put on the network. An administrator or script must ssh
into each VA, fetch and install the update packages from
a local Debian mirror, and finally re-suspend the VA.

Table 2 shows the total average time to update each
VA using traditional methods versus Strata. We break
down the update time into times to resume the VM, get
access to the network, actually perform the update, and
re-suspend the VA. The measurements show that the cost
of performing an update is dominated by the manage-
ment overhead of preparing the VAs to be updated and
not the update itself. Preparation is itself dominated by
getting an IP address and becoming accessible on a busy
network. While this cost is not excessive on a quiet net-
work, on a busy network it can take a significant amount
of time for the client to get a DHCP address, and for the
ARP on the machine controlling the update to find the
target machine. The average total time to update each
plain VA is about 73 seconds. In contrast, Strata takes
only a second to update each VA. As this is an order
of magnitude shorter even than resuming the VA, Strata
is able to delay the update to a point when the VA will
be resumed from standby normally without impacting its
ability to quickly respond. Strata provides over 70 times
faster update times than traditional package management
when managing even a modest number of VAs. Strata’s
ability to decrease update times would only improve as
the number of VAs being managed grows.

Plain Strata
VM Wake 14.66s NA
Network 43.72s NA
Update 10.22s 1.041s
Suspend 3.96s NA
Total 73.2s 1.041s

Table 2: VA Update Times

6.3 Reducing Storage Costs

Figure 6 shows the total storage space required for dif-
ferent numbers of VAs stored with raw and COW disk
images versus Strata. We show the total storage space
for 1 Apache VA, 5 VAs corresponding to an Apache,
MySQL, Samba, SSH, and Desktop VA, and 50 VAs cor-
responding to 10 instances of each of the 5 VAs. As ex-
pected, for raw images, the total storage space required
grows linearly with the number of VA instances. In con-
trast, the total storage space using COW disk images and
Strata is relatively constant and independent of the num-
ber of VA instances. For one VA, the storage space re-
quired for the disk image is less than the storage space
required for Strata, as the layer repository used contains
more layers than those used by any one of the VAs. In
fact, to run a single VA, the layer repository size could
be trimmed down to the same size as the traditional VA.

For larger numbers of VAs, however, Strata provides
a substantial reduction in the storage space required, be-
cause many VAs share layers and do not require dupli-
cate storage. For 50 VAs, Strata reduces the storage
space required by an order of magnitude over the raw
disk images. Table 3 shows that there is much dupli-
cation among statically provisioned virtual machines, as
the layer repository of 405 distinct layers needed to build
the different VLFSs for multiple services is basically the
same size as the largest service. Although initially Strata
does not have an significant storage benefit over COW
disk images, as each COW disk image is independent
from the version it was created from, it now must be
managed independently. This increases storage usage, as
the same updates must be independently applied to many
independent disk images

6.4 Virtualization Overhead

To measure the virtualization cost of Strata’s VLFS,
we used a range of micro-benchmarks and real appli-
cation workloads to measure the performance of our
Linux Strata prototype, then compared the results against
vanilla Linux systems within a virtual machine. The vir-
tual machine’s local file system was formatted with the
Ext3 file system and given read-only access to a SAN
partition formatted with Ext3 as well. We performed
each benchmark in each scenario 5 times and provide the
average of the results.

Repo Apache MySQL Samba SSH Desktop
1.8GB 217MB 206MB 169MB 127MB 1.7GB
Layer 43 23 30 12 404
Shared 191MB 162MB 152MB 123MB 169MB
Unique 26MB 44MB 17MB 4MB 1.6GB

Table 3: Layer Repository vs. Static VAs

12

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 37

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

Postmark Kernel Apache

T
im

e
 (

s
)

Plain VM
Strata VM

Figure 7: Application Benchmarks

To demonstrate the effect that Strata’s VLFS has on
system performance, we performed a number of bench-
marks. Postmark [7], the first benchmark, is a synthetic
test that measures how the system would behave if used
as a mail server. Our postmark test operated on files be-
tween 512 and 10K bytes, with an initial set of 20,000
files, and performed 200,000 transactions. Postmark is
very intensive on a few specific file system operations
such as lookup(), create(), and unlink(), be-
cause it is constantly creating, opening, and removing
files. Figure 7 shows that running this benchmark within
a traditional VA is significantly faster than running it in
Strata. This is because as Strata composes multiple file
system namespaces together, it places significant over-
head on those namespace operations.

To demonstrate that postmark’s results are not indica-
tive of application oriented performance, we ran two
application benchmarks to measure the overhead Strata
imposes in a desktop and server VA scenario. The
first benchmark was a multi-threaded build of the Linux
2.6.18.6 kernel with two concurrent jobs using the two
CPUs allocated to the VM. In all scenarios, we added the
8 software layers required to build a kernel to the layers
needed to provide the service. Figure 7 shows that while
Strata imposes a slight overhead on the kernel build com-
pared to the underlying file system it uses, the cost is
minimal, under 5% at worst.

The second benchmark measured the amount of HTTP
transactions that were able to be completed per second to
an Apache web server placed under load. We imported
the database of a popular guitar tab search engine and
used the http load [13] benchmark to continuously
performed a set of 20 search queries on the database
until 60,000 queries in total have been performed. For
each case that did not already contain Apache, we added
the appropriate layers to the layer definition file to make
Apache available. Figure 7 shows that Strata imposes a
minimal overhead of only 5%.

While the Postmark benchmark demonstrated that the
VLFS is not an appropriate file system for workloads that
are heavy with namespace operations, this shouldn’t pre-
vent Strata from being used in those scenarios. No file
system is appropriate for all workloads and no system
has to be restricted to simply using one file system. One
can use Strata and the VLFS to manage the system’s con-
figuration while also providing an additional traditional
file system on a seperate partition or virtual disk drive
to avoid all the overhead the VLFS imposes. This will
be very effective for workloads, such as the mail server
Postmark is emulating, where namespace heavy opera-
tions, such as a mail server processing its mail queue,
can be kept on a dedicated file system.

7 Conclusions and Future Work

Strata introduces a new and better way for system admin-
istrators to manage virtual appliances using virtual lay-
ered file systems. Strata integrates package management
semantics with the file system by using a novel form of
file system unioning enable dynamic composition of file
system layers. This provides powerful new management
functionality for provisioning, upgrading, securing, and
composing VAs. VAs can be quickly and simply provi-
sioned as no data needs to be copied into place. VAs can
be easily upgraded as upgrades can be done once cen-
trally and applied atomically, even for a heterogeneous
mix of VAs and when VAs are suspended or turned off.
VAs can be more effectively secured since file system
modifications are isolated so compromises can be eas-
ily identified. VAs can be composed as building blocks
to create new systems since file system composition also
serves as the core mechanism for creating and maintain-
ing VAs. We have implemented Strata on Linux by pro-
viding the VLFS as a loadable kernel modules, but with-
out requiring any source code level kernel changes, and
have demonstrated how a Strata can be used in real life
situations to improve the ability of system administra-
tors to manage systems. Strata significantly reduces the
amount of disk space required for multiple VAs, and al-
lows them to be provisioned almost instantaneously and
quickly updated no matter how many are in use.

While Strata just exists as a lab prototype today, there
are few steps that could make it significantly more de-
ployable. First, our changes to UnionFS should either be
integrated with the current version of UnionFS or with
another unioning file system. Second, better tools should
be created for managing the creation and management of
individual layers. This can include better tools for con-
verting layers from existing Linux distributions as well
as new tools that enable layers to be created in a way
that takes full advantage of Strata’s concepts. Third, the
ability to to integrate Strata’s concepts with cloud com-

13

38 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

puting infrastructures, such as Eucalyptus, should be in-
vestigated.

Acknowledgments

Carolyn Rowland provided helpful comments on earlier
drafts of this paper. This work was supported in part by
AFOSR MURI grant FA9550-07-1-0527 and NSF grants
CNS-1018355, CNS-0914845, and CNS-0905246.

References

[1] The RPM Package Manager. http://www.
rpm.org/.

[2] B. Byfield. An Apt-Get Primer. http://www.
linux.com/articles/40745, Dec. 2004.

[3] J. Capps, S. Baker, J. Plichta, D. Nyugen,
J. Hardies, M. Borgard, J. Johnston, and J. H.
Hartman. Stork: Package Management for Dis-
tributed VM Environments. In The 21st Large In-
stallation System Administration Conference, Dal-
las, TX, Nov. 2007.

[4] R. Chandra, N. Zeldovich, C. Sapuntzakis, and
M. S. Lam. The Collective: A Cache-Based System
Management Architecture. In The 2nd Symposium
on Networked Systems Design and Implementation,
pages 259–272, Boston, MA, Apr. 2005.

[5] D. R. Cheriton. The V Distributed System. Com-
munications of the ACM, 31(3):314–333, Mar.
1988.

[6] J. Fernandez-Sanguino. Debian GNU/Linux
FAQ - Chapter 8 - The Debian Package Man-
agement Tools. http://www.debian.org/
doc/FAQ/ch-pkgtools.en.html.

[7] J. Katcher. PostMark: A New File System Bench-
mark. Technical Report TR3022, Network Appli-
ance, Inc., Oct. 1997.

[8] G. Kim and E. Spafford. Experience with Tripwire:
Using Integrity Checkers for Intrusion Detection.
In The 1994 System Administration, Networking,
and Security Conference, Washington, DC, Apr.
1994.

[9] M. McLoughlin. QCOW2 Image Format.
http://www.gnome.org/˜markmc/
qcow-image-format.htm, Sept. 2008.

[10] G. Niemeyer. Smart Package Manager. http:
//labix.org/smart.

[11] J.-S. Pendry and M. K. McKusick. Union Mounts
in 4.4BSD-lite. In The 1995 USENIX Technical
Conference, New Orleans, LA, Jan. 1995.

[12] B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtu-
alization Aware File Systems: Getting Beyond the
Limitations of Virtual Disks. In 3rd Symposium
on Networked Systems Design and Implementation,
pages 353–366, San Jose, CA, May 2006.

[13] J. Poskanzer. http://www.acme.com/
software/http_load/.

[14] S. Potter and J. Nieh. Apiary: Easy-to-Use Desk-
top Application Fault Containment on Commodity
Operating Systems. In The 2010 USENIX Annual
Technical Conference, pages 103–116, June 2010.

[15] D. Project. DDP Developers’ Manuals. http://
www.debian.org/doc/devel-manuals.

[16] S. Quinlan and S. Dorward. Venti: A New Ap-
proach to Archival Storage. In 1st USENIX confer-
ence on File and Storage Technologies, Monterey,
CA, Jan. 2002.

[17] D. Reimer, A. Thomas, G. Ammons, T. Mummert,
B. Alpern, and V. Bala. Opening Black Boxes: Us-
ing Semantic Information to Combat Virtual Ma-
chine Image Sprawl. In The 2008 ACM Interna-
tional Conference on Virtual Execution Environ-
ments, pages 111–120, Seattle, WA, Mar. 2008.

[18] F. Weimer. DSA-1438-1 Tar – Several Vul-
nerabilities. http://www.ua.debian.org/
security/2007/dsa-1438, Dec. 2007.

[19] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versa-
tility and Unix Semantics in Namespace Unifica-
tion. ACM Transactions on Storage, 2(1):1–32,
Feb. 2006.

14

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 39

40 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

•

•

•

•

•

•

•

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 41

42 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

[a − b] [c − d]

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 43

•
•

•

•

44 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

(s, t)

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 45

46 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

s t

•

•

•

•

•

•

•

•

•

•

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 47

48 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

•

•

•

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 49

•

•

•

•

50 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

•

•

•

•

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 51

•

•

•

•

•

•

•

52 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

•

•

•

•

•

•

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 53

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

54 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 55

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 57

Automated Planning for Configuration Changes

Herry Herry
University of Edinburgh

Edinburgh, UK
h.herry@sms.ed.ac.uk

Paul Anderson
University of Edinburgh

Edinburgh, UK
dcspaul@ed.ac.uk

Gerhard Wickler
University of Edinburgh

Edinburgh, UK
g.wickler@ed.ac.uk

Abstract

This paper describes a prototype implementation of a
configuration system which uses automated planning
techniques to compute workflows between declarative
states. The resulting workflows are executed using the
popular combination of ControlTier and Puppet. This al-
lows the tool to be used in unattended “autonomic” situ-
ations where manual workflow specification is not feasi-
ble. It also ensures that critical operational constraints
are maintained throughout the execution of the work-
flow. We describe the background to the configuration
and planning techniques, the architecture of the proto-
type, and show how the system deals with several exam-
ples of typical reconfiguration problems.

Keywords: configuration management, infrastruc-
ture, cloud computing, planning, IaaS

1 Introduction

The growing size and complexity of computing infras-
tructures has increased awareness of the need for good
system configuration tools, and most sites now use some
form of tool to manage their configurations. Further-
more, declarative specifications are now widely accepted
as the most appropriate approach - the specification de-
scribes the “desired” state of the system, and the tool
computes the necessary actions to move the system from
its current state into this desired state. This has the ad-
vantage that the final state of the system is explicitly
specified, and we can have some confidence that the state
of the running system matches our requirements. Previ-
ous approaches were more error-prone because they in-
volved specifying the actions (for example, using imper-
ative scripts), and the final outcome would not always
be obvious. With varying degrees of strictness, most of
the currently popular tools take a broadly declarative ap-
proach - for example, Puppet [16] , Cfengine [3], BCFG
[4] and LCFG [1].

However, none of the above tools make any guaran-
tees about the order of the changes involved in imple-
menting a configuration change. When creating a new
service, this is not normally an issue - we specify the re-
quirements and the tool makes all the necessary changes
(in some random order). When the tool has finished, we
have a running system to our specification. However, if
we are making configuration changes to an existing sys-
tem, we may well care about the state of the configura-
tion during the change; for example, if we want to make
a transition from using one server, to using a different
one, then we probably want to start the new server, and
transfer the clients before shutting down the old one.

Such transitions are often performed manually - the
administrator will work out a number of intermediate
stages (server B started, clients all using server B, server
A stopped), and check that each state has been achieved
before presenting the tool with the next state. However,
this is both time consuming, error prone, and not suitable
for unattended use - for example where we want to make
a configuration change “autonomically” in response to
some failure or change in load.

One approach to this problem has been the use of man-
ual workflow tools. These allow workflows such as the
previous example to be captured and stored for automatic
use - a particular workflow can then be invoked and the
tool will take care of scheduling the separate stages in the
given order. ControlTier [5] and IBM Tivoli Provision-
ing Manager [12] are examples which provide this kind
of capability. However, this still requires that the work-
flows are computed manually. Even in a small system, a
very large number of workflows can be required to cater
for every eventuality - for example, moving from every
possible failed state into a working state. And choosing
an appropriate workflow to suit a particular goal state is
not always obvious - indeed such manual workflows are
conceptually similar to the imperative scripts which are
no longer popular because of their unreliability.

An alternative approach is to make use of automated

58 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

planning technology to generate workflows “on the fly”.
This allows us to specify the current and goal states, to-
gether with a set of constraints on the intermediate stages
- for example, all clients must always point at a working
server. The intermediate states are then computed auto-
matically, and these can then be presented in order to the
configuration tool to effect a smooth transition.

This paper describes an experimental system which
applies established AI planning tools to automatically
generate workflows between declarative system states.
The resulting intermediate states are implementable in
Puppet and can be scheduled by ControlTier to produce
a fully-automated system. We start (section 2) with a full
“walk through” of a simple example, based on the server-
transition problem described above. Section 3 then cov-
ers the background in more detail, including system con-
figuration and automated planning technology. Section 4
describes the prototype system, section 5 presents some
more complex examples, section 6 concludes with a dis-
cussion of some of the problems, and section 7 presents
possible future directions.

2 An Example

Assume we have a system consisting of two servers A
and B, and one client C. Figure 1a shows the current
state:

1. A.run = true (A is running),

2. B.run = false (B is stopped),

3. C.server = A (C is using a service of A).

The administrator aims to change the configuration to
the goal state shown in figure 1b i.e.:

1. A.run = false (A is stopped),

2. B.run = true (B is running),

3. C.server = B (C is using a service of B).

Since C depends on the server’s service, the changes
must be implemented under a particular constraint i.e.
C must always reference a running server.

(a) Current state (b) Goal state

Figure 1: States of the system.

If we use any declarative tool to implement these
changes, then there are six possible sequences of states
that could occur i.e.:

1. A.run = false, C.server = B, B.run = true;

2. C.server = B, A.run = false, B.run = true;

3. B.run = true, A.run = false, C.server = B;

4. A.run = false, B.run = true, C.server = B;

5. C.server = B, B.run = true, A.run = false;

6. B.run = true, C.server = B, A.run = false.

Any of these sequences could appear in practice because
the declarative tools implement the changes by executing
the actions in an essentially indeterminate order. Unfor-
tunately, only one of these sequences (#6), satisfies the
required constraint while others do not. Hence, a declar-
ative tool is highly likely to produce change sequence
which leaves the system inoperative for a period of time
during the change.

To address the problem, the automated planning tech-
nique used in our prototype creates the workflow auto-
matically, based on the given goal states and the available
actions. The prototype will generate a workflow which
consists of a sequence of actions that satisfies an order-
ing constraint. Each action has preconditions which are
constraints that have to be satisfied before executing the
action, and effects which are states that will be attained
after executing the action.

The prototype has the following actions pre-defined in
the actions database:

1. start-server

parameters: <server>

preconditions: <server>.run = false

effects: <server>.run = true

2. stop-server

parameters: <server>

preconditions:

<server>.run = true

(forall <client>

<client>.server != <server>)

effects: <server>.run = false

3. change-reference

parameters: <server1> <server2> <client>

preconditions:

<client>.server = <server1>

<server2>.run = true

<client>.server != <server2>

effects: <client>.server = <server2>

To generate the workflow, the administrator (or some
autonomic system) simply needs to declare the goal
states:

1. C.server = B

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 59

2. A.run = false

Based on the above goal states and the available ac-
tions, our prototype generates the following ControlTier
workflow:

<command name="config_changes"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="1">

<command name="start-server_B"/>

<command name="reset-reference_A_B_C"/>

<command name="stop-server_A"/>

</workflow>

</command>

<command name="start-server_B" description=""

command-type="Command" is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>start-server.pp B

</argument-string>

</command>

<command name="change-reference_A_B_C"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>change-reference.pp A B C

</argument-string>

</command>

<command name="stop-server_A" description=""

command-type="Command" is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-server.pp A

</argument-string>

</command>

Submitting this workflow to ControlTier implements the
configuration change using the valid sequence of actions
(#6).

This example shows that the prototype is able to elim-
inate the sequencing problem that exists in declarative
tools. Moreover, the prototype also simplifies the config-
uration tasks since it only requires the administrator to
declare the goal states, and not the explicit workflow.

3 Background

This section summarises the approaches to system con-
figuration discussed in the introduction, and surveys
some background work on automated planning tech-
niques. It concludes with a discussion of some related
work in applying planning techniques to the configura-
tion problem.

3.1 System Configuration
As noted in the introduction, approaches to system con-
figuration have mostly evolved via the the following
stages:

• Manual configuration - the administrator manu-
ally computes the actions necessary to change from
one configuration to another, and then manually ex-
ecutes the commands necessary to implement this.
Clearly, this is error prone, time-consuming, and it
is difficult to prove reliably that a given sequence
of changes will result in the required configuration
under all circumstances.

• Scripted changes - similar to the previous ap-
proach, except that the sequence of changes is cap-
tured in an imperative script, allowing it to be ex-
ecuted multiple times, on different systems. This
clearly makes it easier to deal with large numbers
of systems, and until comparatively recently, this
was probably the most common approach to con-
figuration for many people. However, scripting still
suffers from most of the problems of the manual ap-
proach. In particular, there is a tendency to blindly
apply scripts to situations which do not meet the
necessary preconditions, and the outcome can be
very unpredictable.

• Declarative tools - currently, the most common ap-
proach in practice is probably to use a tool which al-
lows a declarative specification of the desired state.
The tool will then compute and implement the nec-
essary changes (in an essentially indeterminate or-
der). This guarantees that the resulting configura-
tion matches the required specification, regardless
of the starting point. As noted in the introduc-
tion, typical tools include Puppet [16], Cfengine [3],
BCFG [4] and LCFG [1].

• Fixed workflow orchestration - in many cases,
it is now essential to be able to perform se-
quences on configuration changes automatically,
and/or unattanded, and use of fixed workflow tools
is becoming more common. As noted in the intro-
duction, ControlTier [5] and IBM Tivoli Provision-
ing Manager [12] are typical examples.

3.2 Automated Planning
Automated planning techniques generate a plan (work-
flow) automatically by computing a sequence of actions
which will transition a system from some initial state to
some required goal state. Each action has preconditions
which are constraints that have to be satisfied before ex-
ecuting the action, and effects which are conditions that
will be true after executing the action1.

1Formally, a planning problem can be defined as P = (Σ,si,Sg),
where Σ = (S,A,γ) is a state transition system, si ∈ S is the initial
state, and Sg ⊂ S is a set of goal states, A is a set of actions, γ is a
state transition function, find a sequence of action 〈a1,a2, . . . ,ak〉 cor-

3

60 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Practical implementations of automated planners use
search algorithms to find an appropriate sequence of ac-
tions. There are several approaches to improving the ef-
ficiency of a simple brute-force search:

• State-space planning uses a subset of the state
space as the search space where nodes correspond
to the world states, arcs correspond to the state tran-
sitions and a path in the search space corresponds to
the plan. The algorithms try to find a plan that satis-
fies the goal from the current state using particular
heuristics to minimize the computing time. Metric-
FF [10] and SGPlan [11] are examples of planners
that use this approach.

• Plan-space planning uses the plan space as the
search space where nodes are partially specified
plans and arcs are the plan refinement operations
intended to further complete a partial plan. The al-
gorithms try to eliminate all the flaws in the initial
partial plan which is either an unsatisfied sub-goal
or a threat. The final plan will bring the system from
the initial to the goal state. Planners that use this ap-
proach include UCPOP [15] and VHPOP [20].

• Planning-Graph uses a graph structure where
nodes correspond to world state propositions and
actions, and arcs correspond to preconditions and
effects of actions. The algorithms expand the graph
from the initial state until reaching the last layer that
contains all goals which must not be mutually ex-
clusive. The solution (plan) can be found by apply-
ing a backward-search algorithm from the last until
reaching the first proposition layer. Graphplan plan-
ner [2] and LPG [8] are examples of planners that
use this approach.

• Hierarchical Task Network (HTN) planning uses
algorithms that decompose the given tasks using
pre-defined methods until it reaches a set of prim-
itive tasks and no non-primitive tasks remain. The
tasks are organized as a collection called a task net-
work which consists of a set of tasks and a set of
constraints. O-Plan [19] is an example of planner
that use this approach.

3.3 Related Works
There has been some previous works on the use of auto-
mated planning techniques for sequencing configuration
changes in computing infrastructures. For example:

Keller et al. [13] introduced CHAMPS which trans-
lates the requested operations into a set of imperative

responding to a sequence of state transitions 〈si,s1, . . . ,sk〉 such that
s1 = γ (si,a1) ,s2 = γ (s1,a2) , . . . ,sk = γ (sk−1,ak), and sk ∈ Sg.

tasks and organizes them as a workflow to satisfy the
constraints as well as maximize the high degree of par-
allelism. However CHAMPS does not reason about the
current state of target system as well as the preconditions
and effects of each task which could lead to an unsound
plan.

In [6], an object modelling language is used to specify
the goal states and the operational capabilities of the con-
figured components. The model is mapped in Planning
Domain Definition Language (PDDL) [7] and given as
the input to a POP (partial-order planning) planner which
generates the workflow. Hagen [9] models the compo-
nent life-cycle using CIM (Common Information Model)
objects which are stored in a Configuration Management
Database (CMDB). Based on the defined goal states, the
state-space planner called LPS (Logical Planning Stat)
then directly manipulates the objects in the CMDB to
generate the workflow.

Both approaches demonstrate the viability of auto-
mated planning techniques for changes to the configu-
ration of a computing infrastructure. They also provide
very flexible solutions. However the modelling and the
specifications are comparatively complex, and it is not
clear how these might be exposed to end-users in a prac-
tically useful way. Levanti [14] provides a promising ap-
proach to simplifying the interface to the planner – the
user is presented with a set of tags which hide much of
the configuration details (states and operations). This en-
ables the user to define and refine the goal state by it-
eratively selecting one or more tags. The workflow is
generated by mapping the selected tags in SPPL (Stream
Processing Planning LanguageL) [17] as the input for the
SPPL planner [18].

We are not aware of any other work which meets our
specific aims of using a standard planner to create a sys-
tem which interfaces easily with common system config-
uration tools.

4 Prototype

We have developed a prototype implementation which
combines an automated planner, together with Con-
trolTier and Puppet to generate and execute plans for
configuration changes. This prototype is definitely not
(yet) a production-quality tool. However, our main aim
has been to prove that the concepts would be applicable
to a real environment, so the tool uses production-quality
components, and is capable of generating practical work-
flows from specifications of realistic problems.

As illustrated in figure 2, the prototype consists of four
main components i.e. actions database, translator, plan-
ner, and mapper. More details of the architectures’ com-
ponent are described as follows (each number represents
the component’s number in figure 2):

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 61

Figure 2: System Architecture of The Prototype

• The actions database (2) holds a library of actions,
together with their required preconditions and ef-
fects. The actions can be written by anyone such as
third-party software vendors, in-house software en-
gineers, system administrators, or other specialists.

• A tool called facter (11) is used to acquire the cur-
rent state (3) of the system. The outputs are ag-
gregated by a translator (12) and then mapped into
PDDL.

• The administrator specifies a declarative goal state
(1) which is then mapped into PDDL.

• The planner (4) generates a plan (5) that will im-
plement the new specification on the target system.
This is based on the available predefined actions
(from the actions database), the current state (from
facter) and the goal state (supplied by the adminis-
trator).

• The mapper (6) uses the plan (5) to generate a Con-
trolTier workflow-command (7) which consists of
a set of other workflow-commands or primitive-
commands. For each primitive-command, the map-
per generates a puppet manifest file (8) to imple-
ment the action associated with the plan.

• ControlTier (9) manages the execution of the work-
flow by sending the puppet manifest file to the ap-
propriate target node and requesting Puppet (10) to
implement it.

In the latest prototype, we use LPG [8] as the plan-
ner. The main reason is that LPG can generate a plan
(workflow) where all actions in each stage are mutually
exclusive. This is an advantage because actions of each
stage can be invoked in parallel by declarative tools to
reduce the execution time. However, since we use the

PDDL version 2.1 as the standard input for the planner,
the prototype can utilize any available automated planner
that supports it.

Currently, besides the translator, all parts have been
implemented in Ruby and C. The implementation of the
translator is straightforward i.e. translating the facts that
are aggregated by the facter to a set of propositions in
PDDL. For the actions database, all available actions are
currently stored as individual files. If the number of ac-
tions were to become large, we could use a more struc-
tured database to improve storing and querying perfor-
mance. For configuring other equipment (e.g. a router),
we could employ a proxy server as a bridge to communi-
cate with the target equipment in order to implement the
new specification and acquire its current state.

In the process of generating the plan, the planner may
use generic and domain-specific actions. A generic ac-
tion, which is called as a “configuration pattern”, is a
reusable action which is applicable on any configuration
problem. Whilst a domain-specific action is an action
which is applicable to particular configuration problem.
We will show the examples of these types of action in the
experiments section.

An error could occur during the implementation of any
part of the plan. For example, the “change-reference”
action cannot be executed if the target server is broken.
To address this problem, the prototype could be set to
identify the error from the execution log and perform the
re-planning process to compute an alternative plan in or-
der to attain the same goal state. If the alternative plan
exists, it will then be implemented on the target system.
Otherwise, the prototype could ask the administrator to
modify the goal state.

The prototype could also have a self-healing capabil-
ity simply by evaluating the current and the goal state
periodically. It will then generate and execute a plan for
correcting any drift in the configuration of the system.

5

62 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

5 Experiments

5.1 Web Services
In the first experiment, we reconfigure a system consist-
ing of two web services WS-A and WS-B, a client PC,
and a firewall FW. Currently, PC is using a web service
provided by WS-A through port 8080 of FW and WS-B
is stopped. As shown in figure 3a, the system’s current
state is:

1. WS-A.run = true

2. WS-A.enable firewall = true

3. WS-A.FW.port = 8080

4. WS-B.run = false

5. WS-B.enable firewall = true

6. PC.service = WS-A

7. FW.ports(8080).open = true

8. FW.ports(9090).open = false

The administrator aims to shutdown WS-A for main-
tenance and redirect PC’s reference to WS-B. This will
change the configuration to the goal state shown in figure
3b which can be specified declaratively as follows:

1. WS-A.run = false

2. PC.service = WS-B

3. WS-B.FW.port = 9090

4. FW.ports(8080).open = false

In addition, the administrator must satisfy the follow-
ing constraints in the implementation of the changes:

1. The PC depends on the web service, thus it must
always reference to a running web service.

2. Any unused port of F must be closed to minimize
the vulnerability of the system.

To enable the planner to generate the right workflow,
the first constraint is put in the preconditions of action
stop-service. And the second one is declaratively speci-
fied in the goal state (#4). The following applicable ac-
tions are available in the actions database:

1. start-service

parameters: <service> <vm>

preconditions:

<service>.run = false

<vm>.has = <service>

<vm>.run = true

effects: <service>.run = true

(a) Current state (b) Goal state

Figure 3: The states of the web services system.

2. stop-service

parameters: <service>

preconditions:

<service>.run = true

(forall (<client>)

<client>.service != <service>)

effects: <service>.run = false

3. open-fport

parameters: <firewall> <port>

preconditions:

<firewall>.<port>.open = false

effects:

<firewall>.<port>.open = true

4. close-fport

parameters: <firewall> <port>

preconditions:

<firewall>.<port>.open = true

(forall (<service>)

<service>.<firewall>.port = <port>)

effects:

<firewall>.<port>.open = false

5. assign-fport

parameters: <service1> <firewall> <port>

preconditions:

<firewall>.<port>.open = true

<service1>.enable_firewall = true

<service1>.<firewall>.port != <port>

(forall (<service2>)

<service2>.<firewall>.port != <port>)

effects:

<service1>.<firewall>.port = <port>

6. unassign-port

parameters: <service> <firewall> <port>

preconditions:

<service>.<firewall>.port = <port>

(forall (<client>)

<client>.service != <service>)

effects:

<server>.<firewall>.port != <port>

7. change-ref-fport

parameters: <service1> <service2>

<client> <firewall> <port>

preconditions:

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 63

<client>.service = <service1>

<client>.service != <service2>

<service2>.run = true

<service2>.<firewall>.port = <port>

effects:

<client>.service != <service1>

<client>.service = <service2>

By using information of the current and goal state with
the application actions in the actions database, the proto-
type generated the following ControlTier workflow:

<command name="config_changes"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="1">

<command name="sub-workflow-1"/>

<command name="assign-fport_WS-B_FW_P9090"/>

<command name=

"change-ref-fport_WS-A_WS-B_PC_FW_P9090"/>

<command name="sub-workflow-2"/>

<command name="close-fport_FW_P8080"/>

</workflow>

</command>

<command name="sub-workflow-1"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="2">

<command name="start-service_WS-B_VM-B"/>

<command name="open-fport_FW_P9090"/>

</workflow>

</command>

<command name="sub-workflow-2"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="2">

<command name="stop-service_WS-A"/>

<command name="unassign-fport_WS-A_FW_P8080"/>

</workflow>

</command>

The prototype also generated the primitive ControlTier
commands as shown in appendix B.

The generated workflow is a partial-order workflow
which consists of one main workflow-command (con-
fig changes) and two sub-workflow-commands (sub-
workflow-1 and sub-workflow-2). config changes is set
to be executed by one thread to enforce the ordering con-
straint, i.e. a command must be invoked after the pre-
vious one has finished successfully. On the other hand,
each sub-workflow-commands is set to be executed by
two threads2to enable the parallel execution. This is pos-
sible since all commands of the sub-workflow-command
are mutually exclusive.

To implement the changes, the workflow was submit-
ted by the mapper to ControlTier which coordinated the
execution of each commands. Puppet then used the ap-
propriate manifest file to acheive the desired state.

2The number of threads is the same as the number of primitive com-
mands.

5.2 Cloud Burst

(a) Current state

(b) Goal state

Figure 4: The states of the company’s system before and
after the cloud-burst scenario.

In the second experiment, we simulated the cloud-
burst scenario on the computing infrastructure. In this
scenario, an organization must dynamically deploy its
software application from its limited internal computing
resources to the public cloud in order to address a spike
in demand.

We assumed a company has a private cloud infrastruc-
ture which runs various services to serve its 24-hours
operations. One of them, WS-A which is running on
virtual machine VM-A, is the most important web ser-
vice since it processes all financial transaction from com-
pany’s branch offices. Thus, the administrator has pre-
pared a backup web service, WS-B which is installed on
virtual machine VM-B, in case there is a failure on WS-
A.

Unfortunately, due to the limited resource of the phys-
ical machines, the company’s private cloud infrastructure
is not capable of serving the spikes in demand which usu-
ally happens on the last three days of each month. There-
fore, before the spike’s period, the administrator plans to
migrate WS-A temporarily to the public cloud to mini-
mize its response time.

The migration of WS-A from the private to the public
cloud is not an easy task since the administrator must
satisfy the following constraints:

1. During the migration process, the service must al-
ways available for 24-hours a day without any
down-time.

7

64 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

2. The company’s firewall must be reconfigured to al-
low the LAN PCs to have connection with the server
on public cloud.

3. The web service application cannot be installed on
any other machines due to the limitation of the li-
cense.

Based on the above scenario, the current state of the
system is illustrated in figure 4a which can be specified
declaratively as:

1. VM-A.cloud = PRIV-CLOUD

2. VM-A.run = true

3. WS-A.on = VM-A

4. WS-A.run = true

5. PC.service = WS-A

6. VM-B.cloud = PRIV-CLOUD

7. VM-B.run = false

8. WS-B.on = VM-B

9. WS-B.run = false

Where PRIV-CLOUD and PUB-CLOUD are the private
and public cloud infrastructure respectively.

To enable the cloud-burst, the system needs to achieve
the goal state as illustrated in figure 4b. Therefore, the
administrator can reconfigure the system using our pro-
totype by declaring the goal state as:

1. VM-A.cloud = PUB-CLOUD

2. WS-A.FW.port = 8080

3. PC.service = WS-A

4. VM-B.cloud = PRIV-CLOUD

5. VM-B.run = false

Where FW is the name of the company’s firewall.
Fortunately, to generate the workflow, we only need to

add five actions to the actions database since the planner
can reuse the actions from the previous examples. The
five new actions are:

1. start-vm

parameters: <vm> <cloud>

preconditions:

<cloud>.has = <vm>

<vm>.run = false

effects:

<vm>.run = true

2. stop-vm

parameters: <vm>

preconditions:

<vm>.run = true

(forall <service>

if <vm>.has = <service>

then <service>.run = false)

effects:

<vm>.run = false

3. change-ref

parameters: <service-1> <service-2> <client>

preconditions:

<client>.service = <service-1>

<client>.service != <service-2>

<service-2>.run = true

<service-2>.enable_firewall = false

effects:

<client>.service != <service-1>

<client>.service = <service-2>

4. migrate

parameters: <vm> <cloud-1> <cloud-2>

preconditions:

<vm>.run = false

<cloud-1>.has = <vm>

<cloud-2>.is_public = true

effects:

!(<cloud-1>.has = <vm>)

<cloud-2>.has = <vm>

5. set-need-firewall

parameters: <service>

preconditions:

(forall (<firewall> <port>)

<service>.<firewall>.port != <port>)

(forall (<vm> <cloud>)

if (<vm>.has = <service>

and <cloud>.has = <vm>)

then <cloud>.is_public = true)

effects:

<service>.enable_firewall = true

Some of these reusable actions, such as stop-service
and start-service, typically occur in many different situ-
ations and form a set of generic patterns.

After processing the information, the planner will give
its output to the mapper which generated the following
ControlTier workflows:

<command name="config_changes"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="1">

<command name="sub-workflow-1"/>

<command name="start-service_WS-B_VM-B"/>

<command name="change-ref_WS-A_WS-B_PC"/>

<command name="stop-service_WS-A"/>

<command name="stop-vm_VM-A"/>

<command name=

"migrate_VM-A_PRIV-CLOUD_PUB-CLOUD"/>

<command name="sub-workflow-2"/>

<command name="sub-workflow-3"/>

<command name=

"change-ref-fport_WS-B_WS-A_PC_FW_P8080"/>

<command name="stop-service_WS-B"/>

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 65

<command name="stop-vm_VM-B"/>

</workflow>

</command>

<command name="sub-workflow-1"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="2">

<command name="open-fport_FW_P8080"/>

<command name="start-vm_VM-B_PRIV-CLOUD"/>

</workflow>

</command>

<command name="sub-workflow-2"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="2">

<command name="set-need-firewall_WS-A"/>

<command name="start-vm_VM-A_PUB-CLOUD"/>

</workflow>

</command>

<command name="sub-workflow-3"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="2">

<command name="assign-fport_WS-A_FW_P8080"/>

<command name="start-service_WS-A_VM-A"/>

</workflow>

</command>

The prototype also generated the primitive ControlTier
commands as shown in appendix C.

The planner generated the partial-order plan (work-
flow) which has three sub-workflows. Each sub-
workflow has a set of commands that can be run in paral-
lel due to their a mutual exclusive property. Submission
the workflows to ControlTier implemented the new con-
figuration specification that enable WS-A servicing more
clients than before.

If the administrator would like to stop using the public
cloud, WS-A can be migrated back to the private cloud
by easily changing the goal state of the system. The pro-
totype will generate and execute automatically the work-
flow to implement the new specification. In this case, we
can also have a full autonomic configuration tool by re-
placing the administrator with an autonomic agent which
will automatically trigger the migration of the system
from private to the public cloud or vice versa based on
the demands.

6 Conclusions

This work has clearly demonstrated the advantages of
automated planning for system reconfiguration – work-
flows can be automatically generated (providing that a
solution exists) between any two declarative states, en-
abling unattended, autonomic reconfiguration for failure
recovery or other reasons. The generated workflows are
guaranteed (by design) to achieve the desired target state,

at the same time as preserving any necessary proper-
ties of the system during the reconfiguration. We have
also shown that it is possible to build a practical tool
which generates workflows automatically, and uses exist-
ing production-quality tools for the deployment (as well
as the planning).

However, we suspect that the usability of such sys-
tems will be a major challenge – firstly, languages and
interfaces are required to enable working administrators
to easily translate their requirements and specifications
into a form that is usable by the planners. Secondly, ad-
ministrators need to have confidence that the system will
behave in a predictable way – planners are very good at
exploiting a lack of precision in the specification to find
very “creative” and unexpected solutions! The human
interaction aspects of this problem are something which
would benefit from future work.

Error recovery is also a very important area. Reconfig-
urations often occur in precisely those situations where
the system itself is unreliable – for example, during net-
work and components failures, or system overload. Plans
are likely to fail at some intermediate stage, or a cen-
tralised planner may become disconnected and lose track
of the current state of an executing plan.

7 Future Work

We are currently interested in investigating more dis-
tributed, and localised approaches to automated planning
for configuration changes. This will allow more auton-
omy for individual components (thus improving the re-
silience) and break the planning problem into a hierarchy
of problems which are easier to understand and predict.

We believe that our implementation is much closer
than previous work to providing a practical solution for
system administrators who are familiar with current con-
figuration tools such as Puppet. However, most ad-
ministrators would still be unhappy to allow significant
changes to their infrastructure by a completely auto-
mated system - the chances of unexpected and inappro-
priate solutions are still too high. We believe that there
is considerable scope here for further work on appropri-
ate languages and interfaces - perhaps involving mixed
initiative solutions which combine automated planning
with human guidance, and automated explanations of
proposed solutions.

8 Acknowledgments

The authors like to thank Andrew Farrell from HP Labs
Bristol for his valuable contributions. This research is
fully supported by a grant from 2010 HP Labs Innovation
Research Program Award.

9

66 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

References
[1] ANDERSON, P., AND SCOBIE, A. LCFG: The next generation.

In UKUUG Winter Conference (2002).

[2] BLUM, A., AND FURST, M. Fast Planning through Planning
Graph Analysis. Artificial Intelligence 90 (1997), 281–300.

[3] CFENGINE AS. Cfengine - Automatic Server Lifecycle Manage-
ment, 2011.

[4] DESAI, N., LUSK, A., BRADSHAW, R., AND EVARD, R.
BCFG: A Configuration Management Tool for Heterogeneous
Environments. In Proceedings of IEEE International Conference
on Cluster Computing (2003), IEEE Computer Society.

[5] DTO SOLUTIONS. ControlTier, 2011.

[6] EL MAGHRAOUI, K., MEGHRANJANI, A., EILAM, T., KALAN-
TAR, M., AND KONSTANTINOU, A. Model driven provisioning:
Bridging the gap between declarative object models and procedu-
ral provisioning tools. In Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware (2006), pp. 404–
423.

[7] FOX, M., AND LONG, D. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20, 1 (2003), 61–124.

[8] GEREVINI, A., AND SERINA, I. LPG: A planner based on local
search for planning graphs with action costs. In Proceedings of
the Sixth Internatinal Conference on AI Planning and Scheduling
(2002), pp. 12–22.

[9] HAGEN, S., AND KEMPER, A. Model-Based Planning for State-
Related Changes to Infrastructure and Software as a Service In-
stances in Large Data Centers. In 2010 IEEE 3rd International
Conference on Cloud Computing (2010), pp. 11–18.

[10] HOFFMANN, J. The Metric-FF planning system: Translating ”ig-
noring delete lists” to numeric state variables. Journal of Artifi-
cial Intelligence Research 20, 20 (2003), 291–341.

[11] HSU, C., WAH, B., HUANG, R., AND CHEN, Y. Constraint
partitioning for solving planning problems with trajectory con-
straints and goal preferences. In Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-07),
Hyderabad, India (2007).

[12] IBM CORP. Integrated Service Management software, IBM
Tivoli, 2011.

[13] KELLER, A., HELLERSTEIN, J., WOLF, J., WU, K., AND KR-
ISHNAN, V. The CHAMPS system: Change management with
planning and scheduling. In Network Operations and Manage-
ment Symposium, 2004. NOMS 2004. IEEE/IFIP (2004), vol. 1,
pp. 395–408.

[14] LEVANTI, K., AND RANGANATHAN, A. Planning-based con-
figuration and management of distributed systems. In Integrated
Network Management, 2009. IM’09. IFIP/IEEE International
Symposium on (2009), pp. 65–72.

[15] PENBERTHY, J., AND WELD, D. UCPOP: A sound, complete,
partial order planner for ADL. In Proceedings of the 3rd Interna-
tional Conference on Knowledge Representation and Reasoning
(1992), pp. 103–114.

[16] PUPPET LABS. Puppet, 2011.

[17] RIABOV, A., AND LIU, Z. Planning for stream processing sys-
tems. In Proceedings of the 20th National Conference on Artifi-
cial Intelligence - Volume 3 (2005), vol. 20, pp. 1205–1210.

[18] RIABOV, A., AND LIU, Z. Scalable planning for distributed
stream processing systems. In Proceedings of ICAPS (2006).

[19] TATE, A., DALTON, J., AND LEVINE, J. O-Plan: A web-based
AI planning agent. In Proceedings of the National Conference on
Artificial Intelligence (2000), pp. 1131–1132.

[20] YOUNES, H., AND SIMMONS, R. VHPOP: Versatile heuristic
partial order planner. Journal of Artificial Intelligence Research
20, 1 (2003), 405–430.

A The Flow-Chart of The Workflows

Figure 5a and 5b illustrate the flow-charts of the gen-
erated workflows of web services and cloud burst ex-
amples. Each actions are associated with a ControlTier
command as follows:

• a1: start-service_WS-B_VM-B

• a2: open-fport_FW_P9090

• a3: assign-fport_WS-B_FW_P9090

• a4: change-ref-fport_WS-A_WS-B_PC_FW_P9090

• a5: stop-service_WS-A

• a6: unassign-fport_WS-A_FW_P8080

• a7: close-fport_FW_P8080

• b1: open-fport_FW_P8080

• b2: start-vm_VM-B_PRIV-CLOUD

• b3: start-service_WS-B_VM-B

• b4: change-ref_WS-A_WS-B_PC

• b5: stop-service_WS-A

• b6: stop-vm_VM-A

• b7: migrate_VM-A_PRIV-CLOUD_PUB-CLOUD

• b8: set-need-firewall_WS-A

• b9: start-vm_VM-A_PUB-CLOUD

• b10: assign-fport_WS-A_FW_P8080

• b11: start-service_WS-A_VM-A

• b12: change-ref-fport_WS-B_WS-A_PC_FW_P8080

• b13: stop-service_WS-B

• b14: stop-vm_VM-B

10

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 67

(a) The Workflow of Web Services

(b) The Workflow of Cloud Burst

Figure 5: The flow-chart of the workflows.

B Primitive ControlTier Commands of
Web Services

<command

name="start-service_WS-B_VM-B"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-service.pp WS-B VM-B

</argument-string>

</command>

<command name="open-fport_FW_P9090"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-open-fport.pp FW 9090

</argument-string>

</command>

<command name="assign-fport_WS-B_FW_P9090"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>assign-fport.pp WS-B FW 9090

</argument-string>

</command>

<command

name="change-ref-fport_WS-A_WS-B_PC_FW_P9090"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>change-ref-fport.pp WS-A WS-B

PC FW 9090</argument-string>

</command>

<command name="stop-service_WS-A"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-service.pp WS-A

</argument-string>

</command>

<command name="assign-fport_WS-A_FW_P8080"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>unassign-fport.pp WS-A FW 8080

</argument-string>

</command>

<command name="close-fport_FW_P8080"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>close-fport.pp FW 8080

</argument-string>

</command>

C Primitive ControlTier Commands of
Cloud-Burst

<command name="open-fport_FW"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>open-fport.pp FW 8080

</argument-string>

</command>

<command name="start-vm_VM-B_PRIV-CLOUD"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>start-vm.pp B PRIV-CLOUD

</argument-string>

</command>

<command name="start-service_WS-B_VM-B"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>start-service.pp WS-B VM-B

</argument-string>

</command>

<command name="change-ref_WS-A_WS-B_PC"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>change-ref.pp WS-A WS-B PC

</argument-string>

</command>

11

68 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

<command name="stop-service_WS-A"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-service.pp WS-A

</argument-string>

</command>

<command name="stop-vm_VM-A"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-vm.pp VM-A

</argument-string>

</command>

<command

name="migrate_VM-A_PRIV-CLOUD_PUB-CLOUD"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>migrate.pp VM-A PRIV-CLOUD

PUB-CLOUD</argument-string>

</command>

<command name="set-need-firewall_WS-A"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>set-need-firewall.pp

WS-A</argument-string>

</command>

<command name="start-vm_VM-A_PUB-CLOUD"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>start-vm.pp VM-A PUB-CLOUD

</argument-string>

</command>

<command name="assign-fport_WS-A_FW_P8080"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>assign-fport.pp WS-A FW 8080

</argument-string>

</command>

<command name="start-service_WS-A_VM-A"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>start-service.pp WS-A VM-A

</argument-string>

</command>

<command

name="change-ref-fport_WS-B_WS-A_PC_FW_P8080"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>change-ref-fport.pp WS-A WS-A

PC FW 8080</argument-string>

</command>

<command name="stop-service_WS-B"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-service.pp WS-B

</argument-string>

</command>

<command name="stop-vm_VM-B"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-vm.pp VM-B

</argument-string>

</command>

12

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 69

Fine-grained access-control for the Puppet configuration language

Bart Vanbrabant, Joris Peeraer, Wouter Joosen
bart.vanbrabant@cs.kuleuven.be, jorispeeraer@gmail.com, wouter.joosen@cs.kuleuven.be

DistriNet, Dept. of Computer Science,
K.U.Leuven, Belgium

Abstract

System configuration tools automate the configuration
and management of IT infrastructures. However these
tools fail to provide decent authorisation on configuration
input. In this paper we apply fine-grained authorisation
of individual changes on a complex input language of
an existing tool. We developed a prototype that extracts
meaningful changes from the language used in the Pup-
pet tool. These changes are authorised using XACML.
We applied this approach successfully on realistic access
control scenarios and provide design patterns for devel-
oping XACML policies.

1 Introduction

The management of large IT infrastructures needs to be
automated to keep it manageable and reduce the amount
of human errors [3, 11]. A system configuration tool is
software that enables a system administrator to automate
the configuration and management of large IT infrastruc-
tures. These tools address scalability, heterogeneity, and
the consistency of relations between machines [2]. All
system configuration tools have a similar reference archi-
tecture: each managed device runs an agent that manages
the configuration of that device. The agent compares
the current state of the device with the state described
in a policy that is stored in a database or repository on a
central server. This policy determines the configuration
and the state of the entire IT infrastructure. Therefore if
someone adds unauthorised changes to the central policy
this person can control the entire IT infrastructure. Thus
access control to this central policy is required.

System configuration tools can be divided into two
categories based on how the input policy is organised:
database or textual [5] based. The database based tools
often use a graphical interface or command interface to
manipulate their policies. Access control in these tools
is enforced on records in that database. The other input

Figure 1: Overview of the solution presented in this pa-
per.

type uses textual configuration files. The current state-
of-practice of these text based system configuration tools
uses path based access control to prevent unauthorised
access to the textual configuration files but the name and
the path of the file often do not have a relation with the
contents of the file. To be able to use conventional path
based access control, current tools rely on conventions
to determine in which file what configuration statement
may be included. For example network related config-
uration can only be defined in the network.cf config-
uration file. System management tools and path based

1

70 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

access control however cannot prevent a malicious user
from adding network configuration statements to the file
motd.cf.

In “Federated Access Control and Workflow Enforce-
ment in Systems Configuration” [10] we proposed a
method called ACHEL to enforce fine-grained access
control based on the semantics of a change. In other
words ACHEL calculates the operations the user wants
to authorise using the changes in a textual file. We ap-
plied this approach to a minimal configuration language
to prove its viability in a prototype. This prototype used
a custom access control language based on regular ex-
pressions. Our method is language agnostic, except for
the part to give meaning to each change. Figure 1 show
the steps in the ACHEL method.

In this paper we apply the ACHEL method on a con-
figuration language of an existing system configuration
tool. The two research objectives of this paper are:

1. Can we extract the AST from the compiler of a sys-
tem configuration tool and can we reuse this internal
AST or do we need to transform it in order to obtain
differences that are semantically meaningful?

2. How do we authorise changes? Once changes are
known they have to be authorised. We propose
an access control language and design patterns in
this paper that provide the flexibility to express the
different rules in a manageable and understandable
fashion.

In this paper we add fine-grained access control
based on meaningful changes to Puppet [1] and used
XACML [8] to authorise changes. We implemented a
prototype and integrated it with a version control system.
Afterwards we evaluated this prototype by comparing it
with traditional access control in two change scenarios.
An important subset of the Puppet language is supported
and we present design patterns to use the full expressive-
ness of the Puppet language including the unsupported
language constructs with our access control mechanism.

In the remainder of this paper we first give some back-
ground on the ACHEL authorisation mechanism in Sec-
tion 2. Then we look at related work in Section 3. Af-
terwards we discuss the methods used in the differenc-
ing process in Section 4. In this section we also discuss
the problems we encountered by using the AST Puppet
generates. The next step is the actual authorisation. Sec-
tion 5 introduces the XACML framework and proposes
a design pattern for writing policies. Finally in Section 6
we compare our method with other authorisation meth-
ods.

2 The ACHEL authorisation mechanism

The configuration model used by a system management
tool is compiled from an input in the form of textual
source code. This source input is stored on a filesys-
tem or in a repository that uses version tracking. Access
control and authorisation in the state of the art is based
on operations performed on files and directories. In state
of the art system management tools there is often no link
between the file path and the parts of the configuration
model represented in the file. Version control systems
use diff-like algorithms [9] that operate on flat files to
generate changes between two versions of a file. Diff al-
gorithms detect changed lines and produce a list of insert
and remove line operations. Applying access control on
these operations does not make much sense. The oper-
ations are highly syntax dependant and there is only a
weak link between the insert and remove operations and
the configuration model.

In large infrastructures updates are never applied di-
rectly to the production infrastructure. Depending on the
contents of the update or the person that produced the
update, different authorisations can be required. For ex-
ample:

1. all changes from junior administrators need to be
reviewed and approved by a senior administrator

2. the scenario in Figure 2 where a change needs to be
approved by a manager

3. all changes to the production infrastructure out-
side maintenance windows require approval by two
managers

4. in a federated infrastructure changes to the back-
bone network need to be approved by the manage-
ment of each of the administrative domains

Existing system management tools and access control so-
lutions provide no support for these complex workflows.

Our method [10] transforms the updates on the con-
figuration model by comparing the current and the new
version of the input source. It compiles the two versions
to an abstract syntax tree [7]. From the two versions an
edit script is generated that transforms the old AST to
the AST of the new version [4]. This process is repre-
sented in Figure 1. Because we are working on the AST,
we know the semantics of changes made to the nodes in
the abstract syntax tree. Therefore the edit script can be
transformed to operations on entities that exist in the con-
figuration model. Using our method, access control rules
can be expressed in terms of operations on the entities
in the configuration model. For example, instantiating a
new resource, instead of adding a line to the input file
that has a given syntax. These operations are the actions

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 71

Figure 2: Updating the configuration model using access control.

that needs to be authorised. Additionally this method,
opposed to other access control methods, derives the op-
erations to authorise automatically and requests permis-
sion to apply them.

For audit purposes the configuration model is often
stored in version controlled repositories. These reposito-
ries record each change to a configuration file and meta-
data such as the user that made the change and an op-
tional log message. In ACHEL changes to this repository
are digitally signed with the private key of the adminis-
trator. During generation of the edit script and the trans-
formation of the edit script, the owner of each entity and
the author of each change is tracked. The owner of an
entity is the user that added or modified the entity. This
ownership and author information is also exposed to the
access control engine.

We enforce update workflows by using distributed ver-
sion control repositories. Each system administrator that
makes changes to the configuration model has their own
repository. Distributed version control repositories as-
sign a unique identifier to each change based on the con-
tents of the change. To enforce update workflows, a
change is authorised by the owner of a key by signing
this unique identifier and including it as an update in
the repository. Access control rules can require the au-
thorisation of a third party before an update is allowed.
Because each distributed version control repository can
have its own set of access control rules, very flexible up-
date workflows can be enforced.

Figure 2 represents a possible scenario supported by
ACHEL [10]. A system administrator makes a change

that is allowed in his repository but it requires approval
by a manager to push the change into the repository for
the production infrastructure. The sysadmin requests the
manager to review his change. The manager reviews the
change and approves it by signing the identifier of the
change. The sysadmin can now push his change to the
production repository together with the signature of the
manager.

3 Related work

In “A survey of system configuration tools” [5] we eval-
uated several system configuration tools, including their
support for access control and authorisation of changes.
We identified two types of authorisation: either path
based access control or access control based on “re-
sources” in the configuration model. The tools that
support external version repositories can reuse the path
based access control of that repository or the access con-
trol models that the filesystem provides. Other tools
allow fine grained access control on “resources” in a
database using a hierarchy of resources. The system con-
figuration tools that enforce authorisation on “resources”
do this on resources in the configuration model that is
used to generate and deploy configuration files and man-
age each system. The main disadvantage of this method
is that authorisation cannot be performed on language
constructions that are determined at runtime. For exam-
ple the usage of a Collect instruction in Puppet.

“Authorisation and Delegation in the Machination
Configuration System” [6] proposes a method of organ-

3

72 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

ising and delegating access to configuration information.
The author integrated this method in the configuration
management tool Machination. One of the key require-
ments of his method is the ability to authorise access
to configuration aspects individually. He accomplishes
this requirement by authorising the primitive operations
which manipulate the configuration. The configuration
representation used in Machination, is a form of XML
with additional restrictions. These restrictions assure ev-
ery configuration element is addressable by an XPath
query. Upon this representation, a set of primitive op-
erations is defined. These operations edit the configu-
ration by adding, removing, changing and ordering the
individual elements in the configuration input. Authori-
sation is then performed upon the individual operations
needed to transform the configuration. By grouping mul-
tiple elements together such that they can be referred to
by an XPath query, multiple configuration aspects can be
authorised.

Both tools use the principle of authorisation on the in-
dividual elements. Where Machination starts from one
version and uses the operation to obtain the new version,
ACHEL derives the operations that need to be authorised
from the two versions. This paper describes a method
in which the differencing of ACHEL is used to find the
changes made to a file.

4 Extracting changes

The ACHEL authorisation method starts from the con-
figuration file that has been changed. The method con-
sists of two phases. The first phase retrieves the AST
of each file from the Puppet compiler. This AST should
not contain any grammatical constructs anymore for the
differencing algorithm to work. This is not the case for
the AST Puppet produces, it still contains some syntac-
tical leftovers. Therefore a transformation step is also
included in this phase. The second phase compares the
two trees and calculates an edit script that describes the
operation to transform the first AST into the second AST.
This edit script is transformed into meaningful changes
expressed in terms of the language constructs in the Pup-
pet language.

The Puppet language is an expressive language that
also contains control flow and runtime evaluated expres-
sion such as the case statement or virtual and exported
resources. Applying access control to changes that in-
clude these language constructs is very hard with our
method because the effects of such statements are only
known when the “configuration policy” of each managed
device is calculated. In this prototype of the ACHEL au-
thorisation method for Puppet we support a limited set of
language constructs in the Puppet language on which we
can apply authorisation. This set includes creating defi-

nitions, classes, creating resources including using arrays
as identifier and relations. In Section 5.2 we will argue
why this limited set can already be used to create power-
ful access control policies.

4.1 Generating the abstract syntax tree

The ACHEL authorisation mechanism requires access to
the AST of each version of the Puppet manifests. In this
section we describe how we extract the AST from Pup-
pet. The AST from Puppet is not directly usable for our
mechanism because it contains syntactical constructions.
Therefore we need to normalise this AST.

We use the Puppet parser to create the AST of a Pup-
pet input file. This provides us the AST that Puppet rea-
sons upon. However this AST is not suited for generating
an edit script. Although it is an abstract syntax tree, the
tree still contain syntactical language constructs from the
Puppet language. This is a problem because they do not
have any meaning. This can even result in two differ-
ent AST’s that have the same semantics. Consider Fig-
ure 3a and the corresponding AST in Figure 3b. Line 1
in Figure 3a describes the declaration of two users. The
AST of the code fragment still contains the array which
is nothing more than syntactic sugar to easily create two
resources with the same attributes. For the differencing
algorithm the only difference is the addition of one string
to an array, instead of adding an entire resource. This
change is not meaningful and cannot be described cor-
rectly in a policy.

The solution is to transform and normalise this tree to
remove all syntactical structures from the abstract syntax
tree. In the example from the previous paragraph we can
remove the array as identifier for the users, and replicate
the whole definition of the user for each element of this
array. This transformation ensures that when a user gets
added or removed, the differencing will detect a user be-
ing added or removed. The transformed AST is depicted
in Figure 3c.

The solution in this example is very specific for the
given problem and there is no generic solution to remove
the syntax leftovers in the AST or even to detect them.
Moreover, we do not have a list of problematic structures
that are present in the Puppet language. The only solu-
tion to fully support a language is to test every language
concept and check the resulting AST structure. In this
implementation of our authorisation mechanism we ex-
plicitly chose to transform the AST instead of running a
preprocessor over the input source. With this approach
we reuse the existing lexer and parser of the Puppet tool.
This makes the transformation step less syntax depen-
dant. If a concept results in an ambiguous AST or one
that contains syntactical constructs, the AST needs to be
transformed or the compiler needs to be adapted.

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 73

1 user {["kwik","kwak"]:

2 gid => 123

3 }

(a) The Puppet manifest

1 class: ASTClass

2 - member: Resource

3 + type: Name => user

4 + title: ASTArray

5 | + child: String => kwik

6 | - child: String => kwak

7 - parameter: ResourceParam

8 + param: Name => gid

9 - value: String => 123

(b) The AST created by Puppet

1 class: ASTClass

2 + member: Resource

3 | + type: String => user

4 | + title: String => kwik

5 | - parameter: ResourceParam

6 | + param: Name => gid

7 | - value: String => 123

8 - member: Resource

9 + type: String => user

10 + title: String => kwak

11 - parameter: ResourceParam

12 + param: Name => gid

13 - value: Name => 123

(c) The normalised AST

Figure 3: Puppet configuration that defines multiple
users using one resource definition.

The differencing stage compares the two normalised
AST’s to generate an edit script. In this prototype we
use the same algorithm as our previous work [10]. This
algorithm works as follows:

1. Match the leaves of the two trees using a similarity
function.

2. Match the internal nodes using the information of
already matched leaves: nodes with a lot of leaves
in their subtrees in common are likely to match as
well.

3. Correct wrongly coupled leaves using information
of the matched internal nodes: parents of matching
leaves should match as well.

4. Generate an edit script with the basic changes: add,
modify and delete.

5. Correct changes: e.g. remove changes that cancel
each other.

4.2 Generating meaningful changes
Authorisation is enforced based on operations derived
from the meaning of a change and not on the operations
the operations in an edit script, therefore the edit script
is transformed in meaningful changes. For instance, the
mode parameters of the of the /etc/motd changed from
0600 to 0644 instead of the 0600 node in the AST was re-
moved and replaced by the 0644 node. These meaningful
changes express changes as operations on the concepts
that exist in the Puppet configuration language, instead
of operations on a tree. This step is language dependant.
The edit script expresses operations on the nodes in the
AST. These nodes in the AST are linked to specific con-
cepts in the Puppet language. In this step a transforma-
tion between the operations and the AST nodes and pos-
sible operations on language constructs is required. In
our method this is a manually coded step.

5 Authorising changes

The second component in our solution is the autho-
risation of individual configuration changes. For this
authorisation two elements are needed: a set of poli-
cies describing which changes are allowed or denied
and a framework that executes the actual authorisation.
XACML provides both features and is widely used au-
thorisation standard in industry. Therefore we used it for
implementing the authorisation step. In this section we
will discuss the use of XACML to describe the access
control policies.

5.1 The XACML standard
XACML is a international standard for access control
and authorisation. The standard defines a language for
policies and a language for authorisation requests. Both
are XML based. The standard also describes the compo-
nents and the architecture of an authorisation engine and
allows an XACML authorisation engine to be extended.

XACML defines the components and the dataflow be-
tween them in the authorisation engine. The following
components are required to handle an authorisation re-
quest:

• Policy Enforcement Point (PEP) This component
receives the authorisation requests and creates a
XACML request from it that is sent to the PDP.

• Policy Decision Point (PDP) The PDP loads all re-
quired policies and validates the request from the
PEP against these policies. The results of these
checks are combined and sent back to the PEP.

• Policy Access Point (PAP) The PAP makes the
policies available to the PDP.

5

74 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

• Policy Information Point (PIP) The PIP provides
the PDP with attributes related to subject, resource
or environment. These attributes can be retrieved
from several sources such as files or databases.

XACML is a generic solution for domain specific au-
thorisation. The domain specific entities involved in the
authorisation process can be mapped to subject, resource
and action from the XACML standard. The subject sub-
mits a request to perform an action on a resource. Each of
these entities can have multiple attributes. A policy deci-
sion is based on these attributes and additional attributes
provided by the PIP.

The policy contains the rules that define what is al-
lowed. Policies can be grouped in policy sets and each
policy set can consist of policies and other policy sets.
A policy is built from targets, rules, a rule combination
algorithm and a number of obligations.

• The target of a policy defines when a policy needs
to be used. This is expressed using a matching ex-
pression over the attributes of subject, action and
resource.

• Rules have a target that defines when a rule is appli-
cable, a condition and an effect that defines Permit
or Deny based on the condition.

• The combining algorithm determines what the final
result of a policy is if multiple rules returned an ef-
fect.

• The obligation is an action that needs to be executed
when a policy is applicable. The PEP is responsible
for executing these obligations.

The authorisation process works by exchanging re-
quest and response messages between the PDP and the
outside world. The request message contains the subject,
resource, action and environment and the associated at-
tributes. If the content of the resource is XML it can be
embedded in the request message. When the PDP has
calculated the result of the authorisation a response mes-
sage is sent back. This response message contains a re-
sult code and an optional message or information.

5.2 XACML policies for Puppet

Our authorisation method provides the configuration
changes to the XACML engine that enforces authorisa-
tion. This section explains how a policy can reference
Puppet language constructions in a configuration change.
This section also provides a design pattern to encapsu-
late unsupported language constructions to enforce au-
thorisation on them. The XACML standard describes

an XML-based policy language. This language pro-
vides methods to access and compare attributes of the re-
source, subject and action involved in the authorisation-
request. Complex functions can be used to process these
attributes and to calculate the outcome of the policies.
An example policy is shown in Figure 4.

XACML policies need a method for referring to the
operations an update consists of and to the Puppet lan-
guage constructs the operations act upon. Because
XACML is based on XML and the configuration input
is already available in the form of a abstract syntax tree.
Additionally a resource can be embedded in a XACML
authorisation request if the resource is represented in
XML. Therefore we developed an XML serialisation of
the Puppet manifests. We based this serialisation on the
approach of Machination [6] to refer to constructs in the
input using XPath. The AST is transformed into an XML
tree that can be referenced uniquely by means of XPath
expressions. Figures 5a, 5b and 5c show a Puppet state-
ment and the two representations of the AST.

XPath queries can refer to the individual elements in
the XML serialisation of the AST. When the node-id of
a node is known, this attribute can be used to refer di-
rectly to this node using an XPath query like //*[@id

="3"]. When referring to the node in function of its at-
tributes and location the following XPath query can be
used: //class[@name="apache"]/*[@type="package"]

Puppet classes and definitions can be used to create
abstractions on which access control can be enforced.
These abstractions can encapsulate the language con-
cepts our prototype currently does not support or that are
very hard or impossible to support because of their dy-
namic nature. We used this design pattern in our evalua-
tion the create access control policies. Superusers are al-
lowed to make all changes, including the statements that
are not supported. These superusers encapsulate these
statements in definitions and classes that can be used by
other users. This design pattern matches closely to the
configuration module approach used by Puppet. These
modules encapsulate the domain expert knowledge in
easy to use interfaces and classes.

5.3 Using external information sources

XACML can use external sources for information
through a PIP. In our prototype we extended the XACML
engine to retrieve external information from directory
services such as LDAP or active directory. These di-
rectories contained the roles of each user that can make
changes. Storing this information in an external source
and making it available in the XACML engine, makes
it possible for the XACML policies to be more generic.
Puppet also supports external sources for retrieving the
classes that it should assign to hosts. One of such exter-

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 75

1 <Policy PolicyId="nodes:apache">

2 <Target ><Resources ><Resource >

3 <ResourceMatch MatchId="xacml:function:xpath -node -match">

4 <AttributeValue DataType="xacml2:data -type:xpath -expression">

5 //class[@name="apache"]

6 </AttributeValue >

7 <ResourceAttributeDesignator AttributeId="xacml:resource:resource -id"

8 DataType="xacml2:data -type:xpath -expression" />

9 </ResourceMatch >

10 </Resource ></Resources ></Target >

11 <Rule Effect="Permit" RuleId="nodes:apache:webadmin">

12 <Target />

13 <Condition >

14 <Apply FunctionId="xacml:function:string -greater -than">

15 <AttributeValue DataType="xs:string">xyz</AttributeValue >

16 <Apply FunctionId="xacml:function:string -one -and -only">

17 <SubjectAttributeDesignator DataType="xs:string"

18 AttributeId="xacml:subject:subject -id"/>

19 </Apply >

20 </Apply>

21 </Condition >

22 </Rule>

23 </Policy >

Figure 4: A sample XACML policy file for configuration changes.

1 # Apache -class

2 class apache inherits webserver {

3 package {"apache": ensure => installed }

4 }

(a) Sample Puppet configuration

1 Root

2 + hostclasses: ResourceType ()

3 | - class: ASTClass (name:apache)

4 | + parent: Name () => webserver

5 | - member: Resource (title:apache ,type:package)

6 | + parameter: ResourceParam (param:ensure)

7 | - value: Name () => installed

8 - nodes: ResourceType ()

(b) The abstract syntax tree

1 <Root id=’1’ nodetype=’ASTRoot ’ xmlns=’pupa ’>

2 <hostclasses id=’2’ nodetype=’ResourceType ’ >

3 <class id=’3’ nodetype=’ASTClass ’ name=’apache ’>

4 <parent id=’4’ nodetype=’Name ’ >webserver </parent >

5 <member id=’5’ nodetype=’Resource ’ title=’apache ’ type=’package ’>

6 <parameter id=’7’ nodetype=’ResourceParam ’ param=’ensure ’>

7 <value id=’8’ nodetype=’Name ’ >installed </value >

8 </parameter >

9 </member >

10 </class >

11 </hostclasses >

12 <nodes id=’9’ nodetype=’ResourceType ’ >

13 </nodes >

14 </Root >

(c) The XML representation of the AST

Figure 5: Puppet configuration file and the resulting AST and its XML representation

7

76 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

nal sources is an LDAP directory. This information can
also be exposed in the XACML engine through a PIP.

6 Evaluation

We evaluated our prototype based on two access con-
trol scenarios. These scenarios each describe a policy
that has to be enforced. In the evaluation we construct a
policy-file that tries to accomplish this task and explain
the reasons behind its structure. We compare the results
of our policy with a policy based on path based access
control available in version control systems. The goal of
these evaluations is to show the possibilities and limita-
tions of our tool.

For this evaluation we integrated our prototype into a
version control system (VCS). The VCS is used as stor-
age for the configuration files and also acts as the au-
thorising agent. Additionally a Policy Information Point
(PIP) provides additional attributes to the XACML en-
gine. The PIP manages information and is contacted dur-
ing the authorisation process when specific attributes are
needed. The PIP in our implementation connects to an
LDAP server and provides attributes belonging to the ad-
ministrator issuing the change.

In the evaluation, two scenarios are investigated:

1. Only system administrators that are members of the
webadmin group can configure a machine as an
apache webserver.

2. Only system administrators that are members of the
webadmin group can create a virtual host on an
apache webserver. Moreover, the documentroot of
the virtual host can only exist inside the homedirec-
tory of the user issuing the change.

6.1 Scenario 1: configure a machine as
webserver

In the first scenario we have a simple Puppet configura-
tion that configures nodes as a webserver. In the Pup-
pet module path an apache module is added with a class
named apache. The site.pp file contains a list of nodes
that each have a list of include statements that add func-
tionality to that server. Figure 6 shows the initial site.pp
file for this scenario. The change in this scenario config-
ures the spare server san-jose as webserver by including
the apache class from the apache module. The security
policy says that all administrators can add roles to servers
by including classes, but only users from the group we-
badmin may configure a server as webserver.

A SVN repository can be used to limit access to the file
in the repository. Figure 7 shows a file with access con-
trol rules for this repository. The puppet user has read-
only access to the site.pp file in the site directory and

has access to the files in the apache module. Only we-
badmin users can edit the files in the apache module, but
this does not prevent them from including for example a
statement that installs a dns server in that module. The
site.pp file can be edited by all administrators. The ac-
cess control mechanism from SVN cannot prevent non-
webadmin users to create new webservers either.

Figure 8 shows the XACML policy for the ACHEL au-
thorisation mechanism. This policy allows users from the
webadmin group to include apache classes in the config-
uration of a node. This XACML policy provides a very
fine-grained access control to the statements in the Pup-
pet manifests.

1 node baltimore {

2 # include the apache module

3 include apache

4 }

5

6 node san -jose {

7 # spare machine to configure as

webserver

8 }

Figure 6: The site.pp file for Puppet for the first scenario.
One server is already configured as webserver. The other
server is kept as spare server.

1 [/ modules/apache]

2 puppet = r

3 @webadmin = rw

4

5 [/site]

6 puppet = r

7 @admins = rw

Figure 7: An authorisation file for SVN to restrict access
to the Puppet manifests in the repository.

6.2 Scenario 2: add virtual hosts

The second scenario uses the same apache webserver
setup and allows users from the webuser group to add
virtual hosts to the apache configuration. Webusers can
only add virtual hosts to the configuration from which
the document root is located in their own home direc-
tory. The document root parameter controls the direc-
tory that contains the files that a webserver should serve
to visitors of a particular domain. The home directory
path of users is always built as follows: /home/ and their
username concatenated to that. The Puppet manifest in

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 77

1 <Policy PolicyId="nodes:apache">

2 <Target ><Resources ><Resource >

3 <ResourceMatch MatchId="xacml:function:xpath -node -match">

4 <AttributeValue DataType="xacml2:data -type:xpath -expression">

5 // p:node/p:include[@class="apache"]

6 </AttributeValue >

7 <ResourceAttributeDesignator

8 AttributeId="xacml:resource:resource -id"

9 DataType="xacml2:data -type:xpath -expression" />

10 </ResourceMatch >

11 </Resource ></Resources ></Target >

12 <Rule Effect="Permit" RuleId="nodes:apache:webadmin">

13 <Target ><Subjects ><Subject >

14 <SubjectMatch MatchId="xacml:function:anyURI -equal">

15 <AttributeValue DataType="xs:anyURI">webadmin </AttributeValue >

16 <SubjectAttributeDesignator AttributeId="xacml2:subject:role" DataType="xs:anyURI

" />

17 </SubjectMatch >

18 </Subject ></Subjects ></Target >

19 </Rule>

20 </Policy >

Figure 8: The XACML policy to allow users from the webadmin group to add the apache class to a node.

Figure 9 shows a manifest from the apache module that
configures the virtual hosts in the system.

The access control configuration for a SVN repository
for this scenario is similar to the previous scenario. Fig-
ure 11 shows an updated authorisation file for the SVN
repository that contains the Puppet manifests for this sce-
nario. This file limits access to the vhosts.pp file to users
from the webuser group. It cannot prevent users from
adding virtual hosts that have a document root in the
home directory of another user. It also does not prevent
users from adding virtual host resources to other mani-
fest files.

The XACML policy in Figure 10 enforces access con-
trol based on the contents of the change and not based on
the file location. It enforces access control on all occur-
rences of virtual host resources in any Puppet manifest
file that is included in the repository. The policy builds
the home directory of the user by concatenating /home/
with the username. The value of the documentroot pa-
rameters of the virtual host resource should always start
with the home directory string the policy created.

This policy can be circumvented by using a path that
starts with the users home directory but then uses .. to
traverse back to the /home directory. For example, /home
/lisa/../foo/www. This is not a flaw of the approach but
a limitation of the expressiveness of the XACML func-
tions. To close this policy a function that normalises the
path first before it does the compare is required. In the
conclusion we will discuss how to counter this attack.

1 class apache {

2 apache ::vhost {"www.example.com":

3 docroot => "/home/lisa/www"

4 }

5

6 apache ::vhost {"photo.example.com":

7 docroot => "/home/lisa/photo"

8 }

9 }

Figure 9: The vhosts.pp file for Puppet for the second
scenario that is located in the /vhosts directory.

1 [/ modules/apache]

2 puppet = r

3 @webadmin = rw

4

5 [/ vhosts]

6 puppet = r

7 @webuser = rw

8

9 [/site]

10 puppet = r

11 @admins = rw

Figure 11: An update authorisation file for SVN for the
second scenario.

6.3 Conclusion
The conclusions from this evaluation are twofold. First,
there is a strong need for content-aware authorisation.

9

78 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

1 <Policy PolicyId="apache:webuser">

2 <Target ><Subjects ><Subject >

3 <SubjectMatch MatchId="xacml:function:anyURI -equal">

4 <AttributeValue DataType="xs:anyURI">webuser </AttributeValue >

5 <SubjectAttributeDesignator

6 AttributeId="xacml2:subject:role" DataType="xs:anyURI" />

7 </SubjectMatch >

8 </Subject ></Subjects ></Target >

9 <Rule Effect="Permit" RuleId="apache:webuser:vhost">

10 <Description >Add or remove a vhost</Description >

11 <Target ><Resources ><Resource >

12 <ResourceMatch MatchId="xacml:function:xpath -node -equal">

13 <AttributeValue DataType="xacml2:data -type:xpath -expression">

14 //pup:*[@type="apache::vhost"]

15 </AttributeValue >

16 <ResourceAttributeDesignator AttributeId="xacml:resource:resource -id"

17 DataType="xacml2:data -type:xpath -expression" />

18 </ResourceMatch >

19 </Resource ></Resources ></Target >

20 </Rule>

21 <Rule Effect="Permit" RuleId="apache:webuser:vhost -docroot">

22 <Target ><Resources ><Resource >

23 <ResourceMatch MatchId="xacml:function:xpath -node -match">

24 <AttributeValue DataType="xacml2:data -type:xpath -expression">

25 //p:*[@type="apache::vhost"]/ p:parameter[@param="docroot"]

26 </AttributeValue >

27 <ResourceAttributeDesignator AttirbuteId="xacml:resource:resource -id"

28 DataType="xacml2:data -type:xpath -expression" />

29 </ResourceMatch >

30 </Resource ></Resources ></Target >

31 <Condition ><Apply FunctionId="thesis:function:string -starts -with">

32 <Apply FunctionId="xacml:function:string -one -and -only">

33 <AttributeSelector DataType="xs:string"

34 RequestContextPath="// p:param[@param=’docroot ’]/ p:value/text()" />

35 </Apply>

36 <Apply FunctionId="xacml2:function:string -concatenate">

37 <AttributeValue DataType="xs:string">/home/</AttributeValue >

38 <Apply FunctionId="xacml:function:string -one -and -only">

39 <SubjectAttributeDesignator DataType="xs:string"

40 AttributeId="xacml:subject:subject -id" />

41 </Apply >

42 </Apply>

43 </Apply></Condition >

44 </Rule>

45 </Policy >

Figure 10: The XACML policy that only allows users from the webuser group to add vhosts with a document root in
their homedirectory.

Our prototype is able to provide this by analysing the
changes made to a configuration file and deriving the ac-
tions from it that need to be authorised. The prototype is
flexible enough to do this in a very fine-grained manner.
Using the ACHEL method changes to Puppet manifests
are authorised at the level of instantiating resources and
authorising them based on the parameters and the scope
they are declared in.

Second, our prototype is not yet fully finished. It is
possible to circumvent the authorisation using simple at-
tacks. This is not a limitation of our approach but of
the XACML language expressiveness which results in a

policy that is not fully closed. A possible solution for
this type of attacks is extending the standard XACML
function-space to include domain-specific helper func-
tions to create a fully closed access control policies. In
our prototype we used the enterprise-java-xacml [12]
XACML engine. Adding functions to this engine is easy
as adding an annotation to a Java class and the method
that implements the XACML function.

10

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 79

7 Future work

We added basic support for our authorisation mechanism
to Puppet. Future work in this direction should focus on
extending support for the Puppet language and on inte-
grating update workflows in the authorisation phase.

Extending Puppet support Currently Puppet support
is limited to a subset of the Puppet language. This subset
provides a usable implementation, especially using the
design patterns we described. Our prototype can be ex-
tended to support additional language constructs such as
calling functions or exporting resources.

Integrating workflow In our original paper [10] we
also integrated workflow support. This support is orthog-
onal to extracting meaningful changes from changes in
Puppet manifests. Therefore we did not implement this
in this prototype. This workflow support is based on digi-
tal signatures on revisions in the version repository. This
information can be made available to the XACML en-
gine through a PIP. This should be sufficient to add the
workflow support to this prototype.

Ownership information Our ACHEL method can
also track ownership information based on the changes
made to the configuration files. With this ownership in-
formation a policy could also include that person A can-
not change any parameters or resources that are owned
by person B. To derive ownership information we need
to start from the first revision and determine for each
change what the impact is on the ownership of a state-
ment. For Puppet one of these questions is who is the
owner of a resource? Is this the user that gave the name
to the resource? If parameters are changed, how does the
ownership of the resource and the parameter change?

8 Conclusion

In this paper we developed a prototype that authorises
changes to the Puppet input language based on their
meaning. It derives the operations that need to be au-
thorised from the changes to the input. This prototype
extends our previous work by applying it to a real sys-
tem configuration tool with a complex input language.
These changes are authorised using XACML which is a
widely adopted industry standard for access control and
authorisation, instead of using regular expressions.

In our previous work we applied our approach to a
simple configuration language. The results from this
work show that although the configuration language is
more complex, it is possible to extract the individual

meaningful configuration changes. The complete lan-
guage is not yet fully supported, and the prototype needs
more work to analyze the difficult language constructs
before it can be used in production. Our claim from
our previous paper that the method is language agnos-
tic holds, on the condition that the method can start from
a clean AST. The usage of the XACML standard for au-
thorisation provides a lot of flexibility for writing poli-
cies, as well as extensibility and integration of other in-
formation sources. This prototype does not include the
workflow enforcement of our Achel [10] prototype but
can be easily added to the XACML engine by including
a PIP that provides the signature information required to
enforce workflows.

This implementation uses XACML as authorisation
language. In our first prototype we used a regular ex-
pression based language we developed. XACML pro-
vides an authorisation engine that is the de facto industry
standard in contrast to our own authorisation language.
The usability of our regular expression based language
was also very poor. Unfortunately it appears to be hard
to write policies in XACML as well. Luckily tooling
support exists for writing XACML policies to improve
usability.

To conclude the main contributions of this paper are:
First of all the identification of the difficulties and pos-
sibilities to extract meaningful changes from a complex
configuration language such as Puppet. Second the de-
velopment of a set of rules that describe how to write a
policy and refer to the configuration elements in these
policies.

9 Acknowledgements

This research is partially funded by the Agency for Inno-
vation by Science and Technology in Flanders (IWT), by
the Interuniversity Attraction Poles Programme Belgian
State, Belgian Science Policy, and by the Research Fund
K.U.Leuven.

References
[1] Puppet Website. http://www.puppetlabs.com, 2010.

[2] ANDERSON, P. Short Topics in System Administration 14: Sys-
tem Configuration. Berkeley, CA, 2006.

[3] BARRETT, R., MAGLIO, P. P., KANDOGAN, E., AND BAILEY,
J. Usable autonomic computing systems: The system admin-
istrators’ perspective. Advanced Engineering Informatics 19, 3
(2005), 213 – 221. Autonomic Computing.

[4] CHAWATHE, S. S., AND GARCIA-MOLINA, H. Meaning-
ful change detection in structured data. In Proceedings of the
1997 ACM SIGMOD International Conference on Management
of Data - SIGMOD 97 SIGMOD 97 (New York, NY, USA, 1997),
ACM, pp. 26–37.

11

80 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

[5] DELAET, T., JOOSEN, W., AND VANBRABANT, B. A survey of
system configuration tools. In Proceedings of the 24th Large In-
stallations Systems Administration (LISA) conference (San Jose,
CA, USA, 11/2010 2010), Usenix Association, Usenix Associa-
tion.

[6] HIGGS, C. Authorisation and Delegation in the Machination
Configuration System. In Proceedings of the 22nd Large Instal-
lation System Administration (LISA) Conference (Berkeley, CA,
USA, 2008), USENIX Association, pp. 191–199.

[7] MCCARTHY, J. Towards a mathematical science of computation.
Information Processing 62 (1962), 21–28.

[8] MOSES, T. eXtensible Access Control Markup Language
(XACML) Version 2.0, februari 2005. http://docs.

oasis-open.org/xacml/2.0/access_control-xacml-2.

0-core-spec-os.pdf.

[9] MYERS, E. W. An O(ND) difference algorithm and its variations.
Algorithmica 1, 1 (1986), 251–266.

[10] VANBRABANT, B., DELAET, T., AND JOOSEN, W. Federated
access control and workflow enforcement in systems configura-
tion. In Proceedings of the 23rd Large Installations Systems Ad-
ministration (LISA) conference (Baltimore, MD, USA, 11/2009
2009), Usenix Association, Usenix Association, p. 129–143.

[11] VELASQUEZ, N. F., AND WEISBAND, S. P. Work practices of
system administrators: implications for tool design. In CHiMiT
’08: Proceedings of the 2nd ACM Symposium on Computer
Human Interaction for Management of Information Technology
(New York, NY, USA, 2008), ACM, ACM, pp. 1–10.

[12] WANG, Z. Enterprise Java XACML Implementation. http://

code.google.com/p/enterprise-java-xacml/, december
2010.

12

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 81

tiqr:	 a	 novel	 take	 on	 two-‐factor	 authentication	
Roland	 M.	 van	 Rijswijk	 –	 SURFnet	 bv,	 Utrecht,	 The	 Netherlands	

Joost	 van	 Dijk	 –	 SURFnet	 bv,	 Utrecht,	 The	 Netherlands	

	

ABSTRACT	

	 	 Authentication	 is	 of	 paramount	 importance	 for	 all	 modern	 networked	 applications.	 The	
username/password	 paradigm	 is	 ubiquitous.	 This	 paradigm	 suffices	 for	 many	 applications	 that	
require	 a	 relatively	 low	 level	 of	 assurance	 about	 the	 identity	 of	 the	 end	 user,	 but	 it	 quickly	 breaks	
down	 when	 a	 stronger	 assertion	 of	 the	 user’s	 identity	 is	 required.	 Traditionally,	 this	 is	 where	 two-‐	
or	 multi-‐factor	 authentication	 comes	 in,	 providing	 a	 higher	 level	 of	 assurance.	 There	 is	 a	 multitude	
of	 two-‐factor	 authentication	 solutions	 available,	 but	 we	 feel	 that	 many	 solutions	 do	 not	 meet	 the	
needs	 of	 our	 community.	 They	 are	 invariably	 expensive,	 difficult	 to	 roll	 out	 in	 heterogeneous	 user	
groups	 (like	 student	 populations),	 often	 closed	 source	 and	 closed	 technology	 and	 have	 usability	
problems	 that	 make	 them	 hard	 to	 use.	 In	 this	 paper	 we	 will	 give	 an	 overview	 of	 the	 two-‐factor	 au-‐
thentication	 landscape	 and	 address	 the	 issues	 of	 closed	 versus	 open	 solutions.	 We	 will	 introduce	 a	
novel	 open	 standards-‐based	 authentication	 technology	 that	 we	 have	 developed	 and	 released	 in	
open	 source.	 We	 will	 then	 provide	 a	 classification	 of	 two-‐factor	 authentication	 technologies,	 and	
we	 will	 finish	 with	 an	 overview	 of	 future	 work.	

	

1 INTRODUCTION	
1.1 AUTHENTICATION	

Authentication	 is	 something	 we	 all	 do	 every	
day.	 And	 whether	 it	 is	 to	 log	 in	 to	 our	 e-‐mail	 ac-‐
count,	 to	 access	 our	 Facebook	 page	 or	 to	 tweet	
about	 that	 cool	 new	 album	 we’ve	 just	 bought,	 the	
use	 of	 username/password	 is	 by	 far	 the	 dominant	
paradigm.	

There	 are	 –	 of	 course	 –	 applications	 that	 re-‐
quire	 a	 higher	 level	 of	 assurance	 such	 as	 electronic	
banking.	 The	 traditional	 approach	 for	 achieving	 this	
higher	 level	 of	 assurance	 is	 to	 use	 multi-‐factor	 au-‐
thentication	 (also	 referred	 to	 as	 strong	 authentica-‐
tion).	 There	 is	 a	 multitude	 of	 multi-‐factor	 authenti-‐
cation	 solutions	 on	 the	 market.	 Traditionally,	 this	
market	 has	 a	 strong	 tendency	 towards	 closed	 solu-‐
tions	 with	 strong	 vendor	 lock-‐in.	 This	 invariably	
leads	 to	 a	 high	 cost	 per	 user,	 hampering	 the	 wide-‐
scale	 rollout	 of	 multi-‐factor	 authentication	 technol-‐
ogies.	 Another	 common	 limitation	 of	 current	 multi-‐
factor	 authentication	 technologies	 is	 the	 fact	 that	
they	 are	 often	 single-‐purpose	 solutions	 (e.g.	 they	
can	 only	 be	 used	 for	 one	 bank).	 Furthermore,	 there	
are	 serious	 usability	 issues	 with	 many	 multi-‐factor	
solutions	 that	 make	 it	 difficult	 to	 enforce	 their	 use	 in	
most	 communities.	

Exactly	 what	 an	 acceptable	 level	 of	 assurance	
is	 should	 not	 only	 be	 decided	 by	 a	 service	 provider;	
users	 may	 also	 have	 an	 opinion	 on	 this.	 Almost	 all	
solutions	 currently	 on	 the	 market	 give	 very	 little	
control	 to	 the	 end	 user.	

1.2 RECENT	 INDUSTRY	 DEVELOPMENTS	

In	 recent	 years	 there	 have	 been	 some	 promis-‐
ing	 developments	 in	 the	 industry.	 In	 2004,	 the	 Initi-‐
ative	 for	 Open	 Authentication	 (OATH,	 [1])	 was	
formed.	 The	 intention	 of	 this	 initiative	 is	 to	 create	
an	 industry-‐wide	 reference	 architecture	 for	 strong	
authentication.	 The	 OATH	 initiative	 has	 been	 very	
successful	 in	 creating	 industry	 standards	 for	 two-‐
factor	 authentication	 that	 have	 been	 embraced	 by	
the	 Internet	 community	 in	 the	 form	 of	 IETF	 stand-‐
ards	 ([2],	 [3],	 [4]).	 A	 number	 of	 companies	 and	 open	
source	 initiatives	 have	 adopted	 these	 standards	 in	
products	 and	 services	 (see	 also	 section	 3).	

Other	 developments	 have	 underlined	 the	 need	
to	 adopt	 open	 standards	 in	 the	 security	 and	 authen-‐
tication/identity	 management	 industry.	 Time	 and	
again	 closed	 solutions	 and	 algorithms	 have	 been	
shown	 to	 be	 vulnerable	 to	 attack	 because	 of	 the	 lack	
of	 peer	 review	 (poignant	 examples	 include	 the	
MIFARE	 system	 and	 the	 GSM	 A5/1	 cryptographic	
algorithm	 [5]).	

Finally,	 large	 players	 on	 the	 Internet	 have	 re-‐
cently	 introduced	 two-‐factor	 authentication	 for	
some	 of	 their	 services	 ([6],	 [7]).	 This	 is	 the	 first	 time	
two-‐factor	 authentication	 is	 deployed	 on	 a	 (poten-‐
tially)	 large	 scale	 for	 applications	 outside	 the	 finan-‐
cial	 industry	 or	 enterprise	 domain.	

1.3 OVERVIEW	 OF	 THIS	 PAPER	

In	 this	 paper	 we	 aim	 to	 give	 an	 overview	 of	 the	
current	 two-‐factor	 authentication	 landscape	 in	 sec-‐
tion	 2.	 In	 section	 3,	 we	 will	 further	 clarify	 some	 of	
the	 issues	 we	 believe	 exist	 in	 current	 two-‐factor	
authentication	 market	 offerings.	 Section	 4	 proposes	
a	 way	 to	 classify	 authentication	 solutions	 and	 con-‐

82 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

tains	 a	 classification	 of	 the	 solutions	 discussed	 in	
section	 2.	 In	 section	 5,	 we	 will	 introduce	 the	 innova-‐
tive	 two-‐factor	 authentication	 solution	 we	 have	
developed	 which	 is	 based	 on	 open	 standards	 and	
open	 technology.	 Section	 6	 revisits	 the	 classification	
proposed	 in	 section	 4	 and	 adds	 a	 classification	 for	
the	 solution	 we	 introduced	 in	 section	 5.	 Finally,	 in	
section	 7	 we	 will	 draw	 conclusions	 and	 provide	
suggestions	 for	 future	 work.	

2 THE	 TWO-‐FACTOR	 LANDSCAPE	
2.1 INTRODUCTION	

In	 this	 section	 we	 aim	 to	 give	 an	 overview	 of	
the	 two-‐factor	 landscape.	 Before	 we	 do	 that,	 we	 will	
first	 give	 a	 definition	 of	 what	 we	 think	 constitutes	
two-‐factor	 authentication.	 	

We	 then	 describe	 the	 solutions	 currently	 on	
offer,	 which	 we	 divide	 into	 two	 categories:	

 Traditional	 solutions	 –	 these	 rely	 on	 single	
purpose	 (i.e.	 only	 used	 for	 identification)	
hardware	 devices	 or	 on	 a	 unique	 quality	 of	 the	
user	 (i.e.	 a	 biometric)	

 Hybrid	 solutions	 –	 these	 rely	 on	 non-‐single	
purpose	 devices	 owned	 by	 the	 user,	 possibly	
in	 combination	 with	 software	 running	 on	 the-‐
se	 devices	

2.2 DEFINITION	 OF	 TWO-‐FACTOR	 AU-‐
THENTICATION	

In	 this	 paper,	 we	 define	 two-‐factor	 authentica-‐
tion	 as	 a	 means	 of	 authentication	 relying	 on	 the	 user	
demonstrating	 at	 least	 2	 separate	 factors	 from	 the	
following	 list:	

 Something	 the	 user	 knows	 (e.g.	 a	 PIN	 code	 or	 a	
password)	

 Something	 the	 user	 has	 (e.g.	 a	 hardware	 to-‐
ken)	

 Something	 the	 user	 is	 (e.g.	 a	 biometric,	 such	 as	
a	 fingerprint)	

Solutions	 that	 we	 place	 in	 the	 “hybrid”	 category	 rely	
on	 something	 the	 user	 has	 but	 where	 there	 is	 a	
chance	 of	 this	 factor	 being	 duplicated	 as	 could	 –	 for	
instance	 –	 be	 the	 case	 with	 a	 soft	 token	 running	 as	
an	 application	 on	 a	 smartphone.	 Some	 people	 in	 the	
blogosphere	 have	 coined	 the	 term	 “1.5	 factor	 au-‐
thentication”	 for	 this	 category	 (e.g.	 [40])	

In	 this	 paper	 we	 will	 refer	 to	 a	 solution	 as	 two-‐
factor	 authentication	 whenever	 the	 device	 on	 which	
the	 user	 is	 authenticating	 is	 physically	 separate	
from	 whatever	 constitutes	 the	 second	 factor	 (e.g.	 a	
soft	 token	 on	 a	 phone	 is	 only	 a	 second	 factor	 if	 it	 is	
used	 for	 authenticating	 a	 session	 on	 a	 separate	 de-‐
vice	 such	 as	 the	 user’s	 computer).	

2.3 TRADITIONAL	 SOLUTIONS	

2.3.1 OTP	 TOKENS	

One-‐Time	 Password	 or	 OTP	 tokens	 are	 devices	
that	 generate	 single-‐use	 passwords	 (often	 com-‐
posed	 of	 strings	 of	 up	 to	 10	 digits).	 There	 are	 two	
variants:	 time-‐based	 tokens	 –	 these	 generate	 a	 new	
password	 at	 regular	 intervals	 (e.g.	 every	 30	 se-‐
conds)	 and	 event-‐based	 tokens	 –	 these	 generate	 a	
new	 password	 after	 a	 user	 intervention	 (e.g.	 push-‐
ing	 a	 button	 on	 the	 device).	

The	 second	 factor	 most	 often	 combined	 with	
these	 devices	 is	 either	 a	 password	 that	 is	 entered	 on	
the	 user’s	 computer	 or	 a	 PIN	 that	 is	 entered	 on	 the	
token	 device	 itself.	

OTP	 tokens	 rely	 on	 symmetric	 cryptography	
for	 their	 operation;	 they	 contain	 some	 secret	 that	 is	
securely	 stored	 in	 the	 device,	 which	 can	 never	 leave	
it.	 The	 same	 secret	 is	 also	 known	 on	 the	 server	 that	
validates	 the	 user’s	 credentials	 when	 they	 log	 in.	

Examples	 of	 OTP	 tokens	 include:	 VASCO	
Digipass	 [10],	 RSA	 SecurID	 [11]	 and	 Feitian	 OTP	
Tokens	 [12].	

	
Figure	 1	 -‐	 example	 of	 an	 OTP	 token	 (RSA	 SecurID)	

2.3.2 CHALLENGE/RESPONSE	 TOKENS	

Challenge/response	 tokens	 are	 similar	 to	 OTP	
tokens	 in	 that	 they	 also	 rely	 on	 symmetric	 cryptog-‐
raphy	 for	 their	 operation.	 Some	 OTP	 tokens	 also	
have	 challenge/response	 capabilities.	

Whereas	 OTP	 often	 suffices	 for	 simple	 authen-‐
tication,	 challenge/response	 tokens	 are	 mainly	 used	
for	 transaction	 authentication	 such	 as,	 for	 instance,	
approving	 a	 money	 transfer.	 This	 is	 achieved	 by	
having	 the	 user	 enter	 one	 or	 more	 sequences	 of	
digits	 on	 the	 token	 (the	 challenge)	 and	 using	 these	
as	 input	 for	 a	 cryptographic	 algorithm	 to	 produce	
another	 sequence	 of	 digits	 (the	 response)	 that	 the	
user	 then	 returns	 to	 the	 party	 requesting	 authenti-‐
cation.	

Challenge/response	 tokens	 are	 usually	 pro-‐
tected	 using	 a	 PIN	 code	 as	 the	 second	 factor.	

Examples	 of	 challenge/response	 tokens	 in-‐
clude	 VASCO	 DigiPass	 [13],	 SafeNet	 SafeWord	 GOLD	
[14]	 and	 Feitian	 Challenge/Response	 tokens	 [12].	

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 83

	
Figure	 2	 -‐	 example	 of	 a	 challenge/response	 token	
(SafeWord	 GOLD)	

2.3.3 PKI	 TOKENS	

In	 contrast	 to	 the	 previous	 two	 solutions,	 PKI	
tokens	 rely	 on	 public	 key	 cryptography.	

Under	 the	 hood,	 almost	 all	 PKI	 tokens	 rely	 on	
smart	 card	 ICs	 with	 a	 cryptographic	 co-‐processor	
capable	 of	 performing	 public	 key	 operations	 and	 –	
in	 most	 cases	 –	 key	 generation.	 They	 come	 in	 a	 vari-‐
ety	 of	 form	 factors,	 the	 two	 most	 common	 being	 the	
smart	 card	 and	 the	 USB	 dongle.	

Authentication	 with	 PKI	 tokens	 usually	 relies	
on	 some	 form	 of	 challenge/response	 algorithm.	 The	
aim	 of	 these	 algorithms	 is	 to	 prove	 that	 the	 user	 is	 in	
possession	 of	 the	 private	 key	 belonging	 to	 a	 public	
key	 that	 is	 usually	 stored	 in	 an	 X.509	 certificate	 (for	
more	 details,	 see	 [5]	 sections	 3.2	 and	 4).	

Contrary	 to	 the	 previous	 two	 solutions,	 PKI	
tokens	 usually	 interface	 with	 the	 end	 user	 system.	
They	 rely	 on	 software	 running	 on	 that	 system	 to	
integrate	 with,	 for	 example,	 the	 browser	 and	 mail	
client.	 There	 is	 an	 exception	 to	 this	 rule:	 Mobile	 PKI	
(see	 [8]).	 In	 Mobile	 PKI,	 the	 user’s	 SIM	 card	 is	 used	
as	 a	 PKI	 token;	 interfacing	 with	 the	 token	 takes	
place	 using	 special	 SMS	 text	 messages.	

PKI	 tokens	 have	 a	 broader	 applicability	 than	
just	 authentication.	 They	 can	 also	 be	 used	 to	 create	
advanced	 –	 and	 in	 some	 jurisdictions	 legally	 binding	
–	 digital	 signatures	 (for	 more	 information,	 see	 [5]	
section	 4.9).	

2.4 HYBRID	 SOLUTIONS	

2.4.1 SMS	 OTP	

For	 many	 years	 now,	 the	 fact	 that	 almost	 eve-‐
ryone	 has	 a	 mobile	 phone	 is	 being	 used	 as	 a	 means	
for	 two-‐factor	 authentication.	 Many	 users	 will	 be	
familiar	 with	 SMS	 One-‐Time	 Passwords.	

SMS	 OTP	 relies	 on	 an	 authentication	 server	
sending	 one-‐time	 passwords	 by	 SMS	 text	 message	 to	
the	 user.	 The	 user’s	 mobile	 phone	 is	 thus	 leveraged	
as	 an	 authentication	 factor.	 The	 other	 factor	 is	
commonly	 username/password	 (thus	 the	 user	 first	
logs	 in	 using	 username/password	 and	 then	 pro-‐
vides	 additional	 proof	 of	 his	 or	 her	 identity	 using	
SMS	 OTP).	

There	 is	 some	 discussion	 about	 whether	 SMS	
OTP	 constitutes	 real	 two-‐factor	 authentication	
([15],	 [16]).	 Especially	 the	 fact	 that	 it	 is	 hard	 to	 pro-‐
tect	 the	 user	 against	 (temporary)	 stealing	 of	 their	
phone	 is	 a	 concern	 (putting	 a	 PIN	 lock	 almost	 never	
provides	 protection	 since	 SMS’s	 are	 displayed	 even	
if	 the	 handset	 is	 locked).	

There	 are	 many	 vendors	 of	 SMS	 OTP	 services;	
a	 Google	 search	 for	 “SMS	 OTP”	 will	 produce	 a	 long	
list.	

2.4.2 OTP	 APPS	

Another	 more	 recent	 development	 is	 the	 ap-‐
pearance	 of	 One-‐Time	 Password	 Apps.	 These	 run	 on	
modern	 handsets	 (smart	 phones)	 and	 usually	 mimic	
the	 behaviour	 of	 OTP	 tokens	 (see	 section	 2.3.1).	 The	
difference	 between	 these	 Apps	 and	 ‘real’	 OTP	 tokens	
is	 that	 the	 secret	 is	 stored	 and	 processed	 in	 software	
on	 the	 handset.	 This	 makes	 them	 somewhat	 more	
vulnerable	 to	 attacks.	

Most	 OTP	 token	 vendors	 now	 also	 have	 App	
versions	 of	 their	 OTP	 tokens	 that	 interface	 with	 the	
same	 backend	 server	 systems	 that	 are	 also	 used	 for	
their	 hardware	 tokens.	

3 ISSUES	 IN	 TWO-‐FACTOR	 AUTHEN-‐
TICATION	
3.1 INTRODUCTION	

We	 feel	 that	 there	 are	 several	 issues	 surround-‐
ing	 two-‐factor	 authentication	 that	 are	 hampering	
rollout	 on	 a	 larger	 scale;	 most	 solutions	 are	 closed,	
they	 often	 use	 single-‐purpose	 tokens,	 are	 not	 easy	 to	
use,	 may	 have	 prohibitive	 costs	 associated	 with	
them	 and	 almost	 always	 lack	 user	 control.	 We	 will	
address	 these	 issues	 in	 more	 detail	 in	 the	 remainder	
of	 this	 section.	

3.2 CLOSED	 SOLUTIONS	

The	 most	 important	 issue	 with	 most	 current	
solutions	 is	 that	 they	 are	 closed	 ecosystems.	 For	
example,	 the	 majority	 of	 OTP	 tokens	 is	 based	 on	
proprietary	 algorithms	 and	 can	 only	 be	 integrated	
into	 applications	 by	 using	 servers	 or	 server-‐side	
components	 supplied	 by	 the	 token	 vendors.	

Ironically,	 for	 PKI	 tokens	 it	 is	 even	 worse.	
They	 always	 require	 integration	 software	 on	 the	
client	 system	 in	 the	 form	 of	 cryptographic	 middle-‐
ware	 (although	 they	 normally	 do	 not	 require	 server-‐
side	 integration,	 since	 they	 are	 based	 on	 built-‐in	
X.509	 client	 authentication).	 If	 the	 tokens	 are	 smart	
cards,	 they	 require	 smart	 card	 readers	 (which	 are	
not	 commonly	 installed	 in	 systems	 apart	 from	 some	
enterprise-‐market	 laptops).	 And	 both	 smart	 card	
readers	 as	 well	 as	 USB	 tokens	 may	 require	 specific	
drivers	 before	 they	 will	 work	 although	 that	 is	 less	
common	 nowadays	 with	 most	 of	 them	 supporting	
the	 CCID	 [17]	 standard.	

84 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Because	 most	 solutions	 require	 proprietary	
software,	 they	 are	 not	 easily	 integrated	 on	 all	 plat-‐
forms	 (i.e.	 they	 will	 only	 work	 on	 vendor-‐supported	
platforms).	

For	 OTP	 tokens,	 the	 advent	 of	 the	 OATH	 initia-‐
tive	 brings	 hope	 since	 both	 the	 algorithms	 in	 the	
tokens	 as	 well	 as	 the	 way	 that	 the	 token	 secrets	 are	
distributed	 are	 now	 specified	 in	 open	 standards.	
This	 makes	 it	 possible	 to	 develop	 the	 server-‐side	
integration	 software	 independent	 of	 the	 token	 ven-‐
dor	 and	 allows	 these	 components	 to	 support	 tokens	
from	 many	 vendors.	 There	 is	 already	 quite	 a	 bit	 of	
uptake	 among	 token	 vendors.	

In	 contrast,	 for	 PKI	 tokens,	 the	 situation	 is	 dif-‐
ferent.	 Although	 there	 is	 an	 open	 source	 initiative	
[21],	 this	 project	 has	 not	 really	 seen	 a	 wide	 use	 or	
deployment	 and	 indeed	 most	 PKI	 token	 middleware	
is	 still	 proprietary	 and	 closed.	 On	 a	 positive	 note,	
PKI	 middleware	 at	 least	 adheres	 to	 the	 open	 PKCS	
#11	 standard	 [22].	

One	 final	 thing	 to	 mention	 is	 Mobile	 PKI.	 From	
an	 integration	 perspective	 it	 is	 fully	 open,	 because	 it	
is	 based	 on	 an	 open	 standard	 web	 service	 interface	
called	 MSSP	 [23],	 [24],	 [25],	 [26].	 The	 downside	 is	
that	 a	 special	 application	 needs	 to	 be	 installed	 on	
the	 user’s	 SIM	 card.	 The	 mobile	 operator	 owns	 the	
SIM	 card	 and	 access	 to	 it	 is	 strictly	 guarded.	 This	
means	 that	 in	 order	 to	 be	 able	 to	 deploy	 Mobile	 PKI	
co-‐operation	 of	 the	 mobile	 operator	 is	 required,	
which	 has	 been	 proven	 to	 be	 difficult	 on	 many	 occa-‐
sions.	 	

3.3 SINGLE	 PURPOSE	 TOKENS	

Almost	 all	 OTP	 tokens	 are	 single-‐purpose	 to-‐
kens	 by	 nature	 because	 they	 rely	 on	 a	 shared	 secret.	
The	 tokens	 themselves	 can	 only	 contain	 one	 secret,	
which	 means	 that	 they	 can	 only	 be	 paired	 with	 one	
server.	 Unless	 the	 server	 is	 used	 as	 an	 authentica-‐
tion	 service	 for	 multiple	 applications	 (which	 is	 very	
rarely	 the	 case),	 the	 tokens	 can	 thus	 only	 be	 used	 for	
a	 single	 purpose	 (e.g.	 to	 log	 in	 to	 online	 banking	 for	
a	 single	 bank).	 This	 is	 very	 inconvenient	 for	 users,	
and	 indeed	 many	 users	 will	 know	 the	 hassle	 of	 hav-‐
ing	 more	 than	 one	 token	 because	 they	 are	 custom-‐
ers	 at	 more	 than	 one	 bank.	

In	 principle,	 PKI	 tokens	 should	 be	 more	 flexi-‐
ble	 because	 they	 often	 support	 storage	 of	 more	 than	
one	 X.509	 certificate	 together	 with	 the	 associated	
key-‐pair.	 Unfortunately,	 the	 issuance	 process	 of	 PKI	
tokens	 is	 usually	 such	 that	 users	 have	 no	 control	
over	 the	 content	 of	 their	 token	 and	 can	 very	 rarely	
add	 credentials	 for	 additional	 identities.	 Thus,	 PKI	
tokens	 can	 only	 be	 used	 for	 multiple	 purposes	 if	
they	 contain	 an	 identity	 issued	 by	 a	 Certificate	 Au-‐
thority	 that	 is	 supported	 by	 the	 party	 to	 which	 the	
user	 is	 authenticating.	

In	 theory,	 mobile	 App-‐based	 solutions	 can	
more	 easily	 support	 multi-‐purpose	 deployments,	 in	
practice	 this	 does	 not	 happen	 very	 often	 yet.	

3.4 (LACK	 OF)	 EASE	 OF	 USE	

Many	 users	 will	 have	 experienced	 how	 diffi-‐
cult	 it	 can	 be	 to	 use	 OTP	 tokens.	 Most	 of	 them	 re-‐
quire	 typing	 in	 complicated	 codes.	 The	 chal-‐
lenge/response	 variety	 is	 even	 more	 complicated	
where	 users	 regularly	 have	 to	 type	 multiple	 codes	
on	 the	 token	 and	 then	 they	 have	 to	 copy	 the	 result	
from	 the	 token	 by	 typing	 it	 on	 the	 site	 they	 are	 au-‐
thenticating	 to.	

SMS	 OTP	 is	 no	 better.	 In	 fact,	 it	 is	 even	 more	
complicated	 in	 our	 opinion	 as	 the	 one-‐time	 pass-‐
words	 used	 often	 consist	 of	 both	 capitals	 and	 lower	
case	 letters	 as	 well	 as	 digits	 and	 punctuation	 marks.	

PKI	 tokens	 fare	 a	 little	 better.	 As	 long	 as	 the	
software	 integration	 with	 the	 user’s	 browser	 is	
properly	 installed,	 the	 user	 experience	 is	 usually	
quite	 smooth.	

A	 common	 issue	 shared	 by	 all	 tokens	 except	
mobile	 phone-‐based	 ones	 is	 that	 they	 are	 all	 too	
easy	 to	 forget	 or	 lose.	 	

3.5 COST	

Both	 OTP	 and	 PKI	 tokens	 can	 be	 quite	 costly,	
both	 in	 initial	 investment	 as	 well	 as	 yearly	 licence	
fees.	 It	 is	 not	 uncommon	 to	 pay	 tens	 of	 US	 dollars	
per	 user	 per	 year.	 SMS	 OTP	 becomes	 gradually	 more	
costly	 the	 more	 it	 is	 used.	

The	 only	 exception	 to	 this	 rule	 is	 a	 new	 class	 of	
OTP	 tokens	 that	 are	 emerging,	 based	 on	 open	 stand-‐
ards	 developed	 by	 the	 OATH	 initiative.	 Because	 they	
work	 with	 open	 source	 software,	 the	 only	 substan-‐
tial	 cost	 is	 the	 initial	 investment.	 Yubikey	 tokens	
[27],	 for	 example,	 can	 be	 purchased	 for	 less	 than	
USD	 $30	 and	 the	 price	 goes	 down	 for	 larger	 volume	
purchases.	

3.6 (LACK	 OF)	 USER	 CONTROL	

Users	 seldom	 initiate	 deployment	 of	 two-‐
factor	 authentication	 solutions.	 They	 are	 usually	
deployed	 by	 corporate	 IT	 departments	 or	 banks.	
The	 organisations	 deploying	 these	 tokens	 strictly	
control	 what	 they	 can	 or	 cannot	 be	 used	 for,	 severe-‐
ly	 limiting	 users.	

It	 is	 very	 hard	 for	 users	 to	 acquire	 personal	
two-‐factor	 tokens	 and	 deploy	 them	 in	 a	 useful	 way	
because	 very	 few	 services	 provide	 the	 means	 to	 self-‐
enrol	 identities.	 A	 notable	 exception	 to	 this	 is	 Google	
Authenticator	 [28].	

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 85

4 CLASSIFICATION	 OF	 AUTHENTI-‐
CATION	 SOLUTIONS	
4.1 INTRODUCTION	

In	 this	 section	 we	 will	 introduce	 six	 different	
ways	 to	 classify	 authentication	 solutions	 in	 order	 to	
judge	 their	 suitability.	 We	 will	 use	 this	 classification	
at	 the	 end	 of	 this	 section	 to	 classify	 the	 two-‐factor	
authentication	 solutions	 discussed	 earlier.	

4.2 HARDWARE	 INDEPENDENCE	

The	 first	 way	 to	 classify	 authentication	 solu-‐
tions	 is	 by	 their	 dependence	 (or	 lack	 thereof)	 on	
specific	 or	 specialised	 hardware	 for	 their	 operation.	 	

We	 feel	 that	 hardware	 independence	 enhances	
the	 usability	 of	 a	 solution,	 because	 the	 more	 inde-‐
pendent	 a	 solution	 is	 from	 specific	 hardware,	 the	
fewer	 devices	 a	 user	 has	 to	 carry	 around.	

From	 a	 security	 perspective,	 however,	 using	
special	 purpose-‐made	 hardware	 has	 distinct	 ad-‐
vantages.	 Devices	 can	 be	 tailored	 for	 one	 goal,	 which	
is	 to	 protect	 the	 secrets	 associated	 with	 a	 user’s	
credentials.	

In	 this	 paper,	 we	 will	 focus	 mainly	 on	 the	 en-‐
hanced	 usability	 that	 comes	 with	 hardware	 inde-‐
pendence;	 we	 will	 factor	 in	 the	 security	 advantages	
that	 special	 hardware	 can	 offer	 when	 we	 judge	 the	
security	 of	 a	 solution.	 We	 rank	 solutions	 that	 offer	
stronger	 hardware	 independence	 more	 favourably	
than	 solutions	 that	 require	 specific	 hardware	 to	
operate.	

4.3 SOFTWARE	 INDEPENDENCE	

Just	 like	 hardware	 independence,	 software	 in-‐
dependence	 is	 mainly	 a	 usability	 enhancing	 aspect.	
In	 some	 cases,	 dependence	 on	 specific	 hardware	
goes	 hand	 in	 hand	 with	 dependence	 on	 specific	
software.	 For	 example,	 smart	 cards	 cannot	 operate	
without	 the	 accompanying	 security	 middleware	 that	
users	 will	 have	 to	 install	 on	 their	 computer.	

Some	 solutions	 only	 depend	 on	 specific	 soft-‐
ware	 on	 the	 server	 side	 and	 do	 not	 require	 the	 user	
to	 install	 software	 (for	 example	 OTP	 tokens).	

We	 will	 judge	 solutions	 on	 the	 amount	 of	 effort	
required	 to	 install	 software	 by	 both	 end	 users	 as	
well	 as	 by	 the	 system	 administrators	 of	 the	 server	
side.	 We	 will	 also	 factor	 in	 the	 availability	 of	 integra-‐
tion	 in	 off-‐the-‐shelf	 products	 as	 this	 can	 significantly	
reduce	 the	 effort	 required	 to	 install	 the	 required	
software.	

4.4 SECURITY	

Security	 is	 –	 of	 course	 –	 one	 of	 the	 most	 im-‐
portant	 factors	 when	 judging	 authentication	 solu-‐
tions.	

There	 are	 several	 aspects	 that	 influence	 the	
security	 of	 a	 solution:	

 Is	 the	 solution	 a	 multi-‐factor	 solution?	 If	 so,	 is	
it	 a	 true	 multi-‐factor	 solution	 (see	 §2.3)	 or	 a	
hybrid	 solution	 (see	 §2.4)?	

 Does	 the	 solution	 rely	 on	 purpose-‐built	 hard-‐
ware	 that	 has	 provisions	 for	 e.g.	 tamper	 re-‐
sistance?	

 Are	 there	 well-‐known	 attacks	 that	 (severely)	
impact	 the	 security?	

 If	 the	 solution	 relies	 on	 cryptography,	 does	 it	
rely	 on	 sufficiently	 strong	 as	 well	 as	 open	
cryptography?	

 Has	 the	 security	 of	 the	 solution	 been	 verified	
by	 reputable	 independent	 security	 auditors?	

4.5 COST	

Cost	 is	 an	 important	 factor,	 especially	 for	
large-‐scale	 deployments.	 It	 can	 be	 considered	 from	
a	 number	 of	 different	 angles:	

 The	 one-‐time	 setup	 cost	 (e.g.	 in	 software	 and	
hardware	 purchases)	 and	 recurring	 cost	 of	 the	
actual	 solution	 (e.g.	 yearly	 licence	 fees).	

 The	 cost	 for	 troubleshooting	 for	 users	 who	
have	 misplaced	 their	 credentials	 or	 forgotten	
their	 password	 or	 PIN.	

 The	 cost	 of	 integrating	 the	 solution	 into	 exist-‐
ing	 IT	 infrastructure	 (what	 skill	 level	 is	 re-‐
quired	 and	 how	 much	 time	 do	 system	 adminis-‐
trators	 or	 system	 integrators	 spend	 setting	 up	
the	 solution).	

4.6 OPEN	 STANDARDS	 COMPLIANCE	

Open	 standards	 form	 the	 backbone	 of	 the	 In-‐
ternet.	 Vendors	 implement	 these	 standards	 that	 are	
available	 free-‐of-‐charge	 or	 for	 a	 reasonable	 fee	 to	
guarantee	 interoperability	 with	 systems	 from	 other	
vendors.	 	

There	 is	 a	 whole	 host	 of	 open	 standards	 in	 the	
authentication	 arena	 that	 make	 it	 easier	 to	 integrate	
solutions	 into	 existing	 IT	 infrastructure.	 They	 also	
offer	 a	 certain	 level	 of	 vendor	 independence	 as	 one	
solution	 can	 be	 more	 easily	 exchanged	 for	 another.	
Of	 course,	 this	 also	 depends	 on	 the	 level	 to	 which	
open	 standards	 have	 been	 integrated.	 For	 example:	
OTP	 tokens	 that	 fully	 support	 the	 open	 standards	 of	
the	 Open	 Authentication	 Initiative	 can	 easily	 be	 in-‐
tegrated	 with	 server-‐side	 software	 from	 a	 range	 of	
vendors	 that	 support	 these	 standards.	 On	 the	 other	
hand,	 PKI	 tokens	 that	 rely	 on	 PKCS	 #11	 middleware	
are	 less	 easily	 replaced	 by	 another	 solution	 as	 they	
will	 require	 specific	 middleware	 supplied	 by	 the	
token	 vendor.	

For	 a	 long	 time	 supporting	 open	 standards	
was	 not	 common	 practice,	 especially	 among	 OTP	
token	 vendors.	 Fortunately,	 this	 is	 now	 changing	 for	
the	 better	 with	 the	 advent	 of	 consortia	 like	 the	 Open	
Authentication	 Initiative.	

86 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

4.7 EASE-‐OF-‐USE	

A	 final	 factor	 that	 can	 go	 a	 long	 way	 in	 deter-‐
mining	 the	 success	 of	 a	 solution	 is	 ease-‐of-‐use.	 At	
first	 glance,	 solutions	 that	 are	 already	 familiar	 to	 a	
user	 –	 such	 as	 username/password	 –	 may	 seem	
easy-‐to-‐use.	 But	 when	 all	 the	 kludges	 that	 have	 been	
added	 to	 enhance	 the	 security	 such	 as	 complex	
password	 policies	 and	 requirements	 to	 change	
passwords	 on	 a	 regular	 basis	 are	 considered,	 it	 is	
easy	 to	 see	 that	 such	 solutions	 may	 not	 be	 as	 easy-‐
to-‐use	 as	 initially	 assumed.	

Other	 things	 that	 need	 to	 be	 factored	 in	 when	
considering	 the	 ease-‐of-‐use	 of	 a	 solution	 are:	

 Does	 the	 solution	 require	 the	 user	 to	 carry	
around	 additional	 devices	 (that	 he/she	 other-‐
wise	 would	 not	 need	 to	 operate	 their	 comput-‐
er)?	

 Does	 the	 user	 have	 to	 re-‐type	 complicated	
codes	 (such	 as	 may	 be	 the	 case	 for	 OTP	 to-‐
kens)?	

 Has	 care	 been	 taken	 to	 design	 the	 user	 experi-‐
ence	 such	 that	 the	 solution	 can	 be	 used	 intui-‐
tively	 by	 the	 user	 rather	 than	 requiring	 them	
to	 learn	 how	 to	 operate	 the	 solution	 from	 e.g.	 a	
manual?	

4.8 CLASSIFICATION	

Table	 1	 below	 shows	 the	 scores	 we	 have	 as-‐
signed	 to	 each	 solution	 described	 in	 section	 2	 for	
each	 of	 the	 6	 different	 classification	 categories	 de-‐
scribed	 earlier;	 we	 used	 a	 five	 point	 scoring	 system	
ranging	 from	 ++	 (indicating	 that	 a	 solution	 is	 (one	
of)	 the	 best	 in	 class	 for	 the	 given	 classification	 cate-‐
gory)	 to	 -‐-‐	 (indicating	 that	 a	 solution	 has	 very	 unfa-‐
vourable	 characteristics	 compared	 to	 other	 solu-‐
tions	 in	 the	 given	 classification	 category).	 Any	 scor-‐
ing	 system	 is,	 of	 course,	 subjective;	 we	 endeavour	 to	
justify	 the	 scores	 in	 Table	 1	 in	 section	 4.9.	

	 Hardware	
indep.	

Software	
indep.	 Security	 Cost	 Open	

Standards	 Ease-‐of-‐use	

Usern./pwd	 ++	 ++	 -‐-‐	 ++	 =	 +/-‐	
OTP	 token	 -‐	 -‐	 ++	 -‐-‐	 -‐/=	 +	
C/R	 token	 -‐	 -‐	 ++	 -‐-‐	 -‐/=	 +	
PKI	 token	 -‐-‐	 -‐-‐	 ++	 -‐-‐	 =	 +	
Mobile	 PKI	 +	 +	 ++	 ?	 +	 ++	
SMS	 OTP	 +	 =	 -‐	 -‐	 -‐-‐	 -‐	
OTP	 Apps	 +	 +/=	 +	 +/=	 +/=	 =	
Table	 1	 -‐	 Classification	 of	 authentication	 solutions	

4.9 JUSTIFICATION	

We	 would	 like	 to	 highlight	 certain	 points	 of	 the	
classification	 we	 made	 in	 the	 previous	 section.	 Giv-‐
en	 the	 endless	 stream	 of	 news	 articles	 about	
username/password	 getting	 compromised	 we	 feel	
that	 –	 even	 though	 it	 is	 tried	 and	 tested	 –	 this	 para-‐
digm	 is	 really	 lacking	 in	 security.	 And	 even	 if	 organi-‐
sations	 enforce	 secure	 password	 policies	 and	 users	
adhere	 to	 them,	 they	 may	 still	 be	 at	 risk.	 Recent	

developments	 in	 password	 cracking	 such	 as	 using	
GPU-‐based	 cracking	 systems	 make	 the	 security	 of	
any	 password	 under	 a	 certain	 length	 questionable	
[45].	 With	 the	 increasing	 value	 that	 online	 identities	
have	 (how	 would	 you	 feel	 if	 your	 GMail,	 your	 Face-‐
Book	 or	 your	 Twitter	 account	 got	 compromised	 and	
someone	 reads	 your	 private	 data	 or	 tries	 to	 imper-‐
sonate	 you?)	 we,	 as	 authors,	 are	 of	 the	 opinion	 that	
two-‐factor	 authentication	 should	 become	 much	
more	 common	 than	 it	 is	 now.	

As	 the	 classification	 shows,	 to	 get	 rock	 solid	
security	 using	 two-‐factor	 authentication	 we	 feel	 that	
a	 real	 purpose-‐built	 hardware	 token	 should	 be	 used.	
Nevertheless,	 emerging	 solutions	 that	 rely	 on	 mo-‐
bile	 phones	 as	 personal	 devices,	 such	 as	 OTP	 Apps,	
show	 great	 promise.	 If	 implemented	 properly,	 these	
solutions	 can	 add	 significant	 value	 security-‐wise.	

There	 are	 three	 key	 problems	 currently	 inhib-‐
iting	 wide-‐scale	 deployment	 of	 two-‐factor	 authenti-‐
cation	 outside	 of	 the	 corporate	 and	 banking	 envi-‐
ronment.	 The	 first	 is	 cost;	 OTP	 and	 PKI	 tokens	 are	
expensive	 (there	 are	 exceptions:	 interestingly,	 one	
of	 the	 largest	 deployments	 of	 OTP	 tokens	 is	 for	
online	 World-‐of-‐Warcraft	 [41]).	 The	 second	 is	 de-‐
pendence	 on	 bespoke	 hard-‐	 and	 software.	 Especially	
PKI	 tokens	 suffer	 from	 the	 problem	 that	 they	 re-‐
quire	 the	 end-‐user	 to	 install	 driver	 software	 and	
security	 middleware	 that	 is	 not	 always	 available	 for	
all	 end-‐user	 platforms.	

Finally,	 the	 last	 problem	 is	 the	 lack	 of	 adher-‐
ence	 to	 open	 standards.	 This	 not	 only	 stops	 people	
integrating	 support	 for	 two-‐factor	 authentication	
into	 their	 online	 services,	 it	 also	 means	 that	 many	
two-‐factor	 products	 are	 single	 purpose	 only	 (e.g.	 a	
token	 issued	 by	 a	 bank	 cannot	 be	 used	 to	 authenti-‐
cate	 for	 other	 services).	

We	 have	 tried	 to	 let	 these	 three	 problems	 be	
reflected	 in	 the	 classification	 given	 in	 Table	 1.	

5 tiqr:	 EXAMPLE	 OF	 AN	 OPEN	 AP-‐
PROACH	
5.1 INTRODUCTION	

In	 2009	 we	 experimented	 with	 Mobile	 PKI	
(see	 also	 §2.3.3)	 as	 a	 means	 of	 authentication.	 As	 the	
report	 [8]	 of	 our	 experiment	 shows,	 we	 were	 very	
happy	 with	 the	 results.	 The	 technology	 is	 user-‐
friendly,	 very	 secure	 and	 –	 because	 of	 the	 open	
standards	 it	 is	 based	 on	 –	 easy	 to	 integrate.	

The	 only	 major	 hurdle	 we	 encountered	 is	 the	
dependence	 on	 mobile	 operators.	 These	 operators	
are	 very	 hesitant	 about	 deploying	 the	 technology	
because	 it	 requires	 a	 SIM	 swap	 (most	 SIMs	 deployed	
in	 The	 Netherlands	 are	 not	 PKI	 capable),	 and	 be-‐
cause	 they	 do	 not	 feel	 that	 there	 is	 a	 strong	 business	
case	 to	 deploy	 the	 technology	 in	 terms	 of	 potential	
revenue	 from	 it.	

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 87

As	 operator	 of	 the	 National	 Research	 and	 Edu-‐
cation	 Network	 (NREN)	 in	 The	 Netherlands,	
SURFnet	 operates	 a	 so-‐called	 identity	 federation	
(see	 [29])	 called	 SURFfederatie.	 This	 federation	 ena-‐
bles	 users	 to	 log	 in	 at	 a	 multitude	 of	 online	 service	
providers	 using	 a	 single	 identity	 hosted	 by	 their	
home	 institution.	 Furthermore,	 this	 federation	 of-‐
fers	 users	 single	 sign-‐on.	

As	 is	 the	 case	 on	 most	 of	 the	 Internet,	 almost	
all	 authentications	 in	 the	 SURFfederatie	 rely	 on	 the	
tried	 and	 tested	 username/password	 mechanism.	
We	 would	 like	 to	 improve	 on	 this	 situation	 by	 intro-‐
ducing	 alternative	 means	 of	 authentication	 based	 on	
two-‐factor	 authentication	 technology.	 There	 are	 two	
reasons	 for	 this:	 first,	 we	 feel	 that	 some	 services	
require	 a	 stronger	 form	 of	 authentication	 than	
username/password.	 Secondly,	 we	 would	 like	 to	
offer	 users	 a	 safe	 alternative	 that	 they	 can	 use	 on	
untrusted	 systems	 such	 as,	 for	 instance,	 computers	
in	 Internet	 cafés.	

SURFfederatie	 has	 a	 sizable	 and	 very	 hetero-‐
geneous	 user	 population	 consisting	 of	 approximate-‐
ly	 one	 million	 students,	 researchers	 and	 other	 staff	
from	 over	 a	 160	 different	 institutions.	 It	 would	 be	
impossible	 to	 deploy	 a	 token-‐based	 two-‐factor	 au-‐
thentication	 solution	 because	 of	 the	 logistics	 in-‐
volved.	 It	 would,	 however,	 be	 ideal	 if	 we	 could	 de-‐
ploy	 a	 secure	 two-‐factor	 authentication	 system	 that	
uses	 mobile	 phones.	 Almost	 everyone	 owns	 a	 mo-‐
bile	 phone	 (in	 fact,	 in	 The	 Netherlands,	 a	 country	 of	
16.5	 million	 people,	 there	 are	 over	 19	 million	 active	
mobile	 subscriptions	 [30])	 and	 users	 are	 very	 moti-‐
vated	 to	 carry	 their	 mobile	 phone	 at	 all	 times	 [31].	

For	 reasons	 mentioned	 before,	 we	 could	 not	
rely	 on	 Mobile	 PKI	 so	 we	 started	 searching	 for	 an	
alternative.	 The	 criteria	 for	 this	 alternative	 were	
that	 it	 should	 be	 secure,	 user-‐friendly,	 easy	 to	 de-‐
ploy,	 open	 and	 suitable	 for	 managing	 multiple	 iden-‐
tities.	 We	 believe	 that	 we	 have	 developed	 a	 novel	
solution	 that	 meets	 all	 of	 these	 criteria.	

5.2 THE	 CONCEPT	

5.2.1 BASIC	 FEATURES	 USED	

The	 concept	 we	 call	 tiqr	 is	 based	 on	 three	 fea-‐
tures	 of	 modern	 smartphones:	

 The	 ability	 to	 run	 Apps	
 A	 camera	
 Internet	 connectivity	

5.2.2 QR	 CODES	

Relying	 on	 these	 smartphone	 features	 allows	
tiqr	 to	 make	 use	 of	 two-‐dimensional	 barcodes	 called	
QR	 codes.	 They	 were	 invented	 by	 Toyota	 subsidiary	
Denso-‐Wave	 in	 the	 1990s.	

	
Figure	 3	 -‐	 a	 QR	 code	 with	 specific	 features	 highlighted	
(source	 [9])	

Although	 patented,	 QR	 codes	 can	 be	 used	 roy-‐
alty	 free.	 The	 technology	 behind	 the	 codes	 has	 been	
standardised	 as	 ISO/IEC	 18004:2006.	 Up	 to	 4KB	 of	
alphanumeric	 data	 can	 be	 stored	 in	 the	 codes	 and	
numerous	 libraries	 are	 available	 that	 can	 extract	
information	 contained	 in	 a	 QR	 code	 from	 images	
captured	 by	 a	 camera.	 For	 more	 details	 about	 QR	
codes,	 we	 refer	 readers	 to	 the	 excellent	 Wikipedia	
article	 [9].	

QR	 codes	 have	 become	 quite	 popular,	 because	
most	 phones	 are	 equipped	 with	 cameras	 and	 can	
run	 QR	 code	 reader	 software.	 The	 codes	 are	 almost	
exclusively	 used	 in	 a	 static	 fashion,	 for	 instance	 in	
advertising	 or	 on	 public	 transport	 stops.	 They	 usual-‐
ly	 contain	 an	 encoded	 URL	 that	 QR	 code	 readers	 can	
open	 in	 a	 mobile	 browser.	

The	 innovation	 we	 have	 come	 up	 with	 is	 to	 use	
QR	 codes	 in	 a	 dynamic	 rather	 than	 a	 static	 fashion.	
By	 encoding	 a	 challenge	 in	 a	 dynamically	 generated	
QR	 code	 that	 is	 displayed	 to	 the	 user	 when	 he/she	
wants	 to	 log	 in,	 we	 use	 QR	 codes	 to	 take	 away	 the	
burden	 on	 users	 of	 typing	 challenge/response	
codes.	 QR	 codes	 are	 also	 used	 during	 enrolment	 to	
tie	 the	 user’s	 phone	 to	 an	 identity.	 Although	 this	
solution	 is	 not	 unique	 –	 the	 Google	 Authenticator	
App	 [28]	 can	 use	 a	 QR	 code	 to	 convey	 the	 user	 se-‐
cret	 during	 enrolment	 –	 we	 have	 taken	 this	 technol-‐
ogy	 further	 by	 creating	 a	 seamless	 user	 experience.	

5.2.3 THE	 TIQR	 USER	 EXPERIENCE	

To	 illustrate	 how	 tiqr	 works,	 we	 will	 go	
through	 the	 tiqr	 user	 experience	 during	 authentica-‐
tion	 (assume	 for	 now	 that	 a	 user	 already	 has	 a	 tiqr-‐
enabled	 account).	

The	 flow	 starts	 by	 a	 user	 surfing	 to	 a	 website	
that	 requires	 them	 to	 log	 in.	 Where	 most	 sites	 would	
display	 a	 username/password	 dialog	 (or	 an	 entry	
field	 to	 enter	 a	 one-‐time	 password),	 with	 tiqr	 users	
will	 see	 a	 QR	 tag	 as	 shown	 in	 Figure	 4.	

88 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

	
Figure	 4	 -‐	 tiqr	 login	 page	 showing	 a	 QR	 code	

Contained	 in	 the	 QR	 code	 is	 a	 challenge.	 The	
user	 now	 launches	 the	 tiqr	 App	 on	 their	
smartphone.	 The	 App	 will	 activate	 the	 camera	 al-‐
lowing	 the	 user	 to	 scan	 the	 QR	 code.	

	
Figure	 5	 -‐	 the	 user	 scans	 the	 QR	 code	 with	 the	 tiqr	 App	

Apart	 from	 a	 random	 challenge,	 the	 QR	 code	
also	 contains	 information	 on	 the	 relying	 party	 re-‐
questing	 authentication.	 The	 App	 can	 manage	 mul-‐
tiple	 identities	 and	 will	 select	 an	 appropriate	 identi-‐
ty	 that	 can	 be	 used	 to	 log	 in	 to	 this	 particular	 site	 (if	
multiple	 identities	 are	 present,	 the	 user	 will	 see	 a	
list	 and	 can	 choose	 the	 appropriate	 one).	 The	 tiqr	
App	 now	 asks	 the	 user	 to	 confirm	 that	 he/she	 wants	
to	 log	 in,	 also	 displaying	 the	 domain	 name	 of	 the	 site	
they	 are	 logging	 in	 to	 in	 order	 to	 reduce	 the	 risk	 of	
phishing.	

	
Figure	 6	 -‐	 tiqr	 asks	 for	 user	 confirmation	

Once	 the	 user	 has	 confirmed	 their	 identity,	
they	 will	 be	 asked	 to	 enter	 their	 PIN	 code	 (the	 se-‐
cond	 factor).	

	
Figure	 7	 -‐	 user	 entering	 their	 PIN	

The	 user	 is	 helped	 in	 remembering	 his	 or	 her	
PIN	 by	 means	 of	 animal	 icons	 displayed	 in	 the	 PIN	
entry	 dialog.	 Errors	 made	 during	 PIN	 entry	 (such	 as	
swapping	 two	 digits	 or	 a	 completely	 different	 PIN)	
will	 lead	 to	 a	 different	 sequence	 being	 displayed.	
When	 the	 user	 presses	 OK,	 login	 will	 proceed.	 If	 the	
user’s	 phone	 is	 online,	 the	 Internet	 connection	 of	
the	 phone	 will	 be	 used	 to	 submit	 the	 response	 to	 the	
authenticating	 server	 thus	 obviating	 the	 need	 to	
type	 one-‐time	 passwords	 in	 to	 a	 website.	 When	 au-‐
thentication	 is	 successful,	 the	 user	 is	 notified	 both	
on	 the	 phone	 as	 well	 as	 by	 the	 website	 proceeding	
with	 login	 by	 redirecting	 the	 user	 to	 the	 protected	
content	 as	 shown	 in	 the	 screenshot	 (Figure	 8).	

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 89

	
Figure	 8	 -‐	 the	 user	 has	 successfully	 logged	 in	

In	 case	 no	 Internet	 connection	 is	 available	 on	
the	 phone	 a	 fall-‐back	 scenario	 is	 used	 where	 a	 one-‐
time	 password	 is	 displayed	 on	 the	 phone	 for	 the	
user	 to	 type	 into	 the	 website	 (more	 on	 this	 in	 sec-‐
tion	 5.8).	

5.2.4 FROM	 PROOF-‐OF-‐CONCEPT	 TO	 PRODUCT	

We	 first	 came	 up	 with	 the	 concept	 that	 led	 to	
the	 development	 of	 tiqr	 in	 September	 2010.	 In	 order	
to	 prove	 that	 the	 concept	 would	 work,	 we	 designed	
the	 initial	 protocol	 and	 developed	 a	 proof-‐of-‐
concept	 implementation,	 both	 of	 the	 server	 side	 as	
well	 as	 of	 the	 phone	 side.	 For	 the	 proof-‐of-‐concept	
an	 implementation	 was	 created	 for	 Apple’s	 iOS	 plat-‐
form.	

The	 proof-‐of-‐concept	 quickly	 showed	 that	 the	
technology	 worked	 very	 well.	 We	 first	 demonstrat-‐
ed	 the	 working	 proof-‐of-‐concept	 at	 an	 event	 held	
every	 two	 years	 to	 showcase	 SURFnet	 innovations	
to	 our	 connected	 institutions	 in	 December	 2010	 and	
received	 helpful	 and	 positive	 feedback	 from	 the	
people	 attending.	 This	 led	 us	 to	 decide	 that	 we	
should	 continue	 development.	

In	 April	 2011	 we	 released	 the	 first	 Apple	 iOS	
production	 version	 in	 the	 Apple	 App	 Store	 and	 we	
presented	 on	 the	 project	 at	 the	 Internet2	 Spring	
Member	 Meeting	 in	 Arlington,	 VA.	 The	 Android	 ver-‐
sion	 was	 released	 in	 May	 2011	 just	 before	 we	 pre-‐
sented	 on	 further	 improvements	 to	 tiqr	 at	 the	
TERENA	 Networking	 Conference	 2011	 in	 Prague,	
Czech	 Republic.	

The	 remainder	 of	 this	 section	 will	 go	 into	 more	
detail	 about	 the	 tiqr	 technology.	

5.3 MOBILE	 APPS	

5.3.1 PLATFORMS	

We	 wanted	 to	 make	 tiqr	 available	 on	 the	 two	
most	 common	 smart	 phone	 platforms.	 According	 to	

a	 Q1	 2011	 market	 survey,	 those	 platforms	 are	 Ap-‐
ple’s	 iOS	 and	 Google’s	 Android	 platform:	

	
Figure	 9	 -‐	 smart	 phone	 market,	 source:	 The	 Guardi-‐
an/Kantar	

We	 have	 developed	 Apps	 for	 both	 these	 plat-‐
forms.	 The	 Apps	 rely	 on	 the	 excellent	 ZXing	 QR	 code	
library	 developed	 by	 Google	 (see	 [18])	 for	 QR	 code	
detection	 and	 decoding.	 The	 Apps	 implement	 the	
tiqr	 challenge/response	 protocol,	 which	 is	 based	 on	
OCRA/HOTP	 [19],	 [2];	 more	 information	 on	 the	 pro-‐
tocol	 can	 be	 found	 in	 section	 5.5.	

5.3.2 APP	 SECURITY	 CONSIDERATIONS	

The	 tiqr	 protocol	 relies	 on	 shared	 secrets	 for	
the	 challenge/response	 implementation.	 The	 secret	
is	 stored	 both	 on	 the	 phone	 as	 well	 as	 on	 the	 server.	 	

We	 can	 only	 reasonably	 assume	 that	 the	 phone	
with	 the	 App	 and	 the	 secret	 on	 it	 is	 a	 secure	 authen-‐
tication	 factor	 if	 it	 is	 hard	 for	 an	 attacker	 to	 gain	
access	 to	 the	 actual	 secret.	 We	 therefore	 protect	 the	
secrets	 belonging	 to	 user	 identities	 by	 encrypting	
the	 secrets	 using	 PKCS	 #5	 password-‐based	 encryp-‐
tion	 [20].	 The	 basis	 for	 encryption	 is	 the	 4-‐digit	 PIN	
code	 the	 user	 chooses	 for	 the	 identity.	 	

Of	 course	 there	 are	 only	 10000	 possible	 PIN	
codes	 with	 a	 4-‐digit	 PIN.	 We	 assume	 that	 it	 is	 easy	
for	 a	 motivated	 attacker	 to	 gain	 access	 to	 the	 en-‐
crypted	 secret	 so	 we	 need	 to	 protect	 it	 against	
brute-‐force	 attacks.	 We	 achieve	 this	 by	 applying	 two	
principles.	 Firstly,	 the	 encrypted	 secret	 contains	 no	
internal	 structure	 (i.e.	 only	 the	 secret	 key	 –	 which	 is	
assumed	 to	 be	 truly	 random	 –	 is	 encrypted,	 there	 is	
no	 formatting	 around	 the	 key	 data	 before	 it	 is	 en-‐
crypted).	 This	 automatically	 leads	 to	 a	 second	 level	
of	 protection:	 because	 the	 encrypted	 key	 has	 no	
structure	 around	 it,	 it	 is	 impossible	 to	 check	 if	 the	

3%4%

10%

11%

26%

47%

Global Smartphone Market Share

Android iOS RIM
Symbian Windows Other

90 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

correct	 PIN	 was	 used	 to	 decrypt	 the	 secret	 since	 the	
decrypted	 data	 will	 look	 like	 random	 data	 in	 all	 cas-‐
es.	 As	 a	 result	 of	 this,	 only	 the	 server	 can	 check	 if	 the	
correct	 PIN	 was	 entered	 because	 the	 computed	 re-‐
sponse	 is	 only	 valid	 if	 the	 correct	 secret	 key	 was	
used.	 	

To	 prevent	 online	 attacks,	 we	 recommend	 that	
the	 server	 block	 an	 account	 after	 a	 pre-‐set	 number	
of	 failed	 authentication	 attempts	 (in	 fact	 our	 demo	
implementation	 blocks	 an	 account	 after	 3	 failed	
attempts).	 Depending	 on	 the	 desired	 security	 level,	
the	 server	 administrator	 may	 also	 decide	 to	 imple-‐
ment	 some	 form	 of	 exponential	 back	 off	 mechanism	
to	 mitigate	 brute-‐force	 attacks.	 In	 this	 scenario,	 ac-‐
counts	 are	 temporarily	 blocked	 after	 a	 failed	 login	
attempt.	 This	 thwarts	 brute-‐force	 attacks	 but	 is	 also	
more	 user	 friendly	 for	 legitimate	 users	 since	 enter-‐
ing	 the	 wrong	 PIN	 more	 than	 a	 certain	 number	 of	
times	 will	 not	 immediately	 lead	 to	 a	 blocked	 ac-‐
count.	

5.3.3 APP	 USER	 EXPERIENCE	

One	 of	 our	 main	 goals	 was	 to	 create	 an	 easy-‐
to-‐use	 system.	 We	 have	 taken	 special	 care	 to	 ensure	
that	 the	 user	 experience	 of	 the	 App	 is	 as	 straight-‐
forward,	 self-‐explanatory	 and	 smooth	 as	 possible.	 	
The	 prototype	 developed	 for	 the	 proof-‐of-‐concept	
was	 handed	 over	 to	 user-‐interface	 designers.	 They	
studied	 the	 concept	 and	 the	 prototype	 implementa-‐
tion.	 Using	 storyboards,	 they	 designed	 an	 optimised	
user	 workflow.	 The	 main	 focus	 of	 the	 workflow	 is	 to	
make	 it	 self-‐evident	 to	 the	 user	 what	 the	 next	 logical	
step	 is	 going	 to	 be.	 Another	 change	 they	 introduced	
was	 to	 do	 away	 with	 a	 separate	 enrolment	 workflow	
(in	 the	 prototype,	 we	 had	 two	 completely	 separate	
workflows	 for	 enrolment	 and	 authentication).	 In	
stead,	 the	 user	 just	 scans	 the	 QR	 code	 that	 is	 shown	
and	 information	 in	 the	 code	 determines	 whether	 an	
authentication	 or	 an	 enrolment	 workflow	 is	 going	 to	
be	 followed.	

Another	 design	 decision	 that	 was	 made	 was	 to	
try	 to	 steer	 users	 toward	 using	 the	 same	 PIN	 code	
for	 all	 the	 identities	 managed	 by	 the	 tiqr	 App.	 The	
reasoning	 behind	 this	 is	 that	 the	 user-‐interface	 de-‐
signers	 feel	 that	 it	 is	 counter-‐intuitive	 for	 most	 us-‐
ers	 to	 have	 multiple	 PIN	 codes	 in	 a	 single	 applica-‐
tion.	 This	 concept	 is	 on	 the	 one	 hand	 very	 subtly	
integrated	 in	 the	 user	 experience	 by	 using	 sugges-‐
tive	 wording	 (i.e.	 when	 enroling	 a	 new	 identity	 us-‐
ing	 the	 text	 “Please	 enter	 your	 PIN”	 when	 they	 have	
to	 choose	 a	 new	 PIN	 for	 the	 identity	 rather	 than	
“Please	 choose	 a	 new	 PIN”).	 On	 the	 other	 hand,	 it	
has	 also	 been	 taken	 quite	 far	 in	 that	 if	 a	 single	 iden-‐
tity	 becomes	 blocked	 due	 to	 entering	 the	 wrong	 PIN	
too	 many	 times,	 the	 App	 will	 block	 all	 identities	 it	
manages.	 We	 have	 not	 had	 sufficient	 user	 feedback	
to	 be	 able	 to	 decide	 whether	 or	 not	 this	 was	 a	 good	
choice;	 so	 far,	 we	 have	 had	 some	 feedback	 from	
third	 party	 developers	 that	 they	 feel	 this	 to	 be	 a	 bad	

choice.	 We	 hope	 to	 learn	 more	 in	 a	 pilot	 implemen-‐
tation	 that	 we	 are	 planning	 for	 the	 fall	 of	 2011.	

One	 final	 thing	 to	 note	 about	 the	 user	 experi-‐
ence	 is	 that	 we	 integrated	 an	 aide-‐memoire	 into	 the	
PIN	 entry	 dialog.	 We	 use	 icons	 with	 animal	 shapes	
to	 help	 the	 user	 remember	 their	 PIN	 (as	 shown	 in	
the	 figure	 below).	

	
Figure	 10	 -‐	 PIN	 entry	 showing	 animal	 reminders	

If	 the	 user	 enters	 the	 correct	 PIN,	 the	 same	
four	 animal	 icons	 should	 show	 up	 in	 the	 PIN	 entry	
field.	 Users	 can	 either	 remember	 the	 whole	 se-‐
quence	 or	 elect	 to	 remember	 just	 the	 last	 icon.	 To	
ensure	 that	 the	 sequence	 changes	 when	 common	
PIN	 entry	 mistakes	 are	 made	 (such	 as	 swapping	 two	
digits)	 we	 use	 the	 Verhoeff	 checksum	 algorithm	 [32]	
for	 error	 detection.	

5.4 SERVER	 SIDE	

5.4.1 REQUIREMENTS	

As	 was	 already	 mentioned	 in	 the	 previous	 sec-‐
tion,	 the	 basis	 for	 tiqr	 is	 challenge/response	 authen-‐
tication	 using	 shared	 secrets	 (more	 information	 on	
the	 protocol	 can	 be	 found	 in	 section	 5.5).	 This	
means	 that	 the	 secret	 key	 information	 that	 is	 pre-‐
sent	 on	 the	 phone	 also	 needs	 to	 be	 stored	 on	 the	
server.	

This,	 of	 course,	 puts	 certain	 requirements	 on	
the	 server	 implementation.	 User	 secrets	 should	 be	
stored	 encrypted,	 either	 on	 disk	 in	 a	 database	 or	 in	 a	
Hardware	 Security	 Module	 (HSM).	

Another	 thing	 that	 is	 required	 on	 the	 server	
side	 is	 a	 library	 that	 generates	 the	 QR	 codes	 used	 to	
convey	 the	 challenge	 to	 the	 user.	 There	 are	 good	
open	 source	 implementations	 available	 for	 most	
common	 web	 application	 platforms.	 For	 our	 refer-‐
ence	 implementation	 we	 use	 PHP	 QR	 Code	 [33].	

The	 most	 important	 thing	 to	 pay	 attention	 to	
on	 the	 server	 side	 is	 that	 the	 protocol	 is	 implement-‐
ed	 correctly.	 We	 provide	 a	 reference	 implementa-‐
tion	 to	 show	 how	 the	 protocol	 works	 (which	 is	 dis-‐
cussed	 in	 the	 next	 section).	

5.4.2 REFERENCE	 IMPLEMENTATION	

To	 give	 developers	 a	 head	 start	 at	 integrating	
tiqr	 into	 their	 application,	 we	 have	 developed	 a	 ref-‐
erence	 implementation	 in	 PHP.	 This	 reference	 im-‐

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 91

plementation	 shows	 how	 the	 tiqr	 protocol	 works	
(see	 section	 5.5).	 	

We	 did	 not	 put	 any	 security	 provisions	 in	 the	
reference	 implementation	 so	 it	 should	 not	 be	 used	
in	 production.	 We	 are	 considering	 creating	 a	 more	
secure	 implementation	 that	 people	 can	 deploy	
straightaway.	

5.4.3 SIMPLESAMLPHP	 MODULE	

As	 outlined	 in	 section	 5.1,	 we	 plan	 to	 use	 tiqr	
in	 an	 identity	 federation.	 To	 show	 this	 concept	 in	
action,	 we	 have	 developed	 a	 plug-‐in	 module	 for	 the	
popular	 SimpleSAMLphp	 [34]	 identity	 management	
suite.	

Our	 demo	 portal	 (https://tiqr.org/demo/)	 us-‐
es	 this	 implementation.	

It	 is	 currently	 based	 on	 our	 reference	 imple-‐
mentation	 so	 it	 is	 not	 sufficiently	 secure	 yet	 for	 pro-‐
duction	 use.	 We	 are	 collaborating	 with	 the	 Sim-‐
pleSAMLphp	 team	 to	 create	 a	 production-‐ready	
version,	 which	 we	 hope	 to	 release	 in	 the	 autumn	 of	
2011.	

5.5 PROTOCOL	

5.5.1 GENERAL	

We	 rely	 solely	 on	 open	 standards	 and	 open	
specifications	 as	 a	 basis	 for	 the	 tiqr	 protocol.	 The	
following	 standards	 are	 used:	

 OCRA	 [19]	 –	 this	 is	 the	 suite	 of	 one-‐time	 pass-‐
word	 algorithms	 used	 for	 tiqr	 chal-‐
lenge/response	

 JSON	 [35]	 –	 this	 is	 the	 object	 notation	 used	 to	
exchange	 data	 in	 the	 tiqr	 protocol	

 HTTP	 over	 TLS	 –	 used	 to	 transport	 infor-‐
mation	 exchanges	 securely	

 QR	 codes	 [9]	

5.5.2 ENROLMENT	

Enrolment	 starts	 with	 a	 QR	 code	 that	 is	 dis-‐
played	 to	 the	 user.	 This	 QR	 code	 contains	 a	 URL	
with	 the	 following	 schema:	
tiqrenroll://<url>

Where	 <url>	 must	 be	 a	 valid	 HTTPS	 URL	 that	
points	 to	 a	 location	 where	 the	 details	 for	 the	 enrol-‐
ment	 request	 can	 be	 retrieved,	 for	 example:	
tiqrenroll://https://demo.tiqr.org/enroll
/details?session=082176122169132630

The	 tiqr	 App	 will	 contact	 this	 URL	 to	 retrieve	 a	
JSON	 object	 with	 enrolment	 details.	 This	 object	 has	
the	 following	 syntax:	
{
 “service”: {
 “identifier”: <id>,
 “displayName”: <name>,
 “logoUrl”: <logo-url>,
 “infoUrl”: <info-url>,

 “authenticationUrl”: <auth-url>,
 “ocraSuite”: <OCRA-suite>,
 “enrollmentUrl”: <enroll-url>,
 },
 “identity”: {
 “identifier”: <uid>,
 “displayName”: <fullName>
 }
}

The	 service	 section	 of	 the	 object	 identifies	 the	
service	 to	 which	 the	 user	 is	 enrolling.	 The	 identity	
section	 provides	 details	 about	 the	 identity	 that	 is	
being	 enrolled.	 The	 fields	 in	 both	 sections	 of	 this	
object	 have	 the	 following	 semantics:	

 Service	 section	
 identifier	 –	 should	 contain	 a	 reversed	 do-‐

main	 name	 (e.g.	 org.tiqr.demo)	
 displayName	 –	 should	 contain	 the	 name	 of	

the	 service	
 logoUrl	 –	 should	 contain	 a	 valid	 URL	 to	 a	

service	 logo;	 we	 recommend	 a	 PNG24	 im-‐
age	

 infoUrl	 –	 a	 URL	 linking	 to	 a	 webpage	 with	
more	 information	 about	 the	 identity	 pro-‐
vider;	 this	 link	 is	 displayed	 on	 the	 “detailed	
information	 page”	 for	 the	 identity	

 authenticationUrl	 –	 should	 contain	 the	 URL	
for	 the	 authentication	 handler	 for	 this	 ser-‐
vice	

 ocraSuite	 –	 the	 OCRA	 suite	 the	 server	 re-‐
quires;	 the	 App	 uses	 this	 to	 determine	 the	
appropriate	 OCRA	 parameters	 (see	 [19],	
section	 6)*	

 enrollmentUrl	 –	 should	 contain	 the	 URL	 for	
the	 one-‐time	 enrolment	 handler	

 Identity	 section	
 identifier	 –	 should	 contain	 a	 unique	 user	

identifier	 used	 to	 identify	 the	 account	
 displayName	 –	 should	 contain	 the	 full	

name	 of	 the	 user	

*An	 example	 OCRA	 suite	 as	 specified	 by	 the	
server	 could	 for	 instance	 be:	
OCRA-1:HOTP-SHA1-6:QH10-S

This	 OCRA	 suite	 specification	 breaks	 down	 as	
follows:	

 OCRA-‐1	 –	 the	 OCRA	 algorithm	 version	 (in	 this	
case	 version	 1,	 the	 current	 version)	

 HOTP-‐SHA1-‐6	 –	 the	 cryptographic	 function	 to	
use	 (in	 this	 case	 HMAC	 OTP	 [2],	 with	 SHA-‐1	 as	
hash	 algorithm	 using	 dynamic	 truncation	 to	 a	
6-‐digit	 value);	 the	 tiqr	 App	 supports	 all	 algo-‐
rithms	 specified	 in	 the	 OCRA	 standard	

 QH10-‐S	 –	 the	 input	 for	 the	 challenge	 (in	 this	
case	 a	 10-‐digit	 hexadecimal	 value	 represented	
as	 a	 string)	 and	 the	 size	 of	 the	 session	 data	 (in	
this	 case	 the	 default	 value	 of	 64	 bytes)	

For	 more	 examples	 see	 [19].	

92 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

When	 the	 user	 confirms	 enrolment,	 a	 new	
HTTPS	 connection	 is	 made	 to	 the	 enrolment	 server	
URL	 specified	 in	 the	 JSON	 object	 enrollmentUrl	
property.	 A	 POST	 request	 is	 sent	 across	 this	 link.	
This	 POST	 contains	 the	 following	 parameters:	

 secret	 –	 this	 is	 the	 shared	 secret;	 the	 secret	 is	
generated	 by	 the	 App	 on	 the	 phone;	 we	 cur-‐
rently	 use	 256-‐bit	 AES	 keys	 as	 secrets	

 notificationType	 –	 optional;	 this	 is	 the	 notifica-‐
tion	 type	 used	 to	 send	 push	 messages	 to	 the	
App	 and	 can	 be	 set	 to	 either	 APNS	 (for	 Apple	
Push	 Notification	 Service)	 or	 C2DM	 (for	 An-‐
droid	 push	 notifications)	

 notificationAddress	 –	 optional;	 notification-‐
protocol	 specific	 address	 to	 which	 push	 notifi-‐
cations	 can	 be	 sent	

 language	 –	 contains	 the	 user	 interface	 lan-‐
guage	 of	 the	 user;	 this	 information	 may	 be	
used	 to	 display	 appropriate	 error	 messages	 in	
the	 user’s	 preferred	 language	

If	 enrolment	 is	 successful,	 the	 server	 will	 re-‐
turn	 the	 string	 OK	 (with	 no	 white	 space	 before	 or	
after	 the	 string).	 When	 an	 error	 occurs,	 the	 normal	
HTTP	 error	 procedure	 is	 followed	 to	 return	 the	 er-‐
ror	 to	 the	 App.	

5.5.3 AUTHENTICATION	

Authentication	 starts	 by	 displaying	 a	 QR	 code	
to	 the	 user.	 This	 QR	 code	 contains	 a	 URL	 encoded	
according	 to	 the	 following	 URL	 schema:	
tiqrauth://[<identityIdentifier>@]
 <serviceIdentifier>/
 <sessionKey>/
 <challenge>[?<return Url>]

The	 fields	 in	 this	 URL	 have	 the	 following	 se-‐
mantics:	

 identityIdentifier	 –	 optional	 field	 specifying	 the	
user	 identity	 to	 use	 for	 authentication;	 may	 be	
used	 in	 a	 so-‐called	 step-‐up	 authentication	 sce-‐
nario	 where	 the	 user	 has	 already	 logged	 in	 us-‐
ing	 another	 means	 of	 authentication	

 serviceIdentifier	 –	 the	 service	 identifier	 as	
specified	 during	 enrolment	 (the	 service	 do-‐
main	 name	 in	 reverse	 domain	 notation,	 e.g.	
org.tiqr.demo)	

 sessionKey	 –	 session	 key	 for	 this	 authentication	
request;	 links	 the	 response	 to	 the	 active	 user	
session	 when	 submitted	

 challenge	 –	 the	 authentication	 challenge;	 the	
size	 of	 the	 challenge	 depends	 on	 the	 OCRA	
suite	 as	 specified	 during	 enrolment	

 returnUrl	 –	 optional	 field	 specifying	 the	 URL	 to	
return	 the	 user	 to	 after	 successful	 authentica-‐
tion;	 this	 URL	 is	 only	 used	 if	 the	 session	 origi-‐
nated	 from	 the	 mobile	 browser	 on	 the	 device	
containing	 the	 tiqr	 App	

The	 tiqr	 App	 will	 compute	 the	 response	 to	 the	
challenge	 using	 the	 algorithm	 that	 was	 specified	

during	 enrolment.	 It	 will	 submit	 the	 response	 by	
setting	 up	 a	 HTTPS	 connection	 to	 the	 authentication	
endpoint	 specified	 during	 enrolment.	 The	 submis-‐
sion	 is	 done	 using	 a	 POST	 with	 the	 following	 param-‐
eters:	

 sessionKey	 –	 the	 session	 key	 received	 in	 the	 QR	
code	 identifying	 the	 user	 session	 that	 requires	
authentication	

 userId	 –	 the	 user	 identifier	 of	 the	 user	 attempt-‐
ing	 to	 log	 in	

 response	 –	 the	 response	 computed	 to	 the	 chal-‐
lenge	 specified	 in	 the	 QR	 code	

 language	 –	 the	 user’s	 preferred	 language;	 this	
information	 is	 used	 to	 display	 error	 messages	
in	 an	 appropriate	 language	

If	 authentication	 was	 successful,	 the	 POST	 re-‐
quest	 returns	 the	 string	 OK	 (with	 no	 white	 space	
preceding	 or	 following	 the	 string).	 If	 authentication	
fails,	 the	 server	 will	 return	 one	 of	 the	 following	 er-‐
ror	 messages:	

 INVALID_RESPONSE[:attemptsLeft]	 –	 the	 re-‐
sponse	 provided	 to	 the	 challenge	 was	 invalid;	
this	 is	 interpreted	 by	 both	 the	 App	 as	 well	 as	
the	 server	 as	 an	 incorrect	 PIN	 entry.	 The	 op-‐
tional	 integer	 value	 attemptsLeft	 indicates	 the	
number	 of	 tries	 left	 to	 return	 a	 correct	 re-‐
sponse	 (and	 enter	 the	 correct	 PIN)	

 INVALID_USERID	 –	 the	 server	 does	 not	 know	
the	 specified	 user	

 INVALID_CHALLENGE	 –	 there	 is	 no	 known	
challenge	 for	 the	 current	 session;	 this	 usually	
indicates	 that	 the	 challenge	 has	 become	 inva-‐
lid	 because	 of	 a	 timeout	

 ACCOUNT_BLOCKED[:seconds]	 –	 indicates	 that	
the	 response	 provided	 to	 the	 challenge	 was	
invalid	 and	 that	 the	 associated	 user	 account	 is	
now	 blocked	 on	 the	 server;	 optionally,	 the	 ac-‐
count	 may	 be	 temporarily	 blocked	 for	 a	 speci-‐
fied	 number	 of	 seconds	 (this	 feature	 will	 be	
implemented	 as	 of	 version	 1.2	 of	 the	 tiqr	 App)	

 INVALID_REQUEST	 –	 the	 POST	 request	 con-‐
tained	 incorrect	 parameter	 data	 and	 was	 not	
accepted	 by	 the	 server	

 ERROR	 –	 an	 unspecified	 error	 occurred	

5.6 INTEGRATION	 WITH	 APPLICATIONS	

As	 we	 already	 mentioned	 in	 section	 5.4.2	 and	
5.4.3,	 we	 already	 provide	 several	 options	 for	 inte-‐
grating	 tiqr	 into	 existing	 applications.	 The	 reference	
implementations	 we	 provide	 can	 serve	 as	 a	 basis	 for	
integration	 into	 web	 applications,	 but	 tiqr	 can	 also	
be	 used	 in	 other	 contexts.	

Shortly	 after	 the	 first	 release	 of	 tiqr	 an	 inde-‐
pendent	 software	 vendor,	 RCDevs	 from	 France,	 in-‐
tegrated	 support	 for	 tiqr	 into	 their	 OpenOTP	 Au-‐
thentication	 Server	 [36].	 Based	 on	 their	 existing	
integration	 with	 several	 products	 they	 were	 able	 to	
show	 that	 tiqr	 can	 –	 for	 instance	 –	 be	 used	 as	 an	

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 93

authentication	 method	 to	 log	 users	 in	 to	 a	 secure	
shell	 (SSH)	 session	 (see	 Figure	 11	 for	 an	 example).	

	
Figure	 11	 -‐	 using	 tiqr	 to	 authenticate	 an	 SSH	 session*	

*Screenshot	 courtesy	 of	 Charly	 Rohart	 from	 RCDevs	

Another	 example	 of	 integration	 into	 third	 par-‐
ty	 frameworks	 is	 the	 open	 request	 to	 integrate	 tiqr	
support	 into	 Shibboleth	 [37],	 a	 much-‐used	 frame-‐
work	 for	 federated	 identity	 management.	

5.7 SECURITY	 AUDIT	

We	 hired	 an	 independent	 security	 auditor	 –	
Eindhoven-‐based	 Madison	 Gurkha,	 see	
http://www.madisongurkha.nl/	 –	 to	 assess	 the	 se-‐
curity	 of	 tiqr.	 The	 goals	 we	 set	 them	 were	 to:	

 Assess	 the	 architecture	 and	 design	 of	 tiqr	 from	
a	 security	 perspective	

 Perform	 a	 code	 audit	 of	 both	 the	 App	 for	 iOS	 as	
well	 as	 for	 Android	

 Perform	 a	 code	 audit	 of	 the	 reference	 server-‐
side	 implementation	

 Perform	 security	 tests	 on	 the	 live	 solution	
(both	 server	 as	 well	 as	 client	 side)	

The	 security	 audit	 was	 performed	 on	 version	
1.0	 of	 the	 App	 (as	 released	 in	 April	 2011	 for	 iOS	 and	
May	 2011	 for	 Android)	 and	 was	 finished	 in	 June.	
The	 outcome	 of	 the	 security	 audit	 was	 positive;	 alt-‐
hough	 the	 auditors	 identified	 several	 issues	 that	
needed	 resolving,	 they	 did	 not	 find	 any	 flaws	 in	 the	
architecture	 of	 the	 solution	 (note:	 the	 audit	 report	
will	 be	 published	 on	 the	 tiqr	 website,	
https://tiqr.org/,	 in	 the	 autumn	 of	 2011).	 The	 most	
important	 remark	 from	 the	 auditors	 was	 that	 –	
strictly	 speaking	 –	 tiqr	 does	 not	 offer	 full	 two-‐factor	
authentication	 since	 the	 smart	 phone	 platform	 is	
much	 more	 accessible	 to	 evildoers	 than	 say	 a	 pur-‐
pose-‐built	 hardware	 OTP	 token.	 We	 agree	 with	 this	
but	 would	 like	 to	 add	 that	 tiqr	 nevertheless	 is	 a	 vast	
improvement	 security-‐wise	 over	
username/password.	 And	 relying	 on	 a	 smart	 phone	
also	 has	 distinct	 advantages;	 recent	 research	 has	

shown	 that	 users	 are	 likely	 to	 notice	 that	 their	
phone	 is	 missing	 fairly	 quickly	 (see	 [44]).	 We	 think	
that	 this	 is	 much	 less	 likely	 to	 be	 the	 case	 for	 e.g.	
OTP	 tokens,	 since	 the	 single-‐purpose	 nature	 of	 these	
devices	 means	 they	 are	 used	 much	 less	 frequently.	 	

We	 have	 taken	 care	 to	 include	 several	 security	
measures	 to	 deal	 with	 the	 inherent	 untrustworthy	
nature	 of	 smart	 phone	 platforms	 (see	 5.3.2).	 The	
auditors	 agree	 that	 these	 measures	 indeed	 signifi-‐
cantly	 enhance	 the	 security	 and	 they	 also	 agree	 that	
tiqr	 is	 an	 attractive	 and	 more	 secure	 alternative	 to	
username/password.	 They	 caution	 though	 that	 it	 is	
not	 fully	 equivalent	 to	 the	 security	 a	 hardware	 OTP	
token	 can	 offer.	 We	 would	 like	 to	 note	 that	 this	 is	
also	 true	 for	 the	 more	 traditional	 OTP	 Apps	 that	
OTP	 token	 vendors	 have	 started	 offering	 (see	 2.4.2).	

Another	 remark	 that	 the	 auditors	 made	 is	 that	
tiqr	 is	 potentially	 vulnerable	 to	 phishing.	 Attackers	
could	 perform	 a	 man-‐in-‐the-‐middle	 attack	 by	 initiat-‐
ing	 an	 authentication	 session,	 thus	 retrieving	 the	 QR	
code	 containing	 the	 challenge	 and	 by	 displaying	 this	
on	 a	 fake	 site,	 tricking	 the	 user	 in	 to	 logging	 in	 but	
instead	 giving	 the	 attacker	 access	 to	 their	 account.	
We	 agree	 that	 this	 is	 a	 risk	 and	 as	 mitigation	 the	 tiqr	
App	 always	 displays	 the	 fully	 qualified	 domain	
name	 of	 the	 site	 that	 the	 user	 is	 being	 authenticated	
to.	 Users	 are	 expected	 to	 validate	 the	 authenticity	 of	
the	 site	 they	 are	 logging	 into	 in	 the	 same	 way	 they	
do	 for	 e.g.	 their	 banking	 site,	 i.e.	 by	 checking	 the	
site’s	 URL	 and	 server	 certificate.	 Note	 that	 this	 prob-‐
lem	 is	 not	 unique	 to	 tiqr;	 all	 OTP	 solutions	 are	
equally	 vulnerable	 to	 phishing.	

The	 issues	 in	 the	 code	 and	 design	 identified	 by	
the	 auditors	 were	 resolved	 in	 version	 1.1	 of	 the	 App	
and	 in	 the	 reference	 server-‐side	 implementation	
that	 is	 available	 from	 the	 tiqr	 website.	 We	 also	 con-‐
tributed	 fixes	 for	 the	 vulnerabilities	 in	 the	 OCRA	
reference	 implementation	 back	 to	 the	 authors	 of	 the	
RFC.	

5.8 AVAILABILITY	

From	 the	 onset	 it	 has	 been	 our	 goal	 to	 make	
tiqr	 freely	 available	 to	 all	 Internet	 users.	 To	 achieve	
this	 goal,	 we	 have	 released	 all	 relevant	 software	 in	
open	 source	 under	 a	 BSD-‐style	 licence	 and	 we	 have	
made	 the	 tiqr	 Apps	 available	 for	 free	 in	 both	 the	 App	
Store	 as	 well	 as	 on	 the	 Android	 Market.	

All	 source	 code	 and	 documentation	 as	 well	 as	 a	
demo	 server	 can	 be	 found	 on	 our	 website,	
https://tiqr.org/	

5.9 ROADMAP	 AND	 FUTURE	 WORK	

Now	 that	 a	 production-‐ready	 version	 is	 availa-‐
ble	 our	 next	 step	 will	 be	 to	 deploy	 tiqr	 within	 our	
own	 organisation.	 SURFnet	 currently	 uses	 X.509	
software	 certificates	 for	 authentication	 to	 certain	
services.	 We	 plan	 to	 replace	 these	 by	 tiqr.	 All	
SURFnet	 employees	 have	 either	 an	 iOS-‐	 or	 Android-‐

94 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

based	 smart	 phone	 making	 it	 an	 ideal	 user	 popula-‐
tion	 in	 which	 to	 use	 tiqr.	

When	 we	 have	 gained	 real-‐world	 experience	
we	 will	 evaluate	 this	 deployment.	 Then,	 we	 plan	 to	
gradually	 introduce	 tiqr	 as	 an	 alternative	 means	 of	
authentication	 (alternative	 to	 username/password	
and/or	 SMS	 authentication)	 in	 some	 of	 the	 services	
we	 offer	 to	 our	 constituency.	

We	 are	 also	 talking	 to	 our	 connected	 institu-‐
tions	 to	 set	 up	 a	 pilot	 with	 a	 larger	 population.	 Our	
goal	 is	 to	 provide	 tiqr	 as	 an	 alternative	 means	 of	
authentication	 on	 an	 identity	 provider	 in	 our	 federa-‐
tion	 who	 currently	 only	 offer	 username/password.	

One	 of	 the	 things	 we	 will	 be	 evaluating	 in	 the-‐
se	 pilot	 deployments	 is	 whether	 or	 not	 the	 paradigm	
of	 encouraging	 users	 to	 use	 the	 same	 PIN	 for	 all	
their	 tiqr	 accounts	 works	 and	 whether	 or	 not	 it	
makes	 sense	 to	 block	 all	 accounts	 if	 one	 account	
needs	 to	 be	 blocked	 because	 of	 too	 many	 failed	 at-‐
tempts	 at	 entering	 the	 correct	 PIN.	

From	 a	 technological	 perspective,	 we	 are	 con-‐
sidering	 pursuing	 several	 areas	 of	 research:	

 Turning	 tiqr	 into	 a	 true	 hardware	 token	 by	
leveraging	 the	 possibilities	 offered	 by	 SD	 cards	
with	 an	 embedded	 smart	 card	 controller	
(smartSD	 cards,	 see	 [39])	

 Incorporating	 attribute	 release	 into	 tiqr	
(where	 tiqr	 releases	 attributes	 about	 a	 user	
asserted	 by	 a	 trusted	 third	 party),	 similar	 to	
the	 InfoCards	 paradigm	 (see	 [38])	

 Using	 advances	 in	 cryptography	 such	 as	 zero-‐
knowledge	 proof	 to	 further	 enhance	 the	 priva-‐
cy	 aspects	 of	 tiqr.	

 Using	 tiqr	 for	 transaction	 signing	 (as	 is	 e.g.	
done	 by	 banks	 with	 OTP	 tokens	 to	 approve	 fi-‐
nancial	 transactions).	

Some	 of	 these	 we	 will	 probably	 do	 ourselves,	
others	 we	 hope	 to	 pursue	 together	 with	 the	 academ-‐
ic	 community	 in	 the	 areas	 of	 cryptography	 and	 digi-‐
tal	 security.	

5.10 REFLECTION	

When	 we	 started	 the	 tiqr	 project	 we	 set	 out	 to	
create	 a	 two-‐factor	 authentication	 solution	 that	
would	 leverage	 the	 benefits	 of	 using	 a	 device	 that	
(almost)	 everybody	 has:	 a	 mobile	 phone.	 We	 were	
also	 mindful	 that	 the	 solution	 should	 be	 an	 im-‐
provement	 over	 username/password	 given	 the	 cri-‐
teria	 introduced	 in	 section	 4	 and	 if	 possible	 it	 should	
also	 offer	 advantages	 over	 more	 traditional	 solu-‐
tions.	

We	 feel	 that	 with	 tiqr	 we	 have	 achieved	 most	
of	 these	 goals.	 We	 believe	 tiqr	 to	 be	 very	 user-‐
friendly	 (much	 more	 so	 than	 some	 other	 two	 factor	
authentication	 solutions)	 and	 also	 believe	 that	 tiqr	
is	 an	 improvement	 in	 terms	 of	 security	 over	

username/password	 and	 on	 a	 par	 in	 that	 respect	
with	 many	 other	 two-‐factor	 authentication	 solu-‐
tions.	 Furthermore,	 we	 believe	 that	 tiqr	 can	 be	 a	
viable	 replacement	 for	 more	 traditional	 OTP	 solu-‐
tions,	 especially	 the	 OTP	 Apps	 and	 SMS	 authentica-‐
tion.	

We	 feel	 that	 we	 should	 point	 out,	 though,	 that	
tiqr	 is	 not	 a	 panacea	 that	 solves	 all	 problems	 in	
(two-‐factor)	 authentication.	 It	 is,	 for	 instance,	 just	 as	
vulnerable	 to	 phishing	 as	 traditional	 OTP	 solutions.	
And	 because	 it	 does	 not	 rely	 on	 purpose-‐built	 hard-‐
ware	 to	 store	 the	 secret	 data	 associated	 with	 a	 us-‐
er’s	 identity	 its	 security	 is	 not	 as	 strong	 as	 tradition-‐
al	 tokens.	

Nevertheless,	 we	 feel	 that	 tiqr	 is	 a	 useful	 addi-‐
tion	 to	 the	 two-‐factor	 authentication	 landscape.	 Its	
user-‐friendliness	 and	 the	 control	 over	 deployment	 it	
gives	 to	 organisations	 are	 also	 strong	 points.	

6 CLASSIFICATION	 REVISITED	
6.1 INTRODUCTION	

In	 section	 4	 we	 introduced	 a	 classification	 for	
authentication	 solutions,	 judging	 solutions	 on	
hardware	 (in)-‐dependence,	 software	 (in)-‐
dependence,	 security,	 cost,	 open	 standards	 compli-‐
ance	 and	 ease-‐of-‐use.	 Now	 that	 we	 have	 introduced	
tiqr,	 we	 will	 revisit	 this	 classification.	

6.2 CLASSIFICATION	 OF	 TIQR	

Table	 1	 showed	 a	 classification	 of	 authentica-‐
tion	 solutions	 according	 to	 the	 criteria	 introduced	 in	
section	 4.	 In	 Table	 2	 we	 have	 reprinted	 this	 classifi-‐
cation	 and	 added	 tiqr	 at	 the	 bottom	 of	 the	 table	
(marked	 in	 grey).	

	 Hardware	
indep.	

Software	
indep.	 Security	 Cost	 Open	

Standards	 Ease-‐of-‐use	

Usern./pwd	 ++	 ++	 -‐-‐	 ++	 =	 +/-‐	
OTP	 token	 -‐	 -‐	 ++	 -‐-‐	 -‐/=	 +	
C/R	 token	 -‐	 -‐	 ++	 -‐-‐	 -‐/=	 +	
PKI	 token	 -‐-‐	 -‐-‐	 ++	 -‐-‐	 =	 +	
Mobile	 PKI	 +	 +	 ++	 ?	 +	 ++	
SMS	 OTP	 +	 =	 -‐	 -‐	 -‐-‐	 -‐	
OTP	 Apps	 +	 +/=	 +	 +/=	 +/=	 =	
tiqr	 +/=	 +/=	 +	 +	 ++	 ++	
Table	 2	 -‐	 Classification	 including	 tiqr	

Again,	 one	 could	 argue	 that	 any	 classification	
is	 subjective,	 especially	 since	 we	 are	 judging	 our	
own	 solution.	 Therefore,	 we	 have	 tried	 to	 justify	 the	
classification	 we	 have	 assigned	 to	 tiqr	 below:	

 Hardware	 (in-‐)dependence	 –	 tiqr	 requires	 ad-‐
vanced	 features	 only	 available	 on	 smart	
phones;	 it	 is	 therefore	 not	 as	 hardware	 inde-‐
pendent	 as	 some	 of	 the	 other	 solutions	 that	 re-‐
ly	 on	 mobile	 phones	

 Software	 (in-‐)dependence	 –	 tiqr	 is	 currently	
only	 available	 for	 two	 smart	 phone	 platforms	

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 95

 Security	 –	 although	 not	 as	 secure	 as	 a	 dedicat-‐
ed	 token,	 tiqr	 is	 much	 more	 secure	 than	
username/password	 and	 on	 a	 par	 with	 other	
OTP	 Apps	

 Cost	 –	 tiqr	 is	 open	 source	 and	 available	 for	
free;	 the	 only	 inhibiting	 factor	 may	 be	 the	 cost	
of	 the	 device	 required	 to	 run	 tiqr	

 Open	 standards	 –	 tiqr	 was	 built	 from	 the	
ground	 up	 to	 include	 open	 standards	 and	 the	
tiqr	 protocol	 itself	 has	 also	 been	 published	

 Ease-‐of-‐use	 –	 tiqr	 was	 designed	 to	 be	 user	
friendly	 from	 the	 ground	 up	 by	 skilled	 inter-‐
face	 designers	

7 CONCLUSIONS	 AND	 RECOMMEN-‐
DATIONS	
7.1 THE	 NEED	 FOR	 TWO-‐FACTOR	 AUTHEN-‐
TICATION	

Our	 lives	 are	 increasingly	 being	 lived	 in	 the	
digital	 world.	 Social	 networks	 have	 become	 the	 sta-‐
ple	 of	 a	 new	 generation	 and	 many	 professionals	
cannot	 live	 without	 e-‐mail,	 VoIP,	 and	 services	 like	
LinkedIn.	 Governments	 and	 the	 public	 sector	 are	
also	 increasingly	 making	 vast	 amounts	 of	 often	 per-‐
sonal	 data	 (like	 medical	 records)	 available	 online.	

This	 means	 that	 the	 value	 of	 the	 digital	 identi-‐
ties	 we	 use	 to	 access	 these	 services	 are	 becoming	
ever	 more	 valuable.	 It	 is	 no	 longer	 just	 your	 credit	
card	 that	 is	 at	 risk	 of	 being	 stolen,	 whole	 identities	
get	 hijacked.	

We	 feel	 that	 it	 is	 inevitable	 that	 two-‐factor	 au-‐
thentication	 becomes	 more	 widespread	 and	 actively	
try	 to	 stimulate	 its	 adoption,	 both	 within	 our	 own	
community	 as	 well	 as	 on	 a	 wider	 scale.	

7.2 OPEN	 STANDARDS	 AND	 OPEN	 SOURCE	

The	 best	 way	 forward	 to	 bring	 two-‐factor	 au-‐
thentication	 to	 a	 wider	 audience	 is	 the	 adoption	 of	
open	 standards	 by	 vendors.	 This	 applies	 foremost	 to	
vendors	 of	 hardware	 OTP	 and	 PKI	 tokens.	 It	 is	 also	
of	 paramount	 importance	 that	 integration	 of	 two-‐
factor	 authentication	 in	 online	 services	 becomes	
easier.	 One	 way	 of	 achieving	 this	 is	 by	 releasing	
open	 source	 solutions	 with	 flexible	 licenses.	 These	
can	 serve	 as	 useful	 examples	 and	 facilitate	 rapid	
integration.	

7.3 TIQR	

We	 have	 strived	 to	 practice	 what	 we	 preach	
when	 creating	 tiqr.	 We	 have	 focused	 on	 creating	 an	
open	 standards-‐based,	 open	 source	 and	 easy-‐to-‐use	
solution	 that	 is	 freely	 available.	 We	 believe	 that	 we	
have	 succeeded	 in	 the	 goals	 we	 set	 ourselves	 in	 that	
respect	 and	 we	 hope	 that	 tiqr	 can	 serve	 as	 a	 starting	
point	 for	 many	 organisations	 who	 want	 to	 integrate	
two-‐factor	 authentication	 into	 their	 online	 services.	

What	 is	 also	 noteworthy	 to	 mention	 is	 that	
parts	 of	 the	 tiqr	 project	 have	 now	 been	 spun	 off	 as	
separate	 open	 source	 projects	 because	 of	 their	 gen-‐
eral	 applicability.	 These	 include	 TokenExchange	 (an	
abstraction	 for	 push	 notifications	 supporting	 sever-‐
al	 device	 platforms),	 see	 [42],	 and	 a	 set	 of	 OCRA	
reference	 implementations	 in	 several	 programming	
languages,	 see	 [43].	

7.4 RECOMMENDATIONS	

We	 have	 already	 outlined	 recommendations	
for	 future	 work	 on	 tiqr	 in	 section	 5.9.	 In	 addition	 to	
that,	 we	 would	 recommend	 any	 readers	 of	 this	 pa-‐
per	 to	 invest	 some	 time	 into	 considering	 what	 two-‐
factor	 authentication	 could	 add	 in	 terms	 of	 security	
both	 within	 their	 own	 organisations	 as	 well	 as	 for	
users	 of	 their	 online	 services.	

8 ACKNOWLEDGEMENTS	
The	 authors	 of	 this	 paper	 would	 like	 to	 thank:	

 Ivo	 Jansch,	 Peter	 Verhage,	 Felix	 de	 Vliegher	
and	 Bas	 ‘t	 Hoen	 of	 Egeniq	 for	 their	 hard	 work	
implementing	 the	 mobile	 Apps	 and	 the	 demo	
server-‐side	 framework	

 René	 Scheffer	 and	 Menno	 van	 de	 Laarschot	 of	
Stroomt	 for	 re-‐designing	 the	 user	 experience	

 Charly	 Rohart	 of	 RCDevs	 for	 integrating	 tiqr	 in	
their	 software	 and	 developing	 the	 PAM	 mod-‐
ule	 with	 tiqr	 support	

 Petra	 Boezerooy	 of	 the	 SURFnet/Kennisnet	
subsidy	 programme	 for	 supporting	 the	 initial	
proof-‐of-‐concept	 that	 led	 to	 the	 development	
of	 tiqr	

9 REFERENCES	
[1] OATH,	 “VeriSign	 Introduces	 Collaborative	 Vi-‐

sion	 to	 Drive	 Ubiquitous	 Adoption	 of	 Strong	
Authentication	 Solutions”,	 OATH	 website,	 Feb-‐
ruary	 2004,	 http://www.open	 authentica-‐
tion.org/news/040223	

[2] D.	 M’Raihi,	 M.	 Bellare,	 F.	 Hoornaert,	 D.	
Naccache,	 O.	 Ranen,	 “HOTP:	 An	 HMAC-‐based	
One-‐T	 ime	 Password	 Algorithm”,	 RFC	
4226,	 The	 Internet	 Society,	 December	 2005,	
http://tools.ietf.org/html/rfc4226	

[3] D.	 M’Raihi,	 S.	 Machani,	 M.	 Pei,	 J.	 Rydell,	 “TOTP:	
Time-‐Based	 One-‐Time	 Password	 Algorithm”,	
RFC	 6238,	 The	 Internet	 Society,	 May	 2011,	
http://tools.ietf.org/html/	 rfc6238	

[4] P.	 Hoyer,	 M.	 Pei,	 S.	 Machani,	 “Portable	 Symmet-‐
ric	 Key	 Container	 (PSKC)”,	 RFC	 6030,	 The	 In-‐
ternet	 Society,	 October	 2010,	
http://tools.ietf.org/html/rfc6030	

[5] R.M.	 van	 Rijswijk,	 M.	 Oostdijk,	 “Applications	 of	
Modern	 Cryptography”,	 SURFnet,	 September	
2010,	 http://www.surfnet.nl/documents/sn	
cryptoweb.pdf	

[6] D.	 Raywood,	 “Google	 adds	 two-‐factor	 authenti-‐
cation	 to	 Gmail	 via	 SMS	 one	 time	 passwords”,	

96 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

SC	 Magazine	 UK,	 September	 2010,	
http://www.scmagazineuk.com/googl	 e-‐adds-‐
two-‐factor-‐authentication-‐to-‐gmail-‐via-‐sms-‐
one-‐time-‐passwords/article/	 179266/	

[7] A.	 Song,	 “Introducing	 Login	 Approvals”,	 Face-‐
book,	 May	 2011,	 https://www.facebook.	
com/note.php?note_id=10150172618258920
&comments	

[8] M.	 Oostdijk,	 M.	 Wegdam,	 “Mobile	 PKI,	 a	 tech-‐
nology	 scouting”,	 Novay	 &	 SURFnet/Kennisnet,	
December	 2009,	 http://www.terena.org/news	
/community/download.php?news_id=2528	

[9] Wikipedia,	 “QR	 code”,	 last	 visited	 June	 2011,	
http://en.wikipedia.org/wiki/QR_code	

[10] Vasco	 DIGIPASS	 GO	 range,	 last	 visited	 June	
2011,	 http://www.vasco.com/products/digi	
pass/digipass_go_range/digipass_go.aspx	

[11] RSA	 SecurID,	 last	 visited	 June	 2011,	
http://www.rsa.com/node.aspx?id=1156	

[12] Feitian	 OTP	 tokens,	 last	 visited	 June	 2011,	
http://www.ftsafe.com/products/otp.html	

[13] Vasco	 DIGIPASS	 Readers,	 last	 visited	 June	
2011,	 http://www.vasco.com/products/digi	
pass/digipass_readers/digipass_readers.aspx	

[14] SafeNet	 SafeWord	 GOLD,	 last	 visited	 June	
2011,	 http://www.safenet-‐inc.com/uploaded	
Files/About_SafeNet/Resource_Library/Resou
rce_Items/Product_Briefs_-‐
_EDP/SafeNet_product_brief_GOLD.pdf	

[15] A.	 Litan,	 “SMS/OTP	 under	 attack	 –	 Man	 in	 the	
Mobile”,	 Gartner,	 September	 2010,	
http://blogs.gartner.com/avivah-‐litan/2010	
/09/28/smsotp-‐under-‐attack-‐man-‐in-‐the-‐
mobile/	

[16] J.	 Kaavi,	 “Strong	 authentication	 with	 mobile	
phones”,	 Helsinki	 University	 of	 Technology,	
Fall	 2010,	 http://www.cse.hut.fi/en/	 publica-‐
tions/B/11/papers/kaavi.pdf	

[17] “Specification	 for	 Integrated	 Circuit(s)	 Cards	
Interface	 Devices	 revision	 1.1”,	 DWG	 Smart-‐
Card	 Integrated(s)	 Card	 Interface	 Devices,	
April	 2005,	 http://www.usb.org	
/developers/devclass_docs/DWG_Smart-‐
Card_CCID_Rev110.pdf	

[18] “ZXing	 (Zebra	 Crossing)	 multi-‐format	 1D/2D	
barcode	 image	 processing	 library”,	 last	 visited	
June	 2011,	 http://code.google.com/p/zxing/	

[19] D.	 M’Raihi,	 J.	 Rydell,	 S.	 Bajaj,	 S.	 Machani,	 D.	
Naccache,	 “OCRA:	 OATH	 Challenge-‐Response	
Algorithms”,	 Draft	 RFC,	 The	 Internet	 Society,	
March	 2011,	 http://tools.ietf.org/html/draft-‐
mraihi-‐mutual-‐oath-‐hotp-‐variants-‐14	

[20] B.	 Kaliski,	 “PKCS	 #5:	 Password-‐Based	 Cryptog-‐
raphy	 Specification”,	 RFC	 2898,	 The	 Internet	
Society,	 September	 2000,	 http://	
tools.ietf.org/html/rfc2898	

[21] “OpenSC	 –	 tools	 and	 libraries	 for	 smart	 cards”,	
last	 visited	 June	 2011,	 http://www.opensc-‐
project.org/opensc	

[22] “PKCS	 #11:	 Cryptographic	 Token	 Interface	
Standard”,	 RSA	 Laboratories,	 June	 2004,	

http://www.rsa.com/rsalabs/node.asp?id=21
33	

[23] “ETSI	 TR	 102	 203	 v1.1.1	 –	 Mobile	 Signatures;	
Business	 and	 Functional	 Requirements”,	 ETSI,	
May	 2003,	 http://docbox.etsi.	
org/EC_Files/EC_Files/tr_102203v010101p.pd
f	

[24] “ETSI	 TR	 102	 204	 v1.1.4	 –	 Mobile	 Signature	
Service;	 Web	 Service	 Interface”,	 ETSI,	 August	
2003,	 http://docbox.etsi.org/EC_Fi	
les/EC_Files/ts_102204v010104p.pdf	

[25] “ETSI	 TR	 102	 206	 v1.1.3	 –	 Mobile	 Signature	
Service;	 Security	 Framework”,	 ETSI,	 August	
2003,	 http://docbox.etsi.org/EC_Fi	
les/EC_Files/tr_102206v010103p.pdf	

[26] “ETSI	 TR	 102	 207	 v1.1.3	 –	 Mobile	 Signature	
Service;	 Specifications	 for	 Roaming	 in	 Mobile	
Signature	 Services”,	 ETSI,	 August	 2003,	
http://docbox.etsi.org/EC_Files/EC_Fil	
es/ts_102207v010103p.pdf	

[27] “YubiKey”,	 last	 visited	 June	 2011,	
http://www.yubico.com/yubikey	

[28] “Installing	 Google	 Authenticator”,	 last	 visited	
June	 2011,	 http://www.google.com/	 sup-‐
port/accounts/bin/answer.py?answer=	
1066447	

[29] “SURFfederatie	 –	 federated	 identity	 manage-‐
ment	 for	 simpler	 cooperation	 and	 greater	 ease	
of	 use”,	 SURFnet,	 2007,	 http://www.surfnet.nl	
/Documents/attachment.db@189185.pdf	

[30] “The	 Netherlands”,	 CM	 International	 /	 CM	 Tel-‐
ecom,	 last	 visited	 June	 2011,	
http://www.cmtelecom.com/premium-‐
sms/netherlands	

[31] R.	 Fergusson,	 “One	 third	 of	 mobile	 owners	 no-‐
tice	 phone	 is	 missing	 within	 15	 minutes”,	 En-‐
gineering	 &	 Technology	 Magazine,	 March	
2011,	 http://eandt.theiet.org/news/2011/mar	
/securenvoy-‐survey.cfm	

[32] N.R.	 Wagner,	 “The	 Laws	 of	 Cryptography:	
Verhoeff’s	 Decimal	 Error	 Detection”,	 University	
of	 Texas	 San	 Antonio,	 2002,	
http://www.cs.utsa.edu/~wagner/laws/verho
eff.html	

[33] “PHP	 QR	 Code	 –	 QR	 code	 generator,	 an	 LGPL	
PHP	 library”,	 last	 visited	 June	 2011,	
http://phpqrcode.sourceforge.net/	

[34] “SimpleSAMLphp”,	 last	 visited	 June	 2011,	
http://simplesamlphp.org/	

[35] “JSON	 –	 JavaScript	 Object	 Notation”,	 last	 visited	
June	 2011,	 http://www.json.org/	

[36] “TiQR	 Authentication	 Server”,	 last	 visited	 July	
2011,	 http://www.rcdevs.com/products/	 tiqr/	

[37] “Add	 tiqr	 Two-‐Factor	 Authentication	 Mecha-‐
nism”,	 Shibboleth	 JIRA,	 last	 visited	 July	 2011,	
https://issues.shibboleth.net/jira/brow	
se/IDP-‐91	

[38] “The	 Information	 Card	 Ecosystem	 -‐	 Infor-‐
mation	 Cards”,	 Information	 Card	 Foundation,	
last	 visited	 July	 2011,	 http://information	 card.	
net/	

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 97

[39] “smartSD”,	 SD	 Association,	 last	 visited	 July	
2011,	 https://www.sdcard.org/developers/	
tech/smartsd/	

[40] “Introducing	 AlterEgo	 –	 1.5	 Factor	 Authentica-‐
tion	 for	 Web	 Apps”,	 The	 Rocket	 Science	 Group,	
last	 visited	 August	 2011,	
http://blog.mailchimp.com/introducing-‐
alterego-‐1-‐5-‐factor-‐authentication-‐for-‐web-‐
apps/	

[41] D.	 Winder,	 “Blizzard	 introduces	 most	 powerful	
World	 of	 Warcraft	 weapon	 ever”,	 June	 2008,	
last	 visited	 August	 2011,	
http://www.itwire.com/business-‐it-‐
news/networking/19106-‐blizzard-‐introduces-‐
most-‐powerful-‐world-‐of-‐warcraft-‐weapon-‐
ever	

[42] Egeniq,	 SURFnet,	 “TokenExchange	 for	 iPhone,	
iPad,	 Android	 and	 BlackBerry	 device	 tokens”,	
last	 visited	 August	 2011,	 http://code.google.	
com/p/tokenexchange/	 	

[43] Egeniq,	 SURFnet,	 “Example	 implementations	 of	
the	 OATH	 OCRA	 algorithm	 in	 various	 lan-‐
guages”,	 last	 visited	 August	 2011,	 http://code.	
google.com/p/ocra-‐implementations/	

[44] DarkReading,	 “National	 Survey	 Finds	 1	 in	 3	
Mobile	 Phone	 Owners	 Would	 Know	 They’ve	
Lost	 Their	 Phone	 Within	 15	 Minutes”,	 last	 vis-‐
ited	 August	 2011,	 http://www.darkreading.	
com/insider-‐threat/167801100/security	
/client-‐security/229400606/national-‐survey-‐
finds-‐1-‐in-‐3-‐mobile-‐phone-‐owners-‐would-‐
know-‐they-‐ve-‐lost-‐their-‐phone-‐within-‐15-‐
minutes.html	

[45] R.	 Boyd,	 J.L.	 Davis	 and	 C.	 Mastrangelo,	 “Tera-‐
flop	 Troubles:	 The	 Power	 of	 Graphics	 Pro-‐
cessing	 Units	 May	 Threaten	 the	 World’s	 Pass-‐
word	 Security	 System”,	 Georgia	 Tech	 Research	
Institute,	 last	 visited	 August	 2011,	
http://www.gtri.gatech.edu/casestudy/Teraflo
p-‐Troubles-‐Power-‐Graphics-‐Processing-‐Units-‐
GPUs-‐Password-‐Security-‐System	

	

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 99

Building Useful Security
Infrastructure For Free

Brad Lhotsky <brad.lhotsky@gmail.com>
National Institutes on Health, National Institute on Aging, Intramural Research Program

Tags: security, Perl, database, open source, syslog-ng, postgresql, FISMA

Introduction
Working as a Security Engineer for a research program in the Federal government is a
lot of fun, but incredibly challenging. Research, rightfully, receives the lion’s share of
funding, leaving very little for support services like IT and no funding for security specific
activities. However, the burden of designing, implementing, analyzing, and reporting
compliance to weighty government IT Security mandates like FISMA falls squarely on
the IT section.

Our IT staff is less than 10 people. We provide Help Desk, Linux server administration,
networking (switches, IDS, firewalls, NMS), SQL Databases, SMB file shares,
programming support, training, and implement in-house applications for scientific
research mostly in Perl and PHP for our institute of 700-900 users. We are also
responsible for reporting compliance with Federal, Institutional, and Divisional mandates
to our oversight.

In order to achieve all of this with a small staff, we’ve designed and implemented a lot of
automation based on Open Source Software. We’ve learned how to leverage these
tools to meet the needs of our institute and the requirements of those above us.

As a pragmatic group with very little free time, we focus on building security tools that
provide daily operational value. We simply do not have the resources to implement
controls for the sake of the controls themselves.

The More You Know
Most IT Security controls focus on first understanding your systems. A system in this
sense is defined as the computers, people, and networks that work together to perform
a task. In order to begin classifying, we need to know what we have and where. The
first step was to rollout a comprehensive centralized logging infrastructure for our UNIX
and Windows servers.

100 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

We chose to use syslog-ng as a basis for our centralized logging platform for one
incredibly useful feature:

! destination d_subscriptions {
 program(“/usr/local/eris/bin/syslog-ng-service.pl”);
 };

This feature starts the program specified keeping a handle of that program’s STDIN
open to dispatch messages to based on the “log {}” definitions specified in the
configuration file. This removes the startup overhead from the called program allowing
the use of programs written in dynamic scripting languages which incur enormous
startup penalties. It also ensures that the program end point is available while syslog-
ng is running, meaning there’s no additional program supervision necessary.

In order to facilitate rapid development of syslog based event correlators, we developed
this program to convert the incoming syslog stream into a TCP based service that a
script can connect to and “subscribe” to feeds of interest. For instance, the inventory
application subscribes to dhcpd, MSWinEventLog, sshd, arpwatch, and smbd. This
keeps the database size smaller and focussed on the events that prove most useful to
operations.

A Safe Place to Keep Our Data

In order to facilitate strange and novel concepts in correlation, it was clear that a
Relational Database would be awesome as a storage engine to allow indexing and
searching of the data we received. A PostgreSQL database server was setup and
configured to allow data storage and retrieval. The reasons for this are numerous, but
at the time of initial development it was the only Open Source database with views,
stored procedures, triggers, and a slew of particularly relevant native data types
including network types for IP addresses, networks, and MAC addresses. PostgreSQL
has continued to make dramatic improvements to performance and usability since that
time, and continues to be a leading Open Source RDBMS with unparalleled features
and reliability.

PostgreSQL’s PL/PgSQL language extension which was designed to be as close to
Oracle’s PL/SQL provides the option to do data correlation and validation in the
database through the use of stored procedures and triggers. This facilitates rapid
development of scripts placing data in the database as the “business logic” can be
implemented at the data storage level. There is a performance penalty for doing this,
but it allows for correlation to occur automatically as new datasources are added.

The setup we’ve designed is represented via the diagram on the following page.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 101

Connecting the Dots

DHCP logs serve as a primary jumping off point for data correlation. We can simply
store MAC, IP, and hostname attributes in a table and use them for lookups. We chose
Netdisco as an Open Source layer 2 network management system that could be
deployed to PostgreSQL. With a few triggers added to the Netdisco system, we can
correlate MAC addresses to switch and port which allow our staff to quickly establish
building, floor, and wing for any IP address on our network.

Using Samba and MS Windows Event Logs, we were able to discover the
ActiveDirectory account name logged in to any client system. This allows simple IP to
username correlation for things like IDS, but more importantly username to IP matching
so our Help Desk don’t have to walk every user through the “Start -> Run -> cmd ->
ipconfig” routine, saving a few minutes with each call to the Help Desk.

Years prior to this system, our staff was asked to supplement the existing Enterprise
Directory Service which was developed for all of NIH, with a number of specific
enhancements specific to our Intramural Research Program. One of the features
required every user to be assigned a “supervisor” attribute that links to another person
object. Each person object contains full name, email, AD account, phone number,
building, room, lab, and a pointer to the supervisor person object. This data was
imported and synced to the PostgreSQL database as it would prove useful.

Perl Based

Web Front End

Servers Log Via Syslog

Central Syslog

Server

PostgreSQL

Central Data Store

Open Source

NMS Tools

Custom Data

Correlators

Conceptual Overview of the System

102 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Basic Inventory Information

So with a carefully designed PG database and a few hundred lines of Perl code, we’ve
managed to establish the following relationships:

What this means is:

• any event on the network containing a MAC address, IP address, or username can
be correlated to any of the others

• and can also be correlated back to the metadata on the username and location

This allows classification of events in terms of business structure or geographic location
all from data already available.

The tables which implement the storage keep track of dates and times inventory events
such as DHCP, login, and ARP discovery occur. Since we’re siphoning this data from
the network servers and switches, we’re not relying on high level or complicated
protocol like IBM Tivoli End Point Manager to discover the devices. When a device is
plugged into the network, we are able to immediately see it’s been connected and
record the date, time, and location of the event.

Now, when we need to report on the number of Apple computers, we can loop through
the MAC Addresses seen in the past 6 months, look up the manufacturer data from the
OUI Database, and report more accurately the number of active Apple Computers on
our network.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 103

Creating Useful Security
By wrapping this in a searchable web application, the Help Desk staff can now be far
more efficient on each call.

This is excellent, but the real benefits of this system begin to show up as we integrated
it with more Open Source security products.

Intrusion Detection and Correlation

We chose Snort as our Open Source IDS. Snort is free, fast, and stable. It does take a
considerable amount of setup and configuration, but any signature based IDS solution
will require that overhead. After being configured to listen through a network tap to a
bonded interface on a CentOS box, we end up getting alerts that look like this:

Jun 2 12:10:55 myids snort[2908]: [1:2012647:2] ET POLICY Dropbox.com
Offsite File Backup in Use [Classification: Potential Corporate Privacy
Violation] [Priority: 1] {TCP} 137.x.x.x:1211 -> 199.47.216.144:80

This output is familiar to security professionals. We do have an IP address, which we
have already established can be attributed back to a username, and a username back

104 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

to their the organizational unit. This alert is parsed by the system and the relevant data
stripped off and classified. An alert like this is classified in our system as “Potential Data
Loss Event.”

We can then generate reports based on organizational unit and event classification
which can tell us interesting things about a lab or section that we may not really want to
know!

Configuration Management or DevOps for Compliance
All you base are belong to ..

Puppet, or any other configuration management engine that suits your needs will be
sufficient. Spend some time evaluating the various configuration management engines
and choose the one that best suits your organization. I cannot say enough good things
about a good CM system that fits your organization.

We deployed Puppet and then put everything into our Version Control System (VCS)
with commit hooks to automatically deploy new tagged release to the PuppetMaster.
Using Puppet’s Domain Specific Language (DSL), I was able to convince our small staff
of old school developers to embrace VCS after I built and demonstrated this:

subversion::deploy { ‘project_name’:
 svnurl => ‘svn+ssh://svn-readonly/repos/section/projectname’,
 target => ‘/opt/local/project_name’,
 notify => Service[‘httpd’]
}

Which requires only a Subversion project directory with a trunk/ and tags/ subdirectory.
A bash script for tagging releases is distributed to /usr/local/bin/svntag which makes
creating incremental release tags as easy as typing “svntag.” Puppet will then use
$target/RELEASE to maintain the release number that’s been deployed to that target
and anytime a new release is tagged, it will be automatically deployed at that location.
Additions for allowing hostname-based configuration files was incorporated into a macro
based off this:

 webapp::deploy { ‘name’: project => ‘name’, config => ‘name.yml’ }

This expands to doing much the same as the previous example including the httpd
restart, but also deploys the application configuration after the checkout completes,
overwriting the development configurations that are stored in the subversion repository.

We run RedHat based distributions (CentOS,Fedora, and now Scientific Linux). Puppet
was a great start, but Cobbler has solidified our CM platform. Cobbler is a KickStart
based systems build platform that utilizes PXE to automate installs of RedHat based
distributions. There is some work in process to extend it’s functionality to Debian

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 105

systems. One reason to choose a build system like Cobbler, instead of an imaging
solution like Ghost, is deployment to a hodgepodge of hand-me-down hardware that we
maintain in a Research program.

When Cobbler performs an install, it’s configured to include Puppet in the build, setting it
to run at first boot. Using Puppet and Cobbler to rebuild my IDS sensor when I had to
replace the hard drive took 37 minutes from PXE boot to up and running with Snort and
syslog-ng for centralized logging.

And what exactly does this have to do with Security?

A lot. Using a configuration management suite provides countless security benefits.
First, it is the ultimate tool for guaranteeing consistent configuration across your
network. It also offers the most benefit when each system is configured as much as
possible by the CM. This allows a system administrator to PXE boot a new piece of
hardware to replace an existing server and have the box configured identically in under
an hour.

What we also get is a free inventory of all our servers. Since, as logical people, we tend
to name classes and definitions something meaningful, we can leverage the CM tool to
report on system functions and logical groupings. Puppet stores it’s catalogs and states
in simple YAML files which are parsed quickly and efficiently by your language of
choice.

Configuration Managements, System Inventories, Software Inventories, are all provided.
It’s even possible to view the state of the compliance with the catalogs using the Puppet
Dashboard. There are happy green and stressed out red lights for your auditors to
admire!

Sample Puppet Dashboard

106 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Extending the Functionality
After the collection and storage of all this data to a relational database, we’ve found it
indispensable to solving problems on a day to day basis. From simple one-off scripts to
determine the number of Apple computers on the network, to more extensive systems
that were trivial to implement on the back of the data we’ve collected. Consider our
researchers requirement to utilize Skype to collaborate with international colleagues at
no cost. The Federal Government prohibits the use of Skype, unless there are
adequate compensating controls in place.

Using the data we’ve collected, we developed an automated tracking of Skype users.
To receive a waiver from the Departmental Policy we were required to Skype users at
our Institute affirm a monthly “Rules of Behavior” (RoB) update. The process of
discovery and tracking of Skype usage looks something like this:

1. IDS signatures classified as “Skype” are correlated to Usernames using the
database.

2. The usernames are checked against a table of “Accepted RoB’s” and compared.
a. If this is the first event, ie, no rows in the RoB table, the user is emailed the RoB

and must click a link, sign in, and agree to the terms
b. Otherwise, the “last detected skype usage” timestamp is updated

3. If at the time of detection, it has been a month or more since the acceptance of the
RoB, the user is again emailed the link, asked to sign in, and agree to the terms of
the RoB.

4. Everyday a list of users required to accept the RoB is compounded and emailed to
the Administrators with their status included.
a. The administrators receive the Phone number, Building/Room information, and

the Lab Manager details for each user, aiding in persuading the user to accept
the RoB.

This system is mostly automated, except for the occasional phone calls to the users
requesting that they agree to the RoB terms. Other potential solutions to this problem
exist, but often require complex proxy configurations that break if the user takes their
laptop offsite, or manual exceptions by statically assigned IP addresses and manual
tracking of RoB Acceptance. Our solution saves time, energy, and resources. It is only
minimally invasive to the end-users and barely noticeable to the administrators!

Lessons Learned
By choosing to develop this system in house, we have gained invaluable experience
and knowledge. The development infrastructure to support the development of our
custom inventory and security correlation engine has lead to near-mastery of Modern
Perl, PostgreSQL, centralized logging infrastructure, and VCS, both Subversion and Git.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 107

The fact that we’re storing everything in a relational database provides us with the ability
to “mash up” data from disparate sources. We’ve been able to successfully respond to
data calls from our parent organization with SQL statements that we can reproduce time
and time again.

Sure, we didn’t get free t-shirts, calendars, and pens from vendors. We didn’t go to
training sessions at fancy hotels to learn to use each piece of the system. We can’t hire
someone with a specific vendor certification to replace a team member if they leave.
However, the entire team has learned to work together and everyone has increased
their abilities in many different areas. Our Help Desk staff know Windows, Linux, Mac
OS X, and some rudimentary programming. They also understand the network and
how it works. This type of training, which lacks the polish and formality offered by the
big name vendors, is invaluable to day to day Operations.

But, the best part of the system is it’s being used, every day,by Ops team members to
make a difference.

108 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Resources
Open Source Software Mentioned
• syslog-ng: Replacement for standard syslog

• http://www.balabit.com/network-security/syslog-ng
• PostgreSQL: Open Source Relational Database

• http://postgresql.org
• Netdisco: Open Source Network Management System

• http://netdisco.org
• Perl Components (http://perl.com)

• Catalyst: MVC Framework
• http://catalyst.perl.org

• POE: Event driven Perl library
• http://poe.perl.org

• Snort: Open Source Intrusion Detection System
• http://snort.org

• Puppet: Open Source Configuration Management Engine
• http://www.puppetlabs.com

• Subversion: Open Source Centralized Version Control System
• http://subversion.tigris.org/

• Cobbler: Open Source Installation Server
• https://fedorahosted.org/cobbler/

Projects by Brad Lhotsky (https://github.com/reyjrar)
• svnutils: A collection of Subversion utilities for automatic deployment and integration

with Puppet
• https://github.com/reyjrar/svnutils

• optperl: Spec files for installing Perl into /opt including integration with Puppet
• https://github.com/reyjrar/optperl

• POE::Component::Client::eris: Perl module for subscription based log tailing
• https://github.com/reyjrar/POE-Component-Client-eris

• eris: Network Console which collects and correlates data
• https://github.com/reyjrar/eris

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 109

Local System Security via SSHD Instrumentation
 Scott Campbell

National Energy Research Scientific
Computing Center,

Lawrence Berkeley National Lab

scampbell@lbl.gov

ABSTRACT
In this paper we describe a method for near real-time
identification of attack behavior and local security policy
violations taking place over SSH. A rational is provided for the
placement of instrumentation points within SSHD based on the
analysis of data flow within the OpenSSH application as well as
our overall architectural design and design principles. Sample
attack and performance analysis examples are also provided.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Information Flow Controls –

General Terms
Measurement, Security.

Keywords
SSH, keystroke logging, Bro IDS, Intrusion Detection, policy
enforcement.

1. INTRODUCTION
The adoption of SSH as the defacto protocol for interactive shell
access has proven to be extremely successful in terms of avoiding
shared media credential theft and man in the middle attacks. At
the same time it has also created difficulty for attack detection and
forensic analysis for the computer security community. The SSH
protocol and it’s implementations such as OpenSSH [9] provide
tremendous power and flexibility. Examples of this flexibility
include authentication and encryption options, shell access,
remote application execution and X11 and SOCKS forwarding.
While the benefits gained vastly exceed the difficulties introduced
by this protocol, the loss of visibility into user activity created
problems for the security groups tasked with monitoring network
based logins and activity.

The National Energy Research Scientific Computing Center
(NERSC) is the primary open science computing facility for the
Office of Science in the U.S. Department of Energy. It is one of
the largest facilities in the world devoted to providing
computational resources and expertise for basic scientific
research, and has on the average 4000 users across seven primary
computational platforms. The significant majority of user
interaction involves interactive ssh logins. To address this lack of
visibility into user activity on our high performance computing
(HPC) infrastructure, we introduced an instrumentation layer into
the OpenSSH application and feed the output into a real time
analyzer based on the Bro IDS. This instrumentation provides
application data such as user keystrokes and login details, as well
as metadata from the SSHD such as session and channel creation
details. This data is fed to an analyzer where local site security
policy is applied to it, allowing decisions to be made regarding
hostile activity. The data analyzer is based on the Bro intrusion
detection system (IDS) [10] which provides a native scripting
language to handle data structures, tables, timers to express local
security policy. In this capacity Bro is being used as a flexible
data interpreter. A key differentiator between the instrumented

SSHD (iSSHD) and many other security tools and research
projects is that iSSHD is not designed to detect and act on single
anomalous events (like unexpected command sequences), but
rather to enforce local security policy on data provided by the
running SSHD instances.

A key idea is that the generation of data is completely decoupled
from its analysis. The iSSHD instance generates data and the
analyzer applies local policy to it. By using the Broccoli library
[4], we convert the structured text data output by iSSHD into
native bro events that are processed by the analyzer system [3].
Events, as their name implies, are single actions or decisions made
by a user that are agnostic from a security analysis perspective.
 Bro processes these events in the same way as network traffic
events, applying local security policy to interpret them as desired.

Local security policy can be thought of as sets of heuristics that
describe (in this context) what behaviors are considered
unacceptable or suspect. This behavior might be a command like
“mkdir …”, application usage like remotely executing a login
shell, or tunneling traffic to avoid blocked ports. iSSHD was
designed so that the installed SSHD instance would not need to be
modified with every new threat. Instead, changes are made on the
analysis/policy side as new problems are identified. This not only
simplifies administration, but also allows experiments to be run on
previous logs without significant work.

While NERSC has no explicit legal or privacy issues with
intercepting communications on local systems, we recognize the
importance of an informed user and staff population. To help
address this we chose a policy of complete transparency. Each
major group at NERSC was allowed representation in the design
process and code review. As well, the entire user community was
alerted to the changes by making announcements at User Group
meetings and email notices. The complete source code is
available to anyone interested and can be secured through the
LBNL Technology Transfer Office.

The iSSHD project has been used in production capacity at
NERSC for nearly three years on approximately 350 hosts. There
are around 4000 user accounts with a daily average of 52,000
logins per day on the collective set of multi-user systems. In
addition to the obvious security functionality, there are a number
of other non-security purposes like debugging user problems or
job analysis where having access to historical keystroke data has
been quite beneficial in tracking down systems problems.

The reminder of the paper is structured as follows. In related
work similar coding projects and tools are presented. Next the
execution flow within an unmodified OpenSSH 5.8p1 instance is
mapped out. This flow provides a way to determine the most
effective points for instrumentation. In section four, the overall
architecture and design goals are detailed including the integration
of Bro into the process. Section five provides implementation

110 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

details describing the inherent tradeoffs between complete
monitoring and resource limitations. Section six has examples of
attacks and some rudimentary analysis. Finally future work and
references are provided.

2. RELATED WORK
Related work can be generalized into several groups. These are
research projects relating to SSH data access, hacker activities,
and more generalized detection of SSH credential theft detection
in the HPC environment.

The work most similar to our own involves the hacker
community’s use of backdoored SSHD instances to steal
authentication credentials. In principle there is little difference
between this behavior and the functionality provided by the
iSSHD except in terms of the breadth of data provided. Statically
backdoored OpenSSH code has been around since at least 1999
[14], and more recent versions are trivial to locate - see [15] for
example.

Besides directly replacing the existing SSHD binary, there are at
least three additional ways to access session data. The first is via
direct access to a user’s terminal devices by a privileged user.
This can be achieved by one of dozens of small applications or as
part of a larger kernel rootkit [18]. A more subtle approach is to
interfere with kernel level behavior, thereby preventing a user
space analysis of the terminals from giving away the access.
Typically rather than just looking at terminal IO, input and output
system calls are intercepted via a hidden kernel module. This
information is transmitted to an analysis tool or recorded. There
are innumerable examples of this approach within the rootkit
community [11] as well as Honeypot implementations such as
Sebek [13]. Finally you can interact with the running SSHD
process by injecting code into it [16] or using process debugging
to “jump” from their stolen user account to a potentially
privileged session on another machine [17] [1]. These last two
cases are somewhat subtle in that no changes to the actual static
(non-running) binary are made.

There is a general class of SSH related security work focusing on
user account theft via anomaly detection, both in terms of
command sets as well as process accounting data. These include
Yurcik [21] [22] and Joohan Lee et al. [5] who look for account
compromises within the HPC domain via accounting and
command analysis. Historically, there is a rich collection of
research relating to account masquerading, with a nice write-up by
Malek et al. [6]. This last class of ideas can be fed by or used
with the iSSHD and incorporated into the sites overall intrusion
detection design since they are orthogonal to the actual iSSHD.

3. SSH Application and Protocol
In order to identify the best places to place instrumentation within
the SSH application, it is necessary to understand the code path
taken by typical behavior as well as subtleties within the protocol.

From a historical perspective there are two individual (and
incompatible) versions of the SSH protocol available. Tatu
Ylönen created version 1 in 1995 as a replacement for the then
ubiquitous telnet and rlogin protocols. OpenSSH emerged with
the OpenBSD group taking up development after a number of
organizational changes including the splitting of the Ylönen code
base at one of it’s last open source implementations. The SecSH

IETF working group developed version 2 originally published in
1998 and in 2006 a revised version of the protocol was adopted as
a standard in RFC 4250 (Protocol Assigned Numbers) [23], 4251
(Protocol Architecture) [24], 4252 (Authentication Protocol) [25],
4253 (Transport Layer Protocol) [26], 4254 (Connection Protocol)
[27].

In terms of this analysis, all paths and descriptions assume the use
of version 2 protocol since version 1 has suffered a number of
pathological security defects [19] which reduce it’s use to older
and unusual cases. In the case of the actual code instrumentation,
this assumption is not made and both version 1 and 2 provide
nearly identical logging. Section 3.1 represents a general
overview and relationship between RFC and OpenSSH structure.
Section 3.2 takes this high level design and fleshes it out,
providing a code path and rational for instrumentation locations.

3.1 SSH Application and Protocol Layering
 For this initial description we avoid taking into consideration a
number of details in order to focus on the overall flow of
information and data. For a generic shell interaction a simplified
diagram of the data flow might look something like Figure 1.

Figure 1: Application vs. Protocol design for typical SSHD session

Here Figure 1 is broken out into two columns – on the left there is
the protocol layering as defined in RFC 4250-4254. The right side
describes the application implementation of those layers. It is
worth noting that the layers do not map 1 to 1 - in particular the
role of the session object within the application, which according
to RFC 4253 should be rolled into the transport layer. Here each
application layer is a functional layer within the application, with
the parent SSHD is represented as the top block. After a
successful network connection is made, the process forks, and an
authentication context A is created. This context is used for the
lifetime of the login and is used to track a number of
authentication based data values.

During the next step Key Exchange occurs, where the actual
negotiation for a cipher, MAC and compression take place. First
server authentication takes place via server/host key pairs. This
authentication is transparent to the user if they have visited that
SSHD server in the past. Assuming the server authentication is
successful, algorithm negotiation for cipher and MAC takes place.
Finally the short-lived session key is generated which is used to
provide symmetric encryption for the data stream. This key is
periodically re-negotiated after a given time or data volume
passes. Since this is a reasonably well studied and logged area of

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 111

Figure 2: Internal SSHD Data Flow

the application, none of the exchange is recorded in the iSSHD
besides what the system logs already do. If a strong reason to log
the session crypto data could be come up with, there is no reason
why it could not be done.

The Authentication Layer (unsurprisingly) provides the actual
user authentication process. This process is extremely flexible
with a number of options natively defined by the application as
well as any generic PAM infrastructure. During the
authentication process more than one type of authentication type
can be examined so multiple fail and postpone events can be
generated even for a successful login. Since we are less interested
in the details of the authentication process than the outcome, there
is little or no detailed logging from iSSHD except for the
success/failure declaration as well as the authentication type being
used. We apply the same rational to the key exchange process
since in both cases relevant data can be preserved in regular
system logs.

If the authentication process proves successful, a Session Object is
created. This will be the primary container for not only the
authentication context, but tty, X11 and channel data as well. The
Session layer code also controls the mechanics of user login such
as the login process, remote command execution, pty allocation
and X11 forwarding.

The session object can create, use and destroy Channels. A
channel can be thought of as a connection within the Session
Object that has well defined semantics for data movement,
windowing information, file descriptors and multiplexing
capacity. Typically for a shell, you would allocate a single
channel that holds the file descriptors for stdin, stdout and stderr.
 It is not unusual though to have many additional channels in use
for X-windows, SOCKS forwarding and authentication agents.
 Data within a channel is not encrypted since it is contained within
a session which already is. This is a critical point for monitoring
which we will use to our advantage.

3.2 Common Code Paths During Execution
Now that the behavior of OpenSSH for a typical login has been
described, we can more closely examine code paths for strategic
places to insert instrumentation. Identifying those paths involved
reading the source code as well as experimenting with sessions
running in debug mode. Since the most common service for SSH
to provide is remote shell login access, it was the initial target for

both analysis and instrumentation. The execution path for this is
identical to that shown in Figure 1, except for some additional
details found in the session section. A location is considered a
good candidate for auditing if (1) there exists a decision making
branch where most or all connections traverse or (2) a final state is
arrived at which contains security relevant information.

Figure 2 provides a more detailed set of code paths for nearly any
use of OpenSSH. Here every box represents a transition between
user privilege or application function and ultimately represents an
event sent to the iSSHD analyzer. The creation of the Session
Object (SO) begins on the left side and the path moves to the right
till the users objective is reached. In it, a number of common
paths that immediately stand out. The horizontal split between
session and tunnel driven services is an obvious candidate for
instrumentation. As a reminder, the session code tends to be more
execution oriented – i.e. involved with the invocation of services,
commands and shells. Since it is not unusual for an attacker to
use a known tool or service in a way which is unusual, how we
instrument the path is extremely important. Decision branches
such as “session-in-channel-open” provide the path of what was
asked for, and logging details at the end of the code path provide
information regarding what was actually done. In any case, policy
can be written to provide notice if the local site finds any part of
the execution path objectionable.

Using the same rational, the lower half of Figure 2 provides the
same opportunity to audit this behavior in some detail for
tunneling and port forwarding activity. While not implemented in
this design, it should be at least possible (though perhaps not
practical) to access the forwarded data instead of just identifying
the static forwarding requests.

The level of logging may seem excessive, but such detail can
prove to be quite powerful for forensic analysis when combined
with local site policy. Local site policy - described later in some
detail - can act on specific session events like tunneling which
may not be allowed by a centers usage policy. There is a huge
benefit to be had in identifying the exact execution path of an
attacker. Since it is not unusual for a tool like ssh to be used in a
way which was not foreseen by the security community we tend
to error on the side of caution.

112 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

4. SYSTEM ARCHITECTURE
For the iSSHD architecture, we selected three principles
fundamental to the design and implementation process. If at any
time one of these principles was in contradiction with the design,
something was wrong with the architecture. The principles are:

1. Avoid introducing stability or security problems: We
need to demonstrate with high confidence that our
modified version of SSH is just as stable and secure as
the original code base.

2. Unchanged user experience: The modified version of
SSH can not affect the way users interact with NERSC
systems, require a special version of the SSH client or
application, nor remove any existing capabilities.

3. Minimal impact on system resources: System
resources including CPU time, memory, and network
bandwidth are at a premium. Additional demands made
by the instrumented SSH must be insignificant
compared to an unmodified SSH instance.

Based on these requirements, the following choices were made in
the architecture and development plan:

1. Use OpenSSH as the code base. OpenSSH has an
exceptionally good reputation and is already used on the
multi-user production systems. In addition, we were
able to add on the Pittsburgh Supercomputing Center’s
high performance OpenSSH patch set [12]. This
provides significant gains in terms of bulk data transfer
performance.

2. Minimizing changes to the code base. As part of the
project we made an active attempt to minimize the
number of changes to the original code. In addition, we
chose to use other tools and capabilities rather than
write them ourselves. An example of this would be the
use of stunnel [20] rather than attempting to write an
add on to ssh for our own data encryption.

3. Decoupled Analysis: Taking our experience from the
Bro IDS, we chose to fully decouple the analysis from
the generation of the ssh instrumentation data. To do
this it was necessary to remove any dependencies
between the running iSSHD and the back end analysis.
This is done by making all writes to the back end non-
blocking stressing that a failure of the analysis
infrastructure should result in the loss of security data
before an interrupted user experience.

The overall design of the iSSHD can be broken out into two
sections – the event generation within the running iSSHD process,
and the logging and analysis that compares those events against
local policy. Much of §3 was involved with the thought process
that took place before the coding started. With that in mind, we
turn to the actual design and implementation of the system itself.

It should be noted that the core of the analysis side currently exists
as a log repository with scripts feeding live data to the Bro IDS.
The use of Bro is not technically required since the file exists as
structured text, which provides the ability to feed the information
to any another tool. We will assume for the remainder of the
paper that Bro will be used.

4.1 Server Side
The iSSHD server is modified OpenSSH code that provides
events for further logging and analysis. Within the SSHD
application (as described in §3.2) there are ideal locations where
we extract information about user activity. Such information
includes login and authentication data, session and channel
creation, port forwarding, and keystroke/application data. This
data is normalized in terms of data types as well as being formed
into structured text. This text is then written to a local socket
(provided by stunnel) using a non-blocking descriptor. Details of
this process follow.

For events, a number of data types are defined. Not unexpectedly
these types map approximately with the native data types defined
by Bro. This includes the usual integer, string and count as well
as more network specific types like address and subnet. In order
to encapsulate arbitrary data, both unstructured string and binary
data is URL encoded using the stringcoders library [8]. This
mechanism is used in reproducing user activity since even simple
terminal sessions include Unicode characters and colors. An
additional benefit of URL encoding is to safely encapsulate traffic
that might be directed toward either the analysis system or the
terminal session of the individual doing the analysis. Original
versions of the instrumentation attempted to remove non-printing
characters from the recorded data, but information loss and textual
confusion ultimately pointed toward the URL encoding solution
as a better option.

As has been already described, the most basic unit of information
provided by iSSHD is called an event. Events, as their name
implies, are single actions or decisions made by a user that are
agnostic from a security analysis perspective. Lines typed by the
user as well as logins and channel creations are all examples of
events.

For event creation, all activity points to a single function. This
reduces confusion and creates a single point for information
gathering. A sample function call looks something like:

s_audit("channel_new", "count=%d count=%i
 uristring=%s", found, type, t1buf);

The function s_audit is the general event handling operation
within iSSHD. There are three sets of arguments that it takes –
the first is just the event name (in this case “channel_new”). The
second defines data typing for the Broccoli interpreter and has
printf() type structure. Any additional arguments define the data
associated with the event type. Here, ‘found’ is the index for the
free channel slot, ‘type’ defines the type/state of the channel (ie:
SSH_CHANNEL_LARVAL, SSH_CHANNEL_AUTH_SOCKET), and
‘t1buf’ is the URL encoded channel name such as server-session
or auth socket. After passing through the Broccoli interpreter, an
event named “channel_new” will be created with three arguments.
Note that there is no indication that the channel creation is
considered a good or bad thing – such a determination will be left
to the analysis side of the iSSHD.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 113

Figure 3: Overall iSSHD Architecture

Data provided by keystroke logging presents an interesting
problem in that the content can be of arbitrary length, and will
contain non-printing ASCII characters. To avoid inefficiencies,
we cache keystroke data in a channel buffer queue using the
native channel buffer types until a new line character is seen or
data volume is exceeds a threshold. In situations where too much
data is generated on the server side (such as large compile runs),
the value of this additional data is almost zero. To address this,
we adopted the same idea as used in the network Time Machine
[7]: specifically that most security sensitive data and events tend
to cluster them selves to the beginning of interactive sessions. By
making the distinction between interactive sessions (where there
are roughly the same order of magnitude of client initiated data
events as server) and highly asymmetric connections (with dozens
or hundreds of server data events per client data event), we can
avoid excess resource consumption by the iSSHD. This is one
situation where it was necessary to build logic into the code
running in the iSSHD. Table 1 provides cutoff values for both
normal tty channels as well as channels not bound to a tty. For the
situation of non-tty communications, the ratio of printing to non-
printing characters is also looked at to avoid needlessly copying
binary files.

Table 1: Default cutoff values for user and server data.

TTY Details Default Value

Yes Max line length or line count for client
input between server inputs.

15 lines, 64k
bytes

Yes Max line length or line count for server
input between client inputs.

15 lines, 64k
bytes

No Initial sample value (ISV) before
determining binary data.

1024 bytes

No Maximum data in total for either client
or server inputs.

.5M bytes

No Percentage of non ascii-printing
characters, after ISV, allowed for
continued sampling.

30%

For example if a user (client side) types ‘ls -l’ in a normal tty
based login, the iSSHD would provide the server echo of ‘ls -l’ as
well as the next 14 lines or 64k bytes of server side output
(whichever is exceeded first). The line/byte count is reset every
time client data is processed. The cutoff values are modifiable at
compile time and are set somewhat conservatively since the
assumption is that there is a large number of iSSHDs feeding into
a single analysis system.

4.2 Data Analysis
Data analysis consists of any component except for the iSSHD
itself. Practically it can be thought of as the stunnel as well as the
bro instance and related policy.

The stunnel is not particularly interesting in that we are using it to
transport data from an open file descriptor on the iSSHD side, to
the analyzer host. Since this is just a simple implementation of a
well-known application, we will focus on the details provided by
the policy.

The bro policy is designed to track individual sessions and
whatever activity is contained within them - normal shell sessions,
remote code execution or subsystem invocation. Each session is
defined by the start of the ssh connection and continues through
any activity until that connection ends. The series of events for a
routine login looks something like Figure 4 when printed directly
from the iSSHD.

Each of these lines represents an event and the data associated
with it. Policy can be written to trigger on specific events, their
data, or both. Of obvious interest is a users keystroke data and the
systems response. Since we have direct access to near real time
keystroke information, we look for extremely unlikely - and
highly suspicious - character sequences. These might include
known toolkit signatures, abnormal root shell prompts for /bin/sh,
or any other unexpected commands. Sets of commands that
individually do not represent a significant interest, but which are
suspicious in total represent the second type of alarm. These two
categories are defined by two sets of signatures – the first for
commands or strings worthy of immediate notification, and the
second for sets of these commands or strings present in the user
session.

In order to circumvent logging from the system login() facility, it
is not unusual for attackers to remotely execute a shell via ‘ssh
host sh -i’ . This style of reconnaissance has become so common
during hostile activity that we made sure that it could be simply
alarmed and all interactive data recorded. To address this, traffic
on non-tty channels had to be tracked and analyzed since the tty
invocation is part of the standard unix login() facility. Since data
on these channels can include binary streams, the ratio of ASCII
to non-ASCII packets is monitored. If after a pre-defined
sampling window this ratio exceeds a threshold, further
monitoring on that channel is dropped. We have experienced
tremendous success in logging both the remote execution of shell
binaries as well as monitoring commands to and from such
occurrences.

114 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

SSHD_CONNECTION_START

AUTH_KEY_FINGERPRINT uristring=0x.. uristring=DSA
AUTH_INFO uristring=Accepted uristring=scottc
uristring=publickey

SESSION_NEW uristring=SSH2
CHANNEL_NEW count=0 count=SSH_CHANNEL_LARVAL
uristring=server-session
SERVER_INPUT_CHANNEL_OPEN uristring=session
CHANNEL_NEW count=1 count=SSH_CHANNEL_AUTH_SOCKET
 uristring=auth+socket
SESSION_INPUT_CHANNEL_REQ count=0
 uristring=auth-agent-req@openssh.com
SESSION_INPUT_CHANNEL_REQ count=0 uristring=pty-req
SESSION_INPUT_CHANNEL_REQ count=0 uristring=shell

CHANNEL_DATA_SERVER count=0
 uristring=%0ALast+login:+Sat+Jan++8+14:45:31+2011
CHANNEL_DATA_CLIENT count=0 uristring=exit
CHANNEL_DATA_SERVER count=0 uristring=exit
CHANNEL_DATA_SERVER count=0 uristring=%0Alogout

SESSION_EXIT count=0 count=28221 count=0
CHANNEL_FREE count=0 uristring=server-session
CHANNEL_FREE count=1 uristring=auth+socket

SSHD_CONNECTION_END

Figure 4: Event series for a shell login.

The final area to explicitly mention is the ability of iSSHD to
intercept authentication data. When considering our options for
recording passwords during authentication, we ended up having to
carefully balance the utility and risk of retaining the data. In the
context of a forensic analysis, a password might be tremendously
valuable if used in a legally sanctioned criminal investigation. On
the other hand having such valuable credential information in the
logs represents a huge risk in and of itself, even without taking
into consideration passwords recorded for other institutions by
users transiting local systems. Ultimately the decision to record
passwords is left to the local site as a configure time option so that
it cannot be adjusted without recompiling the iSSHD. Since it is
not unusual for sites to share lists of known compromised keys via
their fingerprints, public keys presented for authentication can be
compared to a list of known bad keys and alarms raised when a
suspicious key is seen.

4.3 Event Details
As previously suggested, events generated by the iSSHD are
without any sort of predefined notions of good or bad since it is
the role of the analyzer to interpret these events. These events can
be roughly grouped by function, with types auth, channel, session,
server and sshd. In addition to these, the sftp subsystem also has a
number of events associated with it.

The example presented in Figure 4 shows the series of events seen
in a “normal” login. Two of the most important in terms of
monitoring and analysis are CHANNEL_DATA_CLIENT and
CHANNEL_DATA_SERVER. These events provide unfiltered client
keystroke and server echo/response data. If a user types
“lz<backspace>s<enter>” you would see “lz%7Fs” from the client
side and “lz%08+%08s” from the server side in the URI encoded
data. The characters ‘%7F’ and ‘%08’ are the control characters
delete and backspace respectively which can be seen from
standard ascii definitions. Since we assume all user-generated
data is potentially hostile, we reduce the possibility of accidentally

interpreting control characters in the process of reading and
interpreting the data by storing it in an encoded form.

Each event also includes timestamp, server id (process ID + server
hostname + listening port), client id (32 bit random number) and
interface address list. This information is tracked by the analyzer
bro policy as a locally unique session identifier - for example
#12345. This session id will remain constant for any activity
attached to that users session. This event data is missing from
figure 4 (and the other session figures) to allow for better clarity.
Additionally, data is maintained for the channel id so session #12
might contain channel 0 and channel 1. Since the session object
holds channel objects, the session id (ex #12) is the same and the
channel identifier will be different. A small number of events,
mostly connected to the running sshd daemon itself, do not have
all these fields since there is no notion of client session to be had
when the daemon is starting or emitting a heartbeat event.

5. RESULTS AND PERFORMANCE DATA
Presenting quantifiable results for the iSSHD is somewhat
complicated since there is no control data to base comparisons
against. Since the number of incidents is not large, checked
against a control group or varied across sites, it presents more of
an anecdotal story than an effective hypothesis test. Using iSSHD
we have identified approximately three-dozen instances of stolen
credentials. Most of them are not particularly interesting, but at
the same time we can catch this class of attacker before anything
can get interesting. Because of this, we will present an unusually
qualitative analysis for the security and policy enforcement
capabilities. For performance data we will look at a number of
measurements comparing iSSHD to an unmodified version
running on the same hardware. In addition we will also provide a
simple analysis of aggregate user events that would be extremely
difficult (or impossible) without the data set.

Besides detection, the iSSHD provides considerable insight into
the tactics, skill levels and motivations for many of the attackers
on our systems. In many cases the forensic logs quickly provide a
clear indication of the success, skill level and threat presented by
an intruder.

5.1 Sample 1: Remote Shell Invocation
Figure 5 provides a textbook example of a “classic” stolen
credential and local exploit attack. This user (resu) made the
mistake of having the same password for at least two sites -
NERSC and the remote site that was compromised. Here the
attacker remotely executes a shell to log in, then attempts a local
linux exploit. Note that because of the shell invocation,
communications are not via the normal tty interface - a technique
detailed in §4.2 .

Details follow with some of the data fields removed for clarity.

1

2
3
4
5
6
7
8
9
10
11

AUTH_OK resu keyboard-interactive/pam
1.1.1.1:52073/tcp > 0.0.0.0:22/tcp
NEW_SESSION SSH2
NEW_CHANNEL_SESSION exec
SESSION_REMOTE_DO_EXEC sh -i
SESSION_REMOTE_EXEC_NO_PTY sh -i
NOTTY_DATA_CLIENT uname -a
NOTTY_DATA_SERVER Linux comp05 2.6.18-…GNU/Linux
NOTTY_DATA_CLIENT unset HISTFILE
NOTTY_DATA_CLIENT cd /dev/shm
NOTTY_DATA_CLIENT mkdir ...
NOTTY_DATA_CLIENT cd ...

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 115

12

13
14
15

16
17

18

19

20

21

22
23
24

NOTTY_DATA_CLIENT wget
 http://host.example.com:23/ab.c
NOTTY_DATA_CLIENT gcc ab.c -o ab -m32
NOTTY_DATA_CLIENT ./ab
NOTTY_DATA_SERVER [32mAc1dB1tCh3z [0mVS Linux
 kernel 2.6 kernel 0d4y
NOTTY_DATA_SERVER $$$ Kallsyms +r
NOTTY_DATA_SERVER $$$ K3rn3l r3l3as3:
 2.6.18-194.11.3.el5n-perf
NOTTY_DATA_SERVER ??? Trying the
 F0PPPPppppp__m3th34d
NOTTY_DATA_SERVER $$$ L00k1ng f0r kn0wn
 t4rg3tz..
NOTTY_DATA_SERVER $$$ c0mput3r 1z aqu1r1ng n3w
 t4rg3t...
NOTTY_DATA_SERVER !!! u4bl3 t0 f1nd t4rg3t!?
 W3'll s33 ab0ut th4t!
NOTTY_DATA_CLIENT rm -rf ab ab.c
NOTTY_DATA_CLIENT kill -9 $$
SSH_CONNECTION_END 1.1.1.1:52073/tcp >
 0.0.0.0:22/tcp

Figure 5: Remote shell invocation example.

We can see a number of clear indicators that something is going
on which is not normal user activity. First is the interactive
session on a non-tty channel created by remotely executing a shell
(line 3-5). Second, the unset HISTFILE command and the
creation of a directory called “...” under /dev/shm (line 8-10).
Finally the exploit is downloaded, compiled and (unsuccessfully)
run (line 12-21). Highlighted text represents commands and
output that as part of the default policy distribution are considered
sufficiently unusual or dangerous to warrant alarming on.

5.2 Sample 2: Cluster Reconnaissance
This example is one of the more complex and educational that we
have captured, providing a clear snapshot of the methodology and
tactics taken by a pair of hackers looking into our systems. Since
they are sharing a common login via the GNU screen utility we
can see the interaction between them and get an understanding of
their methods and communication, something quite difficult under
normal conditions. While there are several thousand lines of
interaction from the event, space limitations force us to only
include a small chunk of the most interesting (and amusing) lines.

1
2
3

4
5
6
7
8
9
10

11

12
13

14

DATA_CLIENT /sbin/arp -a
DATA_SERVER b@n:~> /sbin/arp -a
DATA_SERVER comp05 (192.168.49.94) at
00:00:30:FB:00:00 [ether] PERM on ss
DATA_SERVER b@n:~>
DATA_CLIENT oh wow
DATA_SERVER b@n:~> oh wow
DATA_SERVER b@n:~> /sbin/arp -an |wc -l
DATA_SERVER 9787
DATA_CLIENT rofl hax it hacker
DATA_SERVER b@n:/u0> sorry, im gonna s roll
 a cigarette and smoke it, y
DATA_SERVER b@n:/u0> then im gonna come back
 and try to hack ok ?
DATA_SERVER b@n:/u0> i am gonna go for one
DATA_SERVER b@n:/u0> you cant smoke inside?
 terrible
DATA_SERVER b@n:/u0> its f cold as f***

Figure 6a: Initial communication and Note: removal additional
server fields, time and session id

The text from the screen session is marked in blue, and event
names are once again bolded. The overall behavior can be
broken out into several sections. In Figure 6a, lines 1-10, arp
tables are used to identify locally attached systems. In this case

the large number of them (9787) seems to cause the need for a
few moments thinking about how to proceed. This is one of the
initial indicators that the attackers are not just blindly running
tools. It also indicates that they are probably in the western
hemisphere.

1
2
3
4
5

6
7
8
9
10

11

12

13
14
15

16

17

18
19

20

21

22

DATA_CLIENT hmm cd .. ;ssh-keygen -t
DATA_SERVER b@n:~/.ssh> hmm
DATA_SERVER b@n:~/.ssh> cd ..
DATA_SERVER b@n:~/.ssh> ssh-keygen -t dsa
DATA_SERVER Gen pub/private dsa key pair.
...
DATA_CLIENT ls
DATA_SERVER b@n:~/.ssh> ls
DATA_SERVER id_dsa id_dsa.pub known_hosts
DATA_CLIENT cat id_dsa.pub > authorized_keys
DATA_SERVER b@n:~/.ssh> cat id_dsa.pub >
 authorized_keys
DATA_CLIENT ssh -oHashKnownHosts=yes
 192.168.0.1
DATA_SERVER b@n:~/.ssh> ssh
 -oHashKnownHosts=yes 192.168.0.1
DATA_CLIENT cat > ssh_cn010onf
DATA_SERVER b@n:~/.ssh> cat > ssh_config
DATA_CLIENT cat known_hosts | grep -v
 192.168.0.1
DATA_SERVER b@n:~/.ssh> cat known_hosts |
 grep -v 192.168.0.1 > tmp
...
DATA_SERVER b@n:/tmp> what are you trying to
do get ride of t pressing yes?
DATA_SERVER b@n:/tmp> clearly
DATA_SERVER b@n:/tmp> lol set known_hosts to
dev null n00b
DATA_SERVER b@n:/tmp> that is such a hack
and completely improper
DATA_SERVER b@n:/tmp> and a good way to lose
a box if you forget to remove it
DATA_SERVER b@n:/tmp> nononosec phrack.org
done? wn? its in issue 64

Figure 6b: Generate local key pair and populate across NFS
share, attempt generic NFS type attacks via suid 0 program.

1
2
3

DATA_CLIENT ps axuw |grep snort
DATA_SERVER ps axuw |grep snort
DATA_SERVER b 36684 0.0 0.0 2740 564 pts/10
S+ 20:39 0:00 grep snort

Figure 6c: Looking for IDS processes.

By Figure 6b discussion has indicated a familiarity with insecure
multi-host NFS file systems - interestingly, they did not attempt to
use NFSShell. From here (lines 4-5) the pair generate a pass-
phraseless ssh key to use across the systems sharing the home file
system, once again indicating a familiarity with shared file
systems and how they can be used. They grapple a bit with
configuration issues and interestingly use the HashKnownHosts
option to obscure records left in the known_hosts file. Figure 6c
provides an example of IDS detection.

Ultimately this pair logged in to 19 local systems and never
managed to get root access. The dialog here is as long as it is in
order to convey the relative sophistication and interesting method
of the attackers.

116 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

5.3 Performance Data
There are numerous points of reference in comparing the
performance of the iSSHD with an unmodified OpenSSH. In this
case we will be looking at aggregate remote command execution
time, time to copy binary and ascii files, cpu usage for general
activity, and memory usage for the child process.

This command set is run remotely via remote execution with the
system time command providing information about total
execution time, system and user cpu usage. We recognize the
differences between remotely executing a script containing
commands and manually running them. Ultimately we chose to
run via the script for repeatability and ease of use since tools such
as Expect do not provide additional functionality.

 Remote Exec SCP Binary SCP ASCII

SSHD 42.78 [0.05] 9.85 [0.11] 0.70 [0.01]

iSSHD 43.03 [0.18] 9.85 [0.15] 0.69 [0.02]

Table 2: Run time values for three tests, values in seconds, standard
deviation in brackets. Average remote command execution time
increases by 0.6%.

For Table 2 column 1, “Remote Exec” is a set of 13 remotely
executed commands including normal user activity like ls, touch
configure and make. From a simple ratio test, the iSSHD takes in
total about 0.25 seconds more to run or about 0.6%. This
indicates that the average behavior of interactive shell commands
should not be adversely affected, but limited variations in
keystroke responsiveness could be lost. Given the way that large
volume logging is done (as described in §4.1), this is not at all
surprising. For the additional columns in Table 2, we have the
time to completion values for using scp to transfer a medium size
ASCII file as well as a medium size binary file. In this case,
medium size is on the order of 100MB. In each case the
additional overhead caused by the memory copy and transmit did
not provide a significant (or measurable) difference in the
measured time. In this measurement, the same file was moved
from one directory on the local system to another 40 times in a
row. The task was then repeated with the iSSHD to reduce the
influence of variable overhead and caching.

Looking at CPU usage for the same two data sets demonstrates
differences in application behavior. First, the system CPU
dominated the total time by ~ 4:1 for total CPU time per
transaction. This is not surprising given that the majority of this
activity is driven by read() and write() calls as well as polling
during periods of inactivity.

Figure 7 shows the relationship between execution time and CPU
time for both sets of test runs. One thing to notice is the slope of
the linear regression curve. Total CPU usage decreases since the
faster you move a constant set of data, the harder the data must be
pushed during the (shorter) time window. The product of the two
terms as a histogram we see a very tight set of values (s2),
implying this relationship.

The final metric is memory use, which ends up being quite
consistent both in terms of native and iSSHD when looking at
results from the data generation scripts. Within SSHD, there are a
limited number of ways that memory becomes allocated once a
session completes initialization – the most common being internal
data buffering and channel creation. In both of these cases the

size growth is minimal for the modifications made since data
buffering from interactive sessions are cleared once they are
written to the stunnel socket.

Figure 7: Total CPU time vs. length of transaction time for test
data runs against iSSHD and native SSHD.

The overall conclusion is that the changes made to introduce
instrumentation into iSSHD do not have a significant impact on
performance or usability.

5.4 Overall Observations
Overall the iSSHD project has provided insight into probably
three-dozen compromised user accounts since 2009. In each of
these cases it was possible to not only quickly determine the
success of the attack, but also get exploit tools and code used.

Figure 8: Distribution of maximum channels/session for November
2010.

As suggested in the introduction, the iSSHD also provides a
tremendous source of measurement data as well. We have not yet

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 117

begun to fully explore this avenue, but there is no technical reason
why we could not use this to identify needs for the user
community. An example of this would be to systematically
explore port-forwarding behaviors to see if we could deliver
network services differently. Besides problem solving, the
measurement data can also provide an interesting repository of
pure research data. Figure 8 provides an example of the
maximum channel count per session per day during November
2010). It is interesting to note that some users are exceeding 50
channels per session – in this case the majority of this is web
browsing. This might be done (for example) to visit social
networking sites blacklisted by a users local institution. This has
interesting security repercussions to be sure.

6. FUTURE WORK
Since the iSSHD is relatively new, there is a great deal of learning
going on with regard to what information is useful as well as
available. There are several areas that we are actively looking
into for future releases. The first is the detection of local terminal
session hijacking as described in §2 by [17][18]. The second is
the extraction of keystroke data from the X11 x-terminal data-
stream, which is currently opaque. There is currently some
prototype work completed for the session hijacking (detailed
below), while tapping into the X11 stream represents a possible
way to look into the protocols being tunneled over the ssh
channel.

6.1 Local Session Hijacking
In the available literature and toolkits, there are a number of ways
that a local attacker can tap into a running session and “reach
across” the network to access further systems and resources. In
particular this can be done to elevate privilege if the user has
gained root access on the external system, or to hop over one time
password authentication. We are familiar with examples of the
later.

In the SSH-Jack application [17], ptrace is attached to the ssh
client process, finds the channel setup code, then patches the
memory to request a remote shell attached to a local TCP socket.
The user running the ssh client is completely unaware that this is
happening since they are running under a different set of channels
in the same user session. We are hoping to look for an unusual
ssh_session2_open() call and match it to the expected state for a
normal session to help identify this attack. Regardless of this, the
entire communications from the new channel will be logged and
analyzed in the same way that normal user activity is.

A more common attack involves a local root user looking to jump
off the compromised host through some sort of multi-factor
authentication. In many cases this involves the opening of the
victim users terminal descriptors for standard in, out and error
then writing data directly into the sockets. The running ssh is not
even aware that anything is amiss since it is just transiting data
normally. We are looking to use the Linux inotify interface [2] to
monitor and log additional file open events on the terminals file
descriptors. This is still in its prototype phase.

7. CONCLUSION
We have presented an instrumented version of the OpenSSH
application that allows for a local site to log and analyze user

activities on local HPC resources. This analysis can be used to
enforce local security policy with respect to SSH usage, which
would otherwise be difficult or impossible with normal tools.

8. ACKNOWLEDGEMENTS
This work was supported by the Director, Office of Science,
Division of Mathematical, Information, and Computational
Sciences of the U.S. Department of Energy under contract number
DE-AC02-05CH11231.

This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy.

I would very much like to thank Tom Limoncelli for his help in
the paper shepherding process.

9. REFERENCES

[1] "Trust Transience: Post Intrusion SSH Hijacking" to Blackhat
Las Vegas, Adam Boileau

[2] Dow, Eli M., Monitor Linux file system events with inotify,
IBM Linux Test and Integration Center, http://www-
28.ibm.com/developerworks/linux/library/l-inotify.html?ca=dgr-
lnxw07Inotify, 2005.

[3] H. Dreger, C. Kreibich, V. Paxson and R. Sommer, Enhancing
the Accuracy of Network-based Intrusion Detection with Host-
based Context, Proc. Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA) 2005.

[4] C. Kreibich and R. Sommer. Policy-controlled Event
Management for Distributed Intrusion Detection. 4th International
Workshop on Distributed Event-Based Systems (DEBS'05), 2005,
Columbus/Ohio, USA

[5] Joohan Lee, Muazzam Siddiqui, "High Performance Data
Mining for Network Intrusion Detection Using Cluster
Computing", International Conference on Parallel and Distributed
Computing and Systems (PDCS 2004), MIT Cambridge,
November 2004

[6] Malek Ben Salem, Shlomo Hershkop, Salvatore J. Stolfo. "A
Survey of Insider Attack Detection Research" in Insider Attack
and Cyber Security: Beyond the Hacker, Springer, 2008

[7] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson and
F. Schneider, Enriching Network Security Analysis with Time
Travel, Proc. ACM SIGCOMM, August 2008.

[8] Nick Galbreath, stringencoders: A collection of high
performance c-string transformations,
http://code.google.com/p/stringencoders/

[9] Open SSH Project, http://www.openssh.org

[10] V. Paxson, Bro: A System for Detecting Network Intruders in
Real-Time. Proceedings of the 7th USENIX Security Symposium,
San Antonio, TX, January 1998

118 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

[11] http://packetstormsecurity.org/files/view/42556/phalanx-
b6.tar.bz2

[12] Chris Rapier and Benjamin Bennett. 2008. High speed bulk
data transfer using the SSH protocol. In Proceedings of the 15th
ACM Mardi Gras conference, (MG '08). ACM, New York, NY,
USA, , Article 11 , 7 pages. DOI=10.1145/1341811.1341824
http://doi.acm.org/10.1145/1341811.1341824

[13] Know Your Enemy: Sebek. The Honeynet Project,
November 2003 https://projects.honeynet.org/sebek

[14] SSHD Backdoor Homepage, http://emsi.it.pl/ssh/

[15] http://packetstormsecurity.org/files/author/5480/ :
Backdoored version of OpenSSH 4.5p1 that logs passwords to
/var/tmp/sshbug.txt.

[16] http://packetstormsecurity.org/files/view/45228/ssheater-
1.1.tar.gz : SSHeater is a program that infects the OpenSSH
daemon in run-time in order to log all future sessions and
implement a backdoor where a single password, chosen by the
user, can log into all accounts in the system. There's a log parser
included in the package that can display authentication
information about sessions as well as play the session just like
TTYrec/play.

[17] http://www.storm.net.nz/projects/7

[18] http://datenterrorist.wordpress.com/2007/07/06/tty-sniffer-
fur-linux-24/

[19] SSH CRC32 attack detection code contains remote integer
overflow, Vulnerability Note VU#945216, United States
Computer Emergency Readiness Team,
http://www.kb.cert.org/vuls/id/945216

[20] W. Wong: Stunnel: SSLing Internet Services Easily.
SANS Institute, November 2001.

[21] W. Yurcik, X. Meng, and N. Kiyanclar. NVisionCC: A
visualization framework for high performance cluster security. In
ACM Workshop on Visualization and Data Mining for Computer
Security (VizSEC/DMSEC), 2004.

[22] W. Yurcik, Chao Liu, “A first step toward detecting SSH
identity theft in HPC cluster environments: discriminating
masqueraders based on command behavior”, CCGRID '05
Proceedings of the Fifth IEEE International Symposium on
Cluster Computing and the Grid - Volume 01

[23] T. Ylonen, C. Lonvick, “The Secure Shell (SSH) Protocol
Assigned Numbers”, RFC 4250, January 2006

[24] T. Ylonen, C. Lonvick, “The Secure Shell (SSH) Protocol
Architecture”, RFC 4251, January 2006

[25] T. Ylonen, C. Lonvick, “The Secure Shell (SSH)
Authentication Protocol”, RFC 4252, January 2006

[26] T. Ylonen, C. Lonvick, “The Secure Shell (SSH) Transport
Layer Protocol”, RFC 4253, January 2006

[27] T. Ylonen, C. Lonvick, “The Secure Shell (SSH) Connection
Protocol”, RFC 4254, January 2006

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 119

Appendix 1
This is an abbreviated list of iSSHD events current as of January
2011. The event name is in the left column and a summary of
returned data types is on the right. All events are processed in the
current public release of the policy set. The description in the
Returned Data column does not include all the default fields
described in §4.3.

Authentication
Events

Returned Data

auth_info userid, auth type, success,
source IP, dest IP

auth_invalid_user userid
auth_key_fingerprint fingerprint of pub key
auth_pass_attempt userid, password

Channel Events Returned Data

channel_data_client URI encoded client data
channel_data_server URI encoded server response
channel_data_server_sum Data skipped by heuristics
channel_free id of closed channel
channel_new id, type, remote name
channel_notty_analysis_disable printable/non-printable ratio for

non-tty channel exceeds set
ratio

channel_notty_client_data URI encoded non-tty client
data

channel_notty_server_data URI encoded non-tty server
data

channel_pass_skip id of channel where pass skip
happened

channel_port_open type, listening port,
path/hostname, remote ip,
remote port

channel_portfwd_req hostname, listening port

type, listening port,
path/hostname, remote ip,
remote port

channel_post_fwd_listener listen port, path/hostname, host
port, type

channel_set_fwd_listener type, wildcard bind, host, port
to connect, listen port

channel_socks4 id, path/hostname, host port, s4
command, username

channel_socks5 id, path/hostname, host port, s5
command

Session Events Returned Data

server_input_channel_open

chan_type, channel, window
size

session_do_auth session type, state
session_exit chanid, parent pid, status
session_in_channel_req chanid, chan type, session id
session_remote_do_exec parent pid, command
session_remote_exec_no_pty parent pid, command
session_remote_exec_pty parent pid, command
session_request_direct_tcpip orig host, orig port, dest host,

dest port, session id
session_tun_init tun type, can id
session_x11fwd display as string

SSHD Events Returned Data

sshd_connection_end

remote ip, remore port, local ip,
local port, client id

sshd_connection_start remote ip, remote port, local ip,
local port, parent pid

sshd_exit local ip, local port
sshd_restart local ip, local port
sshd_server_heartbeat select value
sshd_start local ip, local port

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 121

Adventures in (Small) Datacenter Migration

Jon Kuroda, Jeff Anderson-Lee, Albert Goto, Scott McNally
University of California, Berkeley, EECS

{jkuroda,jonah,goto,mcnally}@eecs.berkeley.edu

Abstract
In May 2011, we embarked on an ambitious course – in 3
weeks: clear out a small, soon to be demolished, research
datacenter containing 5 dozen research systems spanning
5 research groups and, along with a new faculty mem-
ber’s systems located off-site, move it all into another
space suffering from 18 years of accumulated computer
systems research history. We made it happen, but only
after intensive pre-planning and after overcoming a num-
ber of challenges, both technical and non-technical, and
suffering a moderate amount of bodily injury.

We present an account of our adventures and examine
our work in facilities, networking, and project manage-
ment and the challenges we encountered along the way,
many of which were not primarily technical in nature,
and evaluate our approaches, methods, and results to ex-
tract useful lessons so that others may learn from our
reckless ambition.

Introduction

In late 2010, the EECS Department revisited previously
shelved plans to renovate the north half of the 5th floor
of the Computer Science building, Soda Hall, including
demolition of 600 ft2 of datacenter space (“530”) shared
by 5 active research groups and 1 defunct group. Merci-
fully, the new plans left alone a network closet that had
been originally slated for a relocation but proved far too
costly to move.1 The demolition schedule shifted a bit
but, by mid-March, eventually settled down around late
May/early June with a construction start date of 2 June
announced in late April.

Concurrently, we had a new faculty member bringing a
rack full of research systems from a nearby Industrial Re-
search Lab in Downtown Berkeley (“IRB”) that needed
datacenter space and needed to move by 25 May. We also
folded this additional, smaller, migration into the overall
plan.

With a larger campus and departmental re-
examination of the utilization of datacenter space,
we also saw this as an excellent opportunity to clean
up, reorganize, and plan to upgrade our remaining
datacenter space.

Others have examined the topic of large datacenter-
scale change, most specifically Cha who looked pri-
marily at the computing side of migration, especially
system configuration, while we tightly controlled the
amount of system configuration change and were also
heavily involved in the facilities/physical plant side of
the migration.[2] Similarly, Cumberland focused exclu-
sively on system installation and configuration while our
systems were already up and running and could not be
wiped arbitrarily.[4]

Location Location Location

In evaluating new locations for migrating systems, we
considered 5 major characteristics:

• Air Conditioning (measured in tons2)
• Power (measured in kVA3)
• Space (measured in number of racks)
• Existing Network Access
• Ease of Moving Systems

We considered 6 locations for evaluation, but only one
made sense for relocation – a 1000 ft2 datacenter space
on the fourth floor of Soda Hall (“420A”). It had several
points in its favor, including the most surplus cooling
capacity and, after a number of upgrades, power, some
pre-investment in overhead fiber distribution systems4,
sufficient connectivity to relevant networks, and physi-
cal proximity to related research groups, staff, and 530.
Other facilities were either already or about to be filled
to capacity, poorly suited for experimental systems re-
quiring frequent physical access, accessible by too large
a group of people, or lacked sufficient network access.

122 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Like all such facilities in the building, both used raised
floors with underfloor forced air cooling sharing space
with underfloor power distribution and legacy network
fiber runs. They were similar in most ways with 420A
being a larger version of 530.

Table 1 summarizes the nominal capacity and actual
usage of 530, IRB, and the final destination, 420A. At
first glance, these numbers seem to indicate that mov-
ing these systems into 420A would run very close to if
not right up against the rated capacity on Cooling and
Power, but table does not take into consideration the later
removal of defunct systems and the occasional but gen-
erous rounding up of usage numbers by Facilities staff.

Facility AC tons kVA #Racks
530 Rated 30 (2× 15) 50 15

Used 10 25 5
IRB Used 2-3 10 1
420A Rated 30 (2× 15) 100 34

Used 13 45 12

Table 1: Facilities Utilitization Summary

While the best (or least-worst) choice, 420A still had
several points against it, all centered upon its age, in-
cluding an 18 year-old raised floor that had never been
cleaned, 18 years of accumulated cable tangle stem-
ming from minimal management of underfloor power
and legacy fiber distribution, a multitude of circuit types
instead of a single standard, 18 years of systems research
history (aka “junk”), and a disorderly mix of standalone
cage racks and relay racks.

Though the Computer Room Air Conditioners
(CRACs), essentially in-room chilled water heat ex-
changers installed in pairs in each room, were nomi-
nally up to the task of handling the additional load, they
too were 18 years old and not running at maximum ef-
ficiency. In fact, the manufacturer sold off that divi-
sion shortly after Soda Hall opened in Fall 1994, and
we are no longer able to get manufacturer replacement
parts such as logic control boards – many of these units
have had custom replacement boards installed by a third
party vendor. A mix of “ownership” issues (the campus
physical plant, not the department, manages the building
HVAC system including the CRACs) and budgeting is-
sues (the availability of funding for operational expenses
versus funding for capital expenses in physical plant’s
budget) complicate outright replacement.

Power distribution in both locations consisted of an in-
room PDU taking 3-phase input feeding under-floor runs
of both rigid metal and armored flex-conduit (referred to
as “cable snakes” locally) carrying single phase circuits
ranging from 15A to 30A and 120VAC to 208VAC. Af-
ter 18 years of use by a succession of resource-hungry

computer systems research endeavours (each with its
own power requirements) with minimal efforts to man-
age the power distribution, “cable snake” became an in-
creasingly accurate term as the underfloor area devolved
into an increasingly difficult to manage tangle of flexible
conduit with many circuits disconnected but left under
the floor, interfering with orderly air flow and creating a
maintenance nightmare for the current staff.

We could address these problems given enough ef-
fort, which we had; time, which we had in short sup-
ply; and funding, which we had but is complicated in
our academic environment though eventually tractable
given enough time. For our immediate needs, this facility
badly needed a thorough cleaning, a complete electrical
survey before making any needed changes, and another
thorough cleaning – these would be our immediate prior-
ity while other concerns would have to be dealt with as
longer-term projects.

Timing is Everything

In our academic environment, we try to schedule major
work involving downtime after May for many reasons.
Finals, class projects, post-semester research retreats,
conference/journal submission deadlines, and even VLSI
tapeout schedules can all key off of the end of the
semester, but we can engage in major work with relative
impunity in the brief 2-3 months between the spring and
fall semesters. Unfortunately, this also applies to major
construction work, so we had to choose which of March,
April or May would be the least disruptive time to ac-
complish this feat.

We went with May, partly due to circumstance, partly
by design. Availability of the department electrician and
a trio of work-study student staff would prove crucial,
but they were committed to other work until May. Look-
ing for an upside to this, we found this gave us more time
to prepare and plan so that, when May rolled around, we
could spend more time working instead of backing out of
costly on-the-spot decisions made with little forethought
or waiting to work because we had not thought some-
thing through extensively enough.

This choice had obvious downsides. While the demo-
lition schedule carried a 2 June deadline, 21 May proved
much more relevant due to off-site research retreats and
long-scheduled staff travel in the last two weeks of May
which gave us 3 weeks of time with the entire team
present to do the actual work of prepping the new space
and moving systems while power shutdown of 530 was
scheduled for 25 May to allow for dismantling and dis-
posal of the two CRACs. This aggressive schedule came
back to bite us once or twice, but the hard and very
real deadline proved to be very strong motivation for us
and gave us greater ability to cut through bureaucracy –

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 123

pushback from those outside our team or claims that we
“could just get an extension” were rebuffed with a re-
minder that contractors were arriving on 2 June and that
delay would hold up a major construction project, and, if
necessary, an invitation to discuss the matter with the de-
partment chair. This, however, only happened once with
a colleague who was unaware of the entire scope of the
work and was quickly handled.

Our faculty, in particular, left us alone to do this work
and did not question the migration schedule. While they
already trust us in general on operational matters, they
had specifically been informed of this work by the de-
partment chair and the facilities director to prevent ex-
actly these sorts of questions – there was faculty buy-
in to this adventure before it even became our concern.
While we may not have particularly wanted to go down
this road, at least this road had already been paved for
us. Of the 2 other active groups who had systems in 530,
one group would be moving into the renovated space and
the other had only a small handful of systems and did not
mind much as long as the systems were back up even-
tually – we did not anticipate nor receive any pushback
from these two groups on the migration schedule. That
we received no pushback on schedule from faculty or
users and almost none from staff still amazes us.

People Get Work Done

One immediate challenge we faced was that we have no
staff dedicated to Datacenter Management or who have it
as a primary job responsibility. Instead, we have a num-
ber of staff who do work in datacenters as one aspect of
their jobs, whether they be systems administrators, fa-
cilities managers, or network administrators. Most no-
tably, the systems administrators responsible for com-
pletion of this project all work directly for 3 of the 5
research groups affected by this move – the other 2 re-
search groups did not have systems support staff to con-
tribute to the overall migration.

Our team consisted of one Department Facilities Di-
rector, one Department Electrician, three systems ad-
ministrators with deep institutional knowledge, one new
guy who started in May, and three work-study student
helpers. Missing from our merry band was a network
administrator to handle the myriad of network changes
needed for all this – primarily a number of changes in
VLAN assignments. The staff member most familiar
with the network involved in this migration had taken
another position elsewhere on campus in February 2011
and left behind another network administrator unfamil-
iar with both the overall topology as well as the platform
specifics. This hole would come to haunt us later and
nearly derailed the migration schedule.

Close ties developed over the past decade between

team members proved vital to success given our tight
timeline – having to go “through channels” for change
requests and having to continually re-establish a shared
terminology would have crippled our ability to move
quickly on a tight schedule. We did, however, observe a
marked discrepancy in the preferred manner of commu-
nication – while we all relied on 1-to-1 in-person com-
munication for low-latency high-bandwidth communica-
tion, we never converged on a single mailing list, wiki,
or any other particular form of asynchronous collabora-
tive “hivemind”. Periodic synchronous standup meetings
proved to be only the consistent way to keep us all on the
same page.

Goals

With limited staff and time, we had to keep our goals
modest while at the same time ensure that we allowed for
future facility improvements and upgrades. As noted, we
had already decided not to engage in major upgrade or
reorganization work in 420A. We also had to decide how
much support to give to systems that did not belong to
our faculty but instead belonged to the two groups with-
out systems administrators.

In the end, we settled on providing a minimum base-
line level of service of rackspace, power, and networking
for all systems migrating out of 530 but only systems
that belonged to our faculty received hands-on support
from us. We convinced the Department IT Director to
take responsibility for systems that belonged to a defunct
research center whose sole faculty member had retired
years earlier. Of the two groups lacking systems admin-
istration staff, one chose to hire the department’s User
Support Group to handle the hands-on migration work
while the other gave the work to one of their undergrad-
uate interns.

For our own faculty’s systems, we settled on 3 service
guarantees:

• Max of 1 downtime/system
• Max of 1 day/downtime
• Minimize impact on deadlines

- do not move everything at once

We aimed to have systems back up within 24 hours
after taking them down for migration and, once we said a
system was back up, for it to stay up barring user needs or
“normal” routine operational needs such as periodic OS
patching. We particularly wished to avoid taking systems
down again to move after announcing that a system had
been moved and was back up.

The last goal proved to be the most complex but also
the one most beneficial to us. We decided early on that
moving everything all at once in one fell swoop was far

3

124 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

too disruptive to our users and risky for us if we took a
wrong step, so we instead chose to move systems based
on when relevant user populations needed them – moves
more than 2 weeks before a deadline or the day after a
deadline were acceptable, but not during the two weeks
before a deadline. This would ultimately benefit us as
we could pick and choose unused and therefore less crit-
ical systems to move first in order to test the waters after
which we could move systems in larger groups.

For the new faculty member’s IRB systems, we fo-
cused on:

• space for racked systems
• installation of electrical circuits
• transport on or before 25 May

We were not immediately concerned with getting the
systems from IRB up and running, only with making sure
that there was a location for them and making use of the
electrician’s time while we still had access to him in May.

When possible, we allowed our decisions to be guided
by the pursuit of progress towards a cleaner, more well
organized datacenter space, but were prepared to make
well-defined and easily undone short-term decisions in
order to meet our 21 May deadline.

Space Planning

We had actually begun planning for this over a year prior
when the renovation plans first came across our desks.
Already dissatisfied with the collection of ad hoc changes
made to datacenter spaces throughout the building and
the way that they hampered any growth or reorganiza-
tion, we all saw this as an opportunity to rip out as much
cruft, junk, and accumulated history as we could manage
in whatever time frame we could acquire.

While we could not muster enough momentum or staff
time to accomplish significant datacenter cleanup after
the department shelved these initial plans, the ideas for
cleanup and upgrade were still fresh in our minds and
on paper when the department took the renovation plans
back off the shelf. Additionally, we had already done a
survey of 530 and 420A in late-2009 as part of a campus
datacenter utilization survey, so we had a good handle
on who had what systems in 530, how much power they
consumed, and how much rackspace they needed.

Initial migration planning started with a overall sur-
vey of 530 to review any major changes since the 2009
survey. We paid special attention to the type of circuits
we would need in 420A – while individual systems used
standard IEC 60320 electrical connectors such as found
on typical PC systems, our in-rack power distribution
used a variety of means to connect to building power
including 4 different NEMA twist-lock connectors. We

conducted a similar general survey of 420A to confirm
general impressions of the space and to note things that
we could correct before May without the assistance of
the electrician or the need for the trio of work-study stu-
dents.
We briefly entertained the notion of installing an over-

head busbar power rail system, as is now increasingly
common in new facilities on campus, but quickly placed
it on the “needs time and money” list. Within the time
constraints we had, particularly the electrician’s avail-
ability, we had to make do with more limited incremental
changes to the existing underfloor power distribution sys-
tem. Overhead power would become one of many rec-
ommendations that we would make for future datacenter
upgrades.

We also held off on any major upgrade work to the
air conditioning system, again for reasons of time. In
place of capacity upgrades, we pursued two alternatives.
First, the Facilities Director ran two day long experi-
ments running 420A with 1 out of 2 CRACs shutdown
to see if each of the 18 year old pieces of equipment
could handle the existing load alone – which they did
without failure. While not a strictly rigorous experiment,
it demonstrated that we could have enough cooling ca-
pacity given prudent placement of systems and pruning
of unused or offline systems. It also enabled us to pur-
sue a second avenue – maintenance service and overhaul.
The Facilities Director scheduled two maintenance peri-
ods for each CRAC involving aggressively proactive re-
placement of worn parts, cleaning of water piping to and
from the building’s rooftop chilled water supply, and ser-
vicing of each CRAC’s 3 compressors. Our Facilities
Director estimates that this restored about 20-30% of ef-
ficiency back to the CRACs though he notes that building
AC makes exact numbers difficult to obtain – in warm
months, building AC runs more often, creating a shell of
cooler rooms surrounding 420A while in cooler months
overall need for heating is rare due to the effectiveness of
the building’s own insulation.

We reviewed several ways to rearrange 420A, but ulti-
mately retained the existing arrangement of 4 main rows
of racks and 1 catch-all row with a more concerted ef-
fort at enforcing hot and cold aisle separation for dense
installations while relegating less dense installations to
“warm” aisles. We did rearrange rack allocations so that
projects, which previously had equipment strewn across
various disparate racks due to the floorspace equivalent
of disk fragmentation, could benefit from physical prox-
imity, thus alleviating network fiber distribution com-
plexity as well as strengthening project and group iden-
tity. In addition, we identified equipment from prior
projects which had been abandoned in place and was el-
igible for reuse or salvage.

Once we established an initial rack-by-rack layout,

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 125

mapping research groups to racks, we worked out which
systems would go into which rack and ultimately came
up with a rack-unit (RU) by rack-unit layout. While we
could not move any systems until May and knew that
plans could change in an instant, this gave us a start on
planning in-rack power and network wiring and allowed
us to organize systems in a more sensible fashion com-
pared to the previous “which rack has room?” method.

After running through a few different ways of sorting
systems into racks, we eventually identified 3 classes of
systems that aligned naturally with their owners and pur-
poses that also lent itself to a means to organize the racks
and to answer the inevitable question of ”where do I put
this system?”

Experimental research systems
Our faculty’s systems
Sat on “Research” network
Novel Hardware is the point
Often had two of each kind

“Production”ish research systems
Our faculty’s systems
Sat on “Research” network
Stable research platforms/services
Clusters, OS dev, storage

“EECS” systems
(mostly) Other faculty’s systems
Sat on “Department” Network
Group web servers, SW

Our eventual rack layout would later reflect these
alignments and would let us make use of some limited
“luxury” hardware resources more effectively. For in-
stance, while we did not have the resources on hand
to put a UPS in every rack, we did have a new-in-box
UPS that had been bought but was never used for a now-
decommissioned system – we installed that UPS into the
Production rack to provide battery backup to a 24TB
storage system and to some management systems. Sim-
ilarly, other racks got “intelligent” power strips with re-
mote outlet control and per-outlet power metering that,
while not so useful for research quality results, let us
keep tabs on spikes in power consumption as researchers
ran experiments. Meanwhile, racks housing systems that
we expected would see frequent hardware reconfigura-
tion got an in-rack KVM so we could avoid having to
un-rack systems just to get a console on them. Most of
this hardware (cabinets, power-strips, UPSs, KVMs) was
re-purposed from prior projects.
As the end of April approached, we beganmore defini-

tive preparations. One admittedly sneakier one was to
make daily sweeps of systems in 530 to check for run-
ning user processes and when the last non-staff login oc-
cured. If no user processes were running and the last

non-staff login was more than a few weeks prior, we pre-
emptively shut the system down. We shutdown 15 sys-
tems this way and only had to turn one back on – the
remaining 14 remained powered down until we moved
them at our relative leisure in May.

Some of the more obvious space preparations included
basic cleanup of the space – we lost track of the number
of cardboard boxes we had found squirreled away in ev-
ery possible corner, nook, and cranny – collection and re-
moval of abandoned or deprecated systems that had been
left behind in racks but never tagged as excess, and tag-
ging of equipment for storage and later repurposing. In
preparation for the inevitable exodus of unused systems
from both 530 and 420A that nobody was quite prepared
to send to the campus “Excess and Salvage” unit, the Fa-
cilities Director had begun his own cleanup of a large
basement storage room for our use during the move.

By mid-April, we had a good handle on the work
needed to ready 420A – outside of a fair amount of
hands-on physical labor, we saw no major facilities ob-
stacles to having space ready for move-in during May,
leaving only networking left as a major concern.

Network Planning

We had three areas of concerns regarding the network
changes needed to support this move: the changes
needed, who would do the work, and, as usual, the time
available. As with planning for other parts of this move,
we chose to stick with minimal changes instead of an
overly ambitious redesign.

The systems moving out of 530 were spread across
two distinct networks, a ”Department” network, man-
aged and funded centrally by the department, that pro-
vided general commodity network connectivity through-
out the department and a “Research” network, funded by
research grants and donations and managed by research
systems support staff until early 2011, which evolved out
of a wider network deployed for a campus-wide clustered
computing project to serve the needs of specialized com-
puter systems research in the Department. The vast ma-
jority of systems belonging to our faculty sat on the Re-
search Network while the dozen or so systems that be-
longed to other faculty sat on the Department network.

This presented one small but immediate problem.
While 420A historically supported systems associated
with clustered and distributed computing research – the
projects involved in such research provided their own
network hardware to support the higher density network-
ing they required – the Department network had very lit-
tle presence in 420A at all, no more than a dozen ports
available via network drops pulled in from a nearby net-
work closet that were meant for one-off systems, not
for higher density installations. Department network-

5

126 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

ing staff did not have any spare equipment to install a
managed switch to support denser installation in 420A of
systems on the Department network, but fortunately re-
search networking had enough spare equipment to loan
out a switch which someone would setup as a man-
aged switch attached to the Department network. The
last detail about it being used as a managed switch
would change, but this plan would remain otherwise un-
changed.

A larger question was what direction to take the Re-
search Network’s presence in 420A. The Research Net-
work’s presence in 420A, once extensive to support large
clustered computing projects, had itself dwindled in size
as systems’ power and cooling density rose far faster
than their space and networking density5 and by this time
had evolved into a few network stubs supporting smaller
projects.

One such stub, a group of 4 daisy-chained switches at-
tached to the Research Network via a lone 10Gb/s link
over long-range fiber, was on the right VLANs which
opened up the possibility of just daisy-chaining even
more switches. We had previously discussed plans to
stem the growth of the Daisy Chain of Doom (DCOD)
but lacking sufficient spare long-range optical modules
for a second long-range fiber run, extending the DCOD
was straightforward, predictable, and cheap since we did
have plenty of switches and short-range optical modules.
We understood the downsides of relying on what would
turn out to be a daisy-chain of 7 switches, but felt that it
would be acceptable for the short-term (6-9 months) un-
til we could spend enough time planning more extensive
changes.

Regardless of any physical topology changes, we
quickly realized that there would be a significant number
of changes to port VLAN assignments to support systems
with private interfaces on a separate VLAN. This led to
the biggest question – who was going to do the work of
reconfiguring the switches?

Prior to 2011, research systems support staff shared
management access and duties with a lead “Network
Guy” who himself had worked in our team as a split net-
work and systems administrator before transitioning in
2009 to a full-time network mangement position support-
ing both the Department and Research Networks. Upon
his departure, he handed over the Research network to
the remaining network administrator at the direction of
the department IT Director who wanted to see both net-
works managed in a more unified manner.
We were wary of this change, specifically losing ac-

cess to manage the research network, but, in a good faith
attempt to support the IT Director’s direction in network
management, we went along with his request that we
send all of our network change requests to the depart-
ment network staff which consisted of the remaining net-

work administrator and the soon-to-retire infrastructure
services manager. While we expected some communica-
tion and culture differences, we did not anticipate at this
point the delays that would come with this and nearly
derail the migration.

In late April, we met with the remaining network ad-
ministrator to go over high level plans and examples of
the changes we wanted so that everyone was on the same
page. We held one more meeting to go into further detail
and left with everyone understanding what we needed
and when we needed it. At this point, every major task
was identified and assigned to one or more persons.

Progress

Once May started, we gained access to the department
electrician, work-study student labor, and, much to our
delight, a large storage room courtesy of the Facilities
Director for anything and everything we wanted to re-
move from 420A or 530 but were not quite ready to junk.
Also joining us on 2 May was our new systems adminis-
trator who showed up for work right as we began the bulk
of the work. We all met on 1 May for an initial meeting
to confirm that we were all on the same page, and from
that point, work progressed quickly.
Our first order of business was a detailed electrical sur-

vey of 420A so we actually had some idea of what cir-
cuits were actually live. At the same time, we were tag-
ging equipment either to go to Excess and Salvage or to
storage for the work-study crew to remove from 420A
which they did as fast as we could tag it. Within a week,
the electrician had mapped out all circuits in 420A, made
all of the initial electrical changes that we had requested,
and disconnected all hardwired powerstrips that had been
attached to the legacy relay racks. We would later ask for
a few changes which were quickly handled. Once this
work was completed, the work-study crew set to work re-
moving relay racks so we could bring in cage racks from
storage that we had setup in a staging area with in-rack
power distribution and cable management.

In the second week of May, we had begun to bring in
networking to individual racks. While we waited for the
network administrator to configure switches to add to the
DCOD attached to the Research Network, we worked on
bringing in more access to the Department Network by
installing a spare L2/L3/L4 switch in the rack we had
setup for the two groups whose systems all sat on the
Department Network.
As we had anticipated, setting up a optical fiber link

back to the Department Network did not work out – we
only had 10 gigabit optical modules for our equipment
and the Department network staff did not have spare 10
gigabit optical modules to support a fiber link to our
switch, only 1 gigabit modules. Instead, we located a

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 127

free copper network jack in 420A, connected the switch
to that, and proceeded to setup a pricey6 L2/L3/L4 switch
as the functional equivalent of a simple 48-port L2-only
desktop switch. Though arguably a waste of an expen-
sive piece of network hardware, this temporary loan al-
lowed the department networking staff the flexibility to
later provision a switch from their current vendor, get the
proper optical modules, and configure it more fully to al-
low them to bring in multiple VLANs as needed.

At the end of the second week of May, we were ready
to let the two groups move their systems into 420A. We
wrote up instructions on how to get their systems up and
running in 420A and distributed this the next Monday –
they would be the first people to migrate out of 530. We
would not be able to move our faculty’s systems out of
530 until the third week of May due to delays in getting
our network changes handled.

Network Lag

In the second week of May, we experienced slower
progress with our network requests than we had ex-
pected. Though we estimated the actual work would only
take an hour or two, we anticipated some delay due to
forseeable factors on the part of the network adminis-
trator such as lack of familiarity with the Research Net-
work, a strong desire to get everything setup exactly right
for us, and an already busy work schedule. However, it
became increasingly clear that the delay would be well
beyond what we anticipated or could handle given the
short timeframe.
Our first experienced a short delay when the network

administrator pushed back a day on handling our network
changes; though unexpected, we attributed it to a heavy
workload due to taking on all day-to-day support for the
Department Network after Network Guy’s departure and
felt that we could absorb this delay as we still had some
facilities work left to finish.

Though the network administrator had worked with
and trained on equipment from the vendor used by the
Research Network, that experience had gone unused for
a number of years due to the department’s use of a dif-
ferent vendor. To help overcome this, one of our team
wrote the switch configurations for the network admin-
istrator to load onto the switches, saving the network ad-
ministrator time and transferring responsibility to us if
something went wrong.
The final and unmistakable sign came near the end of

the second week of May when we received notice that the
reconfiguration of our switches, essentially loading the
switch configurationswe had written ourselves, had been
reassigned to another member of staff who also had little
to no recent experience with the network environment. It
was at this point that we realized that something much

more fundamental was going on here than just lack of
time on the part of the network administrator. At this
point, we only had a week left with all team members
present to complete the work – any further delays would
irreparably derail the migration.

A hour-long meeting with the IT Director revealed that
he had been unaware of our previous access to manage
the Research Network and of our relevant expertise and
that he had also partly based his decisions on inaccurate
information about relevancy and recency of other staff
members’ experience. We appreciated his desire to see
both the Department and Research networks managed
as a more unified single entity and understood his con-
cerns that restoring our access to manage the Research
Network could lead to further divergence, but we could
no longer tolerate holding up the schedule to accomo-
date this nor wait for staff who weren’t familiar with the
systems involved. We reminded him of the lesson from
from Brook’s “The Mythical Man-Month”[1], namely
that adding more staff to a project running behind sched-
ule [or, as we added, running very close to it], particular
staff unfamiliar with the project, will cause it to fall fur-
ther behind schedule.

By the end of the meeting, we had, albeit with caveats
about keeping the department network administrator in-
formed, regained administrative access to the Research
Network hardware and, with passwords literally in hand,
we walked back up to 420A and started reconfiguring
switches. That evening, we were up and running and
ready to start moving our faculty’s systems into 420A
that night – on-schedule completion once again appeared
within reach. In the weeks and months after the migra-
tion, we would return to the question of why it took so
long to achieve our network goals, regardless of how we
achieved them.

Back to Work

With our network problems resolved, we returned to the
exodus from 530. With a few days of work time lost
to dealing with the network management problems, we
had to toss out a fair bit of our move schedule and start
doing a lot more ad-hoc scheduling. Luckily, when we
first started working out downtime schedules with users,
instead of just setting specific dates, we also asked for
“OK” windows, akin to space launch windows, during
which it would be acceptable, though maybe not optimal,
to shut a system down with short notice. This allowed us
to aggressively pursue a more dynamic schedule where
we check systems for user processes, quickly check-in
with users about short downtimes that morning or after-
noon, and, barring any objections, move systems in as
large a batch as we could manage with downtimes hov-
ering around an hour for each system. At times, users

7

128 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

would even proactively inform us that they were done
with a system and could bear to be without use for some
period of time, thus saving us the work of regular polling.

By the middle of the third week, we were back on track
and even a little ahead of schedule as systems were being
ferried down from 530 to 420A 3-4 times a day. By us-
ing a few spare and borrowed rack cabinets in 420A, we
were able to more easily stage the migration of systems
out of 530. The alternative of moving whole racks at a
time (versus opportunistic migration of systems) would
have been more challenging and would have allowed less
opportunity for the reorganization of systems in 420A.

At the same time, we had managed to carve out time
for one team member and the electrician to make a field
trip down to Downtown Berkeley to confirm details of
power and transport of the new faculty member’s sys-
tems from IRB to EECS. By the end of the third week,
we were down to just a few systems and lots of supplies
and equipment left in 530 that were migrated to 420A or
sent to storage. That weekend, one team member went
out of town to handle site prep for an off-site research re-
treat followed by long-scheduled vacation and would not
return to campus until two weeks later. While the IRB
systems arrived on 25 May, we consider the day of com-
pletion for the migration to be 24 May which coincided
with the first day of work for a newly hired computing
Infrastructure Services Manager.

Lessons Learned

We learned a lot from this adventure. The one thing
agreed upon by everyone involved as well as by sev-
eral outside observers is a general sentiment of ”Never.
Again. Ever.” This was probably near the limit of what
could be accomplished with the resources we had avail-
able – and we came very close to failing. While we had
options available for every problem we ran into, in some
cases, some of those options had worse long-term con-
sequences than failure. We got by on our own resource-
fulness, persistence, and sheer luck to make up for a lack
of room within which to fail. We hope that, by showing
what happens when one runs a migration with the bare
minimum time and staffing, others may take heed and
step back from the proverbial cliff’s edge that we danced
upon for a period of a month.

A key overall lesson we kept coming back to was
”Plans are just that – plans.” The more time one has, the
more one can try to bend reality to a plan – the less time
one has, the more one must bend plans to fit reality. We
lost track of the number of times some trivial problem
arose that did not fit into our plan – like a supposedly
42RU high rack turning out to be 41.75RU high – in-
stead of losing sleep over it, we found ways to adapt, like
we did with the shorter-than-advertised rack by moving

a server to another rack despite it not completely lining
up with how we organized systems into racks. By look-
ing at our plans more as initial guidelines or a starting
point, we gave ourselves the freedom to deal with small
unforseen problems without getting hung up about them
and to look at larger problems not as problems but as
course corrections.

The only truly disruptive problem was the delay in
getting network changes made. While the problems we
faced are getting a more formal review now that the new
Infrastructure Services Manager is settled into his job, it
is clear we had problems with communication, aware-
ness of staff skillsets, and what could best be described
as differences in culture. Others in the department have
cited lack of project management, formal or otherwise,
as a skill not explicitly present in our team – though our
Facilities Director served as de facto project manager to
keep track of progress and did communicate our prob-
lems to the IT Director, we found that the IT director did
not understand the full situation until we had our own sit-
down meeting with him. More explicit project manage-
ment would likely have caught and handled these prob-
lems earlier. For our part, it is fair to say we could have
been more direct and explicit about when we needed this
work done and could have proactively listed restoration
of our administrative access to the Research Network
hardware as an alternative if a deadline were missed.

The question of “What would you have done if you
had not received access?” has come up. We find it hard
to believe that the IT Director would have said, “No.” af-
ter being presented with the facts, but from a technical
standpoint, it would have been easy – with physical ac-
cess to the hardware, we could have the needed access
via brute force methods.[3] This would have required
disruptive power-cycling of each switch, but we could
then do what was needed. From a management stand-
point, it would have been contentious at best. At the very
least, we would have informed our faculty and the Fa-
cilities Director of the problem and what we planned to
do. It likely would also have perpetuated an image of us,
whether rightly so or not, as “wild cannons” with little
respect for authority and process who were difficult to
work with and ultimately would have contributed to an-
tagonistic relationships with our colleagues and our man-
agement. This was not something any of us would have
considered casually.

Though not disruptive to the migration, still unfortu-
nate were the moderate injuries suffered by staff. One
team member, while working alone after hours with the
raised floor, bashed his knee on two occasions, result-
ing in a bruised kneecap that took two months to heal
completely. Had he suffered more serious injury, it was
possible no one would have noticed until the next morn-
ing. His time working late would have been better spent

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 129

planning and preparing for the next day’s work or even
sleeping. Another staff member from Shipping and Re-
ceiving broke two fingers while moving into a elevator
a cage rack that was still loaded onto a pallet. Though
trained in use of pallet loaders, he was unaware that racks
shipped on pallets often come with ramps to aid in un-
load the rack to avoid having to move the entire package
like that – while most systems administrators in the de-
partment have had to deal with this and were aware of
this feature, we wonder how widespread this knowledge
is among facilities staff outside of those who work exten-
sively in datacenters.

While attributable to the rapid pace and aggressive
schedule of the migration, these injuries were avoid-
able indicating that at times some team members pushed
themselves too hard or that they should have taken a
more active role in physical tasks delegated to other staff
to share our knowledge regarding better methods.
Our team took to heart the first lesson from “The

Mythical Man-Month” about bringing on new team
members to quick-paced or behind-schedule projects.
All members had known each for at least a few years,
had worked together on other projects, and were familiar
with each other’s habits as well as with the institutional
knowledge of how things worked in the department. We
did not bring our new systems administrator onto the mi-
gration project until after the majority of the facilities
work had been finished and we could give him tasks that
could be done jointly with someone else. We consider
the case of assigning network configuration tasks to staff
unfamiliar with the environment to be an example of the
“Mythical Man-Month” fallacy that Brooks describes.
Similarly, we confirmed what might be considered an

obvious notion – that fast-paced schedules are no place
for in-depth staff training. When the schedule is fast, and
the room for slack is tight, this is no place to be bringing
in people new to the environment. The training overhead
of new staff is unaffordably high in addition to the ex-
tra communication overhead of adding an extra person,
experienced or not. As with our new guy, we instead
followed another lesson from Brooks – give more rou-
tine tasks to new staff to allow more experienced staff to
tackle the more difficult problems.

One thing that surprised us but really should have been
obvious was the lack of convergence on any asychronous
collabarative systems. Use of e-mail lists were sporadic
at best, and only technical staff made any use of wikis
or other web-based systems. As noted, for overall team
synchronization, the only consistently successful method
was a periodic standup meeting. Even among technical
staff, paper notes left on racks often served better for
passing short must-read notices about a rack or a sys-
tem while things were in flux while the use of a wiki ap-
peared more well suited to noting the steady state once

a system or rack had been successful moved into place
and deemed stable. This is extension of our previous les-
son – once a project starts, training project members on
new systems is inadvisable at best unless the benefit is
so large compared to the training overhead that failure to
adopt the new system could result in project failure.

The lessons we learned could best be summed up as
”More time, better communication, and slow down.” The
ambitious plan to completely clean up the target room
(420A) was cut short due to lack of time. While the result
was a vast improvement, the time required to perform the
cleanup was underestimated. In addition, it was unclear
at the outset what parts (shelves, bolts, power strips, ca-
bles, etc.) might be needed for the final configuration.
An earlier start on the clean-up would have helped; at
least more of the parts could have been sorted in advance
for subsequent disposition.

Future Work

While we were able to accomplish our basic goals of
moving all systems from 530 to 420A in the time avail-
able, we still have a great deal of work left to bring 420A
and other similar facilities in the department up to more
contemporary standards. Some of this work is tractable
in the near-term while other work will remain the focus
of longer-term efforts involving questions of funding and
staffing.

Our short-term work will focus on continual efforts at
clean-up in all facilities. The one constant we have found
about any datacenter facility, especially in an academic
research environment, is the tendency for old equipment
to accumulate and linger around so long that people for-
get what a piece of equipment is for and, as a result, be-
come afraid to get rid of it. The one constant we have
found about buildings with both raised floors and drop
ceilings is the tendency for those areas to become abso-
lutely filthy, especially raised floor plenums which cause
systems to take in large amounts of dust and “biologi-
cal debris”. Both situations require both immediate and
ongoing attention to mitigation. We are currently evalu-
ating in the short-term a number of different options for
front-of-rack filters.

Mid-term work focuses on networking, in partic-
ular the hack that is the 7-switch-long DCOD cur-
rently feeding almost all of the research systems in
420A. Current options include a 16-port 10GbE distribu-
tion/aggregation switch or setup of a double-ended string
of switches. For now, the DCOD suffices, but the physi-
cal path of the fiber is tortuous at best due to the ad hoc
manner in which the original stub network in 420A grew
with fiber criss-crossing the room multiple times. Ad-
ditional switches will only complicate this further and
limit growth. Related to that is the replacement of the

9

130 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

switch currently deployed in a ’production’ role on the
Department Network. It should at the least be managed
as a fully configured switch instead of setup as a $6,000
dumb L2 desktop switch, but ideally would be a model
from the vendor currently used for the rest of the Depart-
ment Network so that it can be more easily managed by
department networking staff. Finally, we are very inter-
ested in finding ways to promote a more unified approach
to network management that avoids the maintenance of
two completely separate network domains.

Longer term work on the order of a year or more in-
clude several facilities upgrades. The first and foremost,
but likely to take the longest is the replacement of the
in-room CRACs which are nearly 20 years old and no
longer supported by their manufacturer. Current mea-
surements indicate that we are already using approxi-
mately 80% of our AC capacity while we still suffer a
compressor failure about every 2-3 months in 420A. Re-
placement requres negotiation with our campus Physical
Plant and could take a year if not more, but is neccessary
to support future growth.

Other work we would like to pursue all relate to power
distribution. The variety in types of circuits installed
complicated work – standardizing on a single type of
circuit, say 208VAC at 30A, would greatly ease man-
agement of the underfloor power distribution system and
would make it easier to standardize on a single type or
vendor of in-rack power distribution units (PDU). It is
already hard enough to find PDUs with certain features –
per outlet power monitoring, metering, and control, rea-
sonably secure remote access, and a usable API for de-
veloping our own applications – that trying to account
for even a handful of circuit types makes this impossi-
ble given current vendor offerings and impede efforts to
gain better insight into power usage. We could pursue
this work on a piecemeal basis, but we wonder if that
would result in less standardization. Potentially the most
extensive work we would like to pursue is transition to an
overhead power distribution system. Though obviously
costly, this would yield huge benefits in restoring orderly
airflow to the underfloor air circulation space, easing of
time costs of dealing with numerous circuits types and
simplifying power usage surveys and audits.

On the non-technical side, we look forward to ad-
dressing clear deficits in key areas such as datacenter,
network, and project management, communication and
culture barriers between research and production opera-
tions, and management awareness of staff expertise along
with staff awareness of management plans. We expect
that this work will be ongoing for the rest of our profes-
sional careers – not because we think that we will always
have these deficits but because the only way to avoid de-
veloping these sorts of deficits is by continually working
to ensure that they do not develop.

Conclusions

We pulled it off, but just barely. We needed every single
last day available in order to complete the work necces-
sary and could have used an extra day or two for breath-
ing room. We got by on large measures of determination
and dedication, resourcefulness, and sheer dumb luck.
We look at this work as an accomplishment worth being
proud of but also as an example illustrating all the things
that one should have – many of which we did not – in
order to embark on a similar datacenter migration adven-
ture with a more reasonable chance of success and better
options in case of something less than 100% success.

Acknowledgments

We would like to thank all the EECS staff who provided
invaluable help without which this migration would not
have happened, the faculty and researchers for their un-
derstanding of the pressures bearing down upon us and,
of course, for all the caffeine that they made sure we had
in ample supply.

References
[1] BROOKS, F. The Mythical Man-Month. Addison-Wesley, Read-

ing, Massachusetts, 1975.

[2] CHA, L., MOTTA, C., , S., B., AND AGARWAL, M. What to do
when the lease expires: A moving experience. In Proceedings of
LISA 1998 (1998).

[3] CISCO. Password recovery procedures. http://www.cisco.

com/en/US/products/sw/iosswrel/ps1831/products_

tech_no%te09186a00801746e6.shtml, Jan 2007.

[4] CUMBERLAND, D., HERBAN, R., IRVINE, R., SHUEY, M., AND
LUISIER, M. Rapid parallel systems deployment: Techniques for
overnight clustering. In Proceedings of LISA 2008 (2008).

Notes
1Rough estimates for network closet relocation ran in $500K range.
21 ton of cooling is 12,000 BTU/hr or 3,517 W. The refrigeration

and air conditioning fields use this unit to denote the heat required to
melt 1 short ton, 2000 lbs, of ice at 0 ◦C in one day, representing the
cooling provided by daily delivery of 1 ton of ice.

31 kVA is 1 kilovolt-ampere and is used to measure “Apparent
Power”, the product of root-mean-square voltage and current. “Real
Power”, measured in watts (W), refers to the power actually usable by
devices.

4This “system” amounts to a grid of overhead Panduit-style fiber
trays that meets up with an in-room fiber termination box fed by a
nearby network closet.

5This trend would peak in the mid-2000s with the installation of a
128-node Itanium2 cluster.

6The switch was part of a large donation, so we do not know how
much it cost the vendor to give it to us, but the current street price with
optics is around $6000.

10

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 131

Bringing Up Cielo: Experiences with a Cray XE6 System

or, Getting Started with Your New 140k Processor System

Cory Lueninghoener
cluening@lanl.gov

Daryl Grunau
dwg@lanl.gov

Timothy Harrington
toh@lanl.gov

Kathleen Kelly
kak@lanl.gov

Quellyn Snead
quellyn@lanl.gov

September 11, 2011

Abstract

High Performance Computing systems are complex to stand up and integrate into a wider
environment, involving large amounts of hardware and software work to be completed in a fixed
timeframe. It is easy for unforeseen challenges to arise during the process, especially with respect
to the integration work: sites have dramatically different environments, making it impossible for
a vendor to deliver a product that exactly fits everybody’s needs. In this paper we will look at
the standup of Cielo, a 96-rack Cray XE6 system located at Los Alamos National Laboratory.
We will examine many of the challenges we experienced while installing and integrating the
system, as well as the solutions we found and lessons we learned from the process.

Tags: HPC, configuration management, system integration

1 Introduction

High Performance Computing (HPC) systems are complex to stand up. They generally involve
the delivery of a large amount of hardware at one time that must be installed, configured, and
integrated in a fixed period of time in preparation to be run in relative steady state for five to
ten years. While physical installation is usually a job for the hardware vendor, configuration
and integration normally fall on the shoulders of a team of integrators and system administrators
that will be charged with managing the system after it is put in production. Configuration and
integration include such complex tasks as configuration management (CM) system design and
implementation, parallel filesystem and network integration, and accounts system and user services
integration. Standing up a new HPC resources can be similar to bringing up an entire new data
center from scratch, with all of the same difficulties and pitfalls.

In this paper we will look at the installation and integration of Cielo, a 96-rack Cray XE6
compute resource sponsored by the Alliance for Computing at Extreme Scale (ACES) project and
located at Los Alamos National Laboratory (LANL) and Sandia National Laboratory (Sandia).
The complete Cielo family consists of four machines: Smog and Muzia, two 1/3-rack test systems;
Cielito, a 1-rack development system; and Cielo, a 96-rack production system. Muzia is located
at Sandia, while Smog, Cielito, and Cielo are located at LANL. In this paper we will focus on
Cielo, but all four systems run the same software stack and have similar configurations, and our
experiences with Cielo align with our experiences on the smaller systems.

1

132 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

2 System Overview

Cielo is a 96-rack, 142,304-core Cray XE6 system operated by the HPC Division at LANL. Delivery
of the system began with the arrivals of Smog and Muzia at their respective laboratories in May
of 2010, followed by delivery of Cielito in June of 2010 and 72 racks of Cielo in August of 2010.
The final hardware delivery occurred in April of 2011, when Cielo was expanded to its full size of
96 racks. In this final configuration, Cielo consists of 8518 16-core compute nodes with 32GB of
memory each; 376 16-core visualization compute nodes with 64GB of memory each; 286 IO nodes;
16 internal login nodes; and a handful of infrastructure nodes. Cielo debuted on the Top 500 List
of Supercomputer Sites at position six in July of 2011.

The Cray XE6 is a massively parallel processing system that consists of compute and service
blades connected by a high-speed torus network. The basic building block of the system is a chassis
that holds eight compute or service blades. Each of these blades contains four diskless nodes that
are designated as either compute nodes, where actual jobs run, or service nodes, which provide
management, data virtualization service (DVS), or other services to the machine. Three chassis
can be placed in a rack, and many racks can be combined in rows to create large systems. All of
the nodes are connected by Cray’s Gemini network, providing a three-dimensional torus high-speed
network for user job communication, node management, and filesystem access.

All compute nodes are headless, diskless machines with no external network connections, but
service nodes have one or two on-board PCI slots for expansion. These slots are most commonly
used to provide outside network connections for login nodes or file server nodes. Two of the service
nodes are designated as special: the boot node and the service database (sdb) node. These two
nodes have external connections to a RAID device, the bootraid, and are used to provide persistent
services to the rest of the nodes such as logging, root filesystems, and administrator management
capabilities. One main task of the boot node is to serve the sharedroot from the bootraid to the
other service nodes, who mount it as their root filesystem. In our case we also have a set of DVS
nodes that serve this filesystem out to the compute nodes, giving them an optional complete Linux
environment.

Outside of the main XE6 racks are two classes of standard rack-mounted machines: the system
management workstation (SMW) and external login nodes. The SMW is the main administration
server for the system, controlling low-level hardware access, system bootstrapping, and system
ramdisks. The external login nodes are larger memory, diskfull analogs to the standard login nodes
on the system blades that make user access more similar to standard clusters.

3 Challenges

Before pieces of Cielo even showed up at lab, the system administration team realized that we were
going to have challenges integrating a Cray system into our environment. We currently run on the
order of 20 HPC clusters, ranging from tiny (tens of nodes) up to huge (thousands of nodes), and
we have been very careful to put configuration management at the forefront when installing new
systems. All of our existing clusters are fully managed by Cfengine[1], with a collection of dedicated
or multi-cluster CM servers covering every system in every cluster. This has tremendously helped
our relatively small team keep all of the systems in sync and under control.

We quickly discovered that Cray has taken a “fully managed appliance” approach with the XE
system. Part of this is due to the way the system itself is designed: the compute infrastructure

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 133

is tightly coupled by its torus network, with the compute and service node blade hardware fully
managed by their control system. The compute nodes run a stripped down Linux-based operating
system that is shipped as a Cray-provided image, while the service nodes run a Cray-branded
release of SuSE’s SLES 11 Linux distribution. Were we running Cielo as a stand-alone system,
these features would all be fantastic: we could dedicate people to the system to keep it patched and
running via Cray’s methods, and that would be that. In fact, this appears to be a common way for
sites to run large Cray systems: Cray will assign one or more software and hardware engineers to a
site to handle much of the day-to-day management of the system, leaving the system administration
team with more of a black box system to take care of.

Due to the existing usage models on our other systems, it was decided that we had a strong
business case to not take the fully managed appliance route with Cielo. This way we could provide
users with the most consistent environment across all of our systems while keeping our system
administration team as flexible as possible. Instead, we needed to have our administrators integrate
the system into our family of compute resources as tightly as we could. In our case, this was
definitely the right decision: we’ve spent years keeping a wide variety of systems consistent to
minimize the learning curve of existing users on new systems, and it has worked very well. However,
it did present a series of challenges to the system integrators and administrators bringing up the
systems. The challenges related to bringing up Cielo can be categorized into two broad areas:
vendor relations and software.

3.1 Vendor Relations Challenges

The integration team that brought up Cielo was very fortunate to have a strong working relationship
with Cray. The Cielo contract included provisions for Cray hardware, software, and application
engineers to be located on-site at LANL, and through the bringup process we had access to many
extra resources at Cray as we needed them. However, instead of just using the engineers as managers
of the appliance, we worked with them to fully integrate the system with our already existing
infrastructure. This being the first Cray system located at LANL in many years, there were some
challenges on both sides as we worked out how we could work together most effectively.

Since we were looking to closely integrate Cielo into our environment, we ended up digging
deeper into the inner workings of the machine than some of our Cray engineers were used to. In the
process, we found that there was a lot of in-house knowledge at Cray that, although easy to get,
was not always obvious to ask about. There were several times that we learned that a standard
assumption about the management of the machine was incorrect, including such details as the best
way to reboot nodes, the most effective way to correlate logs between the compute and service
nodes, and how to update software. One of our running gags became the hypothetical response
“Oh, you still do it that way?” to any question we asked of Cray.

On the bright side, we also had good challenges in this area: Cray provided written step-by-step
procedures for almost everything we needed to do to the system. In many ways we weren’t ready for
this, especially when compared to the many commodity clusters we have in our environment. The
biggest challenge here was figuring out how to make the best use of the documentation, whether it
be importing the actions into Cfengine scripts, importing the documentation into our own library,
or explicitly deciding to follow our own path. Cray was also very receptive to our suggestions for
improvement. The challenges listed in the next few sections are often clearly related to our desire
to do something our way instead of Cray’s. However, they were ready to hear our suggestions and
pass them on to their developers in most cases. There were several instance throughout Cielo’s

3

134 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

bringup where specific nuances we found difficult were changed in later software updates.

3.2 Software Challenges

Over the course of the year that we have been working with Cielo, the majority of the challenges
we have faced have come on the software front. As mentioned before, it is very common for Cray to
assign a group of software engineers to a site with one of their large systems. We believe this practice
has lead to many of our difficulties - Cray wasn’t ready for us to be downloading and working with
many of their software products, and we didn’t have the experience needed to understand some of
their distribution, packaging, and installation decisions.

3.2.1 Software Releases

There are three styles of software updates that we have worked with from Cray: cumulative service
pack-style updates containing all previous updates for a particular product; individual patches and
field notices that will eventually be rolled up in a cumulative update; and sliding window updates
that contain older versions of the related software for compatibility as well as the latest update.
Cumulative updates are generally released quarterly and contain new functionality, bug fixes, and
other substantial updates. Individual patches and field notices are released as needed between the
quarterly updates and generally fix bugs or security issues. Sliding window updates are used for
the Cray programming environment and includes the both the latest and the last n releases of
their supported compilers and libraries, where n is determined by Cray’s release engineers based on
provided functionality and customer usage. Each style of update is packaged differently, but each
generally consist of a monolithic installer script, one or more directories full of RPMs, and fairly
detailed instructions on how to install the update.

These individual release styles are further fragmented by individual update idiosyncrasies. Some
updates are available publicly to all registered Cray users, while some are only available to Cray
engineers. Most are applied by use of an included monolithic install script, but some are applied
in a more manual process by following instructions in an install document. Some are applied in
a way that will be preserved with future updates, while others are applied in a less stable way.
Finally, versioning can be confusing: many packages include an SVN repository version number in
their version string that refers to the repository revision from which it was generated. If branching
happens in an unusual way, this can (and does) lead to newer software having a lower “version
number” than already-existing software. All of these details are easily absorbed when the system
is looked at as a standalone appliance, but in a more integrated environment that is used to a high
level of update automation, they present a challenging hurdle.

3.2.2 Software Practices

Along with acclimating to Cray’s software release methods described above, we ran into challenges
with the software they contained. One of the biggest difficulties involved abuses of the RPM pack-
age management system. Most of the original software installs and subsequent updates provided
by Cray comes in the form of RPM packages and monolithic install scripts that examine the hard-
ware and software currently in use on the system and install required software as needed. This
involves installing most packages with --nodeps and --force options that override RPM’s built-in
dependency and safety checks. Again, these options fit the appliance model very well: the supplied

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 135

software is vetted by Cray in a specific format, and they want to replicate that format closely in the
field. However, they make verification and integration into an already-existing CM system difficult.

Similarly, Cray’s distributed RPMs often make use of postinstall scripts to take care of large
portions of the install. This use ranges from fairly benign (creating links if some other packages
are already installed) to difficult to manage (RPM only contains a .tar.gz file that is unpacked by
a postinstall script). These “write-only” RPMs also fit into the appliance model, but have many
problems in a wider-ranging environment: they are difficult to verify, they can seem to behave non-
deterministically depending on install order, and they tend to require more hand holding than more
well-behaved packages. We found these packages especially difficult to place under CM control, as
discussed in the next section.

Finally, we ran into several inconsistencies with respect to how software versions were managed.
The modules[2] package and /etc/alternatives system[3] are two existing packages created to
ease the selection of and switch between multiple versions of equivalent software installed on a
system. The Cray software stack uses both of these packages to manage its software versions, even
using both on the same package in some cases. In most cases they also use a third method involving
“default links”: symbolic links in each package’s install path that point to the install root of the
version that should be treated as default. These different methods are used to varying degrees by
different pieces of the overall system - the modules are mostly used for normal users of the system
to choose compilers, libraries, and related packages; while the alternatives and default links are
mostly used by system-level processes. However, there is overlap between the usage of each.

3.2.3 Configuration Management

We discovered many of the challenges listed above while working to put Cielo under complete con-
figuration management control. LANL’s HPC division has traditionally used Cfengine to manage
its systems, relying on it to create a uniform management environment across all of its clusters.
Early on we recognized that this would be more difficult on Cielo than on traditional clusters,
but we knew that it was the best way to integrate the new machine into our group’s management
rotation.

The software practices mentioned in the previous section all made configuration management
challenging: creative uses of RPM, inconsistent versioning, and multiple management methods all
add layers of complexity to the CM problem. However, the biggest challenge of all was Cray’s use
of monolithic install scripts. While very handy when installing software and updates interactively,
these scripts made it difficult to automate configuration of the machine. Some of these scripts
were easy to analyze and either import into Cfengine or call directly during the install process.
Others were much more problematic: one explicitly checked to make sure it was connected to a
TTY and exited with an error if it wasn’t, while another stopped in the middle and presented a set
of commands for the administrator to run in a second window before telling the script waiting in
the first to continue. In another case, the script didn’t even trust itself - after running, it instructs
the administrator to check its work and confirm it had written out various files correctly. It turns
out this was a needed step each time we ran it.

5

136 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

4 Responses

The above sections may sound like a large doom-and-gloom scenario, but in the end we were able
to integrate Cielo into our environment in a way that is relatively easy for our administrators to
pick up quickly. While we could have run the machine as a appliance-like system and not needed
to deal with most of the challenges we discussed, we concluded that closer integration with our
existing systems would help our small system administration team take on the system quickly after
integration was complete. That made each of the challenges into actual problems and pushed us
to find solutions for them.

4.1 Working Together

One of the most important things we did was keep a strong working relationship with Cray, our
vendor. While it would be very easy for the clashes between our ideal system and their real-world
products to result in deep fighting and animosity between the two groups, we were all able to keep
a good relationship. Cray was eager to hear our concerns, fix problems, and submit idea cases
when appropriate, and we were open to understanding their reasoning behind the design choices
they made. We believe this is an important thing for both vendor and customer to keep in mind
during a machine standup - both sides need each other, and keeping a good relationship is very
beneficial in the long run.

Along with working closely with our vendor, we were careful to work closely across teams at
LANL and Sandia. On the systems side, the Cielo bringup was a collaboration between HPC-5
(the system integrators) and HPC-3 (the system administrators) at LANL and the Cray support
team at Sandia. Having these three teams work together gave us great power: we had the Cray
experience from Sandia, the new system integration experience from HPC-5, and the long-term
production system experience from HPC-3. While the nature of our environment made in-person
collaboration the most useful form, we also made use of standard conference calls and email lists to
keep each other in sync. The HPC-5/HPC-3 collaboration was especially important, as it made the
transition from integration to production smooth and much less painless than a “throw it over the
fence” model would have provided. Being able to work closely between all of the groups without
chain of command overhead made it easy for us to make quick progress with the project.

4.2 Configuration Management

Another very important decision we made was to use a CM tool from the beginning. Although
this could be seen as the source of several of our challenges, we would have had a much larger
set of more difficult challenges without it. With Cielo, we ended up using a layered approach to
managing the various parts of the system. Since the majority of the cluster is diskless, our final
CM scheme had a small number of nodes that actually ran the Cfengine client: the SMW, the boot
node, and the external login nodes. Everything else was managed by the sharedroot area (from the
boot node) or the ramdisk images (from the SMW). With this design, we effectively had only a
handful of Cfengine product areas to manage. This simplification made it easier to quickly grasp
the design of the system and push out changes to the large number of nodes in the system.

Of course, after putting our CM system in place we still had a number of management tasks
that required manual work. Most of these revolved around the monolithic install scripts mentioned
previously - some of these were impossible to automate, while others just weren’t worth the time.

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 137

For these we decided the best route was to document the exception and train new system adminis-
trators to recognize when they needed to do things by hand. In some cases, such as rebuilding the
compute image ramdisk, we were able to have Cfengine print out a message after a successful run
telling the administrator what more needed to be done by hand. In other cases we needed to rely
on the carefully-maintained documentation wiki that the LANL administrators already use. By
modeling the Cielo documentation off of existing documentation for other systems, we were able
to fit these manual processes in to the mindset already known by the system administration team.

By implementing a complete configuration management scheme from the beginning, we were
able to make several big changes to the system relatively quickly and painlessly. The first happened
when we swung Cielo from our open network to our classified network: this required rebuilding the
entire machine from scratch, which we were able to do in a matter of days using the configuration
management system and documentation we had created. Later, we were able to quickly rebuild the
system again when the upgrade from 72 to 96 racks required a large change in machine topology.
Immediately after that, we made a quick upgrade between two Cray service packs that had caused
problems at other sites with little trouble, mostly because we had a fully managed system and
could recognize which system components had changed in incompatible ways. In short, our early
effort has repaid itself several times over already.

4.3 Homegrown Tools

While bringing up Cielo, we found several system management deficiencies that weren’t quite met
by existing Cray management tools, but were too specialized to our environment to submit as a
cases to Cray. Instead we wrote our own tools to fill in the gaps.

4.3.1 xtautorpm

Most of Cielo’s compute and service nodes are diskless systems that use a ramdisk and an NFS-
mounted read-only root filesystem to provide their operating system environment. The NFS filesys-
tem provides system specialization of files through a layered approach, with the base filesystem
being overlaid by views of node-specific files. These systems are managed by an interactive Cray
tool named xtopview that handles package installation, file specialization, and other management
tasks by presenting the administrator with a chrooted environment corresponding to the specialized
view of each system or class of systems. This extra layer made our team’s standard management
methods difficult, as it is designed to be run interactively, only one person can run the xtopview
utility at a time, and the utility has no provision for using tools such as yum to install packages.

To alleviate these restrictions, we expanded one of our already-existing tools under the name
xtautorpm. This new tool automates acts as a layer between Cfengine and the rpm command, giving
Cfengine the abstraction needed to use xtopview directly. With this extra layer of abstraction, we
made the package installation procedure identical to that on our other clusters without losing the
support of the vendor supplied tools.

4.3.2 xtfixdefault

As mentioned earlier, Cray uses several software version management schemes on their systems. We
found it time consuming to manually manage both the modules environment (which we understood
well) and the “default links” system that Cray introduced. To prevent version skew, we wrote a

7

138 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

tool named xtfixdefault to keep the two systems synchronized. Since we were already familiar
with the modules system, we decided to use it as the base for our versioning. When Cfengine runs
xtfixdefault, the utility checks all of Cray’s default links and confirms that they are pointing to
the same software versions as the modules environment’s default version. When run interactively,
the tool can also be used to update the modulefile from the default link and report on which
modulefiles and default links are not the same. With this one utility we can both enforce our
will over the software versions with Cfengine and report changes performed by Cray’s monolithic
software installers. This utility has made software updates much less time consuming.

4.3.3 ethcfg

The file specialization provided by the xtopview command is generally used at a class level to
cover a large group of service nodes at once or at the individual node level to make one node stand
out from the others. Both of these cases are simple and straightforward to manage. However,
there is one specialization case that requires every node to have its own file: the static network
management files. Standard configuration management systems avoid the need for hundreds of
node-specific files by using templates, DHCP, or other similar solutions, but these did not fit the
Cray model well. Instead we wrote a simple-but-powerful init script dubbed ethtool that configures
the nodes’ network interfaces by reading a flat configuration file at boot time. This file contains the
network interface information for all of the service nodes in the system, meaning it can live in the
default overlay view and requires no specialization for each node. The number of nodes included
in the file is small enough that we found no performance problems with a flat file, giving us ease of
maintainability over a more complex system using something like SQLite.

5 Lessons

After bringing up Cielo, we were able to put together a few lessons we learned along the way.

Keep good relations with your vendors : It is all too easy for vendor relations to break down
when you don’t see eye to eye with them. Keeping a good relationship makes it much easier
to keep all sides progressing throughout the project.

Get test systems early : Although they were only mentioned briefly at the beginning of this
report, our three smaller systems (Smog, Muzia, and Cielito) were instrumental in getting us
experience with Cray’s way of doing things early. When building a new system, getting access
to representative hardware early in the process fills the knowledge pipeline much faster.

Use configuration management, even if it takes effort : The upfront cost of configuration
management is easier to see than the long-term gains, but those gains are real. Whether you
should work to fit a system into an existing CM scheme or not is a site-specific question, but
using some tool is the best choice in any complex case.

When standing up a system of a new design, plan for “Murphy Time” : Murphy’s Law
will assert itself as often as it can, especially with new systems. Be ready for that. Finishing
early is much more impressive than finishing late.

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 139

Work as a team : Today’s systems are too complex for one person to fully understand. There
are too may pieces: hardware, software, networking, filesystems, system management, and
the list goes on. Working as a team is important for sharing responsibilities and areas of
expertise with a new system and for keeping everybody interested in the project. Resist the
urge to designate “the guy that knows it all”, as he will inevitably win the lottery and leave
the group.

6 Conclusions

As we stated in the beginning, standing up a new HPC resource is a complex task. While integrating
Cielo, we ran into an expected breadth of challenges: managing the vendor/customer relationship,
working with integrating an appliance-like system into an already-existing environment, designing
a configuration management system around an imperfect software distribution design, and other
more minor challenges. In our case these were all framed within the desire to make the system
behave similarly to an already extensive set of HPC resources, a requirement from both the user
and administrator points of view.

We were able to respond to these challenges with a combination of technical and social solutions
involving, among more minor solutions, a close working relationship between our vendor and local
teams, using strong configuration management and careful documentation when appropriate, and
writing custom tools to fill in gaps as needed. The combination of solutions we found kept us flexible
enough to make good decisions each time while getting the work done in the needed timeframe.

In the end, we were able to put together a short list of lessons that we thought were important
from our experience. On the top of that list was the need to keep strong working relationships with
all of the groups involved. Closely following this was the need for configuration management from
the beginning. The list was rounded out with other lessons that are obvious in hindsight, but easy
to lose track of in the heat of getting work done.

The final result of the work described in this report is a very manageable system. Like all systems
of Cielo’s complexity, there will always be work to be done, but we have a strong foundation on
which to continue building and we are confident in the work we have done to integrate it into our
environment.

References

[1] Cfengine. http://www.cfengine.org/.

[2] Modules – Software Environment Management. http://modules.sourceforge.net/.

[3] S. Kemp. Using the Debian alternatives system. http://www.debian-administration.org/
articles/91.

9

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 141

	

	

Capacity Forecasting in a Backup Storage Environment

Mark Chamness
EMC

Mark.Chamness@emc.com

Abstract
Managing storage growth is painful [1]. When a
system exhausts available storage, it is not only an
operational inconvenience but also a budgeting
nightmare. Many system administrators already have
historical data for their systems and thus can predict
full capacity events in advance.

EMC has developed a capacity forecasting tool for
Data Domain systems which has been in production
since January 2011. This tool analyses historical data
from over 10,000 back-up systems daily, forecasts
the future date for full capacity, and sends proactive
notifications. This paper describes the architecture of
the tool, the predictive model it employs, and the
results of the implementation.

Tags: storage, predictive modeling, case study,
capacity planning, forecasting, machine learning.

1 Introduction

Data storage utilization is continually increasing,
causing the proliferation of storage systems in data
centers. Monitoring and managing these systems
requires increasing amounts of human resources and
therefore automated tools have become a necessity.

IT organizations often operate reactively, taking
action only when systems reach capacity, at which
point performance degradation or failure has already
occurred. Instead, what is needed is a proactive tool
that predicts the date of full capacity and provides
advance notification.

Predictive modeling has been applied to many fields:
forecasting traffic jams [2, 3], anticipating electrical
power consumption [4], and projecting the efficacy
of pharmaceutical drugs [5]. Within the IT field,
capacity management of server pools has been

studied [6]. Ironically, there seems to be little
previous work discussing applications of predictive
modeling to data storage environments.

During the past year a predictive model has been
employed internally at EMC to forecast system
capacity and generate alert notifications months
before systems reach full capacity. The ultimate
purpose of this tool is to provide customers with both
time and information to make better decisions
managing their storage environment.

2 Data Collection

Data Domain systems are backup servers that employ
inline deduplication technology on disk. All Data
Domain back-up storage devices have a “phone-
home” feature called Autosupport. Customers can
configure their Data Domain systems to send an
email every day with detailed diagnostic information.
In addition, they can send email when specific events
are encountered by the operating system. Once these
emails are received at EMC, they are parsed and
stored in a database.

Sending of diagnostic data via email to EMC is
voluntary by the customer. Often, in secure
environments, customers choose to disable the
feature. In order to monitor their systems, customers
have the ability to configure the autosupport emails
to be delivered to internal recipients.

Most customers choose to send autosupports to EMC
because the historical data enables more effective
customer support. Given the more than 10,000
autosupports received daily, EMC has a statistically
significant view across the Data Domain install base.

142 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

	

2

For the purpose of capacity forecasting, two variables
are required at each point in time:

1. Total physical capacity of the system
2. Total physical space used by the system

For Data Domain systems, the total physical capacity
changes over time because they generate an index
which slightly decreases the amount of physical
capacity available for data storage.

3 Data Cleaning

In order to ensure data integrity there are two issues
to be addressed: data artifacts and elimination of non-
production data.

Data Artifacts: In order to prevent bad data from
entering the analysis, the tool assesses the quality of
every autosupport and applies rules to guarantee
consistency. These artifacts may arise due to an error
in parsing the autosupport, data corruption during the
transport of the autosupport, or both.

Non-Production Data: All internal Data Domain lab
systems and QA systems send autosupports which are
parsed and loaded into the database. These systems
may be under development and therefore their
performance characteristics may vary dramatically
from production systems being used in the field.
While this data is of value to internal teams, for the
purposes of capacity forecasting, the data from these
systems is excluded.

4 Predictive Model

One of the most common methods employed in
predictive modeling is linear regression.
Unfortunately, application of regression to storage
capacity time series data is challenging because
behavior changes. System administrators may add
more shelves to increase capacity, change retention
policies, or simply delete data. Therefore blind
application of regression to the entire data set often
leads to poor predictions.

Figure 1: Example capacity data for the prior 100
days. (Time = 0 is the most recent data.) The
standard deviation is 6 thoughout the data. The blue
line shows the result of applying linear regression to
the entire data set.

The predictions of the linear regression in Figure 1
are very poor. Intuitively, the data indicates the
system is going to reach 100% capacity within a few
days, but the regression line predicts far later (a false
negative).

Select a Subset of Recent Data

The simplest method to mitigate the issue illustrated
in Figure 1 would be to choose a subset of recent data
such as the prior 30 days. This eliminates the
influence of older data and improves the accuracy of
the model’s predictions. Unfortunately, using a fixed
subset to model all systems results in poor linear
models for many systems. Significantly more
accurate models can be obtained by finding the
optimal subset of data for each system and applying
linear regression to only that subset of the data.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 143

	

3

4.1 Piecewise Linear Regression

The error rate of the linear regression model can be
significantly reduced by applying the regression to a
data subset that best represents the most recent
behavior. This requires implementing piecewise
linear regression [7].

In order to find the best subset of data, the boundary
must be determined where the recent behavior begins
to deviate. The method described here analyses the
quality of many linear regressions and then selects
the one having the best fit.

The goodness-of-fit of a linear regression to
experimental data can be measured by evaluating the
coefficient of determination R2. It is defined as the
regression sum of squares (“SSM”) divided by the
total sum of squares (“SST”) [8].

R =
SSM
SST

=
[f x − y]
[y − y]

Properties of R2
 0 ≤ R2 ≤ 1
 R2 =1 indicates perfectly linear data.

Calculating the Boundary: Start with a small
subset of the data, such as the prior 10 days, and then
apply regression to incrementally larger subsets to
find the regression having the maximum value of R2.

1. Regress {(x-10, y-10), (x-9, y-9), …, (x0, y0)}
2. Calculate R2 for regression
3. Regress {(x-11, y-11), (x-10, y-10), …, (x0, y0)}
4. Calculate R2 for regression
5. …
6. Regress {(x-n, y-n), (x-n+1, y-n+1), …, (x0, y0)}
7. Calculate R2 for regression
8. Select the subset with maximum R2

The boundary is the oldest data point within the
subset of data determined in step 8. The predictive
model is generated by applying linear regression to
that subset.

Figure 2: The same data used in Figure 1 with R2
plotted for each subset of data. The date when R2

reaches its maximum value is the “calculated
boundary” and occurs near the discontinuity of the
true function. Maximum R2 = 0.95 at -48 days and
the true boundary is -40 days.

Figure 3: The same data from Figures 1 & 2.
Piecewise linear regression results in a better fit to
the data. This model was generated using the subset
{(x-48, y-48), …, (x0, y0)} determined by the boundary.

Preprocessing data by applying a smoothing function
can increase R2, but has limitations. Filtering out
noise while maintaining the signal is easier said than
done. Too much smoothing and it becomes too
difficult to determine the boundary point.

144 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

	

4

4.2 Other Models

Many other models can be applied to time series data,
such as weighted linear regression, logarithmic
regression, and auto-regressive (AR) models. In the
current implementation, a simple linear model has
shown to effectively model many systems (see
Section 5: “Results of Predictive Modeling”). It is an
open question whether the remaining systems can be
modeled by other methods.

4.3 Model Validation

The model needs to be able to say, “I don’t know.”
Sometimes there is no pattern in the data. Before
employing a model to predict future behavior, it
should be evaluated to determine if it is reasonable
model for the data set. In the current implementation,
validation rules are applied to the results of the linear
model to determine if capacity forecasts should be
published.

Goodness-of-fit: When the R2 value from piecewise
linear regression is too small, it indicates the model is
a poor fit to the data. In the current tool, linear
regression models with R2 < 0.90 are not used.

Positive Slope: Linear models having a zero or
negative slope cannot be used to predict the date of
100% full.

Timeframe: Forecasts for systems to reach full
capacity far into the future are extrapolating the
current behavior too much to be practical. The
current model limits forecasts to less than 10 years.
The expectation is that within 10 years the storage
technology will be significantly different than it is
today.

Sufficient Statistics: Storage systems that have been
recently deployed lack enough historical data to
produce statistically sufficient regression models. A
minimum of 15 days of data is a reasonable threshold
for the size of the data set.

Choosing a smaller minimum value may result in
fitting the model to noise. Linear regression can
achieve a very good fit to a handful of data points,
but the results are not statistically significant.

Space Utilization: Experience has shown that
systems which are less than ~10% full tend not to
produce reliable predictions. For this situation, the
current tool does not generate capacity forecasts.

Last Data Point Trumps All: Recent changes in
system capacity must be taken into account to
evaluate the linear fit. When systems are nearing
maximum storage capacity, the administrator often
takes action which results in drastic changes in the
amount of available capacity. If the administrator
reduces the amount of data stored on a device, the
capacity prediction of the model is no longer valid.
Assessing this error is a simple form of cross-
validation.

Figure 4: System capacity dropped from 100% to
50%. The generated linear model has a high
goodness-of-fit (R2 = 0.89) but the prediction for the
most recent data point has 35% percent error. The
model predicts the system is 85% full at Time=0, but
it is only 50% full.

If the error between the predicted value and the actual
value of the most recent data point exceeds 5%, it is a
good indication that the recent data diverges
significantly from the model and therefore the model
is no longer valid.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 145

	

5

5 Results of Predictive Modeling

5.1 Analysis of Linear Regression Fit to
Past Data

If historical data does not demonstrate linear growth,
then obviously linear regression would be a poor
model to employ. To investigate this issue, the
piecewise linear regression algorithm described in
section 4.1 was applied to the historical dataset from
Data Domain storage appliances and the maximum
R2 was calculated for each system.

Figure 5: Histogram of R2 across all systems using a
minimum 15 days of data. This illustrates that most
of the regression models generated for storage
systems have R2 close to 1.0.

Summary of results:
1. The median R2 for all systems was 0.93
2. Models for 60% of systems had R2 ≥ 0.90
3. Models for 78% of systems had R2 ≥ 0.80

These results indicate that the majority of systems
exhibit very linear behavior since the linear model
had a very good fit to the datasets.

5.2 Forecasting Full Capacity

After the model is generated from historical data, the
next step is to apply the validation rules described in
section 4.3. For models that pass validation, the final

step is to solve for the future date the system will
become 100% full. The linear model:

= + x

Definitions:
 y is capacity
 α is the intercept term
 β is the slope
 x is the date

Assuming the slope is positive (β >0), the future date
for the system reaching full capacity can be
calculated by setting the capacity y = 1 (100 %) and
solving for x:

Forecast Full Date: =
1 −

5.3 Analysis of the Quality of Forecasts

False Positives

False positives frequently originate from unforeseen
future human activities which cannot be predicted by
the model. It is difficult to construe such false
positives as flaws in the model per se given that the
only input provided to the model is historic behavior
of the system.

When a system is on a linear trajectory to full
capacity but never reaches 100% full, it is may be
due to external or internal events. An external event
may originate from a significant change in the
amount or rate of data placed into primary storage.
An event internal to the system may be caused by the
system administrator taking action to implement
configuration changes. These can include:

1. Hardware changes
a. The system was entirely replaced
b. A shelf was added , increasing capacity
c. Internal disk drives were replaced

2. Software changes
a. Retention policy was changed
b. Data was deleted and/or moved

A specific example may help elucidate the issues
concerning false positive capacity forecasts. Even
with visual inspection of the data by a human, it is
extremely difficult to assess a false positive a priori.

146 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

	

6

Figure 6: System exhibiting several changes in the
rate of storage utilization. At this point in time the
regression may be a false positive.

Visual inspection of the storage capacity of the
system in Figure 6 indicates that the rate of storage is
on a trajectory to reach full capacity in September.
However, the most recent data in August might be an
early indication that the trajectory is changing. This
recent data may imply the system is stabilizing near
60% of capacity, but at this point in time there is
insufficient data to establish a new trajectory.

From a statistical perspective, it is unknown whether
the recent data points are signal or noise. This
illustrates how allowing the use of small data sets has
the risk of fitting the model to noise.

Ironically, in spite of the intuitive uncertainty, the fit
to data is very good: R2 = 0.90 and the prediction
error is only 4.5% on the most recent data point. This
example is potentially a good candidate for the model
to fail validation and report, “I don’t know.” There is
a trade-off between eliminating reasonable models
versus generating false positives. By requiring more
data for models, we gain higher confidence in their
predictions, but reduce the advanced notification for
true positives.

Figure 7: Same system shown in Figure 6 with
additional data points.

After a few more days, the piecewise regression
model fits the recent behavior of the system in Figure
7. Only after obtaining more data can we determine
that the model in Figure 6 was a false positive. It is
often the case that false positives can only be
observed with the benefit of hindsight (addition data).

No Forecast for Full Capacity

When a model fails validation (described in section
4.3) no forecast should be made. On a typical day the
current model does not publish forecasts for
approximately 40% to 50% of all systems. This is
not a surprising result. Most systems are expected to
be efficiently managed by their administrators. The
model is only considered valid for systems which are
on a trajectory to full capacity in the future.

It is an operational decision to determine the quantity
of forecasts to be published. The percent of systems
for which forecasts are published can be easily
adjusted by tailoring the validation rules for each
environment.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 147

	

7

5.4 Analysis of Forecasts across Install
Base

Application of the model described to the entire
install base results in a number of observations.

Figure 8: Histogram of forecasts for systems to reach
full capacity. The median time to 100% full is 197
days. Therefore, for systems with valid models, the
forecast is half of them will reach full capacity within
approximately six months.

Figure 9: Greater detail (6 months) of the data used
in Figure 8.

Given the peak values of these histograms, a majority
of the systems are predicated by the model to reach
full capacity in the near future. There are at least two
conjectures that may explain the patterns of Figures 8
& 9:

Hypothesis 1: Efficient use of capital: Since the
cost of storage (dollars per GB) drops quickly over
time, the majority of storage devices are intended to
only have enough space for the near future. It’s
cheaper to delay the purchase of additional storage
until it’s absolutely needed.

Hypothesis 2: Capacity Exceeded Expectations:
System administrators forecasted their capacity needs
for the long-term, but they underestimated the rate of
growth.

6 Capacity Forecasting Examples

The application of capacity forecasting may be
illustrated by examining a few examples of
production Data Domain storage systems.

Figure 10: System exhibiting linear segments.

This type of behavior was the motivation for
developing the piecewise linear regression algorithm.
The data prior to May is useless for prediction since
it significantly different from the current behavior of
the system. Application of piecewise linear
regression correctly found a model that fits the data
from the beginning of June to the last data point.

148 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

	

8

Figure 11: A behavioral change in the rate of storage
utilization occurred at the end of May, but the
piecewise linear regression model correctly fit the
most recent behavior despite noisy data.

Figure 12: Shelf was added to an existing Data
Domain system.

The total capacity exhibits a discontinuity in May. In
this figure, the system reached full capacity and then
a shelf was added. The model fits the recent data and
predicts the system will reach 100% capacity in
approximately three months.

7 Conclusions and Future Work

The role of automated predictive modeling for
managing IT systems will become more pervasive as
the complexity and size of data centers continue to
grow. [9]

This paper describes a model that uses historical data
to predict when Data Domain systems will reach full
capacity. Advance notice of storage systems reaching
full capacity allows system administrators to take
necessary measures to avoid performance
degradation and/or failure. It was demonstrated that
many storage systems can be modeled using a
piecewise linear regression model. Furthermore it
was shown that for the systems that could be
modeled, they were able to generate a forecast of the
date of full capacity in advance.

Many questions still remain for future analyses which
are natural extensions of the material discussed in
this paper:

1. Are there other applications of predictive
modeling within the existing data set? Could
compression ratio, bandwidth throughput, load-
balancing [10] or IO capacity also be predicted?

2. Why was the piecewise linear regression model
not able to model some systems? Could the
model be improved or could they be modeled by
some other method?

3. Using the statistically significant view across the
install base, could there be correlations between
system variables or time series correlations for a
single variable?

Capacity forecasting is a fundamental utility for
system management, but it is only a starting point of
the data analysis that can be explored for storage
management.

Acknowledgments

I thank Stephen Manley, Fred Douglis, and Philip
Shilane for both guidance and meticulous comments
on early drafts. I especially appreciate the feedback
and direction provided by my shepherd, Andrew
Hume, as well as the anonymous referees.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 149

	

9

8 References

[1] TheInfoPro. “Deduplication: A paradigm Shift in
Backup”, TheInfoPro (TIP) Research Paper, January
2011. Available at: https://community.emc.com/docs
/DOC-9720

[2] Andras Hegyi. “Model Predictive Control for
Integrating Traffic Control Measures”, February
2004. Available at: http://www.dcsc.tudelft.nl/~desc
hutt/research/phd_theses/phd_hegyi_2004.pdf

[3] Eric Horvitz, Johnson Apacible, Raman Sarin,
and Lin Liao. “Prediction, Expectation, and Surprise:
Methods, Designs, and Study of a Deployed Traffic
Forecasting Service”, Twenty-First Conference on
Uncertainty in Artificial Intelligence, UAI-2005,
Edinburgh, Scotland, July 2005. Available at:
http://research.microsoft.com/~horvitz/horvitz_traffic
_uai2005.pdf

[4] Eduardo Camponogara, Dong Jia, Bruce H.
Krogh, and Sarosh Talukda. “Distributed Model
Predictive Control”. Control Systems, IEEE,
February 2002. Available at: http://www.ece.cmu.ed
u/~krogh/papers/CJKT02.pdf

[5] WM Watkins, EK Mberu, PA Winstanley. “The
efficacy of antifolate antimalarial combinations in
Africa: a predictive model based on
pharmacodynamic and pharmacokinetic analyses”,
Parasitology Today, Volume 13, Issue 12, December
1997, Pages 459-464, 1997

[6] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova,
Alfons Kemper, "Capacity Management and Demand
Prediction for Next Generation Data Centers," icws,
pp.43-50, IEEE International Conference on Web
Services (ICWS 2007), 2007

 [7] Robert Nisbet, John Elder, and Gary Miner.
Statistical Analysis and Data Mining Applications.
Academic Press, 2009

[8] Pang-Ning Tan, Michael Steinbach, and Vipin
Kumar. Introduction to Data Mining. Pearson
Education, 2006

[9] IBM. “The growing role of predictive analytics
in data center management”, IBM Developer Works,
December 2010. Available at: https://www.ibm.com/
developerworks/mydeveloperworks/blogs/business-
analytics/entry/the_growing_role_of_predictive_anal
ytics_in_data_center_management

 [10] Fred Douglis, Deepti Bhardwaj, Hangwei Qian,
Philip Shilane. “Content-aware Load Balancing for
Distributed Backup”, LISA 2011: Proceedings of the
25th Large Installation System Administration
Conference (Dec 2011)

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 151

Content-aware Load Balancing for Distributed Backup

Fred Douglis
EMC

Fred.Douglis@emc.com

Deepti Bhardwaj
EMC

Deepti.Bhardwaj@emc.com

Hangwei Qian∗

Case Western Reserve Univ.
Hangwei.Qian@case.edu

Philip Shilane
EMC

Philip.Shilane@emc.com

Abstract
When backing up a large number of computer systems
to many different storage devices, an administrator has
to balance the workload to ensure the successful com-
pletion of all backups within a particular period of time.
When these devices were magnetic tapes, this assign-
ment was trivial: find an idle tape drive, write what fits on
a tape, and replace tapes as needed. Backing up data onto
deduplicating disk storage adds both complexity and op-
portunity. Since one cannot swap out a filled disk-based
file system the way one switches tapes, each separate
backup appliance needs an appropriate workload that fits
into both the available storage capacity and the through-
put available during the backup window. Repeating a
given client’s backups on the same appliance not only
reduces capacity requirements but it can improve per-
formance by eliminating duplicates from network traf-
fic. Conversely, any reconfiguration of the mappings of
backup clients to appliances suffers the overhead of re-
populating the new appliance with a full copy of a client’s
data. Reassigning clients to new servers should only be
done when the need for load balancing exceeds the over-
head of the move.

In addition, deduplication offers the opportunity for
content-aware load balancing that groups clients to-
gether for improved deduplication that can further im-
prove both capacity and performance; we have seen a
system with as much as 75% of its data overlapping other
systems, though overlap around 10% is more common.
We describe an approach for clustering backup clients
based on content, assigning them to backup appliances,
and adapting future configurations based on changing re-
quirements while minimizing client migration. We de-
fine a cost function and compare several algorithms for
minimizing this cost. This assignment tool resides in a
tier between backup software such as EMC NetWorker
and deduplicating storage systems such as EMC Data
Domain.

∗Work done during an internship.

Tags: backups, configuration management, infrastruc-
ture, deduplication

1 Introduction

Deduplication has become a standard component of
many disk-based backup storage environments: to keep
down capacity requirements, repeated backups of the
same pieces of data are replaced by references to a single
instance. Deduplication can be applied at the granular-
ity of whole files, fixed-sized blocks, or variable-sized
“chunks” that are formed by examining content [12].

When a backup environment consists of a handful of
systems (or “clients”) being backed up onto a single
backup appliance (or “server”), provisioning and config-
uring the backup server is straightforward. An organi-
zation buys a backup appliance that is large enough to
support the capacity requirements of the clients for the
foreseeable future, as well as capable of supporting the
I/O demands of the clients. That is, the backup appliance
needs to have adequate capacity and performance for the
systems being backed up.

As the number of clients increases, however, opti-
mizing the backup configuration is less straightforward.
A single backup administration domain might manage
thousands of systems, backing them up onto numerous
appliances. An initial deployment of these backup appli-
ances would require a determination of which clients to
back up on which servers. Similar to the single-server en-
vironment, this assignment needs to ensure that no server
is overloaded in either capacity or performance require-
ments. But the existence of many available servers adds
a new dimension of complexity in a deduplicating en-
vironment, because some clients may have more con-
tent in common than others. Assigning similar clients
to the same server can gain significant benefits in capac-
ity requirements due to the improved deduplication; in a
constrained environment, assigning clients in a content-
aware fashion can make the difference between meeting

152 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

one’s capacity constraints and overflowing the system.
The same considerations apply in other environments.

For example, the “clients” being backed up might ac-
tually be virtual machine images. VMs that have been
cloned from the same “golden master” are likely to have
large pieces in common, while VMs with different his-
tories will overlap less. As another example, the sys-
tems being copied to the backup appliance might be
backup appliances themselves: some enterprises have
small backup systems in field offices, which replicate
onto larger, more centralized, backup systems for disas-
ter recovery.

Sending duplicate content to a single location can not
only decrease capacity requirements but also improve
performance, since content that already exists on the
server need not be transferred again. Eliminating dupli-
cates from being transmitted is useful in LAN environ-
ments [5] and is even more useful in WAN environments.

Thus, in a deduplicating storage system, content-
aware load balancing is desirable to maximize the ben-
efits of deduplication. There are several considerations
relating to how best to achieve such balance:

Balancing capacity and throughput Above all, the
system needs to assign the clients in a fashion that min-
imizes hot spots for storage utilization or throughput.
Improvements due to overlap can further reduce capac-
ity requirements.

Identifying overlap How does the system identify how
much different clients have in common?

Efficiency of assignment What are the overheads asso-
ciated with assignment?

Coping with overload If a server becomes overloaded,
what is the best way to adapt, and what are the costs of
moving a client from that server?

Our paper has three main contributions:

1. We define a cost function for evaluating potential as-
signments of clients to backup servers. This function
permits different configurations to be compared via a
single metric.

2. We present several techniques for performing these
assignments, including an iterative refinement heuris-
tic for optimizing the cost function in a content-aware
fashion.

3. We compare multiple methods for assessing content
overlap, both for collecting content and for clustering
that content to determine the extent of any overlap.

Our assignment algorithm serves as a middleware
layer that sits between the backup software and the un-
derlying backup storage appliances. Our ultimate goal is

a fully automated system that will dynamically reconfig-
ure the backup software as needed. As an initial pro-
totype, we have developed a suite of tools that assess
overlap, perform initial assignments by issuing recom-
mendations for client-server assignments, and compute
updated assignments when requirements change. Client
assignments can be converted into a sequence of com-
mands to direct the backup software to (re)map clients to
specific storage appliances.

The rest of this paper is as follows. The next section
provides more information about deduplication for back-
ups and other related work. §3 provides use cases for
the tool. §4 describes load balancing in more detail, in-
cluding the “cost” function used to compare configura-
tions and various algorithms for assignment of clients to
servers. §5 discusses the question of content overlap and
approaches to computing it. §6 presents results of sim-
ulations on several workloads. §7 examines some alter-
native metrics and approaches. Finally, §8 discusses our
conclusions and open issues.

2 Background and Related Work

2.1 Evolving Media
In the past decade, many backup environments have
evolved from tape-centric to disk-centric. Backup soft-
ware systems, such as EMC NetWorker [6], IBM Tivoli
Storage Manager [9], or Symantec NetBackup [19], date
to the tape-based era. With tapes, a backup server could
identify a pool of completely equivalent tape drives on
which to write a given backup. When data were ready
to be written, the next available tape drive would be
used. Capacity for backup was not a critical issue,
since it would usually be simple to buy more magnetic
tape. The main constraint in sizing the backup envi-
ronment would be to ensure enough throughput across
the backup devices to meet the “backup window,” i.e.,
the time in which all backups must complete. Some
early work in this area includes the Amanda Network
Backup Manager [16, 17], which parallelized worksta-
tion backups and created schedules based on anticipated
backup sizes. Interleaving backup streams is necessary
to keep the tapes busy and avoid “shoe-shining” from un-
derfull buffers, but this affects restore performance [20].
The equivalence of the various tape drives, however,
made parallelization and interleaving relatively straight-
forward.

Disk-based backup grew out of the desire to have
backup data online and immediately accessible, rather
than spread across numerous tapes that had to be located,
mounted, and sequentially accessed in case of data loss.
Deduplication was used to reduce the capacity require-
ments of the backup system, in order to permit disk-

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 153

based backup to compete financially with tape. The most
common type of deduplication breaks a data stream into
“chunks,” using features of the data to ensure that most
small changes to the data do not affect the chunk bound-
aries. This way, inserting a few bytes early in a file
might change the chunk where the insertion occurs, but
the rest of the file will deduplicate. Deduplicating sys-
tems use a strong hash (known as a “fingerprint”) of the
content to identify when a chunk already exists in the
system [15, 21].

2.2 Deduplication: Challenges and Oppor-
tunities

With deduplicated disk backups replacing tape, the
equivalence of appliances is partly lost. Writing to the
same storage system gains efficiencies by suppressing
duplicate data; these efficiencies can be further reflected
back to the backup server or even the client being backed
up, if the duplicates are identified before data cross the
network [5]. The effort of dividing the content into
chunks and computing fingerprints over the chunks can
be distributed across the backup infrastructure, allowing
the storage appliance to scale to more clients and reduc-
ing network traffic when the deduplication rate is high.

Thus, the “stickiness” of the assignment of a client to a
storage appliance changes the role of the backup admin-
istrator. Instead of simply pooling many clients across
many tape drives, the mapping of clients to storage ap-
pliances needs to be done a priori. Once a client has
been paired with a particular storage appliance, it gets
great benefits from returning to that appliance and omit-
ting duplicates. Should it move to a different appliance,
it must start over, writing all of its data anew. But if its
target appliance is overloaded, the client queues up and
waits longer than desired, possibly causing the backup
not to complete within its “backup window.” Capacity is
similarly problematic, since a client that is being backed
up onto a full storage appliance either is not protected or
must move to another less loaded system and pay a cost
for copying data that would otherwise have been sup-
pressed through deduplication.

In summary, once a client is backed up onto a particu-
lar storage appliance, there is a tension between the bene-
fits of continuing to use it and the disadvantages that may
ensue from overload; at some tipping point, the client
may move elsewhere. It then pays a short-term overhead
(lack of deduplication) but gets long-term benefits.

Another interesting challenge relating to deduplicating
storage is anticipating when it will fill up. One needs to
consider not only how much is written but also how well
that data will deduplicate. Predictions of future capac-
ity requirements on a device-by-device basis, based on
mining past load patterns [2], would feed into our load
balancing framework.

2.3 Load Balancing
Finally, the idea of mapping a set of objects to a set
of appropriate containers is well-known in the systems
community. Load balancing of processor-intensive ap-
plications has been around for decades [3, 8], includ-
ing the possibility of dynamically reassigning tasks when
circumstances change or estimates prove to be inaccu-
rate [13]. More recently, allocating resources within grid
or cloud environments is the challenge. Allocating vir-
tual resources within the constraints of physical datacen-
ters is particularly problematic, as one must deal with
all types of resources: processor, memory, storage, and
network [18]. There are many examples of provisioning
systems that perform admission control, load balancing,
and reconfiguration as requirements change (e.g., [7]),
but we are unaware of any work that does this in the con-
text of deduplication.

3 Use Cases

In this section we describe the motivation behind this
system in greater detail. Figure 1 demonstrates the
basic problem of assigning backups from clients to
deduplicated storage systems, and there are a number of
ways in which automated content-aware assignment can
be useful.

Sizing and deployment Starting with a “clean slate,”
an administrator may have a large number of client ma-
chines to be backed up on a number of deduplicating
storage appliances. The assignment tool can use in-
formation about the size of each client’s backups, the
throughput required to perform the backups, the rate
of deduplication within each client’s backups, the rate
at which the backup size is expected to change over
time, and other information. With this data it can es-
timate which storage appliances will be sufficient for
this set of clients. Such “sizing tools” are common-
place in the backup industry, used by vendors to aid
their customers in determining requirements. Using
information about overlapping content across clients
allows the tool to refine its recommendations, poten-
tially lowering the total required storage due to im-
proved deduplication.

First assignment Whether the set of storage appliances
is determined via this tool or in another fashion, once
the capacity and performance characteristics of the
storage appliances are known, the tool can recom-
mend which clients should be assigned to which stor-
age system. For the first assignment, we assume that
no clients are already backed up on any storage ap-
pliance, so there is no benefit (with respect to dedu-
plication) to preferring one appliance over another for

3

154 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Figure 1: Backups from numerous clients are handled
by the backup manager, which assigns clients to dedu-
plicated storage while accounting for content overlap be-
tween similar clients. In this case, there was insufficient
room on a single storage node for all three large servers,
so one was placed elsewhere.

individual clients, though overlapping content is still a
potential factor.

Reconfigurations Once a system is in steady state, there
are a number of possible changes that could result in
reconfiguration of the mappings. Clients may be added
or removed, and backup storage appliances may be
added. Storage may even be removed, especially if
backups are being consolidated onto a smaller num-
ber of larger-capacity servers. Temporary failures may
also require reconfiguration. Adding new clients and
backup storage simultaneously may be the simplest
case, in which the new clients are backed up to the
new server(s). More commonly, extra backup capac-
ity will be required to support the growth over time of
the existing client population, so existing clients will
be spread over a larger number of servers.

Disaster recovery As mentioned in the introduction,
the “clients” might be backup storage appliances them-

selves, which are being replicated to provide disaster
recovery (DR). In terms of load balancing, there is lit-
tle distinction between backing up generic computers
(file servers, databases, etc.) and replicating dedupli-
cating backup servers. However, identifying content
overlap is easier in the latter case because the con-
tent is already distilled to a set of fingerprints. Also,
DR replication may be performed over relatively low-
bandwidth networks, increasing the impact of any re-
configuration that results in a full replication to a new
server.

4 Load Balancing and Cost Metrics

In order to assign clients to storage appliances, we need
a method for assessing the relative desirability of differ-
ent configurations, which is done with a cost function
described in §4.1. Given this metric, there are different
ways to perform the assignment and evaluate the results.
In §4.2, we describe and compare different approaches,
both simple single-pass techniques that do not explicitly
optimize the cost function and a heuristic for iteratively
minimizing the cost.

4.1 Cost Function
The primary goal of our system is to assign clients
to backup servers without overloading any individual
server, either with too much data being stored or too
much data being written during a backup window. We
define a cost metric to provide a single utility value for
a given configuration. The cost has several components,
representing skew, overload, and movement, as shown in
Table 1.

The basic cost represents the skew across storage and
throughput utilizations of the various servers, and when
the system is not heavily loaded it is the dominant com-
ponent of the total cost metric. Under load, the cost goes
up dramatically. Exceeding capacity is considered fatal,
in that it is not a transient condition and cannot be recov-
ered from without allocating new hardware or deleting
data. Exceeding throughput is not as bad as exceeding
capacity, as long as there is no “hard deadline” by which
the backups must complete — in that event, data will not
be backed up. Even if not exceeded, the closer capacity
or throughput is to the maximum allowable, the higher
the “cost” of that configuration. In contrast, having a
significantly lower capacity utilization than is allowable
may be good, but being 50% full is not “twice as good”
as being 100% full. As a result, the cost is nonlinear,
with dramatic increases close to the maximum allowed
and jumps to extremely high costs when exceeding the
maximum allowed. Finally, there are costs to reassign-
ing clients to new servers. We cover each in turn.

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 155

Variable Description Scope Typical
values

Cbasic
weighted sum
of skews

system-wide 0-2

Cf it fit penalty
overloaded
server

1000’s

Cutil

sum of storage
and
throughput
utilization
metrics

server 0-1000’s

Cmovement

sum of
movement
penalties

server 0-10’s

DS, DT

standard
deviation
(skew) of
{storage,
throughput}
utilizations

system-wide 0-1

Ui,s

storage
utilization of
node i

server 0-1

Ui,t

throughput
utilization of
node i

server 0-1

α

weight for
storage skew
relative to
throughput

0.8

m
number of
servers

Table 1: Components of the cost function and related
variables.

Skew

The basic cost starts with a weighted sum of the standard
deviations of the capacity and throughput utilizations of
the storage appliances:

Cbasic = αDS +(1−α)DT ,

where α is a configurable weight (defaulting to 0.8), DS
is the standard deviation of storage utilizations Ui,s (the
storage utilization of node i is between 0 and 1, or above
1 if node i is overloaded), and DT is the standard devia-
tion of throughput utilizations Ui,t (similar definition and
range). The notion is that if predicted utilization is com-
pletely equal, there is no benefit to adjusting assignments
and increasing that skew; however, one might redefine
this metric to exclude one or more systems explicitly tar-
geted to have excess capacity for future growth. Since
throughput is more dynamic than capacity, the default

weights emphasize capacity skew (80%) over through-
put skew (20%).

Overflowing Clients

There are then some add-ons to the cost to account for
penalties. First and foremost, if a server would be unable
to fit all the clients assigned to it, there is a penalty for
each client that does not fit:

Cf it = fit penalty factor
m

∑
i=1

Fi,

Fi is the number of clients not fitting on node i, and the
penalty factor used in our experiments is a value of 1000
per excess host. We use 1000 as a means of ensuring
a step function: even if one out of many servers is just
minimally beyond its storage capacity (i.e., a utilization
of 1.00...01) the cost will jump to 1000+. In addition,
when several clients do not fit, the contribution to total
cost from the fit penalty is in the same range as the con-
tribution from the utilization (see below).

To count excess clients, we choose to remove from
smallest to largest until capacity is not exceeded: this
ensures that the greatest amount of storage is still allo-
cated, but it does have the property that we could pe-
nalize many small clients rather than removing a single
large one. We consider the alternate approach, removing
the largest client first, in §7.2.

Utilization

There are also level-based costs. There are two thresh-
olds, an upper threshold above (100%), a clearly unac-
ceptable state, and a lower threshold (80% of the max-
imum capacity or throughput) that indicates a warning
zone. The costs are marginal, similar to the U.S. tax
system, with a very low cost for values below the lower
threshold, a moderate cost for values between the lower
and upper thresholds, and a high cost for values above
the upper threshold, the overload region. Since the costs
are marginal, the penalty for a value just above a thresh-
old is only somewhat higher than a value just below
that threshold, but then the increase in the penalty grows
more quickly with higher values.

The equation for computing the utilization cost of a
configuration is as follows. Constant scaling factors
ranging from 10–10000 are used to separate the regions
of bad configurations: all are bad, but some are worse
than others and get a correspondingly higher penalty.
The weight of 0.1 for the more lightly loaded utiliza-
tion makes adjustments in the range of the other penalties
such as utilization skew. Each range of values inherits
from the lower ranges; for example, if Ui,s > 1 then its
penalty is 10,000 for everything above the threshold of

5

156 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Figure 2: The cost associated with storage on a node,
Si, depends on whether the utilization falls into the low
region, the warning region, or the overload region. The
costs are cumulative from one region to a higher one.

1, added to the penalty for values between 0.8 and 1 (100
* .2, the size of that region) and the penalty for values be-
tween 0 and 0.8 (.1 * .8, the size of that region). Figure 2
provides an example with several possible utilization val-
ues within and between the regions of interest.

Cutil =
m

∑
i=1

Si +Ti

Si =

.1∗Ui,s, Ui,s < .8
.1∗ .8+ 100 ∗ (Ui,s − .8), .8 < Ui,s ≤ 1

.1∗ .8+100∗ .2+10000 ∗ (Ui,s −1), Ui,s > 1

Ti =

0, Ui,t < .8
10 ∗ (Ui,t − .8), .8 < Ui,t ≤ 1

10∗ .2+1000 ∗ (Ui,t −1), Ui,t > 1

The highest penalty is for being > 100% storage ca-
pacity, followed by being > 100% throughput. If an
appliance is above the lower threshold for capacity or
throughput, a lesser penalty is assessed. If it is below
the lower threshold, no penalty is assessed for through-
put, and a small cost is applied for capacity to reflect
the benefit of additional free space. (Generally, a de-
crease on one appliance is accompanied by an increase
on another and these costs balance out across configu-
rations, but content overlap can cause unequal changes.)
These penalties are weights that vary by one or more or-
ders of magnitude, with the effect that any time one or
more storage appliances is overloaded, the penalty for
that overload dominates the less important factors. Only
if no appliance has capacity or throughput utilization sig-
nificantly over the lower threshold do the other penalties

such as skew, data movement, and small differences in
utilization, come into play.

Within a given cost region, variations in load still pro-
vide an ordering: for instance, if a server is at 110% of its
capacity and a change in assignments brings it to 105%,
it is still severely loaded but the cost metric is reduced.
As a result, that change to the configuration might be ac-
cepted and further improved upon to bring utilization be-
low 100% and, hopefully, below 80%. Dropping capac-
ity below 100% and avoiding the per-client penalties for
the clients that cannot be satisfied is a big win; this could
result in shifting a single large client to an overloaded
server in order to fit many smaller ones. Conversely, the
reason for the high penalty for each client that does not fit
is to ensure that the cost encompasses not only the mag-
nitude of the capacity gap but also the number of clients
affected, but there is a strong correlation between Cf it
and Cutil in cases of high overload.

Movement

The final cost is for data movement: if a client was pre-
viously assigned to one system and moves to another, a
penalty is assessed in proportion to that client’s share of
the original system’s capacity. This penalty is weighted
by a configurable “movement penalty factor.” Thus, a
client with 1TB of post-dedupe storage, moving from a
30-TB server, would add movement penalty f actor ∗ 1

30
to the configuration cost.

Mi = ∑
clientsi

movement penalty factor∗ sizeclient

sizei

Cmovement =
m

∑
i=1

Mi

Movement penalty factor defaults to 1, which also re-
sults in the adjustment to the cost being in the same range
as skew, though the movement penalty factor could be
higher in a WAN situation. We discuss other values be-
low.

In total, the cost C for a given configuration is:

C = Cbasic +Cf it +Cutil +Cmovement

The most important consideration in evaluating a cost
is whether it indicates overload or not; among those with
low enough load, any configuration is probably accept-
able. In particular, penalties for movement are inher-
ently lower than penalties for overload conditions, and
then among the non-overloaded configurations, any with
movement is probably worse than any that avoids such
movement. Thus the weight for the movement penalty,
if at least 1 and not orders of magnitude higher, has little
effect on the configuration selected.

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 157

4.2 Algorithmic Approaches

We considered four methods of assigning clients; three
are fairly simple and efficient but tend to work badly
in overloaded environments, while the fourth is much
more computationally expensive but can have significant
benefits. In all cases, if a configuration includes prede-
termined assignments, those assignments are made first,
and then these methods are used to assign the remaining
clients. Existing assignments can constrain the possible
assignments in a way that makes imbalance and overload
likely, if not unavoidable.

The three “simple” algorithms are as follows. None
of them takes content overlap into account in selecting a
server for a particular client. However, they do a limited
form of accounting for content overlap once the server is
assigned. The next section discusses extensive analysis
to compute pair-wise overlaps between specific hosts,
but computing the effects of the pair-wise overlaps
as each client is assigned is expensive. The simple
algorithms instead consider only class-wise overlaps, in
which the presence of another client in the same “class”
as the client most recently added is assumed to provide a
fixed reduction to the newer client’s space requirements.
That reduction is applied to that client before continuing,
so servers with many overlapping clients can be seen
to have additional capacity. The final, more precise,
cost calculation is performed after all assignments are
completed.

Random (RAND) Randomly assign clients to backup
servers. RAND picks from all servers that have avail-
able capacity. If a client does not fit on the selected
server, it then checks each server sequentially. If it
wraps around to the original selection and the client
does not fit, the client is assigned to the first choice,
whose utilization will now be > 1, and the cost metric
will reflect both the high utilization and the overflow-
ing client. By default, we run RAND 10 times and take
the best result, which dramatically improves the out-
come compared to a single run [14].

Round-robin (RR) Assign clients to servers in order, re-
gardless of the size of the client. Again, if a server does
not have sufficient capacity, the next server in order
will be tried; if no server is sufficient, the first one will
be used and an overflowing client will be recorded.

Bin-packing (BP) Assign based on capacity, in decreas-
ing order of required capacity, to the server with the
most available space. If no server has sufficient ca-
pacity, the one with the most remaining capacity (or
the least overflow) will be selected and the overflow-
ing client will be recorded.

Figure 3: With simulated annealing, the system tries
swapping or moving individual clients to improve the
overall system cost. Here, the different shapes are as-
sumed to deduplicate well against each other, so swap-
ping a circle with a triangle reduces the load of both
machines. Then moving a circle and a triangle from
the overloaded server on the left onto the other systems
increases their loads but decreases the leftmost server’s
load. The arrows represent storage utilization, with the
red ones highlighting overload. The dark borders and
unshaded shapes represent new or removed assignments,
respectively.

The fourth algorithm bears additional detail. It is the
only one that dynamically reassigns previously assigned
clients, trading a movement penalty for the possible ben-
efit of lowered costs in other respects. It does a full cost
calculation for each possible assignment, and does many
possible assignments, so it is computationally expensive
by comparison to the three previous approaches.

Simulated annealing (SA) [11] Starting with the result
from BP, perturb the assignments attempting to lower
the cost. At each step, a small number of servers are
selected, and clients are either swapped between two
servers or moved from one to another (see Figure 3).
The probability of movement is higher initially, and
over time it becomes more likely to swap clients as
a way of reducing the impact. The cost of the new
configuration is computed and compared with the cost
of the existing configuration; the system moves to the
new configuration if it lowers the cost or, with some
smaller probability, if the cost does not increase dra-
matically. The configuration with the lowest cost is
always remembered, even if the cost is temporarily in-
creased, and used at the end of the process.

We use a modified version of the Perl
MachineLearning::IntegerAnnealing library,1

1This library appears to have been superseded by the
AI::SimulatedAnnealing library, http://search.cpan.org/

~bfitch/AI-SimulatedAnnealing-1.02/.

7

158 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

which allows some control over the way in which the
assignments are perturbed:

• The algorithm accepts a set of initial assign-
ments, rather than starting with random assign-
ment.

• It accepts a specification of the percent of as-
signments to change in a given “trial,” when it
tries to see if a change results in a better out-
come. This percentage, which defaults to 10%,
decreases over time.

• The probability of moving a client from one stor-
age appliance to another or swapping it with a
client currently assigned to the other appliance is
configurable. It starts at 2

3 and declines over time.

• The choice of the target systems for which to
modify assignments can be provided externally.
This allows it to focus on targets that are over-
loaded rather than moving assignments among
equally underloaded systems.

By default, SA is the only algorithm that reassigns a
client that has already been mapped to a specific stor-
age appliance (we consider a simple alternative to this
for the other algorithms in §7.1).

We evaluate the effectiveness of these algorithms in
§6.3. In general, RAND and RR work “well enough” if
the storage appliances are well provisioned relative to
the client workload and the assignments are made on an
empty system. However, if we target having each sys-
tem around 80–90% storage utilization or adjust a sys-
tem that was overloaded prior to adding capacity, these
approaches may result in high skew and potential over-
load. BP works well in many of the cases, and SA further
improves upon BP to a limited extent in a number of cases
and to a great extent in a few extreme examples. SA has
the greatest benefit when the system is overloaded, es-
pecially if the benefits of content overlap are significant,
but in some cases it is putting lipstick on a pig: it lowers
the cost metric, but the cost is still so high that the dif-
ference is not meaningful. Naturally, the solution in such
cases is to add capacity.

5 Computing Overlap

There are a number of ways by which one can deter-
mine the overlap of content on individual systems. In
each case we start with a set of “fingerprints” represent-
ing individual elements of deduplication, such as chunks.
These fingerprints need not be as large as one would use
for actual deduplication. (For instance, a 12-byte finger-
print with a collective false positive rate of 1

232 is fine for

estimating overlap even if it would be terrible for actu-
ally matching chunks – for that one might use 20 bytes or
more, with a false positive rate of 1

296 .) The fingerprints
can be collected by reading and chunking the file system,
or by looking at existing backups that have already been
chunked.

Given fingerprints for each system, we considered two
basic approaches to computing overlap: sort-merge and
Bloom filters [1].

With sort-merge, the fingerprints for each system are
sorted, then the minimal fingerprint across all systems is
determined. That fingerprint is compared to the mini-
mal fingerprint of all the systems, and a counter is incre-
mented for any systems that share that fingerprint, such
that the pair-wise overlap of all pairs of systems is calcu-
lated. After that fingerprint is removed from the ordered
sets containing it, the process repeats.

With Bloom filters, the systems are processed sequen-
tially. Fingerprints for the first system are inserted into
its Bloom Filter. Then for each subsequent system, fin-
gerprints are added to a new Bloom filter, one per system.
When these fingerprints are new to that system, they are
checked against each of the previous systems, but not
added to them.

The sort-merge process can be precise, if all finger-
prints are compared. Bloom filters have an inherent error
rate, due to false positives when different insertions have
collectively set all the bits checked by a later data ele-
ment. However, that false positive rate can be fairly low
(say 0.001%), depending on the size of the Bloom filter
and the number of functions used to hash the data.

If the Bloom filters are all sufficiently sparse after
all insertions have taken place, another way to estimate
overlap is to count the number of intersecting bits that
have been set in the bit-vector; however, for “standard-
size” Bloom filters setting multiple bits per element in-
serted, we found it is easy to have a 1% overlap of fin-
gerprints result in 20–30% overlap in bits. Each filter
would need to be scaled to be significantly larger than
would normally be required for a given number of ele-
ments, which would in turn put more demands on system
memory, or the number of bits set for each entry would
have to be reduced, increasing the rate of false positives.
(Consistent with this result, Jain, et al. [10], reported a
detailed analysis of the false positive rate of intersect-
ing Bloom filters, finding that it is very accurate when
there is high overlap but remarkably misleading in cases
of little or no overlap. Since we expect many systems
to overlap by 0–20% rather than 75–100%, Bloom filter
intersection would not be helpful here.)

Regardless of which approach is used, there is an ad-
ditional concern with respect to clustering more than two
clients together. Our goal is to identify what fraction of
a new client A already exists on a system containing data

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 159

(a) Complete overlap (b) Subset overlap (c) Distinct sets (d) Partial overlap

Figure 4: Four views of possible overlap among A, B, and C. The red or magenta areas indicate overlap that can be
attributed to a single pair. The yellow area indicates overlap that must be attributed to multiple intersecting datasets.

from clients B, C, . . . Z. This is equivalent to taking the
intersection of A’s content with the union of the content
of the clients already present:

Dup(A) = A∩ (B∪C∪ . . .∪Z)

However, we cannot store the contents of every client
and recompute the union and intersection on the fly. To
get an accurate estimate of the intersection, we ideally
want to precompute and store enough information to es-
timate this value for all combinations of clients. If we
only compute the number of chunks in common between
A and B, A and C, and B and C, then we don’t know how
many are shared by all of A, B, and C. For example, if
A∩B = 100, A∩C = 100, and B∩C = 100, A∩B∩C
may be 100 as well, or it may be 0. If A and B are al-
ready assigned to a server and then C is added to it, C
may have as little as 100 in common with the existing
server or it may have as many as 200 overlapping. The
value of A∩B∩C provides that quantity.

Figure 4 depicts some simple scenarios in a three-
client example. In the first two cases, C ⊂ B, so even
though C overlaps with A the entire overlap can be com-
puted by looking at A and B. In the third case, B and C
are completely distinct, and so if A joined a storage appli-
ance with B and C the content in A∩B and A∩C would
all be duplicates and the new data would consist of the
size of A minus the sizes of A∩B and A∩C. The last
case shows the more complicated scenario in which B
and C partially intersect, and each intersects A. Here, the
yellow region highlights an area where A intersects both
B and C, so subtracting A∩B and A∩C from A’s size
would overestimate the benefits of deduplication. The
size of the region A∩B∩C must be counted only once.

Therefore, the initial counts are stored for the largest
group of clients. By counting the number of chunks in
common among a set S of clients, we can enumerate the
2|S| subsets and add the same number of matches to each
subset. Then, for each client C, we can compute the frac-
tion of its chunks that are shared with any set of one or
more other clients; this similarity metric then guides the
assignment of clients to servers.

To keep the overhead of the subset enumeration from
being unreasonable, we cap the maximum value of |S|.
Fingerprints that belong to > Smax clients are shared
widely enough not to be interesting from the perspec-
tive of content-aware assignment, for a couple of rea-
sons: first, if more clients share content than would be
placed on a single storage appliance, the cluster will be
broken up regardless of overlap; and second, the more
clients sharing content, the greater the odds that the con-
tent will exist on many storage appliances regardless of
content-aware assignment. Empirically, a good value of
Smax is in the range [S

3 , S
2].

In summary, for each client, we can compute the fol-
lowing information:

• What fraction of its chunks are completely unique
to that client, and will not deduplicate against any
other client? This value places an upper bound on
possible deduplication.

• What fraction of its chunks are shared with at
least Smax − 1 clients? We assume these chunks
will deduplicate on any appliance that already
stores other clients, providing an approximate lower
bound on deduplication, but there is an inherent er-
ror from such an assumption: if the Smax −1 clients
are all on a single appliance, the Sth client will only
get the additional deduplication if it is co-resident
with these others.

• How much does the client deduplicate against each
other client, excluding the common chunks?

Combining the per-pair overlaps with per-triple data, we
can identify the best-case client with which to pair a
given client for maximum deduplication, then the best-
case second client that provides the most additional
deduplication beyond the first matching client. §6.2 de-
scribes the results of this analysis on a set of 21 Linux
systems. Since even the 3rd client is usually a marginal
improvement beyond the 2nd , we do not use overlap be-
yond pairwise intersections in our experiments.

9

160 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

5.1 Approximation Techniques

Dealing with millions of fingerprints, or more, is un-
wieldy. In practice, as long as the fingerprints are uni-
formly distributed, it is possible to estimate overlap by
sampling a subset of fingerprints. This sampling is sim-
ilar to the approach taken by Dong, et al., when routing
groups of chunks based on overlapping content [4], ex-
cept that the number of chunks in a group was limited
to a relatively small number (200 or so). Thus in that
work, the quality of the match degraded when sampling
fewer than 1

8 fingerprints, but when characterizing en-
tire multi-GB or multi-TB datasets, we have many more
fingerprints to choose from. Empirically, sampling 1 in
1024 fingerprints has proven to be about as effective as
using all of them; we discuss this further in §6.2.1.

In addition, it is possible to approximate the effect of
larger clusters by pruning the counts of matches when-
ever the number is small enough. For instance, if A∩B is
10% of A and 5% of B, A∩C is 15% of A and 5% of C,
and A∩B∩C is 0.5% of A, then we estimate from A∩B
and A∩C that adding A to B and C will duplicate 25% of
A’s content. This overestimates the duplication by 0.5%
of A since it counts that amount twice, but the adjustment
is small enough not to affect the outcome. Similarly, in
Figure 4d, the yellow region of overlap A∩B∩C is much
greater than the intersection only between A and C that
does not include B: adding A to B and C is approximately
the same as adding A to B alone, and C can be ignored if
it is co-resident with B.

This approximation does not alleviate the need to com-
pute the overlap in the first place, since it is necessary to
do the comparisons in order to determine when overlap is
negligible. But the state to track each individual combi-
nation of hosts adds up; therefore, it is helpful to compute
the full set, then winnow it down to the significant over-
laps before evaluating the best way to cluster the hosts.
This filter can be applied all the way at the level of pairs
of clients, ignoring pairs that have less than some thresh-
old (such as 5%) of the content of at least one client in
common.

6 Evaluation

In this section we describe the use of the client as-
signment tool in real-world and simulated environments.
§6.1 discusses the datasets used, §6.2 reports some exam-
ples of overlapping content and the impact of sampling
the dataset fingerprints, and §6.3 compares the various
algorithms introduced in §4.2.

6.1 Datasets

To evaluate our approach, we draw from three datasets:

1. Linux workstations, full content. We have a set of 21
collections of fingerprints of content-defined chunks
on individual Linux workstations and file servers.
Most of these are drawn from a canonical internal test
dataset2 from 2005-6 containing full and incremental
backups of workstations over a period of months; since
duplicate fingerprints are ignored, this is the union of
all content on these systems over that period (exclud-
ing any data that never makes it to a backup). About 1

4
are from a set of workstations and file servers currently
in the Princeton EMC office, collected in 2011 through
a single pass over each local file system.

2. Artificial dataset, no content. In order to show the ef-
fect of repeatedly adding clients to a system over time,
we generated an artificial dataset with a mix of three
client sizes. Each iteration, the system adds 20 clients:
10 small clients with full backups of 20GB, 7 medium
100GB clients, and 3 big 2TB clients. This adds up to
6.9TB of total full backups, which scales to about 8TB
of unique data to be retained over a period of several
months. We simulate writing the datasets onto a num-
ber of DD690 backup systems with 35.3TB storage
each; after deduplication, about 5 sets of clients (100
clients in total) can fit on one such appliance. We start
with 2 servers and then periodically add capacity: the
goal is to go from comfortable capacity to overload,
then repeatedly add a server and add more clients until
overloaded once again. This can be viewed as an outer
loop, in which DD690 appliances are added, and an in-
ner loop, in which 20 clients are assigned per iteration.
Once assigned to a server, a client starts with a pref-
erence for that server, except for when a new backup
server is added: to give the the non-migrating algo-
rithms a chance to rebalance, the previous assignments
are forgotten with 1

3 probability.

We consider two types of overlap, one in which there
is a small set of clients with high overlap, and one in
which all clients of a “class” have small overlap. In
the former case, each client added during an iteration
of the outer loop deduplicates 30% of its content with
the corresponding clients from previous iterations of
the outer loop: the ith client added when there were 6
DD690s dedupes well with the ith client added when
there were [2..5] DD690s present. It deduplicates 10%
with all other clients of the same type (big, medium,
or small). In the latter case, only the 10% per-class
overlap applies.

2This is the “workstations” dataset in a previous paper [4].

10

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 161

ID

Best
Possi-

ble
(%)

Best2
(%) =

Widely
Shared
(%) +

Saved1
(%) +

Add’l
Saved
(%)

Chunks Unique
Chunks

Match1
host

Match2
host

Pct
Saved2
(in iso-
lation)

host1 73.87 73.75 0.77 48.9 24.08 823,256 215,083 host21 host16 30.9
host2 32.06 31.53 0.53 27.8 3.19 9,065,414 6,158,755 host16 host20 3.6
host3 18.68 17.21 0.80 14.9 1.51 3,843,577 3,125,766 host4 host20 12.1
host4 15.03 14.53 0.84 13.2 0.50 4,852,119 4,122,931 host5 host20 10.2
host5 14.34 13.04 0.74 10.5 1.80 6,645,378 5,692,506 host9 host20 7.8
host6 13.00 12.43 2.82 8.9 0.71 7,853,942 6,832,555 host9 host11 1.1
host7 11.67 10.19 5.94 3.3 0.95 3,460,930 3,057,042 host11 host16 2.4
host8 10.88 10.7 8.14 2.5 0.06 2,458,516 2,191,010 host19 host13 1.2
host9 10.3 8.05 0.44 5.7 1.91 31,410,032 28,176,318 host16 host5 2.2
host10 9.41 8.91 5.32 2.7 0.89 4,195,226 3,800,335 host13 host18 2.2
host11 8.73 6.16 2.81 1.9 1.46 8,066,949 7,362,355 host9 host13 1.6
host12 8.36 7.38 4.67 1.6 1.11 4,512,393 4,135,327 host6 host13 1.4
host13 7.89 6.47 3.61 2.1 0.76 6,231,280 5,739,526 host11 host18 1.3
host14 7.88 7.28 5.07 1.9 0.31 4,361,658 4,018,166 host19 host11 1.6
host15 7.70 7.08 4.34 2.4 0.34 5,141,613 4,745,660 host11 host13 1.0
host16 7.36 6.28 0.10 3.9 2.28 64,735,211 59,973,773 host2 host9 2.7
host17 7.17 6.52 2.27 3.3 0.96 3,035,582 2,817,910 host16 host5 1.2
host18 6.27 5.55 2.44 2.2 0.91 9,220,185 8,641,937 host16 host11 1.6
host19 4.73 3.99 2.39 1.2 0.40 9,359,512 8,917,158 host11 host5 0.4
host20 3.07 2.33 0.15 1.8 0.38 28,381,188 27,508,835 host5 host2 1.1
host21 1.77 1.70 0.03 0.9 0.77 43,045,905 42,284,086 host1 host16 0.9

Average 8.13 260,699,866 239,517,034

Table 2: Inter-host deduplication of 21 workstations

3. Customer backup metadata, no content. We have a
collection of 480 logs of customer backup metadata,
including such data as the size of each full or incre-
mental backup, the duration of each backup, the reten-
tion period, and so on. These logs do not include actual
content, though they include the “class” that each ma-
chine being backed up is in: one can infer better over-
lap between machines in the same class than machines
in different classes, but not quantify the extent of the
overlap. (We assume a 10% overlap for clients in the
same class.) We preprocess these logs to estimate the
requirements for each client within a given customer
environment, compute the size and number of backup
storage appliances necessary to support these clients,
then assign the clients to this set of storage appliances.
By adjusting the desired threshold of excess capacity,
we can vary the contention for storage capacity and
I/O. In this paper we consider only the largest of these
customer logs, with nearly 3,000 clients.

6.2 Content Overlap
Table 2 and Figure 5 describe the intersection of the 21
Linux datasets. Hosts are anonymized via the names
“host1” to “host21,” shown in the first column of the
table. The next column shows the idealized deduplica-

Figure 5: This is a visual depiction of the data in Table 2,
showing the components contributions to the deduplica-
tion of each host.

tion, computed by dividing the number of unique chunks
by the number of chunks and subtracting the result from
100%. (We assume that all chunks are the same size,
although in practice they are statistically an average of

11

162 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

8 Kbytes.) Hosts are sorted by the best possible dedupli-
cation rate. The average across all hosts is about 8%.

The next column, Best2, reports the deduplication ob-
tained by matching a given host against the best two
hosts, as described in §5. It is the sum of the widely
shared data appearing on that host (typically around 1–
2% but as high as 8%), the additional deduplication
specifically against the Match1 host, and the additional
deduplication against Match2 host. Since the second
match excludes both common chunks and anything on
Match1, the added benefit from the second host is usu-
ally under 2%, but in the case of host1, the second
matching host provides about half as much deduplica-
tion as the first host, over 24%. Pct Saved2 indicates
how much deduplication could have been achieved by
the second host without the first.

The columns listing which hosts provided the best and
second-best deduplication indicate that a handful of hosts
provide most of the matches. Also, the relationships are
not always symmetric, in part because of varying dataset
sizes. Host2 is the best match for Host16 and vice-
versa, but in other cases it is more of a directed graph.

Figure 5 shows this data visually. The height of each
bar corresponds to the best possible deduplication, The
blue bar at the bottom is the percent of chunks on that
host that appear on many other hosts, the red bar shows
the additional benefit from the best single match, the
green bar shows the additional benefit from a second
host, and the purple bar shows extra deduplication that
might be obtained through three or more co-resident
hosts. Not all bars are visible for each host. For the first
three hosts, arrows identify the matching hosts shown in
the table. A host with relatively little data may dedupli-
cate well against a larger host, while the larger host gets
relatively little benefit from deduplicating in turn against
the smaller one; in this case the host with the best overall
deduplication matches the host with the poorest dedupli-
cation, as a fraction of its total data.

Lest there be a concern that there is a small num-
ber of examples reflecting good deduplication, while
the average is relatively low, there are other meaning-
ful datasets with substantial overlap. For example, two
VMDK files representing different Windows VMware
virtual machine images used by an EMC release engi-
neering group overlapped by 49% of the chunks in each.

6.2.1 Sampling

Our goal for sampling is to ensure that even with approx-
imation, the system will find the same “best match” as
with perfect data (a.k.a. the “ground truth”), or at least a
close approximation to it. We use the following criteria:

• If a host H had a significant match with at least one
other host H1 of 5% of its data, above and beyond

the “widely shared” fingerprints, we want the ap-
proximated best match to be close to the ground
truth. We define “close” as a window β around
the correct value, which is within either 5%, 10%,
or 20% of the value, with a minimum of 1%. For
example, if the ground truth is 50%, acceptable
β = 5% approximations would be 47.5–52.5%, but
if the ground truth is 5%, values from 4–6% would
be acceptable. Note that if the estimated match were
outside that range but H1 was believed to be the best
match, we might cluster the two together but misest-
imate the benefit of the overlap.

• If the best match found via approximation is with
another host H2, rather than the ground truth best
match, it may still be acceptable. The approximate
overlap needs to be close to the actual overlap of H2,
or we would misestimate the benefits, but we only
would find the alternate host H2 acceptable if it was
within β of the value of H1. Thus the approximate
match H2,approx must be > (1− β)H1 and < (1 +
βH2).

• If the host had no significant match (> 5%) with
another single host, we want the approximation to
reflect that. But again, a small change is accept-
able. For example, if the best match were 4.5% and
we would have ignored it, but the approximation re-
ports that the best match is 5.5%, that is a reason-
able variance. If the best match was 1% and is now
reported as 5.5%, that would be a significant error.

The ranges of overlap are important because in prac-
tice a high relative error is inconsequential if the extent
of the match is limited to begin with. If we believe two
clients match in only 0.5% of their data, we are unlikely
to do much differently if we estimate this match is 1%
or 2%, or if we believe there is no match at all. On the
other hand, if we think that a 50% match is only 25%
or is closer to 100%, the assignment tool might make a
bad choice. Even if it picks the right location due to the
overlap, it will underestimate or overestimate the impact
on available capacity.

Figure 6 depicts the effect of sampling fingerprints, us-
ing the same 21-client fingerprint collection. The x-axis
depicts the sampling rate, with the left-most point corre-
sponding to the ground truth of analyzing all fingerprints.
As the graph moves to the right, the sampling rate is re-
duced. There are three curves, corresponding to margins
of error β = 5%, β = 10%, and β = 20%. The y-axis
shows the fraction of clients with an error outside the
specified β range. For a moderate margin of error there
is little or no error until the sampling rate is lower than

1
1024 , though if one desires a tighter bound on β , the error
rate increases quickly.

12

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 163

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20 22 24 26 28 210 212 214 216 218 220

A
pp

ro
xi

m
at

io
n

er
ro

rs

Sampling rate (1-in-2N)

β=5%
β=10%
β=20%

Figure 6: For a given sampling rate, on the x-axis, of 1
2N ,

we compute what fraction of clients have their biggest
overlap approximated within an given error threshold β .

6.3 Algorithm Comparison
In general, any of the algorithms described in §4.2 work
well if the system is not significantly loaded. As capac-
ity or throughput limits are reached, however, the sys-
tem can accommodate the greatest workloads through
intelligent resource allocation. This is especially true if
there is significant overlap among specific small subsets
of clients.

In our analysis here, we focus on capacity limitations
rather than throughput. This is because backup stor-
age appliances are generally scaled to match throughput
and capacity, so it is rare to experience throughput bot-
tlenecks without also experiencing capacity shortages.
Since it can occur with high-turnover data (a good deal
of data being written but then quickly deleted), the cost
function does try to optimize for throughput as well as
capacity.

Incremental Assignment

We first compare the four algorithms as clients and
backup storage are repeatedly added, using the artifi-
cial dataset described in §6.1 and new servers every 120
clients.

Figure 7 shows the results of this process with the
number of clients increasing across the horizontal axis
and cost shown on the left vertical axis. (Part (a) shows
the full range of cost values on a log scale, while (b)
zooms in on the values below 150, on a standard scale,
to enable one to discern the smaller differences.) The two
capacity curves in 7(a) reflect the ratio of the estimated
capacity requirements to the available backup storage,
with or without considering the effects of the best-case
deduplication, and are plotted against the right axis. A
value over 1 even with deduplication would indicate a

0
10-1
100
101
102
103
104
105
106

 0 200 400 600 800 1000
0

0.5

1.0

1.5

C
os

t

Fr
ac

tio
na

l C
ap

ac
ity

 U
se

d

Clients
Round Robin

Random
Bin Packing

Sim. Annealing
Cap w/o Dedupe

Cap w/Dedupe

(a) Full results

0

25.0

50.0

75.0

100.0

125.0

150.0

 0 200 400 600 800 1000
C

os
t

Clients

(b) Zoom of results

Figure 7: An artificial, homogeneous client population
is added 20 hosts at a time, with new backup storage
added every 120 hosts after the first 240. A small set
of clients match each other with 30% deduplication and
otherwise hosts of the same type match 10% of their data.
The costs are shown by the curves marked on the left
axis. The capacity requirements are shown by the curves
at the bottom of the top graph, marked on the right axis.

condition in which insufficient capacity is available, but
any values close to or above 1 indicate potential difficul-
ties.

In Figure 7, the general pattern is for the “simple”
algorithms to fail to fit all the clients within available
constraints, once the collective requirements first exceed
available capacity, while SA cycles between being able to
accommodate the clients and failing to do so (but still be-
ing an order of magnitude lower cost even when failing
to fit them). There is a stretch between 600–700 clients
in which it does particularly well; this is because in this
iteration of the outer loop, the number of distinct clus-
ters of highly overlapping clients equals the number of
storage appliances, and the system balances evenly.

While the sequence depicted in Figure 7 is a case in
which explicit pair-wise overlap is essential to fitting
the clients in available capacity, the sequence in Fig-
ure 8 adds fewer clients per storage appliance. Clients
almost always fit, though SA improves upon the other ap-
proaches some of the time. As expected, RR is not quite

13

164 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

0
10-1
100
101
102
103
104
105
106

 0 200 400 600 800 1000
0

0.5

1.0

1.5

C
os

t

Fr
ac

tio
na

l C
ap

ac
ity

 U
se

d

Clients
Round Robin

Random
Bin Packing

Sim. Annealing
Cap w/o Dedupe

Cap w/Dedupe

Figure 8: The same artificial, homogeneous client popu-
lation is added 20 hosts at a time, with new backup stor-
age added every 100 hosts after the first 200. The costs
are shown by the higher curves, marked on the left axis.
The capacity requirements are shown by the curves at the
bottom of the graph, marked on the right axis.

as good as BP; when the number of clients is high, there
are cases where RR exceeds capacity because it consid-
ers only whether a client fits and not how well it fits, and
because it is constrained by earlier assignments. RAND
similarly fails when 1000 clients are present.

In summary, we find that under high load RAND, RR,
and even BP fail to have acceptable costs in a large num-
ber of cases, but SA shuffles the assignments to better
take advantage of deduplication and fits within available
capacity when possible. While the SA results overlap
the BP results in some cases, whenever there is a pur-
ple square without a matching aqua + overlaid upon it in
Figure 7, SA has improved.

Full-Content Client Dataset

Here we describe the effect of assigning the 21-client
dataset to a range of backup appliances. The overlaps of
the datasets are derived from the full set of fingerprints
of each client, but in the case of Host1, which is the host
that is relatively small but has high overlap, we artifi-
cially increase its backup sizes by two orders of magni-
tude to represent a significant host rather than a trivially
small one. Including this change, the clients collectively
require 2.92TB before deduplication and 2.46TB or more
after deduplication. They are assigned to 2–4 storage
appliances with either 0.86TB (“smaller”) or 1.27TB
(“larger”) capacity each.3 For the smaller servers, the
clients take from about 70–140% (post-dedupe) of the
available storage as the number of backup systems is

3These numbers are taken from early-generation Data Domain ap-
pliances and are selected to scale the backup capacity to the offered
load. In practice, backup appliances are 1–2 orders of magnitude larger
and growing.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 0.5 1 1.5 2

C
os

t

Pre-Dedupe Fractional Capacity

Round Robin (NC)

Random (NC)

Random (CA)

Bin Packing (NC)

Sim. Annealing (NC)

Sim. Annealing (CA)

(a) Smaller servers

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 0.5 1 1.5 2

C
os

t

Pre-Dedupe Fractional Capacity

Round Robin (NC)

Random (NC)

Random (CA)

Bin Packing (NC)

Sim. Annealing (NC)

Sim. Annealing (CA)

(b) Larger servers

Figure 9: Cost as a function of relative capacity, pre-
dedupe, for the modified 21-host dataset, for two backup
appliance sizes. Algorithms are either content-aware
(CA) or not content-aware (NC).

reduced, corresponding to 85–170% pre-deduplication.
For the larger ones, they take 46–92% (deduplicated) or
58–115% (undeduplicated). That is, even with dedupli-
cation, at the highest utilization the clients cannot fit on
only two of the smaller servers, but they fit acceptably
well on the larger ones.

Figure 9 shows the cost as a function of pre-
deduplication utilization. For RAND and SA, it presents
two variants: one, the content-aware version, is the de-
fault; the other selects the lowest cost assuming there is
no overlap, then recomputes the cost of the selected con-
figuration with overlap considered. For BP and RR, over-
lap is considered only to the extent that two clients are in
the same class, and the adjustment is made after a given
client is assigned to a server (refer to §4.2).

Using smaller servers (9(a)), RR has a slightly higher
cost under the lowest load; both RR and RAND (NC) are
overloaded under moderate load, and all algorithms are
overloaded under the highest load with just two servers.
While it is not visible in the figure, SA without factoring
content overlap into its decisions is about 6% higher cost
than the normal SA which uses that information.

14

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 165

Using larger servers (9(b)), the costs across all algo-
rithms are comparable in almost all cases. The notable
exception is SA at the highest load: it is overloaded if it
ignores content overlap, but fine otherwise. Interestingly,
RAND does just as well with or without content overlap,
as its best random selection without taking overlap into
account proves to be a good selection once overlap is
considered.

In other words, at least for this workload, there are
times when it is sufficient to load balance blindly, ig-
noring overlap, and have overlap happen by happy co-
incidence. But there are times when using overlap infor-
mation is essential to finding a good assignment: an ap-
proach that considers overlap can better take advantage
of shared data.

Large Customer Dataset

We ran the assignment tool on the clients extracted from
the largest customer backup trace, as described in §6.1. It
has nearly 3,000 clients requiring about 325TB of post-
deduplicated storage. Using 3 Data Domain DD880s to-
taling 427TB, these use about 76% of capacity, and all
four algorithms assign the clients with a low cost: the
maximum is 0.80 for round robin, while BP and SA are
0.24 and 0.23 respectively. It is worth noting that most of
the ten RAND runs had costs over 2, but one was around
0.4 and the best was identical to the BP result. SA took
over four hours and only improved it from 0.24 to 0.23.

What about overload conditions? If these were just 2
DD880s (285TB), the average storage utilization goes to
114% so no approach can accommodate all the clients.
Even so, the cost metric is a whopping 184K for BP,
183K for RR, and 159K for RAND (which, by taking the
lower costs of client overlap into account when com-
paring alternatives is able to find a slightly better as-
signment). These high costs are dominated by the “fit
penalty” due to about 130–160 clients, out of 2983, not
fitting on a server. SA, however, brought the cost down to
25K (of which 12K is from 12 clients not fitting). How-
ever, it did this by running for 5.5 cpu-days (see the next
subsection).

Obviously one would not actually try and place 3,000
clients, totaling 325TB of post-dedupe storage, on a pair
of 142TB servers. This example is intended to show how
the different approaches fair under overload, and it also
provides an example of a large-scale test of SA. The large
number of clients to choose from poses a challenge, in
that a cursory attempt to move or swap assignments may
miss great opportunities, but an extensive search adds
significant computation time (see the next subsection).
Tuning this algorithm to adapt to varying workloads and
scales and deciding the best point to prune the search are
future work.

10-2
10-1
100
101
102
103
104
105
106

 0.01 0.1 1 10 100 1000

C
os

t

Hours

3k clients 2 large servers
3k clients 3 large servers

840 clients 7 servers
860 clients 8 servers
380 clients 4 servers

Figure 10: Cost as a function of simulated annealing
analysis time for several cases. Both axes use a log scale.
Except for the right-most points, any points that appear
within a factor of 1.5 in both the x and y values of a point
already plotted are suppressed for clarity.

6.4 Resource Usage

While our results have shown that SA can produce better
assignments than the other algorithms in certain cases,
there is a cost in terms of resource requirements. All
three “simple” algorithms are compact and efficient.
For example, the unoptimized Perl script running bin-
packing on the nearly 3,000 clients and two small servers
in the preceding subsection took 163M of memory and
ran in 23s on a desktop linux workstation. Running SA
on the same configuration took over 5 days, and the com-
plexity of the problem is only increased when pair-wise
rather than per-class overlaps are included. For the itera-
tive problem with up to about 1,000 clients and pair-wise
overlaps, the script takes several gigabytes of memory
and runs for over a half day on a compute server.

Figure 10 shows timing results for five examples of
earlier experiments. Two are the large-scale assignments
described in the previous subsection, with nearly 3,000
clients that either fit handily or severely overload the
servers. The horizontal line at the bottom represents the
case where SA runs for over four hours with no effective
improvement over a cost that is already extremely low.
The curve toward the top with open squares is the same
assignment for 2

3 of the server capacity. SA dramatically
reduces the cost, but it is still severely overloaded. The
curve (with open triangles) near that one represents one
of the incremental assignment cases in which the system
is overloaded regardless of SA, while the one just below
that has 20 more clients but one additional server and,
in the case of SA, has a relatively low cost after a long
period of annealing (the sharp drop around the 10-hour
mark is an indication of SA finally succeeding in rear-
ranging the assignments to fit capacity). Finally, the re-

15

166 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

maining triangle curve represents a smaller test case in
which the cost starts low but SA improves it beyond what
BP initially did.

In some cases (not plotted), there is a drop followed
by a long tail without improvement. Ideally the process
would end after a large score decrease if and only if no
substantial decreases are still possible; since there is the
potential to miss out on other large improvements, we
let SA continue to search and hope for further decreases.
Generally, with our default parameters, SA runs for sec-
onds to hours on a desktop computer, but when config-
uring or updating a backup environment, that is not un-
reasonable, and the “best solution to date” can be used at
any time. The more excess capacity there is, the easier
it is for SA to hone in on a good solution quickly. For
assignments of thousands of clients in an overloaded en-
vironment, some sort of “divide and conquer” approach
will be necessary to keep the problem manageable.

7 Variations

In this section we discuss a couple of variations on the
policies previously described: “forgetting” assignments
and biasing in favor of small clients in the cost function.

7.1 Forgetting Assignments
As described to this point, whenever new clients are
added to an existing set of assignments, the first assign-
ments are “carved in stone” for the simple algorithms:
they cannot be modified, and only the new unassigned
clients can be mapped to any server. The SA algorithm
is an exception to this, in that it can perturb existing as-
signments in exchange for a small movement penalty.

Here we consider a simple but extreme change to this
policy: ignore all existing assignments, map the clients
to servers using one of the algorithms, and pay move-
ment penalties depending on which clients change as-
signments. When the assignment that takes previous as-
signments into account does not cause overflow, start-
ing with a clean slate usually results in a higher cost be-
cause the movement penalties are higher than the other
low costs from the “good” and “warning” operating re-
gions. But when there would be overflow, it is often the
case that rebalancing from start avoids the overflow.

Figure 11 repeats Figure 7(a), with one change: for
RR, RAND, and BP, each point is the minimum between
the original datapoint and a new run in which the previ-
ous assignments were ignored during assignment.4 Ig-

4Due to the high cost of SA, we do not re-run each SA experiment
but instead take the minimum of the SA run and the “forgotten” BP run;
that is, SA could have started from the lower BP point rather than the
previous one that considered previous assignments. It might improve
the cost beyond that point, something not reflected in this graph.

0
10-1
100
101
102
103
104
105
106

 0 200 400 600 800 1000
0

0.5

1.0

1.5

C
os

t

Fr
ac

tio
na

l C
ap

ac
ity

 U
se

d

Clients
Round Robin

Random
Bin Packing

Sim. Annealing
Cap w/o Dedupe

Cap w/Dedupe

Figure 11: The same clients and servers are assigned as
in Figure 7(a), but previous assignments can be ignored
in exchange for a movement penalty.

noring initial assignments improved the cost metric in
35% of the cases overall, and in 43% of the cases in
which the cost was over 1000 (indicating significant
overload): it is frequently useful but no panacea.

The most notable difference between Figure 7(a) and
Figure 11 is in the range of 600–700 clients. Previously
we noted that SA does especially well in that range be-
cause of overlap, but if BP and RR start there with com-
pletely new assignments, they too have a low cost due to
keeping better deduplicating clients together.

7.2 Counting Overflow

As described, the cost function biases in favor of large
clients: it assumes that it is more important to back up
a larger client than a smaller one, so it removes clients
in order of size, smallest first, to count the number of
clients that do not fit on a server. This approach is in-
tuitive, in that a large client probably is more important
than a small one, and it also simplifies accounting be-
cause if clients are added in decreasing order of size, we
can remove a small client without affecting the dedupli-
cation of a larger one that remains.

An alternative cost function would minimize the num-
ber of occurrences of overflow by removing the largest
client(s) to see if what remains will fit. This has the effect
of minimizing the extra per-client penalty while still pe-
nalizing for exceeding the capacity threshold. In essence,
it encourages filling N-1 servers to just below 100% uti-
lization, then placing all the remaining (large) clients on
the Nth server.

Figure 12 compares the smallest-first and biggest-first
penalties for the example used in Figure 7, modified to
exclude the pair-wise 30% deduplication of specific com-
binations of clients. (This is because recomputing the
impact of removing a client against which other clients
have deduplicated would require a full re-evaluation of

16

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 167

0
10-1
100
101
102
103
104
105
106

 0 200 400 600 800 1000
0

0.5

1.0

1.5

C
os

t

Fr
ac

tio
na

l C
ap

ac
ity

 U
se

d

Clients
Round Robin

Random
Bin Packing

Sim. Annealing
Cap w/o Dedupe

Cap w/Dedupe

(a) Smaller first

0
10-1
100
101
102
103
104
105
106

 0 200 400 600 800 1000
0

0.5

1.0

1.5

C
os

t

Fr
ac

tio
na

l C
ap

ac
ity

 U
se

d

Clients
Round Robin

Random
Bin Packing

Sim. Annealing
Cap w/o Dedupe

Cap w/Dedupe

(b) Bigger first

Figure 12: The same clients and servers are assigned as
in Figure 7, but deduplication is only considered within a
class (big, medium, or small) rather than having greater
deduplication for specific pairs. Cf it is computed by re-
moving the (a) smallest or (b) largest clients first.

the cost function, compared with class-wise deduplica-
tion, and has not been implemented.) The two graphs
look quite similar, but because of the change to the value
of Cf it the peak values are about one order of magnitude
lower when the largest clients are counted. There is no
qualitative difference in this example beyond a narrowed
gap between SA and the other approaches.

8 Discussion and Future Work

Assigning backups from clients to deduplicated stor-
age differs from historical approaches involving tape be-
cause of the stickiness of repeated content on the same
server and the ability to leverage content overlap between
clients to further improve deduplication. We have ac-
counted for this overlap in a cost function that attempts to
balance capacity and throughput requirements and have
presented and compared several techniques for assigning
clients to backup storage appliances.

When a backup system has plenty of resources for the
clients, any assignment technique can work well, and

there is little difference between RAND and our most ad-
vanced technique with SA. The more interesting case
is when capacity requirements reach beyond 80% of
what is allocated. We have found that RAND and RR
tend to degrade rapidly, while bin-packing and SA con-
tinue to maintain a low cost until capacity becomes over-
subscribed. In cases of significant overlap, SA is able to
use client overlap to increase the effective capacity of a
set of deduplicating backup servers, deferring the point
at which the system is overloaded.

There are a number of open issues we would like to
address:

• evaluation of overlap in a wider range of backup
workloads

• evaluation of overlap beyond the “best match” for
those cases where cumulative deduplication beyond
one other host is significant

• full integration between client assignment and
backup software

• use of the assignment tool to manage transient
bursts in load due to server failures or changes in
workload

• additional evaluation of the various weights and
cost function

• optimization of the SA algorithm for large-scale en-
vironments; and

• additional differentiation of clients and servers, for
instance to route backups to different types of de-
vices automatically depending on their update pat-
terns and deduplication rates.

Efforts to integrate content affinity with pre-sales sizing
are already underway.

Acknowledgments

We thank Windsor Hsu, Stephen Manley, Hugo Patter-
son, Hyong Shim, Grant Wallace, and Jason Warlikowski
for helpful comments on the design of the system and
on earlier drafts. Mike Mahler, Jason Warlikowski, Yuri
Zagrebin, and Jie Zhong provided assistance with the
development of the assignment tool. Thanks to Thomas
Waung for backup traces and to Benjamin Fitch for the
MachineLearning::IntegerAnnealing library. We
are especially grateful to the anonymous referees and
our shepherd, Doug Hughes, for their feedback and
guidance.

17

168 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

References

[1] Bloom, B.: Space/time trade-offs in hash cod-
ing with allowable errors. Communications of the
ACM 13(7), 422–426 (Jul 1970)

[2] Chamness, M.: Capacity forecasting in a backup
storage environment. In: LISA’11: Proceedings of
the 25th Large Installation System Administration
Conference (Dec 2011)

[3] Chapin, S.J.: Distributed and multiprocessor
scheduling. ACM Comput. Surv. 28 (March 1996),
http://doi.acm.org/10.1145/234313.
234410

[4] Dong, W., et al.: Tradeoffs in scalable data routing
for deduplication clusters. In: Proceedings of the
9th USENIX conference on File and stroage tech-
nologies. FAST’11, USENIX Association (Febru-
ary 2011)

[5] EMC Corporation: Data Domain Boost Soft-
ware (2010), http://www.datadomain.com/
products/dd-boost.html

[6] EMC Corporation: Unified backup and recov-
ery with EMC NetWorker (Feb 2010), http:
//www.emc.com/collateral/software/
white-papers/h3399_nw_bu_rec_wp.%pdf

[7] Gmach, D., Rolia, J., Cherkasova, L., Kemper,
A.: Capacity management and demand prediction
for next generation data centers. IEEE International
Conference on Web Services (2007)

[8] Harchol-Balter, M., Downey, A.B.: Exploiting pro-
cess lifetime distributions for dynamic load bal-
ancing. ACM Trans. Comput. Syst. 15, 253–285
(August 1997), http://doi.acm.org/10.1145/
263326.263344

[9] IBM Corporation: Tivoli Storage Manager (2011),
http://www-01.ibm.com/software/tivoli/
products/storage-mgr/

[10] Jain, N., Dahlin, M., Tewari, R.: Taper: tiered ap-
proach for eliminating redundancy in replica syn-
chronization. In: FAST ’05: Proceedings of the
4th USENIX Conference on File and Storage Tech-
nologies. pp. 21–21 (2005)

[11] Kirkpatrick, S., Gelatt, C.D., Vecchi,
M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671–680 (1983),
http://www.sciencemag.org/content/
220/4598/671.abstract

[12] Meyer, D.T., Bolosky, W.J.: A study of prac-
tical deduplication. In: Proceedings of the 9th
USENIX conference on File and stroage technolo-
gies. FAST’11, USENIX Association (February
2011)

[13] Milojicic, D.S., Douglis, F., Paindaveine, Y.,
Wheeler, R., Zhou, S.: Process migration. ACM
Comput. Surv. 32, 241–299 (September 2000),
http://doi.acm.org/10.1145/367701.
367728

[14] Mitzenmacher, M.: The power of two choices in
randomized load balancing. IEEE Trans. Parallel
Distrib. Syst. 12(10), 1094–1104 (2001)

[15] Quinlan, S., Dorward, S.: Venti: a new approach to
archival storage. In: FAST ’02: Proceedings of the
1st USENIX conference on File and Storage Tech-
nologies (2002)

[16] da Silva, J., Gudmundsson, O., Mosse, D.: Perfor-
mance of a parallel network backup manager. In:
USENIX (ed.) Proceedings of the Summer 1992
USENIX Conference: June 8–12, 1992, San Anto-
nio, Texas, USA. pp. 217–226. USENIX (Summer
1992)

[17] da Silva, J., Gumundsson, O.: The Amanda net-
work backup manager. In: USENIX (ed.) Proceed-
ings of the Seventh Systems Administration Con-
ference (LISA VII): November 1–5, 1993, Mon-
terey, CA, USA. pp. 171–182. USENIX (Nov
1993)

[18] Soundararajan, V., Govil, K.: Challenges in build-
ing scalable virtualized datacenter management.
SIGOPS Oper. Syst. Rev. 44, 95–102 (December
2010)

[19] Symantec Corporation: Next generation data
protection with Symantec NetBackup 7 (2011),
http://eval.symantec.com/mktginfo/
enterprise/white_papers/b-next_genera%
tion_data_protection_with_sym_nbu7_WP_
20999878.en-us.pdf

[20] Zhang, X., Du, D., Hughes, J., Kavuri, R.: Hptfs: A
high performance tape file system. In: Proceedings
of 14th NASA Goddard/23rd IEEE conference on
Mass Storage System and Technologies (2006)

[21] Zhu, B., Li, K., Patterson, H.: Avoiding the disk
bottleneck in the Data Domain deduplication file
system. In: FAST ’08: Proceedings of the 6th Con-
ference on File and Storage Technologies. pp. 269–
282 (February 2008)

18

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 169

Getting to Elastic: Adapting a Legacy Vertical Application
Environment for Scalability

Eric Shamow - Puppet Labs

ABSTRACT
 During my time in the field prior to joining Puppet Labs, I experienced several
scenarios where I was asked to be prepared for so-called “elastic” operations, which
would dynamically scale according to end-user demand. This demand only intensified as
the notion of moving to IaaS became realistic. There's no button you hit marked "make
elastic" to turn your infrastructure into an elastic cloud...rather you need to come to an
understanding both of the technologies your organization uses, its tolerances for latency
and downtime, as well as your platform, to get there. This paper discusses the key areas
that must be addressed: organizational culture, technical policy development, and
infrastructure readiness.

Introduction

 As I’ve moved through the industry, it’s
become increasingly common to f ind
organizations operating what might be termed
an “internal cloud” - a commodity hardware
infrastructure front-ended by VMware, Xen, or
another virtualization technology, being used to
cushion the need for rapid and varying server
deployments. Over the past few years, I have
seen increasing interest in outsourcing that
operation - in moving to external cloud
offerings including IaaS. In most cases, I've also
needed to become prepared for elastic
expansion of our apps as we modify them to
scale out rather than up.
 I encountered many of these problems
during the time I spent as Manager of the
Systems Operations group at Advance Internet.
Advance is a mid-size company in the
publishing field, running approximately 1050
servers in a local, private cloud. Although I left
Advance prior to the full implementation of our
elastic solution, I was deeply involved in the
architecture and implementation of that
solution, and was fortunate to learn valuable

lessons about how to take an entrenched static
environment into a dynamic one.
 There's no button you hit marked "make
elastic" to turn your infrastructure into an elastic
cloud...rather you need to come to an
understanding both of the technologies your
organization uses, its tolerances for latency and
downtime, as well as your platform, to get there.
Advance traveled some of this road, and this
report will include both information about the
solutions we found, and some recommendations
for those attempting to do the same.

Characterizing the Problem
In order to consider what will be necessary to
“go elastic,” we must first evaluate what that
phrasing really means. How elastic do we want
to be? What parts of our applications are able to
scale easily? What parts do not? What elements
of our process or infrastructure make automatic
expansion impossible? In short, what do we
need to know?
 A t A d v a n c e , i n e x a m i n i n g o u r
environment, I identified five major questions
or issues that would be show-stoppers for us
implementing any kind of scalable environment:

170 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

1) Our servers and applications could not be
deployed without human intervention.
Documentation was limited and there was no
automation available.

2) We had no information available about when
to deploy a new server automatically. There
was a mandate to be able to expand
dynamically, but no information about what
that meant.

3) Similarly, we did not know when to
automatically retire a new server. How
responsive to increases and decreases in load
would we need to be?

4) What was to be the mechanism for the
automatic deployment and retirement?

5) Were our applications optimized to take
advantage of this type of scaling? In several
cases our experience was that performance
improvement was not a linear correlation
with an increase in server count - and in fact
that in some cases increasing parallelism was
damaging to performance. We would need to
determine which applications would need to
be refactored to handle this architecture, and
which were prepared to handle it natively.

 In any environment facing similar issues,
the five listed above will form the core of the
matter - the remainder of our internal fact-
finding extended naturally from the answers we
found and the process we underwent in
attempting to determine those answers.
 F o r t h o s e u n d e rg o i n g t h e s ame
exploration, this fact-finding exercise will form
the groundwork for all future work in this space.
This means that truthful responses and openness
are absolutely necessary. The teams involved
don’t need to agree on a solution yet, but
without a common understanding of the
problem space, we cannot reasonably determine
whose concerns or enthusiasm are justifiable. It
can often help to present this as an opportunity
to air long-unaddressed concerns in a new way.

If the application team distrusts elasticity,
encourage them to fully explain and justify
those concerns and promise that they will be
addressed as part of the proposed solution.
Getting everyone to cooperate here is the most
critical step of the process. For me, getting to
elastic meant a lot less engineering than I
expected, and a whole lot more PR, meetings,
and assuaging of concerns.

Elasticity Means Automation

 The first key recognition about elastic
expansion is that by definition, it means that the
server provisioning process must be automated.
This is a bridge that many organizations have
yet to cross. In some cases the deployment
process itself may be automated, but post-install
configuration is not completed automatically.
My own f indings ga thered f rom the
organizations I have observed - and this was the
case at Advance as much at others - are that
most installation and configuration procedures
are not automated because groups do not have
clear and stable procedures that are followed for
deployment . Whether this is because
deployment teams do not maintain regular
standards for system configuration, or because
development teams do not provide accurate
release notes or cleanly packaged applications
ultimately comes down to finger-pointing; the
organization as a whole must recognize that if it
wants elasticity, it will need automation, and
automation requires clarity of purpose and
requirements, and stability of procedures.
 A u t o m a t i o n i t s e l f h a s m u l t i p l e
components, and depending on the breakdown
of roles and responsibilities within an
organization, these components are often
managed by different groups. Infrastructure
groups will have concerns about provisioning
storage and network; OS groups will worry
about package repositories, OS versioning, and

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 171

configuration management; application groups
will focus on updating application-specific
configurations to recognize new or removed
members of a cluster, reshuffling data that has
been partitioned based on previous cluster size,
and changing various application settings to
properly tune performance. All of these are
critical and should be clearly mapped.
 Where possible, inquiry into how they
affect each other is worth discussion - does
repartitioning our data suggest different OS
configs? With the new cluster size, should we
alter our load balancer configuration? However,
don’t let these advanced discussions derail the
primary goal of understanding how your
systems are provisioned. The second-level
analysis of how those systems interact will
occur naturally during the design and
implementation of your process, and should
continue to iterate through its lifecycle. The
most important thing is to come to an
understanding of those manual processes which
are not currently automated. Those manual steps
are your hard roadblocks on the way to
elasticity.
 Ultimately, at Advance, we settled on a
toolset of Kickstart for OS deployments,
managed through Cobbler for the additional
repository and profile information it permitted.
We then handed off to Puppet for application
installation and configuration, having worked
closely with the application teams to build
Puppet manifests that handled their applications
appropriately. On the infrastructure side, the
SAN, network and VMware team decided to
manually script their deployment, resulting in a
tool called vDeploy. I will discuss this tool later
on in the paper. Ultimately, the tools you choose
should be based on two factors: your own
comfortability with them, and their flexibility to
work well together and to integrate with each
other. It is not always critical to choose the best-
of-breed software, but rather to choose the

software that best f i ts you and your
organization.

Elasticity Requires Open Metrics

 An additional component to expanding
and contracting an environment in an automated
fashion is that accurate and relevant metrics
about that environment must be available. In
order for those metrics to be meaningful for
e last ic i ty, they must be rel iable and
comprehensive enough that an unattended
system can make bottom-line decisions based
on them: should I deploy or remove a live
system from my customer-facing si te
immediately? This means that the metrics
cannot be siloed as many IT reporting
infrastructures are, but must reflect both the
state of the application infrastructure as well as
the applications running on it. These metrics
must also be reliable: they must not be
inaccurate, fudged, or intermittently available
because of an individual group’s desire to hide
information from the rest of the team. Elastic
expansions and contractions affect the whole
without human intervention, but by definition
this process is naive - it can only know what we
tell it. If we lie to the system, the system will
make poor choices.
 The choice of metrics should also reflect a
cross-disciplinary approach. Much is lost in IT
monitoring because of a lack of communication
between groups. A monitoring team will pride
itself on implementing trend lines for disk
utilization, but will fail to monitor a change in a
transaction rate or size easily exposed by the
monitored application itself. These metrics can
predict an increase in the rate of growth at a
time when the change would only appear to be a
statistical anomaly in the storage data. Again,
the discussions of these interrelationships will
e v o l v e f r o m t h e d i s c u s s i o n s a n d
implementations you are implementing here,

172 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

and we shouldn’t hesitate too long attempting to
nail them down early. That said, any
u n d e r s t a n d i n g w e c a n g e t a b o u t
interrelationships between the components in
our environment helps us better predict future
changes. Better prediction means better
automation, which means elasticity that’s less
likely to break.
 At Advance this was a major source of
contention. Monitoring was highly siloed, with
Systems controlling an array of Cacti, PNP,
MRTG, and proprietary VMware, 3par, and
NetApp applications to monitor and graph data -
in fact, even within systems, monitoring was
siloed, split between different implementations
in the DBA, infrastructure, and operations
spaces. Application development staff often
maintained off-the-radar monitoring systems
stashed on workstations or quasi-production
servers. The metrics from these groups were
never aggregated, and much time was lost
bouncing requests and information back
between multiple people who were hesitant to
allow access to - or knowledge of the existence
of - their proprietary systems.

Openness Requires Culture Change

 If the organization preparing to implement
a model based on elastic expansion is not in the
state needed to gather the information above -
with a clear availability of infrastructure, OS,
and application-level metrics across the board,
honest communication between groups and
well-documented deployment and configuration
changes, elastic expansion is unlikely to be
possible. These steps are all pre-requisites for
technological change, but they themselves are
less technological than cultural. If organizations
are going to be prepared for elasticity -
operating at a minimum cost most of the time

but prepared for the huge onrush of traffic
caused by an article “going viral” or the sudden
success of their service1, they must address the
underlying lack of transparency before they can
begin to work on the technical challenges.
 In reality, getting this to happen is often
the hardest part of the process. It is fortunate if
the change is being implemented in a top-down
manner, in that if management is mandating the
change, it is often willing to enforce that
mandate by requiring teams to cooperate. But
what if the change isn’t mandated?
 In my own experience, the best approach
is two-pronged. The first prong is to establish
the missing communication. As the head of an
Operations team, I regularly met with the head
of Development teams, including those of small
development groups that my predecessors had
often ignored. I wanted to know their pain
points, where Operations was letting them down
or frustrating their work. Establishing this
communication was key to establishing trust.
 Trust, however, does not come through
words but through deeds. The best action I
found I could take in this regard was to
surrender unilaterally. I might not be able to get
developers or infrastructure to share everything
with me, but I would share everything with
them. Every incident was clearly documented,
metrics were available to all teams, and we
developed a process for requesting the addition
of new metrics. I committed to making these
newly-requested metrics available to them with
an response time based on severity, reaching
from 20-30 minutes during a crisis, to a
maximum of 48 hours outside of one.
 I also worked hard to develop a
professional chain of command-based
communication system with development
managers. This may not be applicable in all
engineering environments - in many having all

1 http://blog.pinboard.in/2011/03/anatomy_of_a_crushing/

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 173

discussions on a public list is part of the fabric
of their work culture. But it can also result in
decisions made based on ego and pride rather
than technical judgment. Being called out on an
error or disagreement in public forces a
different type of response from a concern
brought quietly in private. At Advance I
committed to bring development concerns to the
relevant managers and help triage my team’s
issues rather than exposing them on our internal
IRC channels and mailing lists, and asked the
development managers to do the same. The
ratcheting-down of public tensions combined
with the daily give-and-take of triaging
priorities with the other managers aided greatly
in establishing an understanding of other teams’
needs and willingness to cooperate.

Getting Things Started

 We’ve now established communication
between departments, established some baseline
metrics that we need to pay attention to, and
defined clearly the expectation that server
rollouts and retirements - from the bare metal
phase to appearing in a user-facing cluster -
should be automated. Now we’re ready to do
some work. But where to begin work?
 For the purposes of this paper, I will
assume that metric collection systems are
already available to you, and that you need only
tune your existing system to provide you the
agreed-upon information. There are a variety of
tools excellent at collecting and displaying raw
data - from the simplicity of MRTG to more
complex tools such as Munin or Cacti, and
newer distributed tools such as Graphite or
Ganglia. The use of one or more of these will
depend on your data sources and the familiarity
of your teams with the tools in question. My
team used a mix of Cacti and PNP4Nagios,

although we were strongly looking into
Graphite as a replacement.

Finding Meaningful Metrics

 Assuming that we have monitoring
technology in place, the next obvious question
is “what do we measure?” The answer to this
question may at first seem obvious to
stakeholders on all sides of the discussion, but a
quick synchronization of expectations often
indicates that each group’s answer is different.
The infrastructure and OS groups will tend to
monitor metrics focused on the performance of
the system itself such as processor load,
memory availability, I/O throughput, CPU
percentage (distinct from load, which really
measures queue length - a distinction lost on
many involved in resource monitoring)2, and
swap usage.
 In the meantime, the application team will
likely be focusing on internal data points that
reflect the actual capacity of the application
itself, identifying performance of key areas of
code, headroom left in caching applications
such as Memcache or Varnish, and other data
points that reflect how pieces of the code are
relating to each other. If there is a separate
business owner with access to a dashboard or
metrics, that person or group is likely
examining more vanilla performance stats - for
a web application, time for first byte download,
hits per second, and so forth.
 It is very likely that none of these metrics
will give you on its own the answer that
indicates at what point your application will
need to elastically expand. In fact, it is likely
that, until this point, any discussions about non-
elastic expansion have involved meetings
between several stakeholders to review this data
and find ways to optimize on existing hardware.

2 http://blog.scoutapp.com/articles/2009/07/31/understanding-load-averages

174 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Finding the right formula is an exercise in
looking at aggregate data patterns, finding
correlations that seem to reliably suggest the
need for additional servers, and then regularly
re-examining those metrics as the application
and hardware profiles change.
 The worst mistake you can make at this
point is assuming that you know or understand
too much about your appl ica t ion or
environment. What was true several months ago
may not be true now...a feature in the
application that caused an I/O bottleneck six
weeks ago may have been rectified in the
application code four weeks ago, and now
you’ve hit a CPU limit on your storage device.
Assumptions about causes are more likely to
cause bad interpretation of data, which in turn
are more likely to cause a misunderstanding of
what criteria will need to be used for automated
scaling. So the important part of this stage is to
have a fresh discussion about application
performance and possible bottlenecks at all
levels - an informed discussion, but one that
makes no assumptions and thoroughly re-
examines every facet of the environment
looking for hidden indicators and bottlenecks.
You won’t find them all, but application,
operations and business people together will
find a lot more than any of those three alone.
This is what DevOps looks like in practice.

The Shifting Landscape

 Before moving on to the next stage of
enabling the elastic environment, I want to
return to a phrase used just a few paragraphs
back: “What was true several months ago may
not be true now.”
 While this will always be the case is fast-
moving, multifaceted IT environments, what
should not be the case is that any of this

changing truth should be undocumented, or
worse a complete surprise to all but one or two
people. In a field with rampant hyper-
specialization with limited training budgets and
one or two “experts” in a given technology per
group, it is almost inevitable that sub-pockets of
activity have developed which are at least
partially invisible, even to members of that
pocket’s own team.
 This type of change is absolutely toxic to
elastic expansion. Since all of the painstaking
research and rule development you are doing is
based around a shared understanding of the
environment, changes to that environment that
are not automated make it impossible to deploy
a single additional node without manual
intervention. For that reason, change
management must be implemented for an elastic
environment to succeed.
 This may sound like a leap, but if you
examine the nature of elasticity, the reasoning
becomes clear. Elasticity is essentially a set of
rules wrapped around automation -- a set of
conditions under which automated procedures
should take place. Automation itself is really
nothing more than a form of machine-parseable
and actionable documentation - we are taking
yesterday’s run book or wiki doc and turning it
into a YAML file, but in the end we are writing
documentation about how a system should be
configured, and then using an application to
verify compliance with that document.
 Note that I did not say that change control
was needed - merely change management3. As
long as the changes made are compatible with
the rest of the operating environment and do not
interfere with its operation, those changes can
be submitted without review. Whether it is wise
to do so is a different matter, but don’t attempt
to bite off more than you can chew here - the
framework for change management can be

3 http://www.technologyexecutivesclub.com/Articles/management/artChangeControl.php

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 175

expanded to include change control later on. For
now, the important thing is that any change that
would affect the ability to automatically rebuild
a system is made part of the server and app
deployment processes.

Policy

 Even when using clearly defined metrics
to signal the need for expansion, there are
additional factors to consider. First, we must
consider the statistical anomaly. If you are
running a website, you don’t want to scale to a
thousand machines because a web crawler hit
your site and began to index, or because a user
wrote a bad script to fetch your page every
millisecond. Similarly, we must consider how
long it takes for a new server to come up.
Depending on the nature of your environment,
this can be very tricky. If load increases sharply,
you may need a new server in under a minute.
Even with well-automated deployment, a large
database server can take five or more minutes to
power up and build. If this is not fast enough to
save your application from falling over, we have
missed the point of the elastic expansion.
 The reverse is also true. If load drops to
nothing because of an ISP failure, we do not
want our production cloud to shrink to its
minimum size. We also don’t want to power
down servers we think we may need again in a
few seconds or minutes.
 It is the rules around making these
determinations that I refer to as “policy” - not a
formal organizational policy, but rather an
internal technical policy explaining when and
how fast you expand, when and how fast you
contract, what the artificial limits to both of the
above operations should be, and how we work
around the elements of those operations that
don’t fit our environment.

 There is no formula that can be generated
for this outside of an examination of your own
application’s behavior and the metrics you
should now be gathering. As an example,
however, I can discuss the type of solutions we
had envisioned at Advance.
 For the particular example of database
servers, we looked at a combination of server
load, database server queue length, and slow
query information from the database server, and
latency and queue information from the
application side, to determine that a new
database server was needed. However a new
database server could take in excess of ten
minutes to provision, far too long to resolve a
sudden explosion of activity.
 Advance’s solution was to mandate that,
depending on cluster size, one to two database
servers would be provisioned and immediately
powered down as par4t of our cluster at
minimum size. Every time new database servers
were automatically provisioned, 1-2 extra
servers would be provisioned and immediately
powered off. When the need came for new
servers, we could begin provisioning additional
servers but simultaneously power up the 1-2
idle servers, providing relief to the application
within a minute, while additional resources
came on line. We employed this strategy in
reverse while shutting systems down,
decommissioning them but always leaving 1-2
systems powered down but not destroyed.
 We also decided to implement several
caps on growth and decommissioning to hedge
against the possibility of failures in our metrics
and formulas. We only allowed growth to
proceed at a limited rate, controlling the
maximum number of servers that could be
provisioned per 15-minute period, and setting a
maximum limit on the number of machines that
could be auto-deployed without administrator

4 http://pulpproject.org/

176 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

intervention. We set similar limits on
decommissioning.
 This strategy works well for a “naive”
application, where application servers are not
aware of each other and can scale out
horizontally. This is not the case for most
applications, particularly in-house ones which
have been written to scale vertically - requiring
more resources such as RAM and CPU - rather
than horizontally. As a result, many of these
apps will not see a linear improvement as each
server is added, and it is possible to see a
diminishing return, and eventually even a
negative impact from the addition of more
servers. While an application rewrite down the
line should help this, it’s almost never
immediately possible; rather, you should tailor
your expansion policies to fit the characteristics
of the application you have, while encouraging
your development teams to begin thinking in
terms of horizontal rather than vertical resource
usage in the future.
 There is an additional concern -
application servers which must remain aware of
each other - which we will return to after a
discussion of the necessary remaining
components of the elastic toolset.

Getting the Infrastructure Ready

 For the purposes of this discussion, I will
assume that the reader is functioning in a
“cloud”-type virtualized environment. It is
possible to scale elastically in a hardware
environment, but the complexity level is much
higher. While implementing this system, I was
working with an internal cloud built on
VMware vSphere, with Infoblox providing
DNS and DHCP and Cobbler for provisioning
and repository management.
 The key infrastructure elements needed to
support this are as follows:

• Network support - your network devices
must support servers being brought up in a
variety of subnets. In a virtualized
environment, this typically means that the
appropriate networks are available to the
virtual switches used for provisioning.
Depending on the size of your environment
and complexity of your network layout, you
may need to do additional work on the virtual
switch side and VM controller configurations
to ensure that new servers are brought up on
servers with access to the appropriate subnets.
At Advance, where nearly all subnets were
available to all VMs for provisioning, this was
vastly simplified; in most organizations
however this is not the case.

• Network service support - either pre-
provisioned static IP addresses for new
servers with appropriate ports provisioned, or
DHCP. Since most bare-metal configuration
requires DHCP and PXE booting capability,
having both will make your life much easier.
If a subnet fills up, your auto-deployment
tools should be robust enough to capture and
handle that error, even if only by paging an
admin to resolve the problem. One of the
reasons the Infoblox was terrific for this
deployment was the ease of access to its
DHCP interface for both querying of available
addresses and provisioning of reserved
addresses.

• DNS readiness for automated deployment.
This means that your DNS zones should be
laid out clearly, with reasonable reverse-
mapping of IP addresses, so that automated
provisioning is straightforward. The system
needs to know what IP address to assign based
on system role.

• A p p r o p r i a t e c o n n e c t i v i t y t o b u i l d
environments. You must have the bandwidth
to push down OS images and patch data to
multiple servers quickly.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 177

• API or command-line access to your
virtualization platform which will enable you
to create new VMs, grab their MAC
addresses, and hand information about them
to your bare-metal deployment system.
VMware is shaky in this regard, but it
provided enough access for us to comfortably
do what we needed.

• Automated OS licensing. If you need to enter
a username and password at the console and
that information can’t be stored in an answer
file, elastic expansion is a no-go.

• Automated patch management. This is often
overlooked, but it’s very important that a
server brought up today look like one that was
brought up last week. If we install an OS,
even from the same image, but then run an
update against current package repositories,
our server today may have a very different set
of packages from the server deployed last
week. So it is important that all servers talk to
the same repository set, with the same
package version information across the board.
We were struggling with this when I departed
Advance, but had identified the Pulp project
as a possible solution.

OS and Application Deployment

 Your OS deployment choices will be
largely shaped by your OS choice. As a CentOS
environment, we used Cobbler for system
deployments. There are a multitude of
alternatives - Foreman, Spacewalk, or even
hosting kickstart files on a regular webserver.
The important thing is that the deployment
system be able to identify a host and hand it the
appropriate base configuration. Your OS install
should be generic and minimal; don’t try to
handle 50 gold master images, but rather let
your configuration management tool handle the
heavy lifting.

 At Advance, we chose Puppet as a
configuration management system, and as I
have since left Advance to work for Puppet
Labs, my preferences are clear. However using
any tool in this space puts your organization
light years ahead of most of its competition. The
key is not which configuration management tool
you use, but the discipline to stick with that tool
and keep everything in configuration
management. Remember that, as discussed
earlier, if it’s not in configuration management,
it can’t be deployed automatically.
 At this point I will return briefly to the
concept of clusters that are not a collection of
naive servers, but which must be aware of their
own conf igura t ion or of each o ther.
Configuration management provides the
solution for this. Servers can be assigned
environments or variables based on their
intended role or position in a cluster, and
configuration files can be templatized based on
that information. In Puppet, we can use
Exported Resources to ship dynamic
information out of nodes to a shared datastore,
so that other nodes can learn about them and
make decisions. With proper scripting and
policies, we can repartition our data sets in what
is now a self-aware, elastically growing cluster.

Ad Hoc Administration

 There are circumstances in any IT
environment that don’t fit well into the
paradigm of change/configuration management.
Suppose we want to kick all the Apache servers
in a particular datacenter, or remount NFS
volumes attached to a storage device that went
belly-up?
 The old solutions were SSH in a for loop,
and ClusterSSH, which displays multiple
terminals and allows a user to control them all
simultaneously. Newer tools in this space

178 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

provide more accountability and control and
better reporting.
 At Advance we were using the Marionette
Collective, or MCollective, for a few months
when Puppet Labs acquired it, cementing our
choice. Whether you using MCollective, func,
fabric, Knife, or any other tool the important
thing is that ad hoc administration should be
compatible with your change management
environment. If changes in one disrupt the
other, automation will break. Many of these ad
hoc tools force you into writing clients or
carefully-wrapped agent scripts, something seen
as an inconvenience. But there’s a reason for
this: we want to be able to execute something in
a controlled period of time and then aggregate
and return the results in a meaningful way. We
can then store and report on the results and even
audit the activities of the people using the tools.
 The more centralized and automated this
solution, the less likely it is to have unexpected
impact on the managed environment. If we take
the SSH in a for loop example - if we run that
loop against 1500 servers, who is going to parse
the results to notice that server 650’s response
didn’t quite look right? And if it didn’t, will the
next round of changes cause server 650 to
diverge even further from the remaining 1499?
Tools with built-in auditing and data
summarization can find these issues before they
become problems or unexplained application
behavior.

Where To Next?

 I was saddened to leave Advance before
we actually went elastic in production, but we
had all the groundwork in place, thanks to the
work of our infrastructure team’s construction
of their vDeploy tool, which interfaced with our
VMware, DNS and DHCP environments to
deploy new servers, then handed off to my

Operations team’s Cobbler and Puppet
environments.
 The workflow was that our Nagios-based
monitoring system would trigger vDeploy only
if the appropriate business criteria were met,
causing vDeploy to build a new host based on
information passed from Nagios. The concept of
doing this sounded unthinkable at the start of
the design process, but after analyzing the
problem, it became clear that technologically,
there were very few hurdles. Most applications
and environments have APIs or RESTful
interfaces that can be used for this sort of
communication, and writing these scripts was
simply a matter of putting in the work.
 The actual complexity lay in building the
application and business rules around when
these things should happen. Focusing on
communication and shared information rather
than the engineering details proved to be the
key. Good engineering and technology selection
is key but is made much easier by taking the
time to understand the business logic that these
engineering exercises are designed to satisfy.
While the impulse of many engineers is to jump
in and start coding, taking the time to
understand and manage the underlying cultural
and infrastructure issues can turn development
of an elastic environment from a seemingly
insurmountable series of roadblocks to an
exercise in small-scale script development.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 179

Scaling on EC2 in a fast-paced environment
Practice and Experience Report

LISA 11

Nicolas Brousse, Lead Operations Engineer, TubeMogul, Inc.
Email: nicolas@TubeMogul.com

 Abstract — Managing a server infrastructure in a fast-
paced environment like a start-up is challenging. You have little
time for provisioning, testing and planning but still you need to
prepare for scaling when your product reaches the tipping
point. Amazon EC2 is one of the cloud providers that we
experimented with while growing our infrastructure from 20
servers to 500 servers. In this paper we will go over the pros
and cons of managing EC2 instances with a mix of Bind, LDAP,
SimpleDB and Python scripts; how we kept a smooth working
process by using NFS, auto-mount and shell-scripting; why we
switched from managing our instances based on tailor-made
AMI/Shell-scripting to the official Ubuntu AMI, Cloud-init and
puppet; and finally, we will go over some rules we had to follow
carefully to be able to handle billions of daily non-static http
request across multiple Amazon EC2 regions.

	
 Index Terms - Amazon EC2, scalability, fault-
tTubeMogulolerance, infrastructure, DevOps.

I. WHAT IS AMAZON EC2 AND HOW DOES IT WORK?

 Amazon AWS1 provide a wide range of web-services.
Amazon EC22 is part of AWS as a public cloud solution.
EC2 let you start servers, called instances3, on-demand. You
are billed per-hour of usage and can stop an instance at any
time. You can start your instance in a given geographic
Region and Availability Zone4.
 Because of the large adoption of EC2, Amazon added a

layer of indirection so that each AWS account’s Availability
Zones can map to different physical data center equivalents5.

When starting an instance, you will generally have to
provide at least four pieces of information: the AMI6 (server
image), the instance type7 (ram/CPU/arch), the Security
Group8 (firewall rules) and the Availability Zone. You can
start an instance by using the Amazon EC2 API or the web
console. By default an Amazon instance is started with some
defined ephemeral storage space. Any data on it will be lost
if you stop the instance. To use permanent storage you need
to use solution like EBS. When stopping a server you lose
the attached public and private IP. A new instance will have
different IPs. The only way to keep a public static IP is to
use Amazon EIP9.

 In September 2010, Amazon introduced some important
features: Tagging, Filtering, Import Key Pair, and
Idempotency. By adding customized tags (like hostname or
profile name) you can easily filter your instances or EBS10
volumes based on the given tags. In short, tagging and
filtering lets you manage your own meta-information for
each Amazon cloud resources.

II. KEEP SOME ORDER IN YOUR CLOUD

 There are many client bindings built for the Amazon
EC2 API which make it quite easy to use and implement. We
started to use EC2 in 2008 by taking advantage of the
computing ability that Amazon provide. We start a few
dozen of servers for a few hours a day to fetch and aggregate
data from different partners. The aggregated data are pushed
into our shared MySQL cluster at our Colo center.

 In Figure 2, you can see how we interact with EC2 to
crawl our partners API and store data in our database. 1) our

1/9

Fig 1. Amazon EC2 : Region and Availability Zone
Fig 2. EC2 and Colo center

180 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

application server calls the Amazon API at defined interval
to start Amazon instances. 2) Amazon launch the instances
we requested. 3) we push our code to the EC2 instances and
start our program. 4) our application open an SSH tunnel to
our databases. 5) we crawl our partner’s API and aggregate
the data as we want. 6) we write the results to our databases.
7) EC2 instances kill them-selves when they are done
crawling.
 This design works great and requires really low
maintenance. Though, when you work in a startup
environment, product evolve quickly. We needed to quickly
develop our new video analytic product with a large number
of servers to handle the analytics for billions of video stream
per month. We chose to build this new product entirely on
EC2. This let us to change the application quickly while the
product grew without worrying about adding servers, rack,
wiring, etc. Because of the nature of our product, we needed
permanent storage, that’s why we started to use EBS
volumes.
 To be able to add or remove nodes easily with different
instance profiles it’s important to be able to quickly identify
what a server is doing and identify what its role is (Web
server, Database, Hadoop namenode/datanode, etc.). To keep
some order in our cloud we used clear security group, human
readable hostnames (no ip-XXX.compute.internal or domU-
XXX.compute.internal), NFS home directories and a strong
and flexible monitoring.

A. Controlling access to the servers

 1) Amazon EC2 Security Groups can get a bit
cumbersome to manage especially when you want to access
servers from anywhere without updating your rules while
keeping a strong security policy. It’s easy to forget to update
or remove an old ip, etc. This is why we chose to manage
our servers by setting up OpenVPN11 servers on two of our
Amazon instance using static IP, aka EIP. The ingress rules
for our Security Groups stay simple by allowing SSH only
from those VPN servers and by opening only the required

public port if any. The VPN (using OpenVPN with auth-
ldap12 plugin) add another layer of security ensuring that
only people with a valid username and password and a valid
unique certificate can get access.
 2) In addition to firewalls, we needed to give restricted
access to some DBA, developers or contractor. Some needed
root access. Our rule of thumb: “You only get the permission
you really need”. No need to give root access to every server
to your boss if he don’t even know what to do with it. To
manage those permissions and user accounts we used
OpenLDAP13. All our instances are configured with
pam_ldap. We extensively use pam_filters to grant access
based on hostname, host group and Availability Zone.

At any time we can grant or revoke access to any users for a
server or multiple servers in one or multiple regions.

B. Identify running instances

 Having obscure hostnames doesn’t make your life easy
when you start to deal with multiple instance profiles and
multiple products with an extra-small sysop team (one or
two people). When a product is in its early days with
frequent changes, developers often needed access to the
servers to be able to troubleshoot issues and find out why
their last release wasn’t working as expected. To help
identify our hosts we used one of our EC2 instances as a
management server configured with a DNS service (Bind14)
patched for the ldap backend15 and a LDAP service
(OpenLDAP 2.4) using some of our own LDAP schema. For
each host we stored in LDAP the private IP (10.0.0.0/8) and
the public IP (it can be an EIP). Each host that we started
used an AMI configured with the given private IP of the
name server. Our resolv.conf would look like this:

When starting an instance we also used the user-data to
update the /etc/hostname. The user-data is an optional
parameter you can use when starting an EC2 instance. This
can support up to 16KB data. On the server you can fetch
those user data at boot through an init script doing a curl
command:

 curl -s http://169.254.169.254/latest/user-data

From there, a lot become possible. In our case, we initially
used the user-data just to pass our server hostname, example:
“hostname=dev-mysql01”. Note that, in the same way you
can have access to many meta-data of your running instance:

 curl -s http://169.254.169.254/latest/meta-data/

pam_filter |(host=dev-mysql01.us-east-1b)(host=dev-mysql01.us-
east-1)(host=dev-mysql01.*)(host=dev-mysql*.us-east-1b)
(host=dev-mysql*.us-east-1)(host=dev-mysql*.*)(host=*.us-
east-1b)(host=*.us-east-1)(host=*)

domain <product>.private
search <product>.private <product>.public
nameserver 10.X.X.X

2/9

Fig 3. EC2 and our private network

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 181

The pam ldap was configured to use the DNS entry to get
the LDAP server IP.

uri ldaps://ldap.<product>.private

We started instances using a Java command line tool, called
ec2ldap. We wrote it using Typica16 (Java Binding for
Amazon API), SQLite17 and LDAP. We kept tracking of all
our instances name and profiles in a SQLite database and
used a script called Cerveza wrote in Tcl/Tk to access our
hosts easily and do large maintenance with some one-liners:

./cerveza remote mysql[1-40] service mysql restart

 With the SQLite database and Cerveza, it was easy for
us to run over all our EC2 instances and update the
resolv.conf if our management box went down and got a new
IP. This worked well for a while but there were some
important single point of failures18 (SPOF) that finally bit us.

C. The benefit of NFS auto-mounted home directory

 As stated earlier, developers needed easy access to the
servers. To make their life easier we did setup an NFS export
on our management box and used Autofs to mount the home
directories on all our EC2 instances.

This setup makes it easy to run a script across multiple
instances without copying the instance to each host. It has
been a great help in our dev environment but also when
troubleshooting many servers in production. It’s convenient,
because you get your bash aliases or user script everywhere
you login, etc. Unfortunately there is a downside, your
access files can get slow, home dir can get stuck or
permanently mounted if a service write to the home
directory or keep a file descriptor open, etc.
 In many cases we ended up using those auto-mounted
home directories to run shared scripts on the first boot of an
instance to deploy code, build our Raid devices with
multiple EBS or reassemble them using mdadm or LVM.

D. Instance monitoring with Ganglia19 and Nagios20

 We choose to monitor our infrastructure with Nagios
and Ganglia. It was a no-brainer for Nagios as we already
used it to monitor our Colo servers and were quite used to its
configuration. Ganglia was new for us as we used to graph
our servers with Munin21. In our case, the decision between
Munin and Ganglia was made on poll versus push model.
Munin server poll each client, this requiring many resources
on the main server especially when building each graphs.
Ganglia uses a push model, each client report to the main

/etc/auto.master:
 /home /etc/auto.home intr,soft

/etc/auto.home:
 * fstype=nolock,noatime,soft,intr nfs.<zone>.private:/
home/&

process (gmond). Ganglia allow much more flexibility in
graphing grids and clusters although we couldn’t use the
multicast support. For security purposes, Amazon EC2
doesn’t let you to do multicast (or broadcast) on their
network.

 We configured multiple gmond processes on our
management box to listen on different ports and collect data
in different cluster group (one per Amazon Security Group)
then just one gmetad process to collect all the data from each
local gmond. This helped us to organize our graphs. Our
EC2 instance were getting configured at first boot by
running a ganglia configuration script that ensures the
instance reports to the correct gmond process (if instance in
SG dev, reports to port 8630, if SG mysql, report to 8631,
etc.). Ganglia is a powerful solution so we were able to use
the Python module to graph22 our Java process using JMX23
with JPype24 . All those data are grouped in different
dashboard and give us a quick way to spot issues.

 For our Monitoring we use Nagios 3.2 with NSCA25 and
regex (in nagios.cfg: use_regexp_matching=1). We defined
some generic service definitions for each cluster of servers.
Some of our checks were directly looking at our RRD26 data
generated by Ganglia. Because of the quickly growing
numbers of servers and services monitored we started to
have too much I/O (read/write RRD files). We started to use
rrdcached27 which solved most of the problem but we still
had many Nagios active checks which occasionally lead to
swapping or slowness during checks. To fix the problem we
simply split our ganglia load between two different
management boxes, both servers use rrdcached to reduce
IOs.

III. LEARNING THE HARD WAY
(or how to lock yourself out of your servers...)

 While we were building our infrastructure and
upgrading our network configuration, we were aware of few
SPOF being introduced but they had a low impact or no
impact on our production environment. However, what was
initially designed for convenience and laziness became
critical. The way we started to depend on those services
make them even more critical. We didn’t see it coming
initially. This is the story of a three days nightmare starting
with a VPN outage, then NFS/LDAP outage locking us out
of all our EC2 instances.

A.The outage

1) For some reason, our file system storing our Nagios and
Ganglia files were corrupted (EBS or Raid problem). This
lead to many process getting stuck trying to access the
faulty device. Too many resources were being used so the
OOM Killer started killing processes, including our VPN
process. After many reboots of the management server,
nothing came back up. The console output showed a
prompt for fsck check due to the faulty device. We had to
kill the instance and start a new one.

3/9

182 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

2) The new instance failed to start. It prompted us again for
fsck on our EBS volumes (used for NFS home dir). In
fact, the mount point was defined in the fstab in the AMI,
so it kept trying to mount the failing EBS with no way for
us to fix it. There is no KVM with EC2, so we didn’t have
any way to try to recover from this situation. We ended up
starting a new instance with an old AMI from which we
removed the fstab so we could start the instance and finish
it manually by running fsck, etc.

3) After reboot, our instance got a new Private IP allocated.
This meant a new IP for our DNS, LDAP Producer and
NFS. After recovering our instance we reimported our last
ldif backup to LDAP. As the DNS server IP was
hardcoded in our instance, we had to “manually” login on
each server using a local account with the ssh keypair
then update the resolv.conf, dnsmasq.conf, dhclient.conf,
restart autofs and dhclient.

4) Unfortunately, as we used an old AMI for our
management box, we lost many configuration settings
breaking our Nagios and Ganglia services but also our
command line tool (Cerveza) used to query our SQLite
DB and easily access any hosts. This slowed our ability to
recover a basic setup to be able to see what was wrong
and fix it.

5) The ssh backdoor didn’t always worked. We had to restart
many instances manually. At boot they couldn’t load our
boot scripts from NFS. We had to login and finish the
boot process manually by fixing Autofs then run the boot
scripts. We also had to reconfigure many ssh tunnels, fix
mysql replication, and recover missing or outdated
configuration files, etc.

6) Some of the servers were using private IP in the EC2
Security Group, rebooting those server make the outage
more complex as we needed to review all our security
rules.

Luckily, this outage didn’t affect our production services but
it did lock us out of our servers for a long time. Needles to
say, we took some time to revisit what went wrong and how
we can fix it.

B. What we quickly fixed

1) One of the biggest pains during this outage, was our pam
ldap and ssh configuration. Long timeout was preventing
us from login into many servers (the cumul of timeout
were higher than our ssh LoginGraceTime timeout, set to
2 min.), so the first thing was to reduce the autofs and
ldap timeout and change nsswitch to look at the local
account before ldap so even if our dns and ldap goes
down, we still have an ssh backdoor to login and do local
fix or maintenance.

2) We fixed our resolv.conf to handle better failover using:
options attempts:1 timeout:1

3) We set up a better service and dns caching on each host
using nscd instead of dnsmasq. We enabled caching for
group, passwd, hosts and services.

4) We configured a secondary VPN service on our second
management server and configured the OpenVPN clients
to use “remote-random” option.

5) We stopped saving our fstab in the AMI so we could boot
our instance even when a fsck is required.

6) We stopped using private IPs in our EC2 security group
7) We use a Haproxy28 loadbalancer for DNS and LDAP

service via Public IP using EIP.
8) Better version control of our boot scripts and AMI. We

now manage almost everything with our configuration
management tool.

IV. GOING WORLWIDE

 While our business evolved, we had a need to have a
presence in different part of the world. This is easy to do
with Amazon multiple region, though we have response time
constraint with many partners. Our ninety-ninth percentile
response time must be under 120 ms, including network
round trip. Our partners are within 60 ms of our Amazon
servers so it doesn’t leave us much room especially if you
consider the network variation inside Amazon’s network or a
noisy neighbor.

/etc/auto.master :
 /home /etc/auto.home timeout=5,retry=0,rw,intr,soft

/etc/nsswitch.conf:
 passwd: files ldap
 shadow: files ldap
 group: files ldap

/etc/ldap.conf:
 timelimit 15
 bind_timelimit 5

4/9

Fig 4. Network Flow between Clusters and Grid

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 183

 While building our international clusters, we tried to
keep two goals in mind. First, how to reuse our existing tools
and automate as much as we can. Second, do not create new
SPOF failures in one region that would impact the others.

A. Simplify the instance boot process

 With over 500 EC2 instances spread in multiple regions,
we had to make our life easier. We got rid of our tool
“ec2ldap” in Java and rewrote Cerveza in Python using
Boto29 (Amazon API binding for Python). We rewrote
Cerveza to handle full instance start/stop/reboot with profile
management. We chose Python over Java because of the
scripting nature of Python. We didn’t want to slow ourselves
down in a compile/release process for this simple tool. A
scripting language lets us add features quickly and do quick
bug fixing.

 Our previous outage led us to stop using SQLite. We
wanted a solution where we do not have to rely on a local
database or to be forced to start/stop instances from a
management server. We replaced SQLite for Amazon
SimpleDB30 to store only profile information. For the rest
we leverage the Tagging feature of the Amazon API. All our
hosts or EBS volumes are tagged with hostname, device
name, etc. This gives us much more flexibility as we can run
Cerveza from our own laptop. We are not depending on the
location of our SQLite database, we can start, stop, reboot
instances from anywhere for any kind of server we want to
start. The other major thing we got rid is the home made
AMI. It takes lot of time to build and maintain an AMI, so
it’s not practical to deploy changes, etc. We chose to move to
the official Ubuntu EC2 AMI and use cloud-init31. This is
powerful. Cloud-init allow us to kick off our instance with
different profiles by passing advanced user-data or scripts.

When starting a host with Cerveza for the first time we need
to specify the instance profile we want to start (Hadoop
node, MySQL, Java server, etc):

 cerveza -m noc -- --zone ap-southeast-1a --start demo01
--profile UbuntuGeneric32Bit

To stop the host:

 cerveza -m noc -- --zone ap-southeast-1a --stop demo01

To start the host a second time, we don’t need to define the
profile again, cerveza know it by querying SimpleDB :

 cerveza -m noc -- --zone ap-southeast-1a --start demo01

 Besides using LDAP for DNS data and SimpleDB for
profiles information of existing hosts, Cerveza also uses
Yaml32 to define our instances profiles and volume profiles.

Our Ubuntu Generic 32 Bit instance is generally used for
development purpose. In this profile we just define some
basic information (instance type, key pair, default SG, AMI,
etc.) but also important user-data. By passing a list of files,
Cerveza will automatically concat all the given file to
generate a compressed mime-multipart data file and pass it
in the user-data when launching the instance. Cloud-init will
read it and execute each script when the server boot. Cloud-
init allow advanced configuration and many possibilities. In
our case, the user-data script cloud-config-puppet.txt let us
configure Puppet33, our configuration management tool, at
boot time.

B. Use a configuration management tool

 We were thinking about using a configuration
management tool for a long time, but hesitated until LISA
10. As we changed our AMI and started to use cloud-init, we
took the opportunity to deploy puppet on all our hosts and
start using it. We briefly looked at Cfengine34 and Chef35
too, but finally decided to go with Puppet as it seemed a
little more documented and already fully integrated to
Cloud-init.

 Configuring and deploying puppet is fast and easy but
using it properly is not that obvious. We had to deal with a
couple of annoying problems like huge CPU spikes on each
client, obscure errors for non-initiate people, process not
running because of a lock file after reboot, etc. We addressed
most of those issues. We found out that abusing of Augeas36
is not necessarily good. We were able to speed up our puppet
run from over 400 seconds to less than 15 seconds by
replacing Augeas by puppet templates (mostly on long sysctl
configuration). We use some ruby environment variables37 to
optimize each puppet client run, though we are still
experimenting those. We stopped running puppet as a
daemon as “fileserver” used too much resources. We had
cases were puppet was using over 1GB of ram leading OOM
Killer to kill some other process like our Membase38 server.
We now setup our puppet in a crontab running every half an

--- !InstanceProfile
name: UbuntuGeneric32Bit
desc: Ubuntu Generic instance profile without EBS
Volumes
aws: !InstanceAws
 ami: { us-east-1: ami-a6f504cf, us-west-1:
ami-957e2ed0, ap-southeast-1: ami-7c423c2e, ap-
northeast-1: ami-3a0fa43b, eu-west-1: ami-339ca947 }
 security_group: devzone
 key_pair: tm-devzone
 type: c1.medium
 elastic_ip: false
volumes: []
startup_scripts: []
shutdown_scripts: [shutdown]
user_data: [cloud-config-base.txt, setup-hostname.sh,
root-login.sh, cloud-config-puppet.txt]
check_ec2_kernel: 2.6.35-28-virtual

5/9

184 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

hour. To avoid a peak of requests on our puppet master we
run the cron at random minutes on each client.

 In the end, Puppet makes our life easier to manage and
change configuration on multiple servers in four different
data centers. Our puppet masters are located in our Colo
center on US east coast. They are setup with Apache 2 +
Phusion Passenger39 with one master and one failover server.
The failover server also handles the puppet reports using
Puppet Dashboard40. We patched the puppet clients to report
their FQDN as hostname instead of using there certificate
name.

 We currently don’t have a clear dev environment for our
puppet configuration, though our dev servers are setup to use
a different environment so we can test our modules changes
in dev before pushing to production. We are looking at better
ways to manage this.

 # schedule puppet to run via cron
 $minute1 = generate('/usr/bin/env', 'sh', '-c', 'printf $((RANDOM
%29+0))')
 cron {
 "puppet_run":
 ensure => present,
 command => "/usr/sbin/puppetd --onetime --no-daemonize --
logdest syslog > /dev/null 2>&1",
 environment => ['RUBY_HEAP_MIN_SLOTS=500000',
 'RUBY_HEAP_SLOTS_INCREMENT=250000',
 'RUBY_HEAP_SLOTS_GROWTH_FACTOR=1',
 'RUBY_GC_MALLOC_LIMIT=500000'
],
 user => "root",
 minute => $minute1,
 hour => "*";
 }

in puppet.pp:

class puppet inherits puppet::init {
 if $hostname =~ /^dev-*$/ or $ec2_security_groups ==
"devzone" {
 augeas {
 "puppet_env":
 context => "/files/etc/puppet/puppet.conf/main",
 onlyif => "get environment != 'development'",
 changes => "set environment 'development'",
 notify => Exec["puppet"];
 }
 }
}

in puppet.conf:

[development]
 manifestdir = $confdir/dev/manifests
 manifest = $manifestdir/site.pp
 modulepath = $confdir/dev/modules:$confdir/modules

C. Mirroring DNS, LDAP, NFS

 Because of the multi-region and our response time
constraint, we had to get DNS servers on each region. We
use some “gateway” servers whose role is to serve as local
DNS server, LDAP and NFS. As our DNS depend on LDAP,
we initially setup LDAP Proxy with query caching which
was working great except when running a non-cached query.
We were getting some latency spike of up to four seconds
for a DNS response. This was affecting our production
response time in some cases increasing our percentage of
timed out requests. We changed this configuration to use
LDAP syncrepl41. Each LDAP server on each region is a
master replicating one of our master server on US EAST.
This solved our DNS response time and pam ldap response
time. Though, since we use Autofs for our home directories
we had to address the problem for our NFS server. On each
region we use a NFSv4 mount with FS-Cache
(cachefilesd42), this aimed to improve read speed on each
region. The key thing we did was to remove the NFS mount
point from the updatedb configuration because it would
generally kill the server performance.

 We are still not fully satisfied of our current solution and
may stop using NFS for our home directory as it introduces a
possible snowball effect in case our NFS fails on US east.
Auto-mounted home directory doesn’t give us any more
added value as the product matures and our server

Fig 5. Network Flow between multiple AWS regions

/etc/updatedb.conf:

PRUNE_BIND_MOUNTS="yes"
PRUNEPATHS="/tmp /var/spool /media /opt/openldap/var /
EBS /home"
PRUNEFS="NFS nfs nfs4 rpc_pipefs afs binfmt_misc proc
smbfs autofs iso9660 ncpfs coda devpts ftpfs devfs mfs shfs sysfs
cifs lustre_lite tmpfs usbfs udf fuse.glusterfs fuse.sshfs ecryptfs
fusesmb devtmpfs bindfs"

6/9

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 185

infrastructure grows. Also, we are having more clients using
the NFS doing multiple mount/unmount leading to frequent
home directories being stuck with a “Stale NFS file
handle”43.

D. What else?

 To speed up our application deployment in multiple
regions we started to use Amazon S344 with localized
buckets. Instead of pushing our files from our Colo to each
server, we push the files once to each of the localized S3
buckets then fetch the files to release on S3 from each server
and deploy them locally.

 Overall, with this infrastructure, we still have room for
many improvement:

1) One clear blocker is NFS, we definitely plan to entirely
remove NFS with auto-mounted home directory and get
back to a more standard way to manage our servers. We
are introducing more security checks and rules limiting
production access so there shouldn’t be any more need of
user home directory being synchronized this way on all
our servers.

2) We currently have two different sets of VPN and LDAP
servers, one in our Colo and one in EC2. We want to
centralize them to simplify our user and ACLs
management.

3) We still have some “Gateway” servers, doing bridge
between our regions. They are not based on the Ubuntu
EC2 AMI. For lower maintenance on our side, we want to
migrate everything onto the official Ubuntu EC2 AMI and
fully use Cloud-init possibilities. We also want to get to a
more standardized approach of managing our setup by
using our internal Debian repository when required.

4) We are looking at Amazon VPC45 to be able to better
manage our private IPs and clusters. It can help to have
better security policies in place preventing your backend
from being accessed int the public internet, etc.

5) We plan to look again at Amazon ELB46 to manage our
different load balancing. One of the biggest drawbacks we
had with ELB was the lake of visibility. No access logs
and no clear error reporting make things hard to
troubleshoot especially when you start having 500 errors
returned by ELB during traffic spike.

V. LESSON LEARNED

 Evolution of your infrastructure must stay fault-tolerant
in any case. What was simple and working at first can get
complex in a multi-region / high latency environments.

 In a small team with limited resources you will have
little time to get everything right. You will miss important
point leading to outages. Make sure to have a valid backup
strategy and have a recovery procedure.

 Never build a SPOF, even if it’s for a “non-critical” use.
As you start to rely more on this services (and you generally

don’t see it coming), your SPOF can have more impact than
you would anticipate.

 Infrastructure legacy can become a pain to maintain.
Don’t be afraid to revisit what you did and change it. What
was true at one point of your design may not be true
anymore.

 Scaling your infrastructure in a fast paced environment
require a lot of automation. which is why using a
configuration management tool early would prevent you
many headaches later on.

ACKNOWLEDGMENTS

 I would like to thank the LISA Chair and my shepherd,
Marc Staveley, for the opportunity of this paper. It’s an
insightful experience that I would not hesitate to recommend
to anyone.
 I also want to thanks my close friends and family who
continuously support me in my career choices.
 This paper wouldn’t have been possible without the
opportunity I got by moving to the USA and joining
TubeMogul in 2008 after just few Skype interviews. Hence,
I express all my respect and consideration to John Hughes
and Brett Wilson, TubeMogul’s Founders.

REFERENCES

7/9

1 Amazon Web Service (AWS)
Amazon Web Services (AWS) delivers a set of services that together form a
reliable, scalable, and inexpensive computing platform “in the cloud”.
Website: http://aws.amazon.com

2 Amazon Elastic Cloud (EC2)
Amazon Elastic Compute Cloud (Amazon EC2) is a web service that
provides resizable compute capacity in the cloud. It is designed to make
web-scale computing easier for developers.
Website: http://aws.amazon.com/ec2

3 Amazon Instance
An Amazon Instance is the AWS version of a server. It’s known to be a Xen
DomU Virtual Machine. Instances come in a variety of configurations and
are designed to provide predictable and dedicated computing power on
demand.

4 Availability Zone (AZ) and Regions
Amazon EC2 provides the ability to place instances in multiple locations.
Amazon EC2 locations are composed of Availability Zones and Regions.
Regions are dispersed and located in separate geographic areas (US, EU,
etc.). Availability Zones are distinct locations within a Region that are
engineered to be isolated from failures in other Availability Zones and
provide inexpensive, low latency network connectivity to other Availability
Zones in the same Region.

5 Matching EC2 Availability Zone Across AWS Account
By Eric Hammond on July 28, 2009
“Summary: EC2 availability zone names in different accounts do not match
to the same underlying physical infrastructure. This article explains a trick
which can be used to figure out how to match availability zone names
between different accounts.”
Blog post: http://alestic.com/2009/07/ec2-availability-zones

6 Amazon Machine Image (AMI)
An Amazon Machine Image (AMI) is an encrypted machine image stored in
Amazon S3. It contains all the information necessary to boot instances of
your software.

186 LISA ’11: 25th Large Installation System Administration Conference USENIX Association8/9

7 Amazon Instance Type
A specification that defines the memory, CPU, storage capacity, and hourly
cost for an instance. Some instance types are designed for standard
applications while others are designed for CPU-intensive applications.
Link: http://aws.amazon.com/ec2/instance-types

8 Amazon Security Group (SG)
A security group is a named collection of access rules. These access rules
specify which ingress (i.e., incoming) network traffic should be delivered to
your instance. All other ingress traffic will be discarded.

9 Amazon Elastic IP (EIP)
Elastic IP addresses are static IP addresses designed for dynamic cloud
computing. An Elastic IP address is associated with your AWS account not a
particular instance, and you control that address until you choose to
explicitly release it. Unlike traditional static IP addresses, however, Elastic
IP addresses allow you to mask instance or Availability Zone failures by
programmatically remapping your public IP addresses to any instance in
your account.

10 Amazon Elastic Block Store (EBS)
Amazon Elastic Block Store (EBS) provides block level storage volumes
for use with Amazon EC2 instances. Amazon EBS volumes are off-instance
storage that persists independently from the life of an instance. Amazon
Elastic Block Store provides highly available, highly reliable storage
volumes that can be attached to a running Amazon EC2 instance and
exposed as a device within the instance.
Website: http://aws.amazon.com/ebs

11 OpenVPN “is a free and open source software application that
implements virtual private network (VPN) techniques for creating secure
point-to-point or site-to-site connections in routed or bridged configurations
and remote access facilities. It uses SSL/TLS security for encryption and is
capable of traversing network address translators (NATs) and firewalls.” in
Wikipedia: The Free Encyclopedia.
Website: http://openvpn.net

12 Auth-LDAP plugin for OpenVPN
Website: http://code.google.com/p/openvpn-auth-ldap

13 OpenLDAP is an open source implementation of the Lightweight
Directory Access Protocol.
Website: http://www.openldap.org

14 BIND is by far the most widely used DNS software on the Internet. It
provides a robust and stable platform on top of which organizations can
build distributed computing systems with the knowledge that those systems
are fully compliant with published DNS standards.
Website: http://www.isc.org/software/bind

15 Our Bind 9 install is patched with bind9-ldap + internal patch to support
our LDAP schemas and specifics EC2 needs.
Website: http://bind9-ldap.bayour.com

16 Typica is Java client library for a variety of Amazon Web Services.
Website: http://code.google.com/p/typica

17 SQLite is a software library that implements a self-contained, serverless,
zero-configuration, transactional SQL database engine. SQLite is the most
widely deployed SQL database engine in the world. The source code for
SQLite is in the public domain.
Website: http://www.sqlite.org

18 Single Point Of Failure (SPOF)
“A single point of failure (SPOF) is a part of a system that, if it fails, will
stop the entire system from working.[1] They are undesirable in any system
with a goal of high availability, be it a network, software application or
other industrial system. Systems are made robust by adding redundancy in
all potential SPOF and is generally achieved in computing through high-
availability clusters. Redundancy can be achieved at the internal component
level, at the system level (multiple machines), or site level (replication).” in
Wikipedia: The Free Encyclopedia.

19 Ganglia “is a scalable distributed system monitor tool for high-
performance computing systems such as clusters and grids. It allows the
user to remotely view live or historical statistics (such as CPU load
averages or network utilization) for all machines that are being monitored.”
in Wikipedia: The Free Encyclopedia.
Website: http://ganglia.info

20 Nagios “is a popular open source computer system and network
monitoring software application. It watches hosts and services, alerting
users when things go wrong and again when they get better.” in Wikipedia:
The Free Encyclopedia.
Website: http://www.nagios.org

21 Munin is a networked resource monitoring tool that can help analyze
resource trends and "what just happened to kill our performance?"
problems. It is designed to be very plug and play. A default installation
provides a lot of graphs with almost no work.
Website: http://munin-monitoring.org

22 Graphing Java JMX Object values with Ganglia and Python using
JPype
Blog post: http://goo.gl/LL7X3

23 Java Management Extensions (JMX)
Set of specifications for application and network management in the J2EE
development and application environment

24 JPype is an effort to allow python programs full access to java class
libraries. This is achieved not through re-implementing Python, as Jython/
JPython has done, but rather through interfacing at the native level in both
Virtual Machines.
Website: http://jpype.sourceforge.net

25 Nagios Service Check Acceptor (NSCA)
NSCA allows you to integrate passive alerts and checks from remote
machines and applications with Nagios. Useful for processing security
alerts, as well as deploying redundant and distributed Nagios setups.
Website: http://goo.gl/ikagM

26 RRDtool is the OpenSource industry standard, high performance data
logging and graphing system for time series data. RRDtool can be easily
integrated in shell scripts, perl, python, ruby, lua or tcl applications.
Website: http://oss.oetiker.ch/rrdtool

27 rrdcached is a daemon that receives updates to existing RRD files,
accumulates them and, if enough have been received or a defined time has
passed, writes the updates to the RRD file.
Website: http://oss.oetiker.ch/rrdtool/doc/rrdcached.en.html

28 Haproxy is a “Reliable, High Performance TCP/HTTP Load Balancer”
Website: http://haproxy.1wt.eu

29 Boto is a Python interface to Amazon Web Services
Website: http://code.google.com/p/boto

30 Amazon SimpleDB (SDB)
Amazon SimpleDB is a highly available, flexible, and scalable non-
relational data store that offloads the work of database administration.
Developers simply store and query data items via web services requests,
and Amazon SimpleDB does the rest.
Website: http://aws.amazon.com/simpledb

31 Cloud-init is the Ubuntu package that handles early initialization of a
cloud instance. It is installed in the UEC Images and also in the official
Ubuntu images available on EC2.
Website: https://help.ubuntu.com/community/CloudInit

32 YAML is a human friendly data serialization standard for all
programming languages.
Website: http://yaml.org

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 187 9/9

33 Puppet is an open source configuration management tool.
Website: http://puppetlabs.com

34 CFEngine automates IT processes and ensures the availability and
consistency of applications and services.
Website: http://cfengine.com

35 Chef is an open-source systems integration framework built specifically
for automating the cloud. No matter how complex the realities of your
business, Chef makes it easy to deploy servers and scale applications
throughout your entire infrastructure. Because it combines the fundamental
elements of configuration management and service oriented architectures
with the full power of Ruby, Chef makes it easy to create an elegant, fully
automated infrastructure.
Website: http://www.opscode.com/chef

36 Augeas is a configuration editing tool. It parses configuration files in
their native formats and transforms them into a tree. Configuration changes
are made by manipulating this tree and saving it back into native config
files.
Website: http://augeas.net

37 Fine tuning your garbage collector By Chris Heald on June 13, 2009
Blog post: http://goo.gl/5GYBL

38 Membase Server is the lowest latency, highest throughput NoSQL
database technology on the market. When your application needs data, right
now, it will get it, right now. A distributed key-value data store, Membase
Server is designed and optimized for the data management needs of
interactive web applications, so it allows the data layer to scale out just like
the web application logic tier – simply by adding more commodity servers.
Website: http://www.couchbase.org/membase

39 Phusion Passenger, aka mod_rails or mod_rack, allow easy and robust
deployment of Ruby on Rails application on Apache and Nginx Webservers.
Website: http://www.modrails.com

40 Puppet Dashboard is a web interface and reporting tool for your Puppet
installation. Dashboard facilitates management and configuration tasks,
provides a quick visual snapshot of important system information, and
delivers valuable reports. In the future, it will also serve to integrate with
other IT tools commonly used alongside Puppet.
Website: http://puppetlabs.com/puppet/related-projects/dashboard

41 The LDAP Sync Replication engine, syncrepl for short, is a consumer-
side replication engine that enables the consumer LDAP server to maintain
a shadow copy of a DIT fragment. A syncrepl engine resides at the
consumer and executes as one of the slapd(8) threads. It creates and
maintains a consumer replica by connecting to the replication provider to
perform the initial DIT content load followed either by periodic content
polling or by timely updates upon content changes.
Documentation: http://www.openldap.org/doc/admin24/replication.html

42 The cachefilesd daemon manages the cache data store that is used by
network filesystems such a AFS and NFS to cache data locally on disk.
Man page: http://linux.die.net/man/8/cachefilesd

43 Stale NFS file handle
Note: http://sysunconfig.net/unixtips/stale_nfs.txt

44 Amazon Simple Storage Service (S3)
Amazon S3 provides a simple web services interface that can be used to
store and retrieve any amount of data, at any time, from anywhere on the
web. It gives any developer access to the same highly scalable, reliable,
secure, fast, inexpensive infrastructure that Amazon uses to run its own
global network of web sites. The service aims to maximize benefits of scale
and to pass those benefits on to developers.
Website: http://aws.amazon.com/s3

45 Amazon Virtual Private Cloud (VPC)
Amazon Virtual Private Cloud (Amazon VPC) lets you provision a private,
isolated section of the Amazon Web Services (AWS) Cloud where you can
launch AWS resources in a virtual network that you define. With Amazon
VPC, you can define a virtual network topology that closely resembles a
traditional network that you might operate in your own datacenter. You have
complete control over your virtual networking environment, including
selection of your own IP address range, creation of subnets, and
configuration of route tables and network gateways.
Website: http://aws.amazon.com/vpc

46 Amazon Elastic Load Balancing (ELB)
Elastic Load Balancing automatically distributes incoming application
traffic across multiple Amazon EC2 instances. It enables you to achieve
even greater fault tolerance in your applications, seamlessly providing the
amount of load balancing capacity needed in response to incoming
application traffic. Elastic Load Balancing detects unhealthy instances
within a pool and automatically reroutes traffic to healthy instances until the
unhealthy instances have been restored. You can enable Elastic Load
Balancing within a single Availability Zone or across multiple zones for
even more consistent application performance.
Website: http://aws.amazon.com/elasticloadbalancing

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 189

DarkNOC: Dashboard for Honeypot Management

Bertrand Sobesto, Michel Cukier
Clark School of Engineering

University of Maryland
College Park, MD, USA

{bsobesto, mcukier}@umd.edu

Matti Hiltunen, Dave Kormann, Gregg Vesonder
AT&T Labs Research

180 Park Ave.
Florham Park, NJ, USA

{hiltunen, davek, gtv}@research.att.com

Robin Berthier
Coordinated Science Laboratory

Information Trust Institute
University of Illinois

Urbana-Champaign, IL, USA
rgb@illinois.edu

Abstract

Protecting computer and information systems from secu-
rity attacks is becoming an increasingly important task
for system administrators. Honeypots are a technol-
ogy often used to detect attacks and collect information
about techniques and targets (e.g., services, ports, oper-
ating systems) of attacks. However, managing a large
and complex network of honeypots becomes a challenge
given the amount of data collected as well as the risk that
the honeypots may become infected and start attacking
other machines. In this paper, we present DarkNOC, a
management and monitoring tool for complex honeynets
consisting of different types of honeypots as well as other
data collection devices. DarkNOC has been actively used
to manage a honeynet consisting of multiple subnets and
hundreds of IP addresses. This paper describes the archi-
tecture and a number of case studies demonstrating the
use of DarkNOC.

1 Introduction

Because of the value of the data they store and the re-
sources they provide, information systems become tar-
gets for attackers and must be protected. To better se-
cure computer systems from external threats, security
researchers aim to understand attackers and the differ-
ent techniques they use to compromise computers and
achieve their goals. One possible approach is to use a
target computer, called a honeypot, which is not used
by normal users. Therefore, all the activity towards this
computer can be considered malicious.

Individual honeypots or networks of honeypots have

been used to conduct various studies of attackers [1, 9]
and analysis of cyber crimes such as unsollicited elec-
tronic mails, phishing [10], identity theft and denial of
service. The computer security community has used hon-
eypots to analyze different techniques deployed by the
attackers to reach their objectives. Attackers’ arsenal
includes distributed denial of service [24], botnets [2],
worms [11] or SPAM [15]. However few studies focus
on the usage of honeypots data to help network adminis-
trators to better protect their production networks. Hon-
eypot deployment is challenging and the architecture of
such networks is complex. For example, distributed hon-
eynets require secure tunnels and different levels of pro-
tection must be in place to ensure a total containment of
attacks targeting the honeypots. In addition, honeynets
require constant monitoring to guarantee that protection
systems (for example firewalls, traffic shappers) and data
collection are operating correctly. Depending on the size
of the honeynet, the volume of data collected can be im-
portant and impacts significantly data processing and ex-
traction. To be integrated as a security tool, honeypots
data must be presented and translated in meaningful way
to network administrators.

In this paper, we introduce DarkNOC, a solution de-
signed to efficiently process large amount of malicious
traffic received by a large honeynet, and to provide a
user-friendly Web interface to highlight potential com-
promised hosts to security administrators, as well as to
provide the overall network security status. DarkNOC is
used to manage the UMD honeynet, a network of 2,000
honeypots from which information about attacks is con-
tinuously extracted and provided to the security team to
help them better protect the production network.

190 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

The rest of the paper is organized as follows. In Sec-
tion 2, we provide an overview of the architecture and
operation of DarkNOC. In Section 3, we describe the
outputs and views provided by the DarkNOC. We pro-
vide a number of case studies using DarkNOC in Section
4. Finally we review the related work in Section 5, we
provide some remarks on future work in Section 6 and
conclude the paper in Section 7.

2 DarkNOC Architecture

This section describes what DarkNOC does, how it col-
lects data, and its internal structure.

2.1 System Architecture

DarkNOC manages multiple types of honeypots and in-
formation sources as illustrated in Figure 1. The UMD
honeynet consists of low interaction honeypots (LIHs)
such as Nepenthes [3] as well as high-interaction honey-
pots (HIHs) consisting of virtual or physical machines
running real operating systems, applications, and ser-
vices [5]. The UMD honeynet supports multiple sub-
nets consisting of IP addresses contributed by different
organizations participating in the research. DarkNOC
collects multiple sources of information from different
devices (e.g., NetFlow from Gateway, Snort events from
Snort Sensors [20], and malware from Nepenthes), an-
alyzes the data, and presents it to users in an efficient
and actionable manner. The details of the data views and
their use in analyzing security incidents are discussed in
Sections 3 and 4.

The current information sources consist of the follow-
ing:

• NetFlow Data: DarkNOC uses nfdump1 to extract
NetFlow data collected on the main gateway of the
honeypots. The flow data provides enough infor-
mation to determine the number of attackers, the
different source and destination IP addresses, and
the different source and destination ports. Specifi-
cally, each NetFlow record summarizes communi-
cation between two network end points (defined by
the IP addresses and port numbers of the end points)
including the time, duration, and numbers of bytes
and packets (see example below), but does not con-
tain any payload information (i.e., content of the
messages transmitted).

Date flow start Duration Port Src IP:Port -> Dst IP:Port Packets Bytes Flows

2010-02-09 06:43:... 4294966.937 TCP 218.8.251.187:20347 -> x.x.x.x:80 2 94 1

2010-02-09 06:43:... 4294966.977 TCP 218.8.251.187:20347 -> x.x.x.x:80 2 94 1

1http://nfdump.sourceforge.net/

• Snort Events: Snort [20] is an Intrusion Detection
System (IDS) for detecting attacks and potential in-
trusions. Snort provides information about the types
of attacks used against the honeypots.

• Malware Collection: Nepenthes acts as a passive
malware collector by emulating common service
vulnerabilities and allowing attackers to inject the
malware binaries. Nepenthes provides a log of each
malware submission containing information such as
the date and the vulnerability used but also the bi-
nary injected. This allows DarkNOC to see what
kinds of malware are successfully uploaded, the se-
curity signatures, and port used. It also allows to
measure the efficiency of the security solution pro-
tecting the network.

2.2 DarkNOC Software Architecture
The design of the DarkNOC software architecture was
driven by the following constraints:

• The aesthetics from the user’s point of view: The
user interface should be easy to access and the im-
portant data should be automatically highlighted.
This interface should be highly portable so that
users can use different operating systems and access
the system from different geographic locations (i.e.,
not tied to one dedicated machine).

• Speed: The user interface must be fast and the user
should not have to wait for the results to be dis-
played. Processing high volumes of data can be
time consuming and if the processing is started only
when the user requests a data view, the response
time may not be satisfactory. Therefore, our sys-
tem uses data pre-processing when possible to en-
sure fast response.

• Data validity: The data displayed should be reason-
ably up to date and reflect the current activity.

To meet these requirements, the application software
has been divided into three different parts: 1) a graphical
Web front-end, 2) back-end, and 3) alerting module. The
front-end generates a Web page displaying the different
information. The back-end extracts the necessary data
from the flows and creates the different graphs.

Back-end Module: Written in Perl, the back-end mod-
ule is a background process that updates the information
displayed by the front-end every 5 minutes based on the
NetFlow data. The separation of flow processing from
the display was necessary to guarantee a fast response
time at the user interface, because the extraction of flow

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 191

Figure 1: System architecture

data can be time consuming. Since the flow data is up-
dated every 5 minutes by the flow collector, a continu-
ous live update of the displayed views is unnecessary.
However it requires the tool to process the new flow files
within 5 minutes. DarkNOC provides information for
the last 24 hours and the last 5 minutes. Two different
processes generate the 24 hours and 5 minutes statistics.
For about 2,000 IP addresses, an average of 15,995 flows
are generated every 5 minutes representing about 5 mil-
lion flows per day. It takes an average of 7.4 seconds
to process a newly created flow file. Given this num-
ber, DarkNOC is able to process almost a hundred times
more flows within 5 minutes. Generating the statistics on
the last 24 hours is computationally more expensive and
longer. It takes an average of 130 seconds. However, it is
not necessary for this process to finish within 5 minutes.

A lock file prevents multiple executions of this process at
the same time. For each subnet and the global view, the
back-end generates the different graphs, the list of desti-
nation ports, the list of attackers and the list of targeted
honeypots. The graphs are created using RRDTool2, an
open source tool for storage and retrieval of time series.

Graphical User Interface: The graphical user inter-
face organizes the different data necessary to present a
summary of the honeypots activity. Web technologies
such as the PHP language and Cascading Style Sheets
are used. A Web page is extremely portable and requires
no configuration on the client side. Figure 2 shows the
homepage of DarkNOC. The content is described in Sec-
tion 3. The graphical user interface first provides a global

2http://oss.oetiker.ch/rrdtool/

3

192 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Figure 2: DarkNOC’s graphic user interface

view of the activity of the honeypots: the data displayed
includes all the subnets. The user has then the possibility
to reduce the scope of analysis to one subnet. To pre-
vent unauthorized access, the application uses an HTTP
authentication over SSL to protect DarkNOC’s directory
on the Web Server. Apache is configured to authenti-
cate users against an LDAP server where all accounts are
centralized. User objects belonging to the group Dar-
kNOC have access to the application. Because of le-
gal and confidentiality reasons it is necessary to filter
the information displayed by DarkNOC. Once authen-
ticated DarkNOC retrieves the user name stored in the
$ SERVER[’PHP AUTH USER’] variable and matches it
with the user’s table in the database to determine which
subnets to display or not. If the user is allowed to access
more than one subnet, DarkNOC will reflect the user’s
rights in the global view but also in the subnet selector.
If the user has access to a single subnet, the subnet will
be automatically selected with no possibility to select an-
other one.

Alerting Module: The alerting module is a process ex-
ecuting a specific query on the flow data. The results are
sent by email to a specific group of users. Users have the
possibility to create their own flow query based on the
nfdump filter syntax and to specify the recipients of the
alerts. The module is currently launched twice a day: at

6:00 AM and at 6:00 PM. It can be executed more fre-
quently if more real-time alerts are required.

3 Display Description

The layout of the graphical user interface of DarkNOC
presented in Figure 2 organizes the different pieces of in-
formation gathered from the most global and important
to the most detailed concerning the current activity of the
honeypots. The user interface of DarkNOC has been de-
veloped to ease the comparison of the different sources
of information and the comparison of the different sub-
nets.

The Web page provided by DarkNOC is divided into
three different sections: 1) status of the subnets, 2) flow-
based information, and 3) Snort events. Each section will
provide information that will reduce the number of pos-
sible explanations when an anomaly in the traffic is iden-
tified in DarkNOC. The first screen provided is a global
view of the honeypots activity. The user can select a spe-
cific subnet to drill-down to a more detailed view of the
subnet activity.

3.1 Subnet Status and Network Traffic
The first part of the Web page shown in Figure 3 is com-
posed of a table giving the status of the low interac-

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 193

Figure 3: Subnets status section

Figure 4: Top and bottom 10 transport ports targeted

tion honeypots (LIH) running Nepenthes, the status of
the tunnels to different organizations, and the number of
malware collected for each subnet since the initialization
of DarkNOC. The notion of a tunnel is specific to the
UMD honeynet. It allows to redirect the network traf-
fic from remote locations to the honeypot network trans-
parently. Hence, it is possible to use other participating
organizations’ IP addresses. A graph representing the
incoming and outgoing traffic in bytes per seconds is in-
cluded in the status section as well. This section provides
essential indications on the state of the main components
of the UMD honeynet, i.e. tunnels and main gateway.
The graph gives an overview of the UMD honeynet in-
frastructure load and can help to detect anomalies in the
traffic.

3.2 NetFlow Data
The NetFlow section provides information extracted
from the NetFlow data collected at the edge of the hon-
eypots network. Figure 5 presents a graph showing the
number of attackers over time for each subnet of the hon-

eypot network. Each unique IP address that does not be-
long to the honeypots is considered a unique attacker.
The graphical user interface provides several graphs that
display the number of attackers at different time scales:
one day, one week, and one month. Figure 6 presents a
graph showing the number of flows over time for each
subnet of the honeypot network. Separate graphs are
used to display the number of flows at different time
scales.

These two graphs shown in Figures 5 and 6 make it
easy to observe the activity of the honeypots for each
subnet. Comparing the numbers of flows and attackers
can reveal attack characteristics. For example, an in-
crease of the number of flows while the number of at-
tackers remains relatively steady means that one or sev-
eral offenders may have launched an attack that generates
large amounts of flows such as port scanning and brute-
force activities. It can also mean that a large network
behind a network address translation system is compro-
mised and targeting the UMD honeynet. DarkNOC also
makes it easy to compare trends between the different

5

194 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

subnets. For example, it is straightforward to identify
peaks in the number of attackers or flows that occur at
the same time in different subnets, as well as changes in
the attacks directed to only one of the subnets, indicating
a targeted attack.

Figure 5: Number of attackers

Figure 6: Number of Flows

The tables in Figure 4 show the top and bottom 10
ports targeted by the attackers during the last 24 hours.
For each port, the number of flows and the percentage of
the total number of flows are provided. It makes it easy to
identify the most popular services and to protect the net-
work accordingly. The severity of an attack is not related
to the number of flows it will generate. Attacks towards
common ports tend to hide smaller attacks against less
popular ports. This is why we also decided to display the
bottom 10 ports targeted.

Finally, Figure 7 represents a word cloud of the top
20 attackers’ IP addresses. The top 20 IP addresses are
determined using the number of flows involved in the
communications between the attacker and the honeypots.
The size of the font displaying the IP address reflects the
number of flows generated for that IP address. The same
representation is used for the top 20 targeted honeypots.
These word clouds are updated every 5 minutes using
a 24-hour window. The IP addresses presented in the
word clouds are clickable: The user can obtain the lists
of honeypots contacted, services and Snort events related
to the selected IP address in a separate window. Since the
honeypot network often hosts different experiments with
different configurations, the port tables and the targeted
honeypots make it possible to determine what is attract-
ing the attackers the most.

Figure 7: Attacker word cloud

3.3 Snort Data

Figure 8: Last 10 Snort events table

The Snort section presents information about the Snort
alerts.

Figure 8 shows a table of the last 10 Snort events col-
lected on the honeypot network. This table allows honey-
pot administrators to immediately identify attacks gener-
ating high volumes of traffic. For example, a brute-force
attack against a Microsoft SQL server will generate a
spike in the traffic curves and the corresponding events
will appear immediately in this table.

The graph in Figure 9 provides a trend in the number
of Snort events recorded the current day, the past few
days, and the past few weeks.

Figure 10 shows the top and bottom 10 Snort signa-
tures tables. The tables provide the signature name, the
number of events for each signature and the percentage.
Large scale attacks such as port scanning or brute-force
attacks may generate several events. As a consequence,
smaller but still important attacks may not appear in the
top 10 signatures. This is why the bottom 10 Snort sig-
natures are also provided. As an example, consider the
snort signature SHELLCODE NOOP shown in the Bot-
tom 10 Snort events of Figure 10. This signature indi-

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 195

Figure 10: Top and bottom 10 Snort signatures

Figure 9: Snort events graph

cates attempts to upload a malicious shellcode.
In the following example, the Snort IDS alerts show a

possible injection of malicious code on an emulated Web
server:

04/15-06:49:15.474819 [**] [1:12799:3] SHELLCODE base64 x86 NOOP [**]

[Classification: Executable Code was Detected]... {TCP} a.b.c.d:15017 -> W.X.Y.Z.:80

04/15-06:49:15.474819 [**] [1:12802:3] SHELLCODE base64 x86 NOOP [**]

[Classification: Executable Code was Detected]... {TCP} a.b.c.d:15017 -> W.X.Y.Z.:80

04/15-06:49:15.619028 [**] [1:12800:3] SHELLCODE base64 x86 NOOP [**]

[Classification: Executable Code was Detected]... {TCP} a.b.c.d:15017 -> W.X.Y.Z.:80

The injection was successful and Nepenthes captured
and logged the malware submission:

[2011-04-15T06:49:19] a.b.c.d-> W.X.Y.Z. ftp://1:1@a.b.c.d:21/Rewetsr.exe

c511c4f9bdd3bb892e582fbc9a00da9c

4 Case Study

This section details the UMD honeynet, the honeypot
network deployed at the University of Maryland and also
describes how DarkNOC is used to operate and maintain
this particular network.

4.1 UMD Honeynet
4.1.1 Introduction

The honeypot network hosted at the University of
Maryland was initially built in 2004 with unused IP
addresses of the campus network. More recently, other
organizations joined the initiative: AT&T Labs, the
University of Illinois at Urbana Champaign, and the
Laboratoire d’Analyse et d’Architecture des Systèmes
(LAAS) in Toulouse, France. Each of these organiza-
tions contributes to the UMD honeynet by providing
ranges of public IP addresses.

The objective of the UMD honeynet is to provide
the infrastructure to support honeypot-based experi-
ments. The network features a centralized data collection
and guarantees a realistic but controlled and flexible en-
vironment to safely deploy experiments. The advantages
of the present architecture are multiple:

• A single gateway collects and stores the stores Snort
events, flow data and network traffic, providing vis-
ibility across the full range of exposed networks.

• The experiments are easy to deploy without the
need to create tunnels or to setup specific network
configurations.

• The UMD honeynet is scalable, new organizations
can join the project by providing range of IP ad-
dresses.

4.1.2 Architecture

Figure 11 shows the current architecture of the UMD
honeynet and the different institutions involved in the
project. A tunneling program called Honeymole3 redi-

3http://www.honeynet.org.pt/index.php/HoneyMole

7

196 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

rects silently the traffic from the different organizations
to the UMD honeynet.

Figure 11: UMD honeynet architecture

The complexity of managing and monitoring such a
network was the primary motivation for the development
of DarkNOC. This section will discuss the application of
the tool to that problem.

4.2 UMD DarkNOC Implementation

4.2.1 Subnet Status

The subnet status section is specific to the UMD
honeynet. Each organization involved in the UMD
honeynet provides one or more ranges of IP addresses
called subnets. For example, the University of Maryland
provides two distinct subnets: a subnet of the campus
internal network and a subnet at the border network. The
failure of a Honeymole tunnel is a significant event for
the network, as it implies loss of an entire subnet; the
subnet status display allows a manager to quickly assess
the status of the tunnels and act on any issues.

Each subnet hosts a low interaction honeypot run by
Nepenthes to collect malware. Depending on the net-
work configuration, a Honeymole tunnel may be estab-
lished to redirect the traffic to Maryland. DarkNOC mon-
itors the quantity of malware collected, the status of the
Honeymole tunnels, and the status of the low interaction
honeypots.

4.2.2 Compromised Honeypots Detection

Some experiments deployed on the UMD honeynet may
present significant risks. In the likely event of a honeypot
being compromised, the attacker may use the machine to
attack other hosts on the Internet. These attacks are gen-
erally easily detectable: Figure 12 shows that the volume
of outgoing traffic is substantially greater than the incom-
ing traffic. In this case, a honeypot was used as a proxy
server.

Figure 12: Network traffic (04/18/2011)

4.2.3 Traffic Anomaly Detection

A current experiment uses a known-vulnerable SSH
server running on about 80 IP addresses of the Internet
subnet provided by the University of Maryland. The Dar-
kNOC’s summaries proved useful in analyzing an attack
on this configuration of the network which occurred on
June 3, 2011.

Figure 13: 06/03/2011, number of Flows

1. Figure 13 shows an increase in the number of flows
just before midnight on Thursday night.

2. The number of attackers presented in Figure 14 re-
mains relatively steady. This suggests that a fixed
set of attackers is generating a large volume of traf-
fic.

3. Figure 15 shows that port 22 is very active. As SSH
sessions do not usually generate many flows, we can
assume that the attacker is using a bruteforce attack
against several IP addresses hosted within the UMD
honeynet.

4. The word cloud of the honeypots targeted showed
that the IP addresses of this specific SSH experi-
ment were targeted.

DarkNOC provided several indications on the nature of
the attack responsible for the spike in traffic network and
flows. That night, the health monitoring system of the
experiment reported several times that the machine was
overloaded and the SSH server failed.

4.2.4 Using Honeypots as a Security Tool

Compromised Hosts Detection
The network traffic observed within an honeypot net-
work is considered malicious. A healthy host would

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 197

Figure 14: 06/03/2011, number of attackers

Figure 15: 06/03/2011, top 10 destination ports

not normally communicate with the honeypots. We can
therefore use the UMD honeynet to detect compromised
hosts on the Maryland campus network. We assume that
if a computer on campus appears in the flow data, that
means the host is compomised. The alerting module
queries the flow data to identify these hosts. This method
is efficient at detecting scanners: the use of subnets from
both local and remote sites means that a scanner is likely
to eventually visit the UMD honeynet whether its probes
are directed locally or at the Internet.

When a compromised machine is detected, the alerting
module analyzes the event and generates an email that is
sent to the IT Security Officer for further analysis. Fig-
ure 16 is an example of such a report. For each host, the
number of flows, packets and bytes are provided. The
report is also available on the Web interface of Dark-
NOC, it is possible to vizualize the flows associated with
the alert. This technique helps to identify compromised
hosts and misconfiguration as well. When this alerting
system was first launched, the IT team figured that even
if a host was tagged as blocked in their systems the com-
promised host was still able to communicate on the net-
work and to continue its malicious activity. The analysis
is performed every 12 hours and each participating or-
ganization gets notified of the eventual compromises of
their systems. The choice of running the analysis at this
frequency was chosen based on the feedback provided
by the security team of the University of Maryland. The
team wanted to receive a report early in the morning and

--------------- Analysis Report ---------------
Flow Time Window: 2011/06/06.06:00:00-2011/06/06.18:00:01
Number of hosts detected: 3
To access the online version of the report:

https://xxx.xxx.xxx.xxx/darknoc/alert_hosts.php?report=263

xxx.xxx.xxx.xxx (X.umd.edu)
- Number of flows: 1
- Number of packets: 1
- Number of bytes: 51

To visualize the flows:
https://xxx.xxx.xxx.xxx/darknoc/alert_hosts.php?id=1124

yyy.yyy.yyy.yyy (Y.umd.edu)
- Number of flows: 10
- Number of packets: 10
- Number of bytes: 1915

To visualize the flows:
https://xxx.xxx.xxx.xxx/darknoc/alert_hosts.php?id=1125

zzz.zzz.zzz.zzz (Z.umd.edu)
- Number of flows: 10
- Number of packets: 10
- Number of bytes: 1915

To visualize the flows:
https://xxx.xxx.xxx.xxx/darknoc/alert_hosts.php?id=1126

Figure 16: Alerting module report

right after business hours.

Security Profiling
Honeypots can provide relevant information regarding

attackers and their techniques to compromise a computer.
DarkNOC brings together enough information from dif-
ferent datasets to establish a security profile of a network.
This profile includes the services targeted, the number of
malware uploaded and the types of attacks. The objective
is to help the security officers and network administrators
to understand where to focus their efforts and to identify
weaknesses and misconfigurations. DarkNOC can also
be used to evaluate the performance of the security policy
in place. The attacks detected and the malware uploaded
on the honeypots are good indicators of the efficiency of
an IPS device.

Attack techniques are constantly evolving as new vul-
nerabilities are discovered regularly. The honeypots can
help to identify the current trends and to update the secu-
rity policy accordingly.

5 Related Work

Lance Spitzner defines honeypots as a security tool
whose value lies in being probed, attacked, or compro-
mised [21]. In other words these are highly monitoring
computer systems meant to attract hackers, analyze their
modus operandi and profile them [19]. Placed in pro-
duction environments, honeypots take an active part in
the security of a network by providing information on
attackers and attacks’ patterns. Niels Provos introduces
two types of honeypots [18]: high interaction honeypots

9

198 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

that involve the deployment of real operating systems on
real or virtual machines, and low interaction honeypots
that are computer software emulating operating systems
and services.

Companies and researchers currently deploy honey-
pots networks at different scales. Also known as hon-
eynets, these honeypots networks can be limited to few
IP addresses on the local network or distributed systems
in several locations such as the Leurre.com project [16],
the Internet Motion Sensor [4], SGNET [13] or the hon-
eynet initiative from CAIDA [23].

Levine et al. demonstrated the usefulness of deploy-
ing honeypots accross large enterprise networks [14]. In
their study, Snort [20] was used to detect compromised
computers accross Georgia Tech network. In DarkNOC
a similar detection has been made possible by using the
flow data. We assume that any traffic seen on the honey-
pot network is malicious.

The visualization and data analysis of malicious net-
work activity has been the focus of a variety of commer-
cial and open source products. On the commercial side,
security companies such as Tenable and Sourcefire offer
threat management products that collect logs from mul-
tiple devices and generate alerts to inform security ana-
lysts about potential intrusions. The main limitation of
these solutions with respect to our goal is that they are
not tailored to honeypot management and honeynet data
collection and so they require additional effort to inte-
grate honeypots in the organization security data analy-
sis suite. Arbor Network is another commercial security
vendor that offers a threat management product but the
difference with the previous solutions is that they lever-
age their customer networks to instrument dark IP space
at a large scale. As a result, they offer a global view
of malicious network activity through their Atlas portal4,
which provides functionalities similar to DarkNOC, with
graphs and tables for top attacks, top threat sources and
attack trends.

On the open source side, the main honeynet manage-
ment solution has been Honeywall [8] developed by the
Honeynet Project. The Honeywall is a bootable CD-Rom
that installs a Linux-based network gateway to manage
and control honeypots as well as visualizing and analyz-
ing honeynet logs. Compared to DarkNOC, Honeywall
has a more capabilities to actively limit outgoing traffic
but it has been designed for small honeypot network. The
data processing capabilities of DarkNOC were designed
for large scale and multi-site deployments. The objec-
tive of the DarkNOC project is to provide a flexible and
powerful analysis program. It is adjustable to fit differ-
ent honeypots configurations. However Honeywall is a
all-in-one solution for small scale honeypot networks. It

4http://atlas.arbor.net

provides routing, capture and analysis capabilities. In-
tegrating Honeywall in an existing large-scale honeypot
network is more challenging.

Other open source projects that are not specifically tai-
lored for honeypots include Alienvault [7], Aanval5, Nf-
sight [6] and NVisionIP [12]. Alienvault and Aanval are
network and system log management solutions that can
only process Snort alerts and syslog events while Nfsight
works exclusively with Netflow and has been designed
for large-scale processing and security visualization of
Netflow. NVisionIP processes global network Netflow
data to specifically detect attacks and misuses.

Visoottiviseth et al. present a distributed honeypot
framework using low interaction honeypots [22] running
the honeyd daemon [17]. More specifically, they de-
scribe the working of the honeyd logs centralization and
their analysis [22]. The framework only works with Hon-
eyd log files. The level of interaction of our framework is
also different since we are running low interaction hon-
eypots as well as high interaction honeypots.

6 Future Work

We are working on a number of extensions and improve-
ments on DarkNOC. The first extension will be the addi-
tion of a malware section in the user interface. This new
section will provide more information about the malware
collection including a graph showing the number of up-
loads per day but also some indications on the methods
used to upload the malicious software and its name. The
second improvement will be the implementation of the
automatic detection of compromised honeypots in the
alerting module. This detection will allow DarkNOC
to automatically block the outbound traffic of compro-
mised honeypots. Currently, only the detection of com-
promised non-honeypot hosts of an organization is au-
tomated. The graphical user interface of DarkNOC can
also be enhanced. There is no option that allows to select
and display the activity of a specific period of the day. It
would be useful to be able to choose on a graph a partic-
ular moment of the day and see the activity at this precise
time.

7 Conclusion

In this paper we presented DarkNOC, a honeypot net-
work management and monitoring tool. DarkNOC pro-
vides a summary of the activity of the honeypots in
the network. This summary is generated from different
sources of data including Netflow, malware collected by
the Nepenthes low interaction honeypots and attacks de-
tected by the Snort intrusion detection system. Brought

5http://www.aanval.com/

10

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 199

together, these data sources provide important resources
to help network administrators, security teams, and se-
curity researchers understand attacks and protect sys-
tems. DarkNOC can be used the detect traffic anoma-
lies and identify interesting case study for research pur-
poses. Since it is important to detect quickly any com-
promised honeypots in the honeynet, DarkNOC provides
administrators of these networks information regarding
the health of the systems. Security teams may find a par-
ticular interest in DarkNOC since it can be used to detect
compromised honeypots as well as compromised hosts
on their non-honeypots networks. To sum up an organi-
zation using DarkNOC can have a better understanding
of:

• the most targeted systems,

• the attackers, the attacks and their origin,

but also, DarkNOC helps:

• to obtain an overview of Honeynets activity,

• to identify security tools and devices misconfigura-
tion.

Acknowledgement

The authors thank the Office for Information Technology
at the University of Maryland. In particular we thank
Gerry Sneeringer and his team for allowing the deploy-
ment of the UMD honeynet, providing feedback on Dar-
kNOC and investigating the compromises detected by
the application.

References

[1] S. Almotairi, A. Clark, G. Mohay, and J. Zimmer-
mann. Characterization of attackers’ activities in
honeypot traffic using principal component anal-
ysis. In Proceedings of the 2008 IFIP Interna-
tional Conference on Network and Parallel Com-
puting, pages 147–154, Washington, DC, USA,
2008. IEEE Computer Society.

[2] Paul Bacher, Thorsten Holz, Markus Kotter, and
Georg Wicherski. Know Your Enemy: Tracking
Botnets (using honeynets to learn more about bots).
Technical report, The Honeynet Project, August
2008.

[3] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and
F. Freiling. The nepenthes platform: An efficient
approach to collect malware. In Proceedings of
RAID’2006, pages 165–184, 2006.

[4] Michael Bailey, Evan Cooke, Farnam Jahanian,
Jose Nazario, and David Watson. The internet
motion sensor: A distributed blackhole monitor-
ing system. In In Proceedings of Network and
Distributed System Security Symposium (NDSS 05,
pages 167–179, 2005.

[5] R. Berthier and M. Cukier. An evaluation of con-
nection characteristics for separating network at-
tacks. International Journal of Security and Net-
works, 4:110–124, February 2009.

[6] R. Berthier, M. Cukier, M. Hiltunen, D. Kormann,
G. Vesonder, and D. Sheleheda. Nfsight: netflow-
based network awareness tool. In Proceedings of
the 24th USENIX LISA, 2010.

[7] Jeramiah Bowling. Alienvault: the future of se-
curity information management. Linux J., 2010,
March 2010.

[8] G. Chamales. The honeywall cd-rom. Security Pri-
vacy, IEEE, 2(2):77 – 79, mar-apr 2004.

[9] Kevin Curran, Colman Morrissey, Colm Fagan,
Colm Murphy, Brian O’Donnell, Gerry Fitzpatrick,
and Stephen Condit. A year in the life of the irish
honeynet: attacked, probed and bruised but still
fighting. Inf. Knowl. Syst. Manag., 4:201–213, De-
cember 2004.

[10] Rachna Dhamija, J. D. Tygar, and Marti Hearst.
Why phishing works. In Proceedings of the
SIGCHI conference on Human Factors in comput-
ing systems, CHI ’06, pages 581–590, New York,
NY, USA, 2006. ACM.

[11] Jan Kohlrausch. Experiences with the noah hon-
eynet testbed to detect new internet worms. IT Se-
curity Incident Management and IT Forensics, In-
ternational Conference on, 0:13–26, 2009.

[12] Kiran Lakkaraju, William Yurcik, and Adam J.
Lee. Nvisionip: netflow visualizations of sys-
tem state for security situational awareness. In
Proceedings of the 2004 ACM workshop on Visu-
alization and data mining for computer security,
VizSEC/DMSEC ’04, pages 65–72, New York, NY,
USA, 2004. ACM.

[13] Corrado Leita and Marc Dacier. Sgnet: A world-
wide deployable framework to support the analy-
sis of malware threat models. In Proceedings of
the 2008 Seventh European Dependable Comput-
ing Conference, pages 99–109, Washington, DC,
USA, 2008. IEEE Computer Society.

11

200 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

[14] J. Levine, R. Labella, H. Owen, D. Contis, and
B. Culver. The Use of Honeynets to Detect Ex-
ploited Systems Across Large Enterprise Networks.
In Proceedings of the IEEE Workshop on Informa-
tion Assurance, IEEE Systems, Man and Cyber-
netics Society, pages 92–99, West Point, NY, June
2003.

[15] Mauro, Ro, and Francesca Mazzoni. HoneySpam:
Honeypots Fighting Spam at the Source. pages 77–
83.

[16] Fabien Pouget, Marc Dacier, and Van Hau Pham.
Leurre.com: on the advantages of deploying a
large scale distributed honeypot platform. In
ECCE’05, E-Crime and Computer Conference, 29-
30th March 2005, Monaco, 03 2005.

[17] Niels Provos. Honeyd: A Virtual Honeypot Dae-
mon. Technical report, Center for Information
Technology Integration, University of Michigan,
February 2003.

[18] Niels Provos and Thorsten Holz. Virtual honey-
pots: from botnet tracking to intrusion detection.
Addison-Wesley Professional, first edition, 2007.

[19] Daniel Ramsbrock, Robin Berthier, and Michel
Cukier. Profiling attacker behavior following ssh
compromises. In Proceedings of the 37th Annual
IEEE/IFIP International Conference on Depend-
able Systems and Networks, DSN ’07, pages 119–
124, Washington, DC, USA, 2007. IEEE Computer
Society.

[20] M. Roesch. Snort - lightweight intrusion detection
for networks. In Proceedings of the 13th USENIX
LISA, 1999.

[21] L. Spitzner. Honeypots: Tracking Hackers.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[22] V. Visoottiviseth, U. Jaralrungroj, E. Phoomrun-
graungsuk, and P. Kultanon. Distributed honeypot
log management and visualization of attacker ge-
ographical distribution. In Computer Science and
Software Engineering (JCSSE), 2011 Eighth Inter-
national Joint Conference on, pages 23 –28, may
2011.

[23] Michael Vrable, Justin Ma, Jay Chen, David
Moore, Erik Vandekieft, Alex C. Snoeren, Geof-
frey M. Voelker, and Stefan Savage. Scalability,
fidelity, and containment in the potemkin virtual
honeyfarm. SIGOPS Oper. Syst. Rev., 39:148–162,
October 2005.

[24] Nathalie Weiler. Honeypots for distributed de-
nial of service attacks. In Proceedings of the
11th IEEE International Workshops on Enabling
Technologies: nfrastructure for Collaborative En-
terprises, pages 109–114, Washington, DC, USA,
2002. IEEE Computer Society.

12

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 201

A Cuckoo’s Egg in the Malware Nest

On-the-fly Signature-less Malware Analysis, Detection, and

Containment for Large Networks

Damiano Bolzoni1, Christiaan Schade1 and Sandro Etalle1,2

1University of Twente, The Netherlands
2Eindhoven Technical University, The Netherlands

Abstract

Avatar is a new architecture devised to perform on-
the-fly malware analysis and containment on ordi-
nary hosts; that is, on hosts with no special setup.
The idea behind Avatar is to inject the suspected
malware with a specially crafted piece of software at
the moment that it tries to download an executable.
The special software can cooperate with a remote
analysis engine to determine the main characteris-
tics of the suspected malware, and choose an appro-
priate containment strategy, which may include pro-
cess termination, in case the process under analysis
turns out to be malicious, or let it continue other-
wise. Augmented with additional detection heuris-
tics we present in the paper, Avatar can also perform
signature-less malware detection and containment.

Keywords: system security, malware detection
and containment

1 Introduction

In the last half-decade, malware has evolved from
a “hobby” for bored programmers to a business for
cyber-criminals, who infect computer systems on a
large scale to carry out illegal activities [20]. Bot-
nets are a typical example of such business, and can
be exploited to collect financial/sensitive user infor-
mation. As noticed by Kolbitsch et al. [13] “mali-

cious code, or malware, is one of the most pressing
security problems on the Internet”. Malware con-
tainment has thus become an urgent concern. Re-
cent events, such as the RSA breach back in March
2011 [17], have shown that serious attackers employ
ad hoc malware in multi-stage attacks to penetrate
corporate networks and get hold of business-critical
information.

Successful malware containment is based on two
activities: Detection and analysis.

Detection. Concerning detection, the standard
mechanisms employed against malware are based on
signatures. Antivirus software and intrusion detec-
tion systems (both host- and network-based) rely
on some sort of byte-matching techniques (either
pattern- or hash-based) to detect the presence of ma-
licious programs. To evade signature-based detec-
tion, malware writers can and do obfuscate the code
using e.g., polymorphism, packing, encryption [4].
The result of the massive application of evasion tech-
niques is that in the past few years the number of
unique malware samples, and relative signatures, has
increased dramatically. In Section 4 we discuss in
more detail some of the latest results in signature-
based malware detection.

Analysis. To understand how malware works, and
to improve the crafting of detection signatures, re-
searchers have developed several frameworks for au-
tomating dynamic malware analysis (e.g., Anubis [1],
CWSandbox [7], Malheur [14]). These tools monitor

1

202 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

the behaviour of a malware sample which is being
executed in a severely controlled environment, and
produce a detailed report of the operations it car-
ries out (e.g., access/modifications to files, network
activities, process execution, etc.).
Dynamic malware analysis is undoubtedly effec-

tive; however, it requires a specific analysis environ-
ment, which cannot be just any computer. Moreover
– as almost all security techniques – it is not infal-
lible: Among the possible evasion techniques, it is
becoming a common practice for malware to check
whether the execution takes place in a virtualized
environment, which likely indicates the executable is
being monitored [2]. Secondly, as reported by Com-
paretti et al. [6], some malicious behaviors, such as
the so called “dormant functionalities”, may remain
long unobserved, for instance when they depend on
circumstances which are hard to guess and to repli-
cate dynamically.

Summarizing, current detection and analysis ap-
proaches suffer from the following limitations:

• (Existing) dynamic malware analysis approaches
can only perform post-mortem, or offline, analy-
sis of the malware sample, once it has been col-
lected and submitted: Hence they lack the ex-
ecution context information; moreover, they re-
quire specific setups.

• Detection and containment are based on signa-
tures or behavioral models, and are therefore ef-
fective only for those samples for which an ap-
propriate signature/model has been developed.

• The most effective approaches rely on the pres-
ence of an agent on the end-host to monitor sys-
tem activities; such extra software component is
invasive, might affect system performance, and
cause additional burden because system admin-
istrators must plan carefully its development and
maintenance.

In particular, security analysts do not get the chance
to analyze and contain on-the-fly suspicious pro-
grams.
One would like to have in addition to standard

tools a first line of defense against malware that does

not require special settings for the host, nor pre-
deployed signatures. Similarly to what happens with
intrusion detection systems, and especially for large
corporations, one could think of a security operation
center (SOC), where security analysts are able to in-
spect on-going suspicious behaviours. Thus, auto-
matic analysis tool could be employed to “select” sus-
picious programs for analysis, which would be then
carried out with a mix of automatic and manual in-
spections.

Contribution In this paper, we present a novel ap-
proach to perform on-the-fly malware analysis and
containment for large networks, without having to
deploy any end-host component beforehand. Our ar-
chitecture, we call it Avatar, relies on the observa-
tion that malware distribution is usually done in at
least two phases: First the computer is infected with
a tiny “spore”, then in following phases this spore
downloads one or more additional components from,
for instance, some earlier compromised web servers.
Those components, or “eggs”, are used to extend the
malware capabilities, e.g., hooking system APIs to
grab user passwords, and usually come in the form
of executables, or dynamic libraries. By doing so,
malware writers can more easily avoid detection.

Our approach is based on the injection of “good-
ware” in the suspected malware: In the moment that
the alleged malware attempts to dowload an egg, we
substitute the egg with the goodware, we call it the
cuckoo’s egg1. This is an executable that – among
other things – can carry out preliminary malware
analysis, can terminate the malware or it can sim-
ply give the control back to the egg if the suspected
malware turns out to be a legitimate program2. The
current implementation of Avatar is meant to moni-
tor Windows-based systems.

This is done without any special setup in the host

1Similarly to the cuckoos that engage in brood parasitism,
our goodware is expected to circumvent the malware and take
advantage of it for performing the analysis

2In some cases it may be illegal to inject in an application
software other than the one meant to be downloaded. Avatar
is meant to be deployed in corporate networks, where system
and network administrators are (usually) allowed to monitor,
and limit, users’ actions.

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 203

that contains the suspected malware, which may be
just any computer running any Windows operating
system. Indeed, the cuckoo’s egg can be generated
and inoculated from the firewall, and the analysis
can be done on a remote analysis engine to which the
cuckoo’s egg communicates after it has been injected
in the host under analysis.
Our experiments show that this is all possible, and

that the cuckoo’s egg can, for instance, be designed
to inspect the process that executes it after the down-
load, or to send to Avatar’s remote analysis engine
information regarding the process, such as path on
the file system, file handlers, network/registry activ-
ities, or even the executable itself. Depending on
the current user’s permissions, the malware analysis
engine can even “order” the cuckoo’s egg code to sus-
pend or terminate the process, effectively containing
a possible larger infection.
An important side-issue is when should one start

being suspicious about a given process. In other
words, when should the system suspect that a spore
is actually trying to download an egg. For our exper-
iments we have developed a heuristic method which
works as follows: Malware is usually programmed to
use several different download servers, as servers are
often offline/discontinued. In practice, the spore of-
ten fails a number of times before succeeding in down-
loading the egg. Thus, we take into consideration
per-host failed TCP connections and failed HTTP re-
quests to identify malware attempts of downloading.
A number of failed HTTP requests is a good indi-
cation of the presence of malware. Our experiments
show that this method is surprisingly effective. How-
ever, one can devise other heuristics which may be
applicable in other contexts. It is outside of the scope
of this paper to make an inventory of such methods.
To the best of our knowledge, this is the first ap-

proach which – without the installation of any addi-
tional plug-in before hand – allows one to:

• (analysis) carry out on-the-fly remote analysis
of a suspicious program;

• (containment) suspend or terminate the suspi-
cious program directly on the infected host;

• (detection) in combination with the heuristics

for detecting suspicious downloads, it can iden-
tify suspicious malware processes which can be
immediately analyzed and contained if required.

We should remark that this is done without using
signatures of any kind. Therefore, this approach can
be used to detect, analyze and contain also zero-day
malware and malware for which there is no signature
available yet. For example, one could even think of a
“paranoid” mode, in which a cuckoo’s egg is shipped
for each download of executables regardless the rate
of failed connections.
We show that Avatar is effective as a lightweight

first line of defense against malware, also allowing
to do malware containment on hosts with no spe-
cific pre-deployed tools (agent-less). This is a crucial
requirement for system administrators of large net-
works, as it eases the burden required to install ad-
ditional software to perform an accurate monitoring.
It is important to stress that this approach can be

adapted to work with any protocol, in our embodi-
ment we choose HTTP because it is widely used by
malware writers. Of course, this approach has limi-
tations, and can be countered to some extent. These
aspects are discussed in Section 2.6.

2 Architecture

The architecture of Avatar consists of three main
parts. The download detection engine (DDE) is re-
sponsible for detecting suspicious attempts to down-
load software components. The Cuckoo’s Egg Gen-
erator (CEG) is responsible for crafting the special
analysis software that will be sent to requesting host.
Finally, the Malware Analysis Engine (MAE) is re-
sponsible for analysing the information provided by
the injected cuckoo’s egg and possibly initiate some
containment strategies. We now provide a detailed
description of each component.

2.1 Download Detection Engine

The download detection engine (DDE) detects
(failed) download attempts that might be due to mal-
ware activity. Strictly speaking, the functioning of
the DDE is orthogonal to that of the analysis and

3

204 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Figure 1: The Avatar architecture.

containment engines of Avatar, which on the other
hand, are the core of the system. In fact, Avatar
would work just as well also in combination with
any other method one could devise to spot out suspi-
cious download attempts. Nevertheless, it is easier to
explain the whole architecture by starting from the
DDE.
Our DDE is based on the fact that often malware

fails a number of time to download eggs. This is due
to the fact that download servers are often offline
and/or taken down by security officers. In our em-
bodiment the detection engine combines a modified
version of the Threshold Random Walk (TRW) al-
gorithm [10]. The engine builds a per-host model of
normal usage, which takes into account the number
of failed connections, and failed HTTP requests. In
the case of malware, the former situation can occur
when, e.g., the remote web server has been deacti-
vated, the latter because the malicious content has
been removed. As confirmed by our tests (see Sec-
tion 3.1), these are not infrequent events. The result-
ing algorithm is simple, albeit effective, and could be
easily expanded to include additional sources of in-
formation (e.g., DNS queries).
The DDE may be located at the network “border”

with the Internet, in order to observe any outgoing
connection and the data sent back by the remote host.
As we said, while this component plays an impor-
tant role in our approach, it is not the main driver
of our idea. For instance, one could decide to inspect
any executable download from the Internet, without
the host having to failed a number of connections or
HTTP requests before being flagged as suspicious.
The TRW algorithm is devised to detect scanning

behaviours originating from a specific host in a mon-
itored network. For each host a detection model is
built. The outcome of a connection attempt is either
“success” or “failure”. After a number of observa-
tions of connection attempts for a certain host h, one
would like to know if h is a scanner. To make such
decision, a sequential hypothesis testing method is
used. The basic premise is that there exists a dis-
tinct fixed ratio of failed and successful connections,
and that this ratio is different when a host is a scan-
ner. Furthermore, for each individual host this ratio
value will eventually converge to some upper or lower
boundaries, based on whether the host is a scanner
or not.
We have adapted the TRW algorithm to take into

account also successful and failed HTTP requests:

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 205

We currently employ only one model for both TCP
connection and HTTP requests.

2.2 Cuckoo’s Egg Generator (CEG)

Once the DDE identifies a suspicious download at-
tempt, the CEG generates a specific executable/DLL
to be fed back to the suspicious host. We now de-
scribe in details the purpose of the cuckoo’s egg and
its “internals”.

2.2.1 The cuckoo’s egg

The main goals of the cuckoo’s egg are I) to gain
as much knowledge as possible about the executing
process, that, in case of malware, is usually the pro-
cess that tried to download the “egg” and received
the cuckoo’s egg instead of it, and II) to take control
over the parent process if necessary. The cuckoo’s
egg operates in two stages.

First, the cuckoo’s egg “inspects” the execution en-
vironment. The reason for this is that different oper-
ating systems allow processes to execute certain op-
erations with or without high privileges. Therefore,
the cuckoo’s egg may be allowed to perform only a
restricted set of operations. For instance, beginning
with Windows Vista, Microsoft includes a User Ac-
cess Control (UAC) mechanism. The system can be
set to notify the user when a process is about to mod-
ify some important system settings or execute poten-
tially dangerous operations, so that the user can give
explicit authorization. Because we want the cuckoo’s
egg to be as transparent as possible (for usability
reasons), on Vista and later OSes, we cannot use a
number of features, such as debugging mode, as these
could (possibly) trigger the UAC.

The cuckoo’s egg attempts to inject a specifically
crafted DLL into its parent process with different ac-
cess rights: The parent process can restrict the op-
eration set the child process is allowed to perform.
The different combinations of access right masks
the cuckoo’s egg uses are: PROCESS ALL ACCESS
(highest privileges), TERMINATE PROCESS |
QUERY INFO | READ, QUERY INFO | READ and
TERMINATE PROCESS (lowest privileges).

Secondly, the injected DLL extracts, if allowed to,
some information from the parent process (depend-
ing on the operational mode, see Section 2.4). This
information includes: Full path, executable size on
disk, DLLs that have been loaded, and information
related to the current window attached to the pro-
cess (if any), such as handle, size and caption text.
At this stage, the cuckoo’s egg’s DLL attempts to
determine quickly whether the parent process is ma-
licious or not, and employs initially some heuristics
based on the data above. Our experiments show
that in most cases, one could tell straight after these
heuristic checks whether the parent process is likely
to be malware. For instance, a large executable size
(more than 5 MB) is a sign of a non-malicious pro-
cess: Malware writers tend to reduce the size of the
“spore” to by-pass more easily anti-malware coun-
termeasures. Similarly to [13], we also whitelist ap-
plications that could perform a licit download and
later execute the downloaded file (e.g., Internet Ex-
plorer, Windows Update). Some limitations apply
to these heuristics, and we discuss them in details in
Section 2.6. An additional heuristic one might think
to apply is the approach presented in [18], based on
PE header analysis of suspicious programs.
If the heuristics do not indicate that the process

is legitimate, then the information is passed to the
MAE (discussed below) for remote analysis. Then –
depending on the operational mode set and the user
access rights – the cuckoo’s egg can I) debug the par-
ent process, II) let it run normally, III) “freeze” it,
and, as a very last countermeasure, IV) terminate it.
In the first case, the cuckoo’s egg can send back to

the highly-instrumented malware analysis engine the
debugged instructions. By doing so, we can “reply”
on the remote analysis engine any operation and set
whether we are debugging a malware process. How-
ever, our experiments show that this approach col-
lects very little useful information on the parent pro-
cess, as the malign process usually executes the egg(s)
as the very last step of its run.
In the second and third cases, the cuckoo’s egg

sends back to Avatar the parent executable, and this
is also the reason why we need to collect the parent’s
full path. By sending the whole executable, we can
restart from scratch the process execution within our

5

206 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

monitored environment and off-load a more accurate
analysis.

2.2.2 Packaging the cuckoo’s egg

Once the DDE notifies the CEG, the latter has to
generate a suitable cuckoo’s egg for the target and,
depending on the operational mode, “attach” the
original executable to the cuckoo’s egg. We distin-
guish two cases, depending on whether the original
executable is available, because it could be down-
loaded, or not.

As we mentioned earlier, the original executable
requested by the host may not be available. In this
case, only the cuckoo’s egg is sent back to the tar-
get without any further processing. If, on the other
hand, the originally requested executable is available,
and the operational mode allows to do so, the CEG
“forces” first the execution of the cuckoo’s egg, and
then of the “real” executable. Hence, the main con-
cern when shipping the cuckoo’s egg is to preserve
the egg’s functionalities as much as possible. There
are several ways to achieve this, two of which are
discussed here, each preserving the functionality in a
different way:

• injecting a DLL loader stub through Portable
Executable injection;

• shipping a replacement-executable that fetches
and executes the egg after the parent process
has been analyzed.

In the first case, the Portable Executable (PE) file
header of the downloaded egg is altered. The PE for-
mat [15] is a file format for executables, object code,
and DLLs, used by Windows since early NT versions.
When an executable is launched, the system process
loader uses the information included in the PE header
to carry out operations such as: Filling in-memory
data structures, loading required DLLs, and jumping
to the entry point of the executable. In this case,
the CEG appends the cuckoo’s egg to the egg’s ex-
ecutable file, next the egg’s Entry Point is modified
to point to a loader stub that will unpack the engine
and write it to a file after which it will be loaded

like any regular DLL. This method is rather com-
plex, it presents the disadvantage that it might trig-
ger the antivirus (unless some packing techniques are
used) and requires the LoadLibrary and GetProcAd-
dress offsets to be available in the egg’s PE header,
which is usually the case, though.
The second method is much simpler, requires no

modifications to the egg’s executable file, is usually
not flagged as malicious by the antivirus and does
not make any assumptions on the egg’s PE header.
A stand-alone cuckoo’s egg is sent back and, once
the analysis is over, it downloads and executes the
“original” egg. The downside to this approach is
that any relation that the egg may want to set up
with its parent is lost. Moreover, this could signif-
icantly slow down the execution, by introducing an
additional download latency.

2.3 Malware Analysis Engine

The MAE is the core component of the Avatar archi-
tecture. It is responsible for analysing the informa-
tion sent by the cuckoo’s egg. If necessary, it should
run the suspected executable in a protected environ-
ment. From a functional point of view, it does not
differ from other malware analysis tools. Once the
sample to analyse is received, it is executed and any
operation performed is recorded and logged. The ex-
ecution report can be then dispatched to a security
analyst, who can set a final verdict about the ma-
liciousness of the sample, in case the executed pro-
gram’s nature remains unclear.
The MAE is also used to store information about

whitelisted programs, which the cuckoo’s egg will
consider as non-suspicious. By doing so, we can basi-
cally centralize our architecture, making it possible to
“update” crucial information about malware in one
step.

2.4 Operational modes

As networks, and hosts, require different confidential-
ity and availability levels, users need to control the
way the cuckoo’s egg could affect the execution of
processes. As in the case of all detection and preven-
tion systems, false positives are always possible, so

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 207

one has to find an appropriate compromise between
rigorous containment, at the risk of terminating a le-
gitimate process, and less drastic measures. In our
embodiment, we have implemented three basic oper-
ational modes.

Transparent mode When in this mode, the DDE
notifies the CEG about the failed attempts to pull
down some files from an external server. The CEG
then waits for the file to be actually downloaded, and
verifies it is an executable. If so, the CEG crafts a
cuckoo’s egg with the original file appended. Once
the execution of the cuckoo’s egg is over, the origi-
nal file is automatically executed. The cuckoo’s egg
sends back to the MAE a copy of the parent execut-
ing it for analysis. No further action is possible on
the suspicious host, as the cuckoo’s egg releases the
parent process’ executable. This mode does not in-
terfere with regular operations of the suspicious host,
as the original requested file is executed.

Semi-transparent mode This mode differs from
the transparent mode as follows. The original file is
downloaded and attached to the cuckoo’s egg. How-
ever, when the cuckoo’s egg is executed, it freezes
the parent process. Then, the cuckoo’s egg runs the
heuristics checks and might decides to “release” its
parent process immediately. If the heuristics checks
cannot clearly determine the nature of the parent
process, the cuckoo’s egg ships a copy of the par-
ent process’ executable to the MAE. Then, it waits
for further commands from the MAE. Further com-
mands may include the termination or release of the
process. This mode might interfere with the regu-
lar operations of the suspicious host, as the parent
process is frozen while the analysis is in progress.

Non-transparent mode When in this mode, the
CEG is notified about the failed downloads, but, pro-
vided the requested filename points to an executable,
does not wait for the original file to be successfully
downloaded. Instead, it immediately ships a cuckoo’s
egg. Based on the heuristic checks, the cuckoo’s egg
might send back to the MAE a copy of parent exe-
cutable, and waits for further commands. This mode

heavily interfere with the regular host operations, as
the requested file is not executed.

2.5 Implementation

To carry out our experiments we have implemented
a proof of concept version of Avatar. The three main
components of Avatar can be placed at different lo-
cations on the network. However, in our experiments
we have coupled the DDE and the CEG together into
a single host. The reason for this is that the DDE
and CEG must exchange information about failed
downloads, and the CEG must craft and supply the
cuckoo’s egg in a timely manner. The deployment
of these two components on physically separated sys-
tems might introduce delays that could impact the
analysis.
In practice, to allow a transparent deployment that

does not require any reconfiguration at host side, we
employed a single Linux box with built-in firewall
and web proxy. The firewall transparently redirects
the outgoing traffic directed to common HTTP ports
(TCP ports 80 and 8080) through the web proxy,
which can inspect both request and reply. Thus, no
re-configuration of client hosts is required. As fire-
wall, we use Netfilter, the Linux sub-component in
charge of managing network communications. Netfil-
ter offers the possibility to insert specific “hooks” in
its packet process workflow, so that it is possible to
inspect, and even modify, on-the-fly any packet pass-
ing by. To inspect of HTTP traffic, we set up a web
proxy based on Apache. Apache supports modules
for adding new functionalities, and we have developed
a new module to inspect requests and their content.
Internally, the module maintains a table that con-
tains statistics about internal hosts and their connec-
tion/request failure rates. The module also inspects
the replies sent back by the remote (web) server.
When the same host performs several failed con-

nections in a given timeframe, or requests to pull
down some file(s) do not end successfully, the Apache
module marks that host as suspicious. Depending on
the operational mode, the module will either wait un-
til a request is successful, and then ship back a crafted
cuckoo’s egg together with the original file, or it will
immediately ship back a cuckoo’s egg (provided the

7

208 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

request points to an executable filename).

If the requested file is eventually downloaded, the
module proceeds with some sanity checks and verifies
that the downloaded file is actually an executable.
In case of a positive match, the executable is stored
and the cuckoo’s egg crafted. To craft the cuckoo’s
egg and append the requested file, we implement the
first method presented in Section 2.2.2 (PE header
injection), to avoid download latency.

The analysis engine is implemented as a Windows
kernel driver. In order to monitor malware activities,
the driver hooks some APIs functions, and exploits
the capabilities offered by the latest Windows OSes,
which provide built-in sub-systems for third-parties
antivirus and firewall software. These interfaces allow
one to detect changes in the file system, the system
registry, monitor network connections, etc.

Technically speaking, the MAE resides on a real
system behind a firewall, in order to prevent any out-
going connection that could be initiated by the mal-
ware once it is activated. The MAE does not run on
any virtualized environment, to avoid possible built-
in anti-analysis capabilities inside the malware. This
choice has the disadvantage of requiring a roll back to
the original status after each analysis. We do not see
this as a serious limitation because our current goal
is not to speed up malware analysis, which would re-
quire several concurrent systems. Nevertheless, the
kernel driver can be deployed in a virtualized envi-
ronment too.

The cuckoo’s egg communicates with the analysis
engine through encrypted network sockets. Encryp-
tion is used to avoid leaks of any possible sensible
information, e.g., a memory dump, over the network,
and to prevent the spore from tapping our communi-
cations.

2.6 Limitations and evasion of Avatar

In this section we discuss the limitations of our ap-
proach.

Limitations of the CEG When crafting the
cuckoo’s egg, the original requested file can be at-
tached to it. This process could break self-extracting

archives, which verify the file integrity before inflat-
ing the content.

Evading the DDE Our approach works by first
detecting (failed) attempts to download additional
components. If malware evades this detection phase,
then Avatar cannot ship the cuckoo’s egg. To avoid
detection, malware could initiate connections at a
very low rate, as part of our detection relies on high
rate of failed connections. Encrypting connections
could be also a countermeasure against inspection.

Evading the CEG Another possible way of evad-
ing Avatar is by using some sort of verification mech-
anism of the downloaded components. Encryption
and hashing could be employed to detect a mismatch
with the expected file. For instance, by compress-
ing the executable and protecting the archive with
a password. Because the sanity check performed on
the downloaded file can be solely based on the magic
numbers only, a malware writer could hide the exe-
cutable within a different file type and change the file
header at run-time, once downloaded.

Evading the cuckoo’s egg Because the cuckoo’s
egg employs heuristics to decide whether to continue
the analysis or to send back to the instrumented host
the parent executable for analysis, malware could
take some countermeasures to evade the heuristics
checks. For instance, since Windows 2000, a process
can execute instructions within the context of an-
other process by using the CreateRemoteThread API
function (a similar function allows the injection of
DLLs). Thus, malware could inject arbitrary ma-
licious instructions in the context of an accessible
whitelisted process, e.g., Internet Explorer, which is
usually executed with the same access rights the mal-
ware has, to evade some checks performed by the
cuckoo’s egg3.

3It is worth noting that the very same technique could be
used to evade approaches like the one presented in [13], which
relies on the fact that some processes can be whitelisted before
hand to avoid false alerts.

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 209

Possible Solutions Although we acknowledge
that it is possible to devise malware with anti-
analysis features tailored for our approach, we did not
observe any of those during our experiments. More-
over, the use of encryption of hashing for file verifi-
cation would likely slow down the malware spread,
as either “updated” versions would fail the check or
researchers could reverse engineer some malware sam-
ples and identify the encryption key/password of the
mechanism.
By the way, we think that malware writers might

be reluctant in adding a verification step to the mal-
ware, as it might simplify the work of signature-based
detection system. In the moment that the malware
is analyzed the key used for encryption would cer-
tainly be identified, and this could be used to craft
an effective signature for detecting it.
A possible solution to the evasion of the cuckoo’s

egg would be to add a comparison of the exe-
cutable on the disk with the memory image, and
pinpoint possible later-added instructions. However,
this would require also to inspect DLLs, and the task
could easily become infeasible (let alone not being
bullet-proof). We plan to address in future work this
issue.

3 Benchmarks

To validate the effectiveness of our approach, we use
two different datasets. The first data set, referred to
as DSA is available on request from the team that
built Malheur. It contains a large collection of mal-
ware samples that could be used for malicious pur-
poses. In practice, the data set is a collection of sam-
ples submitted in a period of eight consecutive days
in 2009. Each sample has been analyzed by CWSand-
box and the related report is included together with
the original sample. This data set is used to test the
basic idea of our approach, that malware will execute
an arbitrary generated “egg”.
Our second dataset, DSB , is a collection of mal-

ware samples found in the wild. For some samples,
no report was available beforehand (meaning they
were brand new or modification of known malware
samples). Hence, we had to submit the sample to

either Anubis or CWSandbox to learn whether the
sample was actually malware and downloaded some
extra components. With this data set we want to test
in particular the effectiveness of the devised heuristics
for triggering instrumented analysis of the suspicious
process.

3.1 Tests with DSA

This dataset is an extensive collection of malware
samples. They belong to different malware families
and are all unique, meaning that some sort of poly-
morphism/code reordering has been applied.
However, not every sample downloads extra com-

ponents, and among those which perform download
activities, a large part cannot work properly these
days. This is due to the fact that, before downloading
the extra executables, the malware sample attempts
to download some configuration files, which are not
longer available. We select only working samples that
download additional components, and up to 10 max-
imum samples per family (in total 75 samples).
To perform the experiment, we set up a client host

running Windows XP SP3, as some malware sam-
ples suddenly crash when executed under more recent
OSes4, like Windows 7. No extra user activity is sim-
ulated. For the DDE, we use the following settings: 5
failed connection/download attempts in 1 minute in-
dicate a possible malicious program. The operational
mode for this dataset is set to transparent mode. Ta-
ble 1 summarizes our findings.
Discussion Tests on DSA show the effectiveness

of our approach. However, we have observed that
for few samples and for a certain malware family
in particular, the cuckoo’s egg is not actually exe-
cuted. There are two distinct reasons for it. In the
case of random samples, once the cuckoo’s egg in-
jects its crafted DLL the parent process crashes. In
the case of the “Killav” malware family, the mal-
ware sample relies on the user to actually execute
the download file(s). In all the other cases, there
is no check run by the malware whether the down-
loaded file is actually a “legitimate” malicious com-
ponent. This enforce our assumption that malware

4We investigated this issue and found some incompatibles
among installed and expected system libraries.

9

210 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Malware family # of samples # of samples
marked as ma-
licious by the
DDE

samples that
executed the
cuckoo’s egg

Agent 9 9 9

Adload 8 6 6

Banload 3 2 2

Chifrax 2 2 2

FraudLoad 8 5 4

Genome 4 4 4

Geral 9 8 8

Killav 6 5 0*

Krap 6 4 4

NothingFound 10 10 3

Xorer 7 6 4

Table 1: Actual samples used in our tests with dataset DSA, samples flagged as malicious by the DDE
and that executed the shipped cuckoo’s egg. The * marks a family of malware that actually downloads the
cuckoo’s egg, but does not automatically execute it (and leaves this to the user). In most cases, the DDE
detects failed download attempts, and the cuckoo’s egg is executed right away by the malicious sample,
without any integrity check.

writers do not currently protect their programs with
encryption/hashing mechanisms.

For the “NothingFound” family, whose name might
refer to the fact that the submitted sample has not
beed identified as malicious by CWSandbox, we have
to report that the cuckoo’s egg has been actually ex-
ecuted most times.

3.2 Test with DSB

This dataset is used to tests how our approach per-
forms with (supposedly) brand new malware. Sam-
ples have been collected in March 2011, and most of
them would have not been detected by several an-
tivirus software at the time of collection (we pro-
cessed each sample through the VirusTotal [23] web
site). We have a total of 30 malware samples from
this dataset, which downloads extra malware compo-
nents. For this set of tests, we also simulate regu-
lar user activities such as browsing and downloading,
with 30 different software, ranging from web browser
to crawlers. Because the downloading program might
not execute the cuckoo’s egg, we automate its execu-
tion and set the parent process to be the downloading

program. For the DDE, we use the following stricter
settings: 3 failed connection/download attempts in 1
minute will indicate a possible malicious program.

To perform the experiment, similarly to the tests
with DSA, we set up a client host running Windows
XP SP3. The operational mode for this dataset is
set to semi-transparent mode. By doing so, we test
at the same time how efficient heuristics are in detect-
ing malware programs. Because some goodware pro-
grams that the heuristics might send to the MAE for
analysis could rely on the presence of certain system
libraries, for this experiment the MAE is running on
a mirror copy of the attacked system. When samples
are sent to the MAE, we set a maximum amount of
waiting time without operation performed of 3 min-
utes: By doing so we avoid false positives in case of
goodware, but might introduce false negatives in case
of malware. Table 2 summarizes our findings.

Discussion This second round of tests confirms
that even the latest malware code is still “vulnera-
ble” to the injection of our cuckoo’s egg. Most sam-
ples have been correctly identified by the DDE, and
only 2 samples have been missed. These samples
have stopped their download attempts just after a

10

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 211

of samples

Malware

Correctly identified by the DDE 28/30
That executed the cuckoo’s egg 27/30 (27/28)
Correctly identified as malware by heuristics 13/30 (13/27)
Erroneously identified as goodware by heuristics 2/30 (2/27)
Sent to the MAE for analysis 12/30 (12/27)

Goodware

Erroneously identified by the DDE 10/30
Correctly identified as goodware by heuristics 6/30 (6/10)
Erroneously identified as malware by heuristics 2/30 (2/10)
Sent to the MAE for analysis 2/30 (2/10)

Table 2: Results for tests with dataset DSB (in the third column we report partial results in brackets).
Almost any malicious download attempt has been detected by the DDE, which shipped the cuckoo’s egg.
The heuristics identified malware samples in almost half cases, and mistakenly flagged as goodware malicious
samples only in a couple of cases. The false positive rate for the DDE is around 30%, and around 20% for
the heuristics (when considering the cases in which the cuckoo’s egg was shipped).

few tries. The DDE also mistakenly detects as mal-
ware some regular programs. Actually this was an
expected behaviour, as we set strict values for the
DDE. Only one program did not execute the shipped
cuckoo’s egg, due to a crash at the moment of in-
jection. We experienced the same problem for sev-
eral samples from DSA, and our investigations show
that the malware was not fully compatible with the
installed set of libraries, and therefore would have
crashed anyway.

The heuristics prove to be an effective way to re-
duce the workload of the analysis engine (and thus
the manual workload for security analysts), when
working in combination with the DDE. Less than
50% of analysed malware samples have been sent to
the MAE for analysis, and more than 50% of sam-
ples have been immediately identified as malware. In
the case of non-malware samples, 20% of analysed
samples had to be sent to the MAE for further anal-
ysis while 60% has been identified as non-malware
without further analysis. For each successful execu-
tion, the cuckoo’s egg would have been allowed to
terminate the parent process, effectively containing a
possible infection.

3.3 System overhead

Because the Avatar architecture performs an on-the-
fly analysis, and eventually detection, the program

execution is slowed down by a certain overhead. De-
pending on the operational mode, this overhead can
range between milliseconds and minutes. A typi-
cal example of the former case is transparent mode,
when the heuristics flag the downloading program as
actual goodware. In non-transparent mode, if the
heuristics fail to determine the actual nature of the
analysed program, the MAE is activated for further
inspection (thus, slowing down the overall analysis
time). All our benchmarks have been performed on a
1.8Ghz Dual Core machine (target) and 3.0Ghz Quad
Core machine (MAE). Table 3 reports overhead val-
ues for different scenarios we observed during our
benchmarks (overhead refers to the execution time
of the cuckoo’s egg and, possibly, of the MAE).

4 Related work

In this section we discuss related works. As malware
has become a serious security threat, a good deal of
work exists that discusses techniques to analyse and
detect malicious code.

4.1 Malware Analysis

Sidiroglou and Keromytis [19] present an architecture
to detect and capture potential malware infection
vectors by using a collection of heterogenous detec-

11

212 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Dataset Min overhead Avg overhead Max overhead

DSA 17ms 21ms 30ms

DSB (malware samples) 19ms 61s 181s

DSB (goodware samples) 16ms 29s 181s

Table 3: Overhead time values for DSA and DSB . When heuristics successfully identify the analysed sample,
the overhead can be as low as 16ms. The maximum overhead value depends on the MAE analysis.

tion engines. Engines range from host-based sensors
monitoring the behaviour of applications and OSes to
honeypots that simulate possible target applications.
Each time a potential malware vector, e.g., a byte
stream, is detected, it is copied and forwarded to a
sandboxed environment, which runs some instances
of the applications one wants to protect (e.g., the
Apache web server) and a number of tools to verify
the potential maliciousness of the input. The authors
provide several strategies for fixing, among others,
buffer overflow vulnerabilities “on-the-fly”. Despite
the fact that authors do not provide any implemen-
tation of their architecture, there are several simi-
larities with our approach. Once the cuckoo’s egg
is being executed, the suspicious program is copied
and forwarded to a sandboxed environment for dy-
namic analysis. The main difference lies in the way
we inspect the suspicious program, by crafting the
cuckoo’s egg and sending it together with the origi-
nal requested file.

Anubis [3] and CWSandbox [24] are two prominent
architectures for dynamic malware analysis. In par-
ticular, Anubis can aggregate malware samples that
present a similar behaviour into “clusters”. That is,
although samples’ diversity is high (Anubis has ana-
lyzed more than 1 million of unique malware samples
so far), there are nearly 100.000 malware “families”.

4.2 Malware Detection

A number of heterogeneous techniques have been pre-
sented to detect malware.

Host-based Techniques Host-based techniques
were the first to be used to detect and stop mal-
ware (think of antivirus software). Their main ad-
vantage is that they can detect malware even before

it is actually executed. Approaches range from simple
byte-pattern matching, which scans a file for known
malicious strings or instructions [21], to model check-
ing [12] and compiler verification [5]. Unfortunately,
such (static) techniques can be evaded using packers
and polymorphism.
In an effort to overcome typical limitations of

matching-based approaches, Kolbitsch et al. [13] in-
troduced a new concept of signature based on fine-
grained models. Fine-grained models are graphs rep-
resenting system calls invocation order (and other ad-
ditional information) to match the characteristic be-
havior of a given malware program. The model gen-
eration is off-loaded onto a dynamic malware analysis
tool (i.e., Anubis). This approach allows the detec-
tion of unknown malware samples too, provided the
“family” has been analyzed before.

Network-based Techniques Regarding specific
network-based techniques, several approaches lever-
age information extracted by analyzing network traf-
fic [8, 9, 11, 16].
BotMiner [8] combines a number of different traf-

fic monitoring tools to extracts network communica-
tion patterns and their content. Typical information
that BotMiner takes into consideration are vertical
and horizontal scans, exploit attempts, DNS queries,
downloads of binaries. Then, BotMiner clusters hosts
with a similar behavior and attempts to detect botnet
nodes. Although network-based approaches could al-
low, in theory, to perform on-the-fly detection, this
is hard to realize because they miss the activity per-
formed by malware on the host.

Techniques based on Data Mining Several re-
searchers address the detection of malware by using
data mining techniques, in a effort to detect a higher

12

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 213

number of malware samples that are simply a variant
of already known samples.
Tabish et al. [22] notice that most of current mal-

ware samples that are daily submitted for analysis
are not brand new. Commonly, malware writers em-
ploy techniques such as repacking to “obfuscate” mal-
ware content and thus defeating approaches based
on content matching, e.g., antivirus software. The
authors devise an approach based on extracting sta-
tistical and information-theoretic features from file
blocks. A block is a fixed-sized chunk of byte-level
contents of a given file. More than 50 distinct fea-
tures are extracted, and then analyzed using math-
ematical distance functions that are common in the
data mining field (e.g., the Manhattan and Cheby-
shev distances). The approach gives in general good
results, but requires the analysis of several “good”
file samples, e.g., executables, PDF documents, etc.,
to detect malicious files.

5 Conclusion

In this paper we present Avatar, a new lightweight ar-
chitecture for on-the-fly, signature-less malware anal-
ysis, containment and detection for large networks.
Avatar does not require any special setup or soft-

ware on the infected hosts. This is because the anal-
ysis is not done on the allegedly infected host, but it
is carried out on a remote system, which communi-
cates with the (allegedly) infected host through the
cuckoo’s egg. The cuckoo’s egg provides also contain-
ment functionalities. In fact, Avatar’s architecture is
completely centralized. This allows one to deploy it in
any environment (like a corporate network) where the
firewall can be modified to provide the needed facili-
ties for the interception of suspicious downloads and
the injection of the cuckoo’s egg. Basically, Avatar
can be deployed in most work environments with very
little effort. An additional advantage of a centralized
architecture is that the updates in the analysis engine
affect only one machine, as opposed to what happens
e.g., with antivirus software, where all hosts have to
be updated.
An interesting aspect of Avatar’s architecture is

that it can avoid some evasion techniques used by

malware; as we mentioned before, modern malware
can check whether it is running in a sandboxed envi-
ronment. Since our architecture does not deploy any
extra tool, not even at kernel level, before hand, the
malware has little way of detecting that it is under
analysis.
The detection in Avatar is necessarily based on

heuristics, and is thus fallible. This however allows
the detection of malware for which there is no sig-
nature available yet. On the other hand, since the
heuristics-based detection phase is always followed by
an analysis phase before proceeding to the contain-
ment, the risk of having false positives in the detec-
tion phase is heavily mitigated by the fact that if the
analysis phases determines that the suspected mal-
ware is actually a legitimate program, the cuckoo’s
egg can simply “release” it and allow it to continue.
Our experiments show that our approach is effec-

tive in detecting and containing malware, even un-
known malicious code. We believe that Avatar can
be the basis of an effective lightweight first line of
defense against malware.

References

[1] Anubis: Analyzing Unknown Binaries. http:

//anubis.iseclab.org.

[2] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda,
C. Kruegel, and G. Vigna. Efficient Detection of
Split Personalities in Malware. In NDSS ’10:
Proc. 17th Network and Distributed System Se-
curity Symposium, 2010.

[3] U. Bayer, A. Moser, C. Krugel, and E. Kirda.
Dynamic Analysis of Malicious Code. Journal
in Computer Virology, 2(1):67–77, 2006.

[4] M. Christodorescu and S. Jha. Testing mal-
ware detectors. In ISSTA ’04: Proc. ACM
SIGSOFT international symposium on Software
testing and analysis, pages 34–44. ACM Press,
2004.

[5] M. Christodorescu, S. Jha, S.A. Seshia, D. Song,
and R.E. Bryant. Semantics-Aware Malware De-
tection. In S&P ’05: Proc. 25th IEEE Sym-

13

214 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

posium on Security and Privacy, pages 32–46.
IEEE Computer Society, 2005.

[6] P. Milani Comparetti, G. Salvaneschi, E. Kirda,
C. Kolbitsch, C. Kruegel, and S. Zanero. Iden-
tifying Dormant Functionality in Malware Pro-
grams. In S&P ’10: Proc. 31th IEEE Symposium
on Security and Privacy, page TO APPEAR.
IEEE Computer Society Press, 2010.

[7] CWSandbox. http://www.cwsandbox.org.

[8] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Bot-
Miner: Clustering Analysis of Network Traffic
for Protocol- and Structure-Independent Botnet
Detection. In USENIX Security ’08: Proc. 17th
Usenix Security Symposium. USENIX Associa-
tion, 2008.

[9] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and
W. Lee. BotHunter: detecting malware infec-
tion through IDS-driven dialog correlation. In
USENIX Security ’07: Proc. 16th USENIX Se-
curity Symposium on USENIX Security Sympo-
sium, pages 1–16. USENIX Association, 2007.

[10] J. Jung, V. Paxson, A.W. Berger, and H. Bal-
akrishnan. Fast Portscan Detection Using Se-
quential Hypothesis Testing. In S&P ’04: Proc.
25th IEEE Symposium on Security and Privacy,
pages 211–225. IEEE Computer Society Press,
2004.

[11] H. Kim and B. Karp. Autograph: Toward
Automated, Distributed Worm Signature De-
tection. In Proc. 13th USENIX Security Sym-
posium, pages 271–286. USENIX Association,
2004.

[12] J. Kinder, S. Katzenbeisser, C. Schallhart, and
H. Veith. Detecting Malicious Code by Model
Checking. In DIMVA ’05: Proc. 2nd Interna-
tional Conference on Detection of Intrusions and
Malware and Vulnerability Assessment, volume
3548 of LNCS, pages 174–187. Springer-Verlag,
2005.

[13] C. Kolbitsch, P. Milani Comparetti, C. Kruegel,
E. Kirda, X. Zhou, and X. Wang. Effective and

efficient malware detection at the end host. In
USENIX ’09: Proc. 18th Usenix Security Sym-
posium, 2009.

[14] Malheur: Automatic Analysis of Malware Be-
havior. http://www.mlsec.org/malheur.

[15] Microsoft. Portable Executable and Com-
mon Object File Format Specification, 2008.
http://www.microsoft.com/whdc/system/

platform/firmware/PECOFF.mspx.

[16] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically Generating Signatures for Poly-
morphic Worms. In S&P ’05: Proc. 25th IEEE
Symposium on Security and Privacy, pages 226–
241. IEEE Computer Society, 2005.

[17] Open Letter to RSA Customers. http://www.

rsa.com/node.aspx?id=3872.

[18] M. Zubair Shafiq, S. Momina Tabish, F. Mirza,
and M. Farooq. PE-Miner: Mining Structural
Information to Detect Malicious Executables in
Realtime. In RAID ’09: Proc. 12th International
Symposium on Recent Advances in Intrusion De-
tection, pages 121–141. Springer-Verlag, 2009.

[19] S. Sidiroglou and A.D. Keromytis. A Network
Worm Vaccine Architecture. In WETICE ’03:
Proc. 12th International Workshop on Enabling
Technologies, pages 220–225. IEEE Computer
Society, 2003.

[20] B. Stone-Gross, M. Cova, L. Cavallaro, B.
Gilbert, M. Szydlowski, R. Kemmerer, C.
Kruegel, and G. Vigna. Your botnet is my bot-
net: analysis of a botnet takeover. In CCS ’09:
Proc. 16th ACM conference on Computer and
Communications Security, pages 635–647. ACM
Press, 2009.

[21] P. Szor. The Art of Computer Virus Re-
search and Defense. Addison-Wesley Profes-
sional, 2005.

[22] S. Momina Tabish, M. Zubair Shafiq, and M. Fa-
rooq. Malware detection using statistical anal-
ysis of byte-level file content. In CSI-KDD ’09:

14

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 215

Proc. ACM SIGKDD Workshop on CyberSecu-
rity and Intelligence Informatics, pages 23–31.
ACM Press, 2009.

[23] VirusTotal: Online Virus, Malware and URL
Scanner. http://www.virustotal.com.

[24] C. Willems, T. Holz, and F. Freiling. To-
ward Automated Dynamic Malware Analysis
Using CWSandbox. IEEE Security and Privacy,
5(2):32–39, 2007.

15

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 217

Auto-learning of SMTP TCP Transport-Layer Features for Spam and
Abusive Message Detection

Georgios Kakavelakis
Naval Postgraduate School

Robert Beverly
Naval Postgraduate School

Joel Young
Naval Postgraduate School

Abstract
Botnets are a significant source of abusive messaging
(spam, phishing, etc) and other types of malicious traffic.
A promising approach to help mitigate botnet-generated
traffic is signal analysis of transport-layer (i.e. TCP/IP)
characteristics, e.g. timing, packet reordering, conges-
tion, and flow-control. Prior work [4] shows that ma-
chine learning analysis of such traffic features on an
SMTP MTA can accurately differentiate between botnet
and legitimate sources. We make two contributions to-
ward the real-world deployment of such techniques: i)
an architecture for real-time on-line operation; and ii)
auto-learning of the unsupervised model across differ-
ent environments without human labeling (i.e. training).
We present a “SpamFlow” SpamAssassin plugin and the
requisite auxiliary daemons to integrate transport-layer
signal analysis with a popular open-source spam filter.
Using our system, we detail results from a production
deployment where our auto-learning technique achieves
better than 95 percent accuracy, precision, and recall af-
ter reception of ≈ 1,000 emails.

1 Introduction

“Botnets” are distributed collections of compromised
networked machines under common control [7]. Auto-
mated methods scan, infect, or socially engineer vulner-
able hosts in order to incorporate them into the botnet.
Botnets provide a formidable computing and communi-
cation platform by harnessing the power of thousands,
or even millions, of nodes for a common collective pur-
pose [21]. Unfortunately, that purpose is often malicious
and economically or politically motivated.

As one common use scenario, botnets account for
more than 85 percent of all abusive electronic mail
(including spam, phishing, malware, etc) by one esti-
mate [14]. Botnet-based spamming campaigns are large
and long-lived [20], with more than 340,000 botnet hosts

involved in nearly 8,000 campaigns in one study [27].
The Messaging Anti-Abuse Working Group (MAAWG)
coalition of service providers reported that across 500M
monitored mailboxes in one quarter of 2007, 75 percent
of all messages (almost 400 billion) were spam [18].
A subsequent 2010 MAAWG study reports the situa-
tion has worsened: abusive messages accounted for 89
percent of all electronic mail in a representative sample
across many providers.

Abusive message traffic abounds on the Internet. This
deluge of unwanted traffic is more than a mere nui-
sance: a broad survey of large service providers finds
that abusive messages account for the largest fraction of
expended operational resources [1]. Despite extensive
research and operational deployments, attackers and at-
tacks have evolved at a rate faster than the Internet’s abil-
ity to defend. There remains ample room for improve-
ment of in-production botnet attribution and mitigation.

One promising approach for mitigating botnet-
generated abusive messaging is statistical traffic analy-
sis. Prior work [4] shows that by using transport-layer
traffic features, e.g. TCP retransmits, out-of-order pack-
ets, delay, jitter, etc., one can reliably infer whether the
source of an email SMTP [16] flow is legitimate or orig-
inating from a member of a botnet. Botnets must send
large volumes of abusive messages to remain financially
viable. Because bots are frequently attached via asym-
metric (low upload bandwidth) residential connections,
they necessarily congest their local uplink – an effect
that is remotely detectable. Perhaps most importantly,
transport-layer classifiers are content (e.g. the words of
the message itself) and IP reputation (e.g. blocklist) ag-
nostic, facilitating privacy-preserving deployment even
within the network core. Deployed on individual Mail
Transport Agents (MTAs), such techniques can permit
early-rejection of messages before application delivery,
significantly reducing system load.

Thus far, research in transport-layer classification has
been offline, where experimental data is examined a pos-

218 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

teriori. In this paper, we present the system engineering
efforts required to integrate TCP transport features into
the classification decisions of the popular open-source
SpamAssassin [17] spam filter. A crucial obstacle to re-
alizing such techniques is the ability to adequately train
and build a model of normal and abusive traffic across
a variety of operational environments. Rather than re-
quiring human labeling or overly general models to build
ground-truth, we exploit the auto-learning functionality
of SpamAssassin. Our primary contributions include:

1. On-line and real-time transport-layer classification
of live email messages on a production MTA.

2. Auto-learning of transport features to automatically
learn the unsupervised model across different oper-
ating environments without human training.

The remainder of this paper describes related work
(§2). From this foundation, we describe our system ar-
chitecture and testing methodology (§3). We present pro-
duction deployment results in §4 and discuss their impli-
cations (§5). We conclude by outlining future work.

2 Related Work

Recent research efforts have shown great promise in un-
derstanding the character and behavior of botnets. While
these proposed solutions are currently effective, they fre-
quently rely on brittle heuristics and unreliable indica-
tors. For instance, Xie et al. provide a system [27]
to identify and characterize botnets using an automatic
technique based on discerning spam URLs in email.
Other research relies on IP addresses as indicators [29].
However, malicious botnet IP addresses are highly dy-
namic as new hosts are compromised, existing hosts re-
ceive new DHCP leases, or sources are spoofed [3]. In-
deed, “fresh” IP addresses, i.e. those not in real-time
blocklists, are a valuable commodity. Similarly, DNS is
a poor identifier of malicious hosts given the prevalence
of botnets employing DNS fast-flux [5] techniques to dis-
tribute load among redirectors, survive node failures, and
obfuscate back-end hosting infrastructure.

A large body of work examines network-layer (IP)
properties of botnets. Ramachandran et al. [22] charac-
terize spamming behavior by correlating data collected
from three sources: a sinkhole, a large e-mail provider,
and the command and control of a Bobax botnet. By
focusing on network-level properties including: i) IP
address space from which spam originates; ii) the au-
tonomous system (AS) that sent spam messages to their
sinkhole; and iii) BGP route announcements, they show
that spam and legitimate e-mail originate from the same
portion of the IP address space. Thus, IP addresses are
not a reliable indicator of malicious or abusive nodes.

Subsequent work from Hao et al. [11] demonstrates
that AS alone as a feature may cause a large rate of
false positives. They achieve better results by extracting
lightweight features from network-level properties such
as geodesic distance between sender and receiver, sender
IP neighborhood density, probability ratio of spam to
ham at the time of day the message arrives, the AS num-
ber of the sender, and the status of open ports on the
sender machine. Further studies [15, 28] have shown
that a spammer can evade such techniques by advertis-
ing routes from a forged AS number [11].

Schatzmann et al. [24] similarly focus on network-
level characteristics of spammers, but from the perspec-
tive of an AS or service provider. Their idea is to pas-
sively collect the aggregate decisions of a large num-
ber of e-mail servers that perform some level of pre-
filtering (e.g. blocklisting). Using passive flow collec-
tion to gather byte, packet, and packet size counts, this
aggregated knowledge can enhance spam mitigation.

Commercial vendors expend considerable effort divid-
ing the Internet IP address space into regions, with partic-
ular attention given to identifying residential broadband
addresses. By discriminating against residential hosts,
the hope is to block traffic from nodes that should not be
sourcing email in the first place. This approach is both
brittle and raises architectural misgivings in the form of
arbitrarily discriminating against classes of users without
prior provocation. Such residential blocking may have
implications on notions of network neutrality as neutral-
ity legislation catches up with technology.

In contrast to these spam detection and mitigation
techniques, Beverly and Sollins [4] present a content and
IP reputation agnostic scheme based on statistical sig-
nal analysis of the transport (TCP) traffic stream. The
premise is that spammers must send large volumes of e-
mail to be effective, causing constituent network links
to experience contention and congestion. Such conges-
tion effects are particularly prominent for many botnet
hosts which reside on residential broadband connections
where there are large gateway buffers [12] and asym-
metric bandwidth. Transport-layer properties such as the
number of lost segments and round trip time (RTT) there-
fore exhibit different distributions, permitting discrimi-
nation between spam and legitimate behavior. Among
many TCP features, their analysis found that RTT and
minimum-congestion window are the most discrimina-
tory. This transport-only classifier exhibits more than 90
percent accuracy and precision on their data.

Follow-on work to [4] explore similar ideas, including
the use of lightweight single-TCP/SYN passive operat-
ing system signatures at the router-level [10]. Ouyang
et al. [19] conduct a large-scale empirical analysis of
transport-layer characteristics on over 600,000 messages.
Among tested features, their analysis similarly finds the

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 219

three-way-handshake latency, time-to-live (TTL), and
inter-packet idle time and variance most discriminating
for ham versus spam. These features remain stable over
time, yielding 85-92 percent classification accuracy.

Based on the encouraging results of this body of prior
work, we endeavor to take a step toward the real-world
deployment of transport-classifier based botnet detection
and abusive traffic mitigation techniques.

3 System Architecture

The TCP/IP network stack logically divides functional-
ity between layers. As a result, applications do not nor-
mally have access to lower-layer features. For example,
TCP (implemented in the kernel or lower) provides an
abstraction of a reliable and in-order data stream to the
application via a socket interface. Applications are re-
moved from the details of packet arrival timing, order-
ing, TTL, etc. Thus, our design must collect, on a per-
message basis, transport-layer traffic characteristics and
expose them up the stack to the SpamFlow (SF) plugin.
This section describes our system architecture and the in-
teraction between various components: SpamAssassin,
SpamFlow, and the SpamFlow plugin.

3.1 Overview

We start with an overview of our SpamFlow system ar-
chitecture, shown in Figure 1. For clarity of exposition,
we describe all functionality as being co-located with the
Mail Transport Agent (MTA); however, the components
can easily be distributed across different machines. The
system is comprised of four main components: Spam-
Assassin, the SpamFlow traffic feature extraction engine,
the SpamFlow plugin, and the classification software –
referred to as SpamAssassin, SpamFlow, SF plugin, and
classifier respectively.

Every message received by the MTA is processed by
SpamAssassin and then piped to the plugin. Simulta-
neously, SpamFlow continuously and promiscuously lis-
tens on the network interface, capturing SMTP packets
via the pcap API [13], aggregating packets into flows,
and computing the relevant traffic statistics (e.g. TCP re-
transmits, out-of-order packets, delay, jitter, etc.). The
plugin queries SpamFlow with the message’s identifier
in order to retrieve the flow-level transport features cor-
responding to that message. Next, the plugin sends the
message’s transport feature vector to the classifier. In re-
sponse, the classifier returns a binary or probabilistic pre-
diction (depending on the classifier employed) that then
influences the final score of the message, and hence the
final disposition. We describe each component in more
detail in the following subsections.

SMTP
Traffic

(postfix)

MTA

SF Plugin

pcap SpamFlow

Classifier

features

prediction

features
msgid

msgid
score

email

packets

Spam

Assassin

Model

Figure 1: SpamFlow system architecture: transport-layer
features are aggregated on a per-flow basis. The Spam-
Flow SpamAssassin plugin uses XML-RPC to obtain
each message’s feature vector which is then sent to the
classifier. Predictions are relayed to the plugin and inte-
grated into the final SpamAssassin message score.

3.2 SpamAssassin

SpamAssassin [17] is an open-source, rule and content
learning-based spam filter. Each rule is assigned a weight
by a perceptron algorithm [25] and then the weighted
scores are summed to produce an overall score for each
message. The classification process involves comparing
the overall score with a user-defined threshold t (which
defaults to a value that maximized performance on a
broadly representative training sample). If the score is
above t, then the message is classified as spam; other-
wise, as legitimate. SpamAssassin is modular and exten-
sible for adding other filtering techniques. Popular plu-
gins include real-time block lists (RBLs), domain-keys,
permit lists, collaborative filtering, learning-based tech-
niques (e.g. naı̈ve Bayes), and others.

Furthermore, SpamAssassin features a threshold-
based mode in which new exemplar emails trigger an au-
tomatic retraining process. While SpamAssassin refers
to this retraining as “auto-learning,” this is typically
known as “online” or “iterative” learning in machine
learning. The primary difference is that advanced itera-
tive learning approaches modify the classification model
to account for new emails, whereas in auto-learning the
entire model is rebuilt each time. In SpamAssassin auto-
learning, a previously unseen message is used to retrain
the model if it receives a score greater than τ+ (assumed
spam) or less than τ− (assumed non-spam). For example,
when a message exceeds these threshold values, Spam-
Assassin rebuilds the model of the built-in naı̈ve Bayes
classifier, and classifies subsequent messages with the
newly updated model.

3

220 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

--- src/smtpd/smtpd.c.orig

+++ src/smtpd/smtpd.c

@@ -2807,9 +2807,9 @@

*/

if (!proxy || state->xforward.flags == 0) {

out_fprintf(out_stream, REC_TYPE_NORM,

- "Received: from %s (%s [%s])",

+ "Received: from %s (%s [%s:%s])",

state->helo_name ? state->helo_name : state->name,

- state->name, state->rfc_addr);

+ state->name, state->rfc_addr, state->port);

Figure 2: Postfix modification to support traffic identifiers

--- received.c.orig

+++ received.c

@@ -44,2 +44,3 @@

char *remoteip;

+char *remoteport;

char *remotehost;

@@ -63,2 +64,5 @@

safeput(qqt,remoteip);

+ remoteport = getenv("TCPREMOTEPORT");

+ qmail_puts(qqt,":");

+ safeput(qqt,remoteport);

qmail_puts(qqt,")\n by ");

Figure 3: qmail modification to support traffic identifiers

3.3 SpamFlow

SpamFlow [4] is our network analyzer. Using libpcap
[13], SpamFlow promiscuously listens on the network
interface and builds source host/port flows (the destina-
tion MTA address is constant and known and thus not
part of the flow tuple). As SMTP flows complete, either
via an explicit TCP termination handshake or via time-
out, SpamFlow extracts transport-layer features for each
as detailed extensively in [4]. SpamFlow listens for XML
queries for a particular flow’s IP and port, responding in
kind with the features for that flow.

We explored two options for uniquely identifying mes-
sages to correlate between messages and their constituent
flow data. First, every message contains a unique mes-
sage string (“Message-ID” in the header) [23] to facil-
itate replies, threading, etc. Using deep packet inspec-
tion, SpamFlow could reassemble email messages from
the packet payloads to uniquely identify each flow by
Message-ID. The immediate downside to using the mes-
sage identification field is that doing so removes the ben-
efit of only examining packet header statistics: namely
privacy and efficiency.

Instead, we opt to follow a simpler approach and use
remote host IP address and ephemeral port number as
the message identifier. These fields are readily available
without any transport reassembly and are, in general,
unique. Naturally, IP address and port tuples are reused
(there is a maximum of only 216 unique TCP client-side
ephemeral ports). For a tuple collision to occur in Spam-
Flow, two identical flows must arrive within less time
than the messages can be delivered to the MTA and pro-
cessed by SpamAssassin, i.e. on the order of a few sec-
onds. Not only is this in violation of the TCP time wait
procedure, we do not observe any duplicate flows within
such short time periods in our empirical data.

The final detail is how to expose the message identifier
to the plugin so it can query SpamFlow. We modify our
MTA server to add the (IP address,TCP port) identifi-
cation tuple of the remote MTA to the header of each in-
coming e-mail. The actual MTA code modifications are

small and straightforward. For reference we provide the
code changes for the popular Postfix and qmail MTAs in
Figures 2 and 3.

3.4 SpamFlow Plugin

SpamFlow does not operate as a standalone MTA or
spam classifier. Therefore, we integrate it with an ex-
isting one. We select SpamAssassin [17] because it is
open source and widely used; for instance, the commer-
cial Barracuda [2] network appliance is based on Spam-
Assassin. Importantly, SpamAssassin employs a modu-
lar architecture that allows developers to extend its func-
tionality through plugins. As SpamAssassin is written
in Perl, we develop a small, lightweight SpamAssassin
Perl plugin tying the various components of Figure 1
together. In real-time, as e-mail messages are routed
through the SpamFlow plugin, it scores them using a pre-
viously learned model of transport features. This score,
in combination with the scores from other rules, provides
a final message disposition.

The plugin acts as the controller of the system and
binds the traffic analysis engine and the classifier to-
gether. First, the plugin provides SpamFlow with the 2-
tuple identifier of the message under inspection and re-
ceives in return the corresponding message’s transport-
layer features. After obtaining the features, the plugin
passes them to a logically distinct machine learning clas-
sifier and retrieves the corresponding prediction. Fig-
ure 4 shows an example where the MTA added the mes-
sage identifier (here, 77.239.18.226:37689) and the
plugin attached SpamFlow’s transport feature vector to
the message’s headers.

Between components, we use XML-RPC [26] to com-
municate. XML-RPC is a simple protocol that allows
communication between procedures running in different
applications or machines. Specifically, the client uses the
HTTP-POST request to pass data to the server; the server
in return sends an HTTP response. In our implementa-
tion, we register the classifier with a classify proce-
dure that takes as input the features. Thus, the plugin

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 221

From Josephine@rsi.com Tue Feb 01 23:21:58 2011

Return-Path: <Josephine@rsi.com>

X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on ralph.rbeverly.net

X-Spam-Level: ******

X-Spam-Status: Yes, score=6.9 required=5.0 tests=BAYES_50,RCVD_IN_XBL,HTML_MESSAGE,

SPAMFLOW, UNPARSEABLE_RELAY autolearn=no version=3.3.1

X-Spam-Spamflow-Tag: 3792891725:37689,12,10,0,0,0,0,1,1,0,53248,34.464852,0.162818,

120.441156,148.297699,51.891697,5840,48,1,64

Received: (qmail 30920 invoked from network); 1 Feb 2011 23:21:57 -0000

Received: from cm-static-18-226.telekabel.ba (77.239.18.226:37689)

Received: from vdhvjcvivjvbwyhscvfwq (192.168.1.185) by bluebellgroup.com (77.239.18.226) with Microsoft SMTP

Message-ID: <4D489025.504060@etisbew.com>

Date: Wed, 2 Feb 2011 00:20:48 +0100

From: Essie <Essie@hermes.com>

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.12)

Figure 4: Example email message headers with transport features added by the SpamFlow system

sends the HTTP-POST request with the name of the clas-
sify procedure along with the features, as comma sepa-
rated values forming a string1, and receives via HTTP
response the classification prediction from the classifier.

Not only is XML-RPC simple and standardized, it
allows the classifier to potentially operate on a differ-
ent machine from SpamFlow, which in the future could
allow the XML-RPC classifier to serve many Spam-
Flow instances in a multi-threaded fashion and distribute
load. Further, all popular programming languages pro-
vide XML-RPC APIs, notably allowing us to use our
language of choice for the various tasks. In our specific
implementation, we develop SpamFlow in C++ while the
classifier is a Python daemon.

3.5 Classification Engine
The final component of the system architecture is the
traffic classification engine which we implement using
the open source Orange [9] machine learning and data
mining Python package. While the details of the ma-
chine learning algorithms are out of scope for this paper,
we note that Orange includes a variety of algorithms and
statistical modules for performance evaluation.

Our classifier implementation experiments with three
machine-learning algorithms: naı̈ve Bayes, decision
trees (specifically, the C4.5 algorithm), and support vec-
tor machines (SVM). These three algorithms are broadly
representative of different classes of learning strategies
and allow us to evaluate both system classification per-
formance, generality, and system speed.

4 Results

This section first describes results from load testing the
SpamFlow system in a controlled laboratory environ-

1The CSV string is used for expediency; in the future, we plan to
use individual XML identifiers for each feature.

ment in order to understand its practical feasibility. We
then detail performance results using auto-learning of
transport features in a live production environment.

4.1 Load Testing
To understand the system-level performance of our
SpamFlow design as outlined in §3, we create the con-
trolled testing environment depicted in Figure 5. One
host runs the SpamFlow system and is physically con-
nected to a second traffic sourcing host. The traffic sourc-
ing host implements our custom e-mail “replayer” appli-
cation and a modified Dummynet [6] network emulator.

The replayer reads from the TREC public email cor-
pus [8] of 92,187 messages, of which 52,788 are spam
and 39,399 are legitimate. For each message, the re-
player: 1) extracts the headers and adds as recipient a
valid user of our virtual-network domain; 2) establishes
an SMTP session with the MTA (Postfix) of the Spam-
Flow system under test; 3) sets the differentiated services
code point (DSCP) in the IP header of each message ac-
cording to the ground truth label (spam or ham); 4) uses
the standard SMTP protocol to transmit the message.

We set the DSCP differently for spam and non-spam
messages in order to influence the emulated network be-
havior. Our goal is to coarsely simulate the character-
istics that botnet-generated spam traffic exhibits, such
as TCP timeouts, retransmissions, resets, and highly
variable RTT estimates. For our evaluation, we select
Dummynet [6], a publicly-available tool that enables in-
troduction of delay, loss, bandwidth and queuing con-
straints, etc. for packets passing through virtual network
links. In our testing setup, Dummynet applies differ-
ent queuing, scheduling, bandwidth, delay, loss, etc. de-
pending on the DSCP bits which correspond to email
type. Dummynet emulates a only fixed propagation de-
lay. We therefore modify it to generate random delays
drawn from a normal distribution with a mean delay of
µ = 150ms with σ = 50ms standard deviation for spam

5

222 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

SpamassassinEmail Replayer

D
u
m

m
y
n
et

MTA

Classifier

Corpus

cap
tu

re Feature Agg

Figure 5: Laboratory testing environment: enabling
tightly controlled and easily configurable repeatable ex-
periments. The replayer application replays an email
corpus while Dummynet emulates different network be-
havior to mimic botnet and legitimate traffic. Using the
testbed, we load test and debug SpamFlow.

traffic that originates from the replayer, and a µ = 40ms
delay with σ = 25ms for legitimate traffic in both direc-
tions. We introduce delay in legitimate traffic in order
to avoid overfitting our learned statistical model. These
delays need not be precise as they are intended to merely
mimic a congested environment. To emulate timeouts,
retransmissions, and resets, we apply a random-packet-
drop policy on the Dummynet pipe.

Note that we disable all SpamAssassin rules requiring
network access, e.g. real-time blocklists, as such rules
are dynamic and thus sensitive to dates and time.

While we recognize that our modifications to Dum-
mynet only partially emulate a congested network (for
example, loss events are independent – an assumption
that does not hold true in a real queue), our goal in the
emulation environment is to enable reproducible testing.
Thus, we use the environment to emulate high-rate traffic
and evaluate performance, throughput, system load, etc.
on representative traffic. Section 4.3 goes on to detail
real-world performance on live production traffic.

Table 1 shows the performance of the three classifiers
with respect to training time. C4.5 has the smallest train-
ing time. SVM, on the other hand, has the largest training
time, due to the more complex decision model.

We then examine throughput: the rate at which the
system is able to classify and process emails from the
replayer. Naı̈ve Bayes, C4.5, and SVM achieve 1,300,
1,000, and 700 messages per second throughput respec-
tively in our environment. Naı̈ve Bayes provides the
highest throughput, likely due to its simple decision rule.

Many factors impact throughput; our intent is to un-
derstand the relative performance of each classifier and
to establish real-world feasibility. The takeaway from
these measurements is that, taking into account the rel-
ative independence of our system from the classification
method, we can select the classification model that fits
our needs. For example, the low training time of C4.5
makes it a good candidate when we need to retrain often.

Table 1: SpamFlow training time (sec) as a function of
classifier type and sample size

Training Samples
Classifier 10 100 1000 10,000

Naive Bayes 0.88 15.02 105.45 104.84
C4.5 0.15 0.96 16.02 29.80
SVM 0.72 12.69 224.25 260.02

4.2 Production Environment
Live testing is important because it reveals how the sys-
tem interacts with possibly unknown features of the ex-
ternal environment. We deployed our system in a live
environment at our university for a small domain from
January 25, 2011 to March 2, 2011 and collected a trace
of 5,926 e-mail messages.

Ground truth was first established using an unmodified
SpamAssassin version 3.3.1 instance without transport-
layer traffic features, i.e. with only the default built-in
rules and content analysis. We then manually examined
all the legitimate ham messages and relabeled those that
were false negatives. We manually sampled the spam
messages to eliminate false positives and establish rea-
sonable ground truth. While the volume of traffic cap-
tured is small, our intent in this experiment is to establish
the ability to auto-learn the transport-layer features in a
production environment and ascertain the resulting clas-
sification performance. We envision larger-scale, higher-
volume live testing in the future.

Auto-learning is the incremental process of building
the classification model based on exemplar e-mail mes-
sages whose scores exceed certain threshold values. In
our case, we use features of e-mail messages otherwise
classified via orthogonal methods as having very high or
very low scores (for instance, those emails whose content
triggers many of SpamAssassin’s rule-based indicators).
Specifically, we explicitly retrain the classifier’s model
each time a new message obtains an especially high or
low score from the other SpamAssassin methods (rule-
and Bayesian-word based); i.e. a score above or below
set thresholds. After retraining is complete, we evalu-
ate performance iteratively on subsequent messages un-
til a new message arrives with a score above or below the
threshold, triggering retraining again.

Our thresholds selection is based on empirical spam
and ham SpamAssassin score distributions. Spam mes-
sage scores follow a normal distribution with µ = 16.3
and σ = 7.7, whereas scores of legitimate messages have
a mean of µ = 1.3, but are skewed left. Therefore, for the
legitimate messages we first experiment with a threshold
τ+ = 16 and τ− = 1, which allows the classifiers to be
trained on an approximately even fraction of training and
test examples: a total of 2,683/5,590 (48.0%) spam and

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 223

296/436 (67.9%) ham messages.
We canonically call spam a “positive” and ham a “neg-

ative” to indicate disposition. Correct predictions result
in either a true positive (t p) or true negative (tn). A
spam message that is mispredicted as ham produces a
false negative (f n), while a ham message misclassified
as spam produces a false positive (f p). Note that false
positives in email filtering are particularly expensive for
users as there is a high cost to missing or discarding le-
gitimate messages. As performance metrics, we consider
accuracy, precision, recall, specificity, and F-score:

accuracy =
t p+ tn

t p+ f p+ tn+ f n
(1)

precision =
t p

t p+ f p
(2)

recall =
t p

t p+ f n
(3)

speci f icity =
tn

f p+ tn
(4)

F − score = 2
(

precision∗ recall
precision+ recall

)
(5)

All of these metrics are important to consider to prop-
erly understand system performance. For instance, accu-
racy is misleading if the underlying class prior is heavily
skewed: if 95% of the messages are in fact spam, then a
deterministic classifier that always predicts “spam” will
achieve seemingly high 95% accuracy without any learn-
ing. Precision therefore measures, among messages pre-
dicted to be spam, the fraction that are truly spam. Re-
call measures the influence of misclassified spam mes-
sages, i.e. is a metric of the classifier’s ability to detect
spam. Specificity, or true negative rate, determines how
well the classifier is differentiating between false posi-
tives and true negatives. Finally, because there is a nat-
ural tension between achieving high precision and high
recall, a common metric is F-Score which is simply the
harmonic mean of precision and recall.

4.3 Production Testing
Figure 6 shows the classification performance metrics
of the three classifiers we implement in SpamFlow as a
function of cumulative training samples received. Fig-
ure 6 therefore depicts the classifiers’ auto-learning over
time as new exemplar training messages are received.

Figure 6(a) displays cumulative accuracy for each
classifier over time and includes the spam prior. The
spam prior is simply the fraction of all training emails
that are spam. A naı̈ve classifier could simply predict the
prior, so values above the prior indicate true learning. We
observe both decision trees and SVMs providing greater
than 95 percent accuracy. Figure 6(c) similarly shows de-
cision tree and SVM providing high F-scores, indicative

of very good performance using only transport-layer fea-
tures. Of note is that this level of performance is achieved
after receiving only 100-200 messages. The weakness
in SpamFlow only using traffic characteristics appears in
the specificity, Figure 6(e), where false positives drive
our best specificity down to approximately 75 percent.

To better understand the sensitivity of our auto-
learning results to the imposed thresholds τ , we exper-
iment with a spam threshold two deviations above the
mean: τ+ = 30. By increasing the spam threshold, the
SpamFlow auto-learning uses fewer spam-training ex-
amples. However, we expect to have higher confidence
in their true disposition of spam with the higher thresh-
old. Important to our evaluation, τ+ = 30 has the effect
of balancing the training complexion so that there is not
a strong class prior: 227 exemplar spam messages and
296 exemplar ham messages.

With the spam score threshold raised to τ+ = 30, Fig-
ure 6(b) shows that the spam prior is now close to 50
percent, removing any training class bias. SVM and
naı̈ve Bayes still achieve greater than 90 percent accu-
racy. Again, clearly the auto-learning behavior is work-
ing with performance steadily increasing over time and
greatly outperforming the spam prior. As with the lower
threshold, Figure 6(d) demonstrates very high F-Scores
for all of the classifiers.

Figure 6(f) highlights the challenge in false positives.
However, the most specific classifier, the decision tree
algorithm, is also highly accurate and precise. With
machine learning there is an inherent trade off between
achieving very high true positive rates and keeping false
positive rates low. Our results demonstrate the best com-
promise with the higher auto-learning threshold and the
use of decision trees.

Finally, we perform an initial investigation into
whether the combined votes of SpamAssassin and Spam-
Flow lead to overall improved performance. We experi-
ment with adding 0.2 (experiment 1) and with adding 1.0
(experiment 2) to the final score if SpamFlow predicts
a spam message on the basis of transport traffic charac-
teristics. Otherwise, we subtract 1.0 from the final score.
This crude weighting does not leverage SpamFlow’s con-
fidence in the prediction, and does not properly weight
the vote in accordance with SpamAssassin’s other rules.
We leave complete integration of SpamFlow’s predic-
tions with SpamAssassin’s voting as future work.

Table 2 shows the confusion data for SpamAssassin
alone, SpamFlow alone, and the combination. In the first
combined vote, we achieve better performance with the
same number of false positives. In the second combined
vote, we achieve even better performance, but at the cost
of false positives. In all cases, the combination increases
the overall F-score.

7

224 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

(a) Accuracy (τ+ = 16,τ− = 1) (b) Accuracy (τ+ = 30,τ− = 1)

(c) F-Score (τ+ = 16,τ− = 1) (d) F-Score (τ+ = 30,τ− = 1)

(e) Specificity (τ+ = 16,τ− = 1) (f) Specificity (τ+ = 30,τ− = 1)

Figure 6: Auto-learning classification results for three SpamFlow classifiers on live production traffic as a function of
cumulative exemplar training messages received.

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 225

Table 2: Confusion data comparing SpamAssassin per-
formance with and without SpamFlow auto-learning

t p f p tn f n F-Score
SpamAssassin 5288 3 137 87 0.991

SpamFlow 5224 65 75 151 0.980
SA+SpamFlow(1) 5299 3 137 76 0.992
SA+SpamFlow(2) 5335 19 121 40 0.995

5 Discussion

Can spammers adapt and avoid a transport-based clas-
sification scheme? By utilizing one of the fundamental
weaknesses of spammers, their need to send large vol-
umes of spam on bandwidth constrained links, we be-
lieve SpamFlow is difficult for spammers to evade. A
spammer might send spam at a lower rate or upgrade
their infrastructure in order to remove congestion effects
from their flows. However, either strategy is likely to
impose monetary and time costs on the spammer.

Of note is that our techniques work equally well in
IPv6 as the TCP transport-layer characteristics Spam-
Flow relies on in IPv4 are the same in IPv6. The fact
that SpamFlow is IP address agnostic suggests that it may
be an even more important technique in an IPv6 world
where the large address space is difficult to reliably map.

One possible limitation of SpamFlow is that it may
be unable to distinguish between a botnet host sending
large volumes of spam and traffic from a host that is sim-
ply busy, or on a congested subnetwork. However, other
transport-layer features are decoupled from congestion,
for instance a CPU-bound bot host will perform TCP
flow control and advertise a small receiver window – an
effect that SpamFlow uses as part of its decision process.

Further, SpamFlow detects hosts that send volumes
of email that exceed the local uplink and processing ca-
pacity. Personal, home or small business servers do not
have the same volume requirement as spammers and thus
are unlikely to induce the same TCP congestion effects
we observe. In reality, there is a value judgment that
makes SpamFlow practical and reasonable. Specifically,
users who wish to ensure that their emails are delivered
typically invest in suitable infrastructure, contract with
an outside provider or use their service provider’s email
systems. Companies are not sourcing large amounts of
crucial email from hosts attached by consumer-grade
connections. The vast majority of home users utilize
their provider’s email infrastructure or employ popular
web-based services. Thus, SpamFlow only discriminates
against sources that are both poorly connected and in-
jecting large volumes of mail.

However, in future work, we plan to experiment with
the sensitivity of SpamFlow to false positive originating

from congestion induced by other nodes and other appli-
cations. We believe there will remain adequate discrimi-
natory signal to discern botnet hosts. Even when Spam-
Flow does mispredict, our results show that combining
SpamFlow with other classifiers leads to improved per-
formance and can overcome instances of false positives
by individual classifiers.

6 Conclusions and Future Work

This research implemented the necessary infrastructure
to perform real-time, on-line transport-layer classifica-
tion of email messages. We plan to distribute our system
as part of the third-party SpamAssassin plugin library in
order to facilitate widespread deployment, impart impact
on abusive messaging traffic, and to refine the system.

We detail the system architecture to integrate network
transport features with SpamAssassin, an MTA, and a
classification engine. Our testing reveals that the system
can handle realistic traffic loads. Of note, we tackle the
bootstrapping problem of obtaining representative net-
work traffic on a per-network basis by leveraging auto-
learning to automatically train on exemplar messages.

Using our techniques, we achieve accuracy, precision,
and recall performance greater than 95 percent after re-
ceiving only ≈ 210 messages during live, real-world pro-
duction testing. We emphasize that these results come
from observing only network traffic features; in actual
deployment, the SpamFlow plugin will, as with other
parts of the SpamAssassin system, place a weighted vote.
Overall performance will likely improve using traditional
features in addition to network traffic features.

We note, however, that our live-testing corpus is small.
Our intent in this work was to demonstrate the practi-
cal feasibility of using transport network traffic features.
In future work, we plan to investigate SpamFlow’s per-
formance and scalability in large, production systems
against much larger volumes of traffic. Our hope is to
enable the practical deployment of transport-layer based
abusive traffic detection and mitigation techniques to sys-
tem administrators.

Finally, we observe that the distributed computing
platform offered by botnets enables a wide variety of
attacks and scams beyond abusive email. Beyond mes-
saging abuse, botnets are employed in phishing attacks,
scam infrastructure hosting, distributed denial-of-service
(DDoS) attacks, and more. For example, some bot-
nets effectively provide a Content Distribution Network
(CDN) for hosting scam infrastructure. Botnet CDNs
are used to host web sites (e.g. landing sites for ordering
prescription pharmaceuticals or redirection servers), dis-
tribute malicious code, and a variety of other nefarious
purposes. Still other botnets are employed to perform
dictionary attacks against servers, brute force or other-

9

226 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

wise solve CAPTCHAs [30], etc. in order to create ac-
counts on social network sites and further spread abusive
traffic via multiple distribution channels.

We believe transport-layer techniques generalize to
any botnet generated traffic, including phishing attacks,
scam infrastructure hosting, DDoS, dictionary attacks,
CAPTCHA solvers, etc. In future research, we wish to
investigate using transport-level traffic analysis to iden-
tify a variety of botnet attacks and bots themselves.

Acknowledgments

The authors would like to thank Geoffrey Xie, Le Nolan,
Ryan Craven, and the anonymous reviewers. Special
thanks to our shepherd Avleen Vig for invaluable feed-
back. This research was partially supported by a Cisco
University Research Grant and by the NSF under grant
OCI-1127506. Views and conclusions contained in this
document are those of the authors and should not be in-
terpreted as representing the official policies, either ex-
pressed or implied, of NSF or the U.S. government.

References
[1] ARBOR NETWORKS. Worldwide infrastructure security report,

2010. http://www.arbornetworks.com/report.

[2] BARACUDA NETWORKS. Baracuda spam and virus firewall,
2011. http://www.barracudanetworks.com/.

[3] BEVERLY, R., BERGER, A., HYUN, Y., AND CLAFFY, K. Un-
derstanding the efficacy of deployed internet source address vali-
dation filtering. In Proceedings of the 9th ACM SIGCOMM con-
ference on Internet measurement conference (2009), IMC ’09.

[4] BEVERLY, R., AND SOLLINS, K. Exploiting transport-level
characteristics of spam. In Proceedings of the Fifth Conference
on Email and Anti-Spam (CEAS) (Aug. 2008).

[5] CAGLAYAN, A., TOOTHAKER, M., DRAPAEAU, D., BURKE,
D., AND EATON, G. Behavioral analysis of fast flux service net-
works. In CSIIRW ’09: Proceedings of the 5th Annual Workshop
on Cyber Security and Information Intelligence Research (2009).

[6] CARBONE, M., AND RIZZO, L. Dummynet revisited. SIG-
COMM Comput. Commun. Rev. 40 (April 2010), 12–20.

[7] COOKE, E., JAHANIAN, F., AND MCPHERSON, D. The zombie
roundup: Understanding, detecting, and disrupting botnets. In
Proceedings of USENIX Steps to Reducing Unwanted Traffic on
the Internet (SRUTI) Workshop (July 2005).

[8] CORMACK, G., AND LYNAM, T. TREC public email corpus,
2007. http://trec.nist.gov/data/spam.html.

[9] DEMSAR, J., ZUPAN, B., LEBAN, G., AND CURK, T. Orange:
From experimental machine learning to interactive data mining.
In Principles of Data Mining and Knowledge Discovery (2004).

[10] ESQUIVEL, H., MORI, T., AND AKELLA, A. Router-level spam
filtering using tcp fingerprints: Architecture and measurement-
based evaluation. In Proceedings of the Sixth Conference on
Email and Anti-Spam (CEAS) (2009).

[11] HAO, S., SYED, N. A., FEAMSTER, N., GRAY, A. G., AND
KRASSER, S. Detecting spammers with snare: spatio-temporal
network-level automatic reputation engine. In Proceedings of the
18th conference on USENIX security symposium (2009).

[12] HÄTÖNEN, S., NYRHINEN, A., EGGERT, L., STROWES, S.,
SAROLAHTI, P., AND KOJO, M. An experimental study of home
gateway characteristics. In Proceedings of the 10th annual con-
ference on Internet measurement, pp. 260–266.

[13] JACOBSON, V., LERES, C., AND MCCANNE, S. Tcpdump,
1989. ftp://ftp.ee.lbl.gov.

[14] JOHN, J. P., MOSHCHUK, A., GRIBBLE, S. D., AND KRISH-
NAMURTHY, A. Studying spamming botnets using botlab. In
Proceedings of USENIX NSDI (Apr. 2009).

[15] KARLIN, J., FORREST, S., AND REXFORD, J. Autonomous
security for autonomous systems. Computer Networks 52, 15
(2008). Complex Computer and Communication Networks.

[16] KLENSIN, J. Simple Mail Transfer Protocol. RFC 5321 (Draft
Standard), Oct. 2008.

[17] MASON, J. Filtering spam with spamassassin. In Proceedings of
SAGE-IE (Oct. 2002).

[18] MESSAGING ANTI-ABUSE WORKING GROUP. Email metrics
report, 2011. http://www.maawg.org/about/EMR.

[19] OUYANG, T., RAY, S., RABINOVICH, M., AND ALLMAN, M.
Can network characteristics detect spam effectively in a stand-
alone enterprise? In Passive and Active Measurement (2011).

[20] PATHAK, A., QIAN, F., HU, Y. C., MAO, Z. M., AND RAN-
JAN, S. Botnet spam campaigns can be long lasting: evidence,
implications, and analysis. In SIGMETRICS ’09: Proceedings of
the eleventh international joint conference on Measurement and
modeling of computer systems (2009), ACM, pp. 13–24.

[21] RAJAB, M. A., ZARFOSS, J., MONROSE, F., AND TERZIS, A.
My botnet is bigger than yours (maybe, better than yours): why
size estimates remain challenging. In HotBots’07: Proceedings
of the first conference on First Workshop on Hot Topics in Under-
standing Botnets (2007), USENIX Association, pp. 5–5.

[22] RAMACHANDRAN, A., AND FEAMSTER, N. Understanding the
network-level behavior of spammers. In Proceedings of ACM
SIGCOMM (Sept. 2006).

[23] RESNICK, P. Internet Message Format. RFC 2822 (Proposed
Standard), Apr. 2001.

[24] SCHATZMANN, D., BURKHART, M., AND SPYROPOULOS, T.
Inferring spammers in the network core. In Proceedings of the
10th International Conference on Passive and Active Network
Measurement (2009), pp. 229–238.

[25] STERN, H. Fast spamassassin score learning tool, Jan. 2004.
http://svn.apache.org/repos/asf/spamassassin/

trunk/masses/README.perceptron.

[26] WINER, D. XML-RPC specification, Apr. 1998. http://www.
xmlrpc.com/spec.

[27] XIE, Y., YU, F., ACHAN, K., PANIGRAHY, R., HULTEN, G.,
AND OSIPKOV, I. Spamming botnets: signatures and character-
istics. SIGCOMM Comput. Commun. Rev. 38, 4 (2008), 171–182.

[28] ZHAO, X., PEI, D., WANG, L., MASSEY, D., MANKIN, A.,
WU, S. F., AND ZHANG, L. An analysis of bgp multiple origin
as (moas) conflicts. In Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement (2001), pp. 31–35.

[29] ZHAO, Y., XIE, Y., YU, F., KE, Q., YU, Y., CHEN, Y., AND
GILLUM, E. Botgraph: large scale spamming botnet detection.
In NSDI’09: Proceedings of the 6th USENIX symposium on Net-
worked systems design and implementation (2009), pp. 321–334.

[30] ZHU, B. B., YAN, J., LI, Q., YANG, C., LIU, J., XU, N.,
YI, M., AND CAI, K. Attacks and design of image recogni-
tion captchas. In Proceedings of the 17th ACM conference on
Computer and communications security (2010), CCS ’10.

10

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 227

Using Active Intrusion Detection to Recover Network Trust

John F. Williamson
Dartmouth College

Sergey Bratus
Dartmouth College

Michael E. Locasto
University of Calgary

Sean W. Smith
Dartmouth College

Abstract

Most existing intrusion detection systems take a passive
approach to observing attacks or noticing exploits. We
suggest that active intrusion detection (AID) techniques
provide value, particularly in scenarios where an admin-
istrator attempts to recover a network infrastructure from
a compromise. In such cases, an attacker may have cor-
rupted fundamental services (e.g., ARP, DHCP, DNS,
NTP), and existing IDS or auditing tools may lack the
precision or pervasive deployment to observe symptoms
of this corruption. We prototype a specific instance of the
active intrusion detection approach: how we can use an
AID mechanism based on packet injection to help detect
rogue services.

Tags: security, active intrusion detection, networking,
trust relationships, recovery

1 Introduction

Existing network intrusion detection systems (e.g.,
Bro [35, 12], Snort [31]) typically take a passive ap-
proach to detecting attacks: they scan network pack-
ets and flows to match their content against known-
malicious byte patterns (i.e., signatures). Such sensors
are typically situated at the network edge or other traf-
fic choke point rather than on individual hosts, and they
rarely interpose on (i.e., inject packets or frames into) the
actual connection or flow.

IDS systems rarely take an active approach to detect-
ing malicious behavior or indicators within the network.
By active, we mean that the sensor purposefully injects
packets and data meant to perturb the state of the net-
work, in essence becoming part of the various connec-
tions occurring on the network. Some existing IDS sen-
sors may be “active” in the sense that they periodically
scan some hosts or listen to some specific connections,
or that they attempt to proactively firewall or quarantine
hosts suspected of being malicious (for example, Net-

work Access Control or NAC). To the best of our knowl-
edge, most existing IDSs do not actively participate in
network conversations to deduce end host behavior.

This hesitance may be due to the perceived danger of
actively issuing network traffic designed to remotely di-
agnose the existence of malware or corrupted service on
an end host or server (such traffic might have an adverse
effect on benign hosts or servers).

In this paper, we suggest that the paradigm of active
intrusion detection (AID) is relatively under-explored,
and we offer an example of how such proactive scanning
for malicious behavior at the network level can benefit
a system administrator focused on recovering a network
infrastructure from an attack that attempts to replace or
spoof critical network services.

1.1 Motivation: Intrusion Recovery
Recovering a network infrastructure from an attack —
particularly an attack that has compromised a large por-
tion of the infrastructure [19] — is a complex, difficult,
and time-consuming task. Furthermore, the administra-
tor may not have much confidence in the services that
remain running after the discovery of such a compro-
mise. Because auditing and forensics are expensive pro-
cesses (in terms of time and density of instrumentation),
and such activities can be greatly curtailed because of the
need to get the network back up and running, system ad-
ministrators may have little information about what parts
of the system remain trustworthy.

1.2 The Challenge of Recovering Trust
We see the fundamental difficulty in such a situation as
the task of recovering trust in the network infrastruc-
ture. For example, if the DNS server has been compro-
mised, users cannot trust that their DNS queries have not
been tampered with. Similar trust relationships exist with
ARP and DHCP along with other critical network ser-

228 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

vices. In essence, each protocol implies that the client
trusts the server to relay correct information about the
network properties. Likewise, the server trusts clients to
act only on their own behalf.

Trust exists in many forms within the network. When
a host accepts an offer of a DHCP address, it implicitly
trusts the DHCP server it received the offer from. Sim-
ilarly, when a switch participates in a bridge election, it
implicitly trusts every other switch that is participating.
This arrangement exists out of necessity, but can cause
problems when the wrong entities are trusted.

Modern attacks have increased in sophistication; many
now involve hijacking benign hosts and their network
stacks for malicious use (which requires altering the nor-
mal behavior of the affected devices). Elements of the
network infrastructure, such as routers and switches, are
also attractive targets since network hosts frequently trust
them implicitly. Compromising such machines can give
an adversary a great deal of power without requiring him
or her to attack very many machines. Such attacks are a
useful way for an attacker to retain some level of control
and spread, and one recent example1 attempts to run a
rogue DHCP service.

Without the ability to meaningfully trust the informa-
tion such services provide, and in the absence of strong
authentication at such low levels of the network (as is
typical for very good reasons, see Section 1.4), the task
of rebuilding the network from scratch can require a Her-
culean effort.

In the course of rebuilding trust in critical low-level
services, having a tool that can actively probe for the
presence of a malicious or compromised low-level ser-
vice can help identify remnants of an attacker attempting
to spoof or man-in-the-middle these services.

1.3 Focus
This paper presents an early step toward a more mature
infrastructure for supporting such network recovery ac-
tivities. Although we are motivated by this problem, our
emphasis and focus for the scope of this paper is limited
to:

• constructing a data model for representing trust re-
lationships between network services, and;

• implementing a proof-of-concept prototype that
uses packet injection (via Scapy2) to probe suspect
services and examine their responses under the trust
relationship model.

These active probes will not search for specific ex-
ploits, as the examples we discuss in Section 2.4 do.
Thus, we are not aiming to create a thorough vulnera-
bility scanner. Instead, our probes are meant to test for

proper functionality and thereby trustworthiness. Our
form of active probing is designed less to find out what
causes a specific problem than to find whether a potential
misconfiguration or malicious influence exists.

1.4 Active Intrusion Detection
Our primary contribution is to propose a new pattern for
intrusion detection: actively issuing probes (in the form
of specially crafted or purposefully malformed network
packets) meant to reveal the presence or operation of
rogue services.

Most previous work, even of an active flavor, has dealt
with detecting specific vulnerabilities or exploits. In con-
trast, we introduce a method for crafting active scanning
patterns meant to elicit a certain behavior from network
hosts. Such a facility can help establish and maintain
a basis for verifying the trustworthiness of network ser-
vices on an ongoing basis (one can think of it as “Trip-
wire” for network behaviors). We are not searching for
specific exploits (as the examples in Section 2.4 do), but
rather search for deception patterns (i.e., indications that
rogue services exist or that otherwise trusted services are
compromised).

We believe active probing is most useful in verifying
the trustworthiness of certain key network services, in-
cluding DNS, DHCP, and ARP. We call these services
the Deception Surface of the network, because it is ex-
actly this fabric upon which most users implicitly (and
often unknowingly) base their belief that they are inter-
acting with a trustworthy network connection or service.
Since these protocols rarely involve authentication, they
are ripe targets for deception.

There are good reasons for not employing authentica-
tion and authorization infrastructure at such a low net-
work level. The effort involved in managing this equip-
ment and these services in the presence of a variety of
different authentication mechanisms and credentials is
greatly increased. Without the need to predistribute cre-
dentials, hosts are free to “plug-and-play” with the net-
work; being able to simply trust these services by default
is a labor-saving practice. For a large enterprise network,
configuring each host with authentication credentials for
all deception surface network services requires a large
investment of valuable time and energy. Most users pre-
fer their machines to work out of the box, and prefer to
avoid extensive setup time. For this reason, such authen-
tication (even if a mechanism exists, like DNSSEC) fre-
quently remains unused, thereby leaving room for rogue
services and deception.

Central Assumption One of the central assumptions
of our approach is the hypothesis that there is an equiva-
lence between “normal” behavior and “trustworthy” be-

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 229

havior. As a consequence, our approach is currently best
suited toward detecting malicious influence or attacks
that change the normal behavior of a service; in other
words, we cannot detect attacks that display syntacti-
cally or semantically indistinguishable behavior (and our
tool’s model of a service’s behavior may be incomplete,
and thus unable to test features or characteristics that
may have been changed). Our tool makes the assump-
tion that changes in normal behavior are symptoms of
either malicious influence or misconfiguration.

Our goal with active probing is to significantly raise
the bar for an attacker: now they need not only provide a
rogue service, but mimic all the logic and failure modes
of the “valid” service’s code logic and specific config-
uration. In a sense, active probing helps swing the at-
tacker’s traditionally asymmetric advantage to a network
defender.

2 Related Work

Our work on active intrusion detection is inspired by re-
cent examples of (largely manual) analysis of the proper-
ties and behavior of exploits and malware (see examples
below). At the same time, the most related work from a
technical perspective is the body of work on OS finger-
printing (see below) and detecting network sniffers (e.g.,
sniffer-detect.nse [21]). This latter script takes advantage
of the fact that a network stack in promiscuous mode will
pick up packets that are not intended for it, but after the
stack removes the addresses, all higher layers assume the
packet is intended for the local stack and act accordingly.
The sniffer-detect script uses ARP probes in this manner,
and by the responses it hears is able to make a determina-
tion about whether or not the probed host is in promiscu-
ous mode. At its core, the approach exploits an assump-
tion made within the stack: that packets which reach the
upper layers of the stack are supposed to be answered by
that stack. This insight is an excellent independent ap-
plication of the combination of the Stimulus-Response
pattern and the Cross-Layer Data pattern (see Section 3).

Port-knocking is a similar idea to active probing ap-
plied to access control: by probing a host with a par-
ticular pattern of packets, one can gain the ability to
have the target firewall forward subsequent packets. In
the theme of verifying host behavior to detect deviations
from expected behavior, this work is conceptually related
to Frias-Martinez et al. [15], who enable network access
control (especially for MANET environments) based on
exchanging anomaly detection byte content models.

2.1 Finding Deceptions vs. Monitoring
One central question is how much active probing dif-
fers from existing network “good hygiene” monitoring

practices like using a second or third independent net-
work connection to actively monitor properties, services,
and data that your network exposes to the outside world.
We note that active probing is an extension of common
practice to proactively scan internal networks with tools
like NMap to discover open ports, new machines, or
other previously unknown activity at the network edge
or within an organization’s network core. Rather than
just detecting open ports on machines that should not
be there, our approach is predicated on reasoning about
deceptions that exist in the network infrastructure. Al-
though vulnerability scanning software (e.g., NeXpose3,
Nessus4) does probe hosts and servers, this type of prob-
ing typically focuses on identifying vulnerable versions
of software services rather than detecting the presence of
malcode or malicious activity.

2.2 Intrusion Detection
Network intrusion detection systems like Snort and
Bro [35] have a number of advantages: since they are
passive, they do not impose load on the network and they
can be difficult to detect. We detail some of the differ-
ences between active and passive approaches to IDS in
Table 1.

Regardless of the response mechanism or other details,
an IDS usually employs a paradigm of passive monitor-
ing which depends on tracking packet streams and delv-
ing into protocols [5]. This leaves them with several
fundamental problems. IDS, whether passive or active,
typically fail-open (i.e., their failure modes do not cease
operation of the monitored system and they can not tell
when they miss an alert, i.e., false negative).

We suggest that the most relevant shortcoming of cur-
rent network IDS with respect to the concept of active
probing is that an IDS is left to guess the end state of
all hosts on the monitored segment. Fundamentally, IDS
only observes packet flows and cannot feasibly know the
end-state of every host in the network, making it sus-
ceptible to evasion attacks [30, 16]. Furthermore, trying
to keep track of even limited amounts of state poses a
resource exhaustion problem, and even keeping up with
certain traffic loads can cause the IDS to miss packets.

2.3 OS Fingerprinting
Nmap uses a series of up to 16 carefully crafted probe
packets, each of which is crafted for a variation in RFC
specifications [20]. Whereas NMap issues probes to ob-
serve the characteristics of the target network stack, the
p0f tool uses passive detection, and it examines various
protocol fields (e.g., IP TTL, IP Don’t Fragment, IP Type
of Service, and TCP Window Size) [26]. Alternatively,
LaPorte and Kollmann suggest using DHCP for finger-

230 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Active Passive
Can sound out targets Must listen to targets

Network overhead no network overhead
Operates noisily Operates quietly

Minimal state storage requirement Potentially significant storage
Creates own context Must learn context from surroundings

Detection based on behavior Detection based on signature and anomaly
Constant probing is noisy Can run constantly without disturbing network

Cannot run offline Can run offline
Can learn only what is listened for in data model Can learn anything in a trace

Table 1: A Comparison of Active and Passive IDS Properties. While both approaches face some of the same challenges
(e.g., being fail-open), a hybrid (tightly coupled or otherwise) approach seems promising.

printing [10], and Arkin suggests ICMP [3]. An interest-
ing variation in this field is Xprobe2; rather than using
a signature-matching approach to OS fingerprinting, it
employs what its authors call a “fuzzy” approach. They
argue that standard signature-matching relies too heavily
on volatile specific signature elements. Xprobe2 instead
uses a matrix-based fingerprint matching method based
on the results of a series of different scans [4].

Fingerprinting OS network stacks and other services
can be an imprecise activity frustrated by the use of
virtual honeypots [29] or countermeasures like Wang’s
Morph (Defcon 12). Morph operates on signatures of
existing production systems, rather than creating decoys.
Morph scrubs and modifies inbound and outbound traffic
to mimic a specific target operating system, fooling both
active and passive fingerprinters [18].

2.4 Examples of an Active Pattern

The Conficker worm, unleashed in January 2009, rep-
resents one noteworthy example of malware analysis
that resulted in a way to diagnose the presence of Con-
ficker’s control channel. The malware itself exploited
flaws in Microsoft Windows to turn infected machines
into a large-scale botnet [22]. It proved especially diffi-
cult to eradicate. Because some peer-to-peer strains of
the worm used a customized command protocol, subse-
quent analysis and reverse-engineering provided a means
of scanning for and identifying infected machines[6].
This example helps illustrate the utility of the general
pattern of active probing for suspect behaviors.

The Zombie Web Server Botnet provides another ex-
ample of active exploit detection. First documented in
September 2009, the exploit targeted machines running
web servers, and once installed set up an alternate web
server on port 8080, thereby avoiding some passive IDS
monitors that only watch port 80. Hidden frames on af-
fected websites contained links pointing to free third-

party domain names, which then translated into port
8080 on infected machines. These infected web servers,
which also serviced legitimate sites, then attempted to
upload malware and other malicious content from this
rogue 8080 port [1]. If the user’s web browser did not
accept the uploaded malware, the exploit used an HTTP
302 Found status to redirect the user to another infected
web server. From there, the exploit re-attempted the mal-
ware upload. This redirection was detectable by sending
HTTP GET messages to the queried server and watching
for 302 redirects [7].

As a final example of the utility of active probing, con-
sider the Energizer DUO USB Battery Charger exploit
(March 2010). The Energizer DUO Windows applica-
tion allowed users to view the status of charging batter-
ies and installed two .dll files, UsbCharger.dll in the
application directory and Arucer.dll in the system32
directory. The software itself uses UsbCharger.dll to
interact with the computer’s USB interface, but it also
executes Arucer.dll and configures it to start automat-
ically.
Arucer.dll acts as a Trojan horse, opening an unau-

thorized backdoor on TCP port 7777 to allow remote
users to view directories, send and receive files, and ex-
ecute programs [11]. Since this rogue service responds
only to outside control, passive detection may not be ef-
fective. An active probe, however, can detect the unau-
thorized open port even if not in use, and thus identify
the infection more reliably [8].

2.5 Intrusion Recovery

Recovering a compromised host or network is a difficult
task. Classic [34, 33, 9] and more recent [32, 17] ac-
counts can both be found, but little work on systematic
approaches to recovery from large scale intrusions ex-
ists [14, 25].

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 231

3 Approach

When a compromised machine exists on a network, there
are two primary ways to find it. First, one can attempt
to detect the malicious activity passively. Conventional
intrusion detection systems provide a good example of
this approach. However, compromised or rogue services
may not display any behavior that is obviously malicious
(thus evading misuse-based sensors) nor display behav-
ior that is particularly new or different than previous
packets (thus evading anomaly-based sensors).

Our approach employs active probing. The assump-
tion underlying the utility of active probing is that such
probing can reveal discrepancies in internal behavior or
configuration — particularly at corner cases and for mal-
formed input. In this sense, active probing helps a net-
work defender understand how an infection alters its
host’s behavior or how rogue services operate.

Active probing is a suitable tool for discovery of la-
tent or otherwise stealthy malicious influence; we can
probe hosts (or the network at large using broadcast ad-
dresses) rather than waiting for them to send packets.
Active probing can constructively infer network state and
context by issuing targeted probes.

Active probing exploits several unique features about
a networked environment; in essence, this environment
represents a distributed state and a set of computations
(i.e., the network stacks) involved in manipulating the
global state of the network. The arrangement of these
relationships and the nature of most protocol interactions
provide several key areas of focus for designing probe
patterns (e.g., sequences of protocol messages intended
to elicit distinguishing responses).

3.1 Key Insight: Behavior Differences Due
to Implementation or Configuration

During our experimentation, we frequently observed that
the same stimulus produced different responses from dif-
ferent network entities. We discovered two reasons for
this. The first reason relates to configuration. In some
cases, responses differ because the two entities operated
based on different configurations. For example, con-
sider two identical DHCP server implementations pro-
grammed with different gateways. All other network
conditions being equivalent, these two servers will al-
ways give a different result when queried, since they are
programmed to do so. The richness of the configura-
tion space can help distinguish between a rogue server
set up for minimal interposition on a service and the full-
featured service.

The second reason relates to implementation. In most
cases, one or more RFCs lay out the behavior a network
service or protocol should exhibit. In practice, however,

we find that differences exist, whether due to lack of
specification for every possible case, or simple deviance
from the specification. Generally, we found that imple-
mentations perform similarly on common cases, such as
well-behaved DHCP Discover packets. This observation
makes intuitive sense, since specifications exist for them.
It is the less well-behaved stimuli that are handled differ-
ently. Corner cases and malformed input (e.g., semanti-
cally invalid options pairings or flag settings) cause dif-
ferent, infrequently exercised code paths to execute – it
is unlikely that an attacker has replicated such behavior
with high fidelity.

Taken together, understanding these differences form
the foundation of our method. If we look for both types
of differences, then two entities must exhibit the exact
same behaviors in order to escape notice. Put another
way, if someone wants to masquerade as another on the
network, the imitator must mimic not just the target’s
normal behaviors in common cases (relatively easy) but
the minor, idiosyncratic ones as well (we claim that this
is harder).

3.2 Stimulus-Response Pattern
We note that many network interactions take the form
of pairing between stimulus and response. The DHCP
Discover/Response cycle, the DNS Query/Response cy-
cle, and many others all fall into this category, whereas
something like the Cisco Discovery Protocol does not.
Note that the stimulus-response includes not only client-
server interactions, but also peer-to-peer as well. We rely
on and harness this stimulus-response paradigm for our
verification method.

3.3 Network Trust Relationships and
Trusted Data

Trust relationships form the basic building block of the
network. In the majority of cases, hosts trust essential
services by default, to ensure ease of connection with-
out the burden of extensive configuration. As an exam-
ple, without prior configuration in an IPv4 environment,
DHCP and ARP provide the primary ways for a host
to learn about the network. Unfortunately, the scope of
many modern networks makes these trust-by-default re-
lationships all but necessary, since manually configuring
and re-configuring every host in the network is often im-
practical. As a consequence, they present an avenue for
an adversary who can masquerade as a provider of one
of these legitimate trusted services. If the adversary of-
fers the same trusted-by-default service and can get his
or her information believed, then he or she has compro-
mised whatever elements of the network believe that in-
formation. We target this sort of “trusted–by–default”

232 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

deception.
Note that we do not specify anything about the exact

process by which the deception we have just described is
executed. It could be that the adversary has disabled the
legitimate service, or is simply able to get its information
out faster than the legitimate information does. Regard-
less of the specifics, we begin in the place of a network
entity and mistrust the service provider that we hear but
whose trustworthiness we must accept for normal oper-
ation. Everything we do constitutes an attempt to verify
the trustworthiness of that service provider. Is the infor-
mation they provide consistent? Do they respond in the
way a legitimate service might if we make illogical or
semantically invalid requests? Or, if they are an attacker
intent on remaining stealthy, do they greedily respond
to packets that look attractive to intercept and interpret,
but are really meaningless (in terms of us getting on the
network) and only mean to flush out such malicious in-
terposition?

3.4 Cross-Layer Data
Sometimes, it helps to exploit the layered nature of net-
work protocols. Consider a man in the middle attack,
one of the most basic and most common compromises.
An ordinary machine will pick up all packets and exam-
ine them, discarding any that are not addressed to it. This
behavior is expected from the majority of well-behaved
machines on a network. However, a machine acting as a
MITM will pick up these packets, examine them, per-
form some sort of malicious activity (be it recording,
modifying, fuzzing, or any number of other things), and
then send them on to their destination. To do this, the at-
tacker must modify the machine’s normal network stack,
and configure the kernel to forward packets. This modi-
fication makes the compromise detectable (see Section 6
for our experiment on this topic).

4 Active Probing Model

We model active probing on the concept of a network
conversation containing messages that reveal the viola-
tion of conditions related to configuration or behavior,
where these constraints represent the belief of the prob-
ing entity about the valid, trustworthy state of the net-
work.

In essence, active probes attempt to verify some be-
havior of the target host or service, and the messages
emitted from the target host in response to our (crafted)
protocol messages represent characteristics of that be-
havior. Figure 1 depicts this interplay in a very basic
form; the intent behind probing is to discover behavioral
artifacts arising from differences in implementation or
configuration (as discussed in Section 3.1).

Figure 1: Ladder Diagram for Active Probing Data
Model. A probing host P (our prototype plays this role)
issues probes designed to exercise logic and configura-
tion corner cases in the target host T . As T reacts to
these probes (and generates m

′
i subject to its implemen-

tation quirks and configuration details), P builds a set of
data relevant to the trust relationship being probed.

Our model consists of two parties P and T . P is the
prober and has the ability to simulate multiple protocol
stack implementations (especially “broken” ones). The
second, T , is the target or service provider. P’s hypothe-
sis is that T may contain a broken, partial, incomplete,
or incorrectly configured protocol stack. If T were a
trustworthy service, it would display “normal” expected
behavior according to the trust relationship between P
(rather, the role of the client or peer that P is playing)
and T (more specifically, the server or peer that T may
be masquerading as). In this sense of having an estab-
lished trust relationship, we say that T provides a service
X to P.

For P to consider T trustworthy with respect to service
X , T must satisfy a set of conditions C on its behavior.
To verify that these constraints hold, P uses a sequences
of messages M = m1,m2, . . . ,mn sent to T that take the
form of packet probes.

For each mi, there exists a corresponding message m
′
i

from T to P that may be a packet, a sequence of packets,
or the absence of a packet (determined through a pre-
configured timeout). For each such m

′
i, there is some rel-

evant portion r(m
′
i) that serves as evidence for or against

some particular element ci ∈ C. As each m
′
i is received

(or not received), P performs the operation R = R∪r(m
′
i),

building a body of evidence R as shown in Figure 1.
Once all probes have been sent and answers recorded,
the probing entity decides whether or not R violates the
conditions contained in C.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 233

5 Methodology

In attempting to recover trust in key network services,
a system administrator would follow the general tasks
outlined below. The procedures we describe are typ-
ically aimed at an auditing-style service rather than a
general-purpose scanner for running malware or botnet
command and control. As such, the definition of a trust
relationship, the specific verification plan, and the format
and content of probes are usually service specific and in-
formed by administrator knowledge of their own service
implementations and configuration. We posit (but have
not shown) that the amount of effort needed to follow the
steps below is similar to tuning of IDS rules or calibra-
tion of IDS parameters to a specific environment.

5.1 Define Trustworthiness
In order to establish the trustworthiness of a network
service, there must be a notion of what trustworthiness
means for that service. This will vary based on the net-
work and service being verified, and in most cases will
depend on the specific deployment of the service being
probed. This trustworthiness criteria directly informs the
set of constraints C.

For example, trustworthiness in the forwarding case
means that no hosts but known gateways should exhibit
forwarding behavior. For a more complicated system, a
definition might take into account information the legiti-
mate service should provide (for example, a known-valid
set of DNS responses), and ways it should respond to
certain stimuli (e.g., how the service handles a particular
corner case configuration or incompatible flags). Gener-
ally speaking, the definition is what we need to hear to
trust the speaker.

5.2 Verification Plan
Once we have an idea of what trustworthiness looks like,
we need to develop a plan of how to verify it. Recall
the two types of differences between service providers
we discussed earlier. Many network entities have pecu-
liarities to their implementations, and the plan for verifi-
cation should make use of them. It is also necessary to
get as much standard information from the probed entity,
so that both types of differences can be detected. The
more information gathered, both about the service im-
plementation and the service configuration, the harder an
adversary must work to fool our probe. In doing this we
need to plan to check our service against every part of the
trustworthiness definition we have already developed.

For the examples above, the verification plan might
range from a simple comparison of known good answers
to specific DNS queries to the absence of a “forwarded”

packet. In essence, each verification plan is tightly cou-
pled to the actual method of detecting a specific decep-
tion on the network. As yet, we do not contend with
automating this process.

5.3 Probe Creation

The next step in our methodology calls for turning the
plan into a set of active message probes and codify-
ing those probes. Although a variety of packet crafting
mechanisms exist, we found Scapy, a packet generation
and manipulation tool, to be helpful. The codified probes
crafted in Scapy’s environment comprise the functional
portion of an active verification tool.

5.4 Reply Detection

Finally, we need to capture the replies to our probes and
examine them against the constraints derived from our
trustworthiness definition. With that information, we
must make a determination as to the trustworthiness of
what responses the probes cause.

5.5 Implementation

We have found Scapy [27], a freeware packet manipula-
tion program, quite useful. Scapy allows users to build,
sniff, analyze, decode, send, and receive packets with in-
credible flexibility. It does not interpret response packets
directly, so it can prove more useful than other packet in-
jection or scanning tools in some scenarios. It employs
Python-based control, so its commands are also easily
adapted into Python programs. We have used Scapy to
implement our prototype probing tool. Currently, ver-
ification plans (and their corresponding probes) require
individually-developed Scapy scripts.

6 Case Studies: Detecting Deceptions

Our preliminary evaluation focuses on illustrating our
prototype’s effectiveness at detecting network deceptions
rather than attempting to detect malicious software (e.g.,
botnet command-and-control, spyware). To a certain ex-
tent, the related work we discuss in Section 2 illustrates
how one might go about using existing tools like nmap to
identify command-and-control or backdoors. Although
we illustrate how to detect (1) a duplicate DHCP server
and (2) the presence of a host configured for forward-
ing, our point is that these two examples are patterns of
network deceptions, and this is the main intent of our ap-
proach.

234 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

6.1 Detecting Forwarding Behavior

As an example of using the Cross-Layer Data pattern,
one of our first experiments dealt with detection of for-
warding behavior. As ordinary machine will typically
silently discard packets (frames) not addressed to it. This
behavior is expected from the majority of well-behaved
machines on a network. A machine acting as a MITM,
however, will pick up these packets, examine them, per-
form some sort of malicious activity (be it recording,
modifying, fuzzing, or any number of other things),
and then send them on to their destination. To accom-
plish this MITM, the attacker must modify the machine’s
normal network stack settings and configure the kernel
to forward packets. This modification is remotely de-
tectable.

We hypothesized that if we sent a broadcast packet out
to the network with the destination as our own machine, a
host configured for forwarding might give itself away by
sending the packet back to us. We used Scapy to test this,
sending IP packets carrying a layer 2 broadcast address
and a layer 3 address of our own machine. We found that
many forwarding entities (for example, Linksys routers)
did identify themselves by forwarding the packet as ex-
pected, but Linux kernels in forwarding mode do not.
We hypothesized that this was due to the layer 2 broad-
cast address of the packet. To test this hypothesis, we
replaced the broadcast hardware address with a unicast
address of the machine we wanted to probe, and listened
for the response. We found that this resulted in the packet
being sent back to us, as expected. We codified this re-
sult into an Nmap plugin that detects hosts in forwarding
mode that are behaving in what is generally an undesir-
able manner and thus may have been compromised or
misconfigured.

Formally speaking, in this experiment of detecting a
host in forwarding mode, the condition C is that only a
small known set of hosts on the network should be in for-
warding mode (specifically: that only those hosts should
deliver the packet we generated back to us because we
chose the packet contents in such a way as to be con-
sumed by hosts that are promiscuous and forwarding, but
when processed by higher layers of the network stack,
don’t realize that they shouldn’t be sending this packet
back to its origin); if the responses that P gathers con-
tains an IP address outside this set (i.e., we see our mes-
sage from mi in R), we know that the trust condition is
violated.

6.2 Rogue DHCP Server

To demonstrate the viability of an active probing ap-
proach, we have implemented it on the Dynamic Host
Configuration Protocol. DHCP makes an excellent sub-

Figure 2: Basic DHCP Setup With Cisco Switch. This
self-contained test environment consists of a set of com-
puters connected to a single Cisco switch (a DHCP
server, the rogue DHCP service, and our prober P). This
setup was also used for the forwarding detection sce-
nario.

ject for a case study for several reasons. First, it provides
new hosts several critical pieces of knowledge about the
network, such as an IP address, gateway information, and
location of the DNS servers. Typically, a network stack
sends out a DHCP Discover immediately after coming
online, highlighting DHCP’s importance. If an adversary
can get malicious DHCP information believed, he or she
can exert a great deal of control over the deceived hosts.
Second, it comprises part of our Deception surface, so
most hosts trust whatever DHCP traffic they receive by
default.5

We see a recent example of an exploit using DHCP
in a variant of the Alureon rootkit. This exploit infects
networks and sets up a rogue DHCP server to compete
with the legitimate one. This rogue server gives out the
address of a DNS server under the control of the worm’s
authors, which in turn points users to a malicious web
server. This web server attempts to force the user to up-
date their browser, but they instead are downloading a
malware that will reset their DNS pointer to Google’s
service once the machine is infected [2]. This is the sort
of exploit that motivates us to examine DHCP closely.

Our prototype software uses Scapy scripts to probe
DHCP servers and can both produce PCAP fingerprint
files and compare to an existing PCAP fingerprint. In
practice, we found it successfully distinguished between
the different servers we used.

6.3 Environment

We used three main environments for our DHCP experi-
ments. First, as shown in Figure 2, we have a small, self-
contained test environment consisting of a set of comput-
ers connected to a single Cisco switch. This was also the
environment we used for the aforementioned forward-
ing detection work. We configured one of the computers
with an instance of the udhcpd DHCP server, and ran our
tests from the other.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 235

We also have access to the production network at Dart-
mouth College’s CS department. We used the same ma-
chine for our tests here as in the previous environment,
and ran our experiments against the actual production
server. Finally, we have the DHCP server included in a
Linksys WRT54G2 router. It runs as the core of a small
home network.

As described previously, we tried to determine both
the configuration of the probed server and the server it-
self. We are not interested in identifying the specific
server implementation, but rather detecting its differ-
ences from another server. We do so by taking a brute-
force approach, where we try several different values for
different fields. Some of these are well-behaved values,
and others are designed to test the server’s handling of
unusual traffic. This allows us to test both the server’s
configuration and its implementation.

To test the usefulness of our software, we compared
responses to probes across our test environments. Do-
ing so simulates the introduction of another DHCP agent
onto the network whose traffic we are seeing instead
of the legitimate server’s traffic. This process is akin
to comparing a previous behavior model captured in
a known trustworthy state with a later behavior model
gleaned from an environment during recovery. We can
probe the server at a time when we assume it to be in a
trustworthy state; this can be established by (1) manual
inspection of the program or process, (2) some kind of
integrity check of the code and configuration files a la
Tripwire, or (3) immediately after a new deployment of
the service.

6.4 Constructing DHCP Probes
Within a DHCP packet (see Figure 4), four fields (ciaddr,
yiaddr, siaddr, and giaddr) contain IP addresses, while a
fifth (chaddr) contains a MAC address. We check the
servers’ handling of these fields by setting each one in
turn to four different types of values:

• The client’s currently assigned IP address

• Another valid IP address in the client’s subnet

• A valid IP address in another subnet

• An invalid IP address

We also do something similar for the chaddr field:

• The client’s MAC address

• Another valid MAC address

• An all-zeroes MAC address

• An all-ones (Broadcast) MAC address

Request probe w/ ciaddr set to other IP

state = random.getstate()

probeFunc(Ether(src=get_if_raw_hwaddr(conf.iface)[1],

dst="ff:ff:ff:ff:ff:ff")

/IP(src="0.0.0.0", dst="255.255.255.255")

/UDP(sport=68, dport=67)

/BOOTP(flags=0x8000,

chaddr=get_if_raw_hwaddr(conf.iface)[1],

giaddr=ip,

xid=random.randint(0, 4294967295))

/DHCP(options=[("message-type", "discover"),

("end")]

), state)

Request probe w/ chaddr zeroes

state = random.getstate()

probeFunc(Ether(src=get_if_raw_hwaddr(conf.iface)[1],

dst="ff:ff:ff:ff:ff:ff")

/IP(src="0.0.0.0", dst="255.255.255.255")

/UDP(sport=68, dport=67)

/BOOTP(flags=0x8000,

chaddr="00:00:00:00:00:00",

xid=random.randint(0, 4294967295))

/DHCP(options=[("message-type", "discover"),

("end")]

), state)

Request probe with chaddr nonsense

state = random.getstate()

probeFunc(Ether(src=get_if_raw_hwaddr(conf.iface)[1],

dst=’’ff:ff:ff:ff:ff:ff’’)

/IP(src=’’0.0.0.0’’, dst=’’255.255.255.255’’)

/UDP(sport=68, dport=67)

/BOOTP(flags=0x8000,

chaddr=’’gg:gg:gg:gg:gg’’,

xid=random.randint(0, 4294967295))

/DHCP(options=[(‘‘message-type’’, ‘‘discover’’),

(‘‘end’’)]

), state)

Figure 3: Example Probes for DHCP. Three of the eleven
probes we constructed for profiling the behavior of a
DHCP server. We took a profile of the known good
DHCP service and compared it against another profile
from a different machine.

We also send discover probes that manipulate option
values. These include normal options and the parameter
request list, which allows the requesting client to ask for
specific information from the server. We set a number of
options in our probes and assign them values (where ap-
plicable) as described above. We also send a number of
probes requesting different information from the server
using the parameter request list option (we do not believe
that Scapy implements all of the options).

6.5 Results

The tool successfully identified that significant differ-
ences exist between the production DHCP server and the
Linksys router. Not only were the configurations dif-

236 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| op (1) | htype (1) | hlen (1) | hops (1) |

+---------------+---------------+---------------+---------------+

| xid (4) |

+-------------------------------+-------------------------------+

| secs (2) | flags (2) |

+-------------------------------+-------------------------------+

| ciaddr (4) |

+---+

| yiaddr (4) |

+---+

| siaddr (4) |

+---+

| giaddr (4) |

+---+

| |

| chaddr (16) |

| |

| |

+---+

| |

| sname (64) |

+---+

| |

| file (128) |

+---+

| |

| options (variable) |

+---+

Figure 4: DHCP Message Format. This diagram was
copied verbatim from RFC2131 [13].

ferent, but it turned out that the Linksys DHCP agent
in our third environment ignored several of the less
well-behaved probes, leading to an easy identification.
While not comprehensive, we believe this successful re-
sult demonstrates the value of our approach to active in-
trusion detection.

7 Discussion & Future Work

We discuss how our active probing methodology would
apply to two other critical network services (DNS and
ARP). This is in essence future work, but we offer the
sketches as evidence of the feasibility of extending this
type of probing to other fundamental network services.
We are currently extending our analysis (and crafting
probes) to other services like SNMP, STP, NTP, and rout-
ing protocols. Each of these protocols requires a different
type of approach to composing a verification plan, since
their modes of operation may not naturally fit a query-
response pattern. In such scenarios, we can take advan-
tage of the cross-layer data pattern and trust relationship
patterns.

In the two examples below, our probing has different
semantics than our “rogue DHCP” and “forwarding de-
tection” examples. Since we sketch an outline of a verifi-
cation plan, we focused on relatively easy ways to verify
the trustworthiness of these services (e.g., for DNS com-
paring against known good answers). We could, how-
ever, rely on a behavioral signature much more in line
with the DHCP experiment by issuing probes that exer-
cise little-used options or ask for incomplete or illogical
DNS and ARP resolutions.

7.1 Domain Name System

We describe one way in which our method might apply
to Domain Name System (DNS). DNS operates on the
stimulus-response client-server model, where the client
sends name resolution requests to the server, which in
turn queries as many other servers in the DNS hierar-
chy as is necessary to get an answer [23, 24]. In many
cases, DNS responses are trusted by default, since they
represent the best and frequently only information a host
has about how to resolve external names to machine ad-
dresses. As such, attacks on DNS are fairly common,
since successfully doing so could trick a host into send-
ing all of its traffic to the adversary.

Clearly, the trustworthiness of DNS depends on giving
correct answers to queries. Our system should be able
to determine whether or not the responses it hears are
correct. If not, we can assume that the server we are
querying is untrustworthy. Note that this does not mean
that the server we are querying directly has an issue, but
since DNS servers form a hierarchy, a trust issue with
one could mean trouble for many others.

In creating a verification plan, we cannot feasibly ex-
amine what answers the server gives for every possible
query. We can, however, pick a number of common
queries and build a list of responses we should receive
for each one. We need a list rather than a single re-
sponse, as one name frequently has several hosts which
respond to queries for it. This list should be large and
diverse, and the answers built from manual research or
compiled from DNS queries to different servers, mini-
mizing the possibility that a compromised server con-
tributes to our definition of trustworthiness. We also want
to feed the server some malformed requests, both with
poorly-formed packets and for names known not to exist
(this will have to be checked) to test the implementation
details of the server.

Our probes would take the form of DNS question
packets as described previously, which could be done
with Scapy. Query responses could be listened for, and
responses checked against the list discussed previously.
If we hear any unexpected responses, an alert could be
raised indicating that a possible issue with the server ex-
ists.

7.2 Address Resolution Protocol

We describe how our method could apply to Ad-
dress Resolution Protocol (ARP). ARP operates on the
stimulus-response model where each host or gateway can
both make and service requests [28]. ARP provides im-
portant information enabling communication both within
and across networks, and its information is generally
trusted by default, so it provides a good illustration for

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 237

Protocol P T X
DNS Host DNS Server Name resolution information
DHCP Host DHCP Server IP address, gateway address, DNS address, etc.
ARP Host/Gateway Host/Gateway IP address:MAC address mapping
STP Switch Switch Bridge priority, path cost
CDP Network Device Network Device Addresses, device information

Table 2: Enumerating Services Involved in a Network’s “Deception Surface”. The protocols here form the main decep-
tion surface of a network; we list them in the context of our data model’s trust relationship syntax. Even though there
are “secure” variants of some of these protocols, networks do not always use them because requiring authentication
infrastructure in order to establish basic layer 2 and 3 connectivity can be cumbersome and difficult to maintain.

active probing.

The definition of trustworthiness for ARP should state
that all hosts respond to queries for their IP address with
their own MAC address, and gateways also respond to
queries for IP addresses outside their network segment
with their own MAC address. Any deviance from this
model could indicate a deception occurring.

Merely looking at ARP replies in isolation may not be
sufficient. Consider the following scanning strategy. A
prober conducts an ARP scan of a given set of addresses,
and for each address scanned it does two things. First,
it listens for replies and raises an alert if it hears more
than one different MAC address in response. Second, if
only one response is received, it saves that response to a
hashtable. It then would check for one of two conditions.
The scan can either look for the address it has just heard
appearing in the hashtable twice, or to look for it to not
be in the hash.

The prober needs to run this scan against both its local
network (excluding the gateway) and against addresses
outside its network. The former warns the prober of un-
trustworthy ARP behavior of hosts and servers on its own
segment, and the latter of such behavior associated with
its gateway. The scan needs to look for both the presence
of duplicate addresses and their absence for this reason:
all non-local addresses should resolve to the same ad-
dress, which should not have been seen for any local ad-
dress.

If we do not observe this, we know that we have traf-
fic intended for multiple IP addresses going to the same
device on the network. This falls outside the definition
of trustworthy ARP behavior, and the prober can raise an
alert. We could run forwarding detection against the non-
gateway IPs which returned the duplicate MAC, but it is
not strictly necessary. Probes would take the form of a
simple ARP scan, with a supporting hashtable. The tech-
nique employs a brute-force approach, but should suc-
cessfully detect ARP issues on the network.

7.3 Limitations

Although the probing approach we discuss is meant to
serve as a kind of “tripwire for trust,” it has several
shortcomings. Of particular interest going forward is
the consideration of how to scale the process of pro-
ducing a verification plan and the concomitant probes
to very large networks (along with large networks con-
taining non-TCP/IP networking equipment). In a sense,
the manual nature of writing probing scripts both helps
and hinders the ability to scale. On one hand, writing
scripts for a small number of critical pieces of network
infrastructure benefits from the manual attention to detail
and the knowledge of the system administrator about the
quirks or peculiarities of the system being probed. On
the other hand, in a highly heterogeneous environment
containing a network composed over years from a vari-
ety of organizations, the sheer diversity of core services
poses a significant challenge.

One way to deal with this challenge is to focus on de-
tecting the presence of certain types of deceptions rather
than verifying the behavior of every last system. An-
other (complementary) approach would require research
that can attempt to generate a set of probes from pristine
(or trusted) configuration files and/or binary code of the
target service.

The stimulus-response pattern for detecting untrust-
worthy behavior may not apply well to protocols that are
not purely request-response based (e.g., they may operate
on a stream of asynchronous update messages). We can
attempt to verify the behavior of such services through
trust relationships and cross-layer data (for example, for
a routing protocol we might spoof or issue route with-
drawals or announcements from one peer and see if the
target announces such messages to another peer).

Finally, we have not explicitly considered the effect
the use of such active probing might have on IDSs extant
in the target environment. It is likely that certain types of
IDS might alert on messages from the prober, especially
if they are malformed in some fashion. Dangers here in-
clude the IDS increasing its alert logging (and thereby

238 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

increasing the noise in its alert stream or logs) as well as
subtly changing their view of the network. In general, a
coordinated security response from multiple independent
security mechanisms is a hard unsolved problem. Nev-
ertheless, one of our primary use cases is in a network
that we are attempting to recover; we might expect to
ignore the secondary effects of such probing in favor of
re-establishing core critical services.

8 Conclusion

This paper suggests that active intrusion detection (AID)
techniques hold promise as a useful network security pat-
tern, particularly when attempting to verify that basic
constraints or characteristics of the network hold true.
We presented an approach to AID based on probing: is-
suing crafted packets meant to elicit a particular type of
response from the target system or host.

There are several conceptual lessons to take away from
this work. Our main approach is predicated on probing
the “corner case” behavior and configurations of network
services and verifying that services return known–good
answers. Our main assumption is that normal behavior is
in some sense equivalent to “trustworthy.” Feeding a sys-
tem crafted input meant to exercise corner cases in logic
or configuration serves as a good heuristic for revealing
behavior that might carry highly individualized informa-
tion. We hypothesize that meaningful differences in the
characteristics of network trust relationships can reveal
malicious influence (or at least a bug or misconfigura-
tion).

We suggested three patterns for building verifica-
tion plans and exploring this space of varied behavior:
stimulus-response, cross-layer data, and trust relation-
ships. This approach can help users, client hosts, and sys-
tem administrators verify the trustworthiness of network
services, especially in the absence of strong authentica-
tion mechanisms at layer 2 and 3. We discussed how to
apply this method to DNS and ARP, we crafted packets
that can remotely detect a host in forwarding mode, and
we implemented a Scapy-based prototype to verify the
trustworthiness of a DHCP service.

9 Acknowledgments

We appreciate the insight and comments of the LISA re-
viewers. In particular, they asked us to provide more
detail on our prototype and data model as well as more
carefully discuss the current limitations. Our shepherd,
Tim Nelson, showed a lot of patience in working with us
to reconcile some of the submission manuscript’s short-
comings; the final paper is much improved because of his
input and guidance.

Locasto is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada.

References
[1] Dynamic DNS and Botnet of Zombie Web Servers. Un-

mask Parasites.blog (September 11, 2009). http:

//blog.unmaskparasites.com/2009/09/11/

dynamic-dns-and-botnet-of-zombie-web-servers/.

[2] Worm uses built-in DHCP server to spread. The H: Security
News and Open Source Developments (2011). http://www.h-
online.com/security/news/item/Worm-uses-built-in-DHCP-
server-to-spread-1255388.html.

[3] ARKIN, O. ICMP Usage in Scanning or Understanding some
of the ICMP Protocol’s Hazards. Tech. rep., The Sys-Security
Group, December 2000.

[4] ARKIN, O., AND YAROCHKIN, F. Xprobe v2.0: A “Fuzzy” Ap-
proach to Remote Active Operating System Fingerprinting. Tech.
rep., August 2002. http://ofirarkin.files.wordpress.

com/2008/11/xprobe2.pdf,.

[5] AXELSSON, S. Intrusion Detection Systems: A Survey and Tax-
onomy. Tech. rep., Chalmers University of Technology, 2000.

[6] BOWES, R. Scanning for Conficker’s peer to peer. Skull Security
(April 25, 2005). http://www.skullsecurity.org/blog/

2009/scanning-for-confickers-peer-to-peer.

[7] BOWES, R. Zombie Web servers: are you one? Skull Se-
curity (September 11, 2009). http://www.skullsecurity.

org/blog/2009/zombie-web-servers-are-you-one.

[8] BOWES, R. Using nmap to detect the arucer (ie,
energizer) trojan. Skull Security (March 8, 2010).
http://www.skullsecurity.org/blog/2010/

using-nmap-to-detect-the-arucer-ie-energizer-trojan.

[9] CHESWICK, B. An Evening with Berferd, in which a cracker
is lured, endured, and studied. In Proceedings of the Winter
USENIX Conference (January 1992).

[10] DAVID LAPORTE AND ERIC KOLLMANN. Using DHCP for Pas-
sive OS Identification. BlackHat Japan.

[11] DORMANN, W. Vulnerability note vu#154421. US-Cert Vul-
nerability Notes Database (March 5, 2005). http://www.kb.

cert.org/vuls/id/154421.

[12] DREGER, H., FELDMANN, A., MAI, M., PAXSON, V., AND
SOMMER, R. Dynamic Application-Layer Protocol Analysis for
Network Intrusion Detection. In Proceedings of the USENIX Se-
curity Symposium.

[13] DROMS, R. Dynamic Host Configuration Protocol, March 1997.
http://www.ietf.org/rfc/rfc2131.txt.

[14] DUNLAP, G. W., KING, S., CINAR, S., BASRAI, M. A., AND
CHEN, P. M. ReVirt: Enabling Intrusion Analysis Through
Virtual-Machine Logging and Replay. In Proceedings of the 2002
Symposium on Operating Systems Design and Implementation
(OSDI) (February 2002).

[15] FRIAS-MARTINEZ, V., SHERRICK, J., D.KEROMYTIS, A.,
AND STOLFO, S. J. A Network Access Control Mechanism
Based on Behavior Profiles. In Proceedings of the Annual Com-
puter Security Applications Conference (December 2009).

[16] HANDLEY, M., PAXSON, V., AND KREIBICH, C. Network In-
trusion Detection: Evasion, Traffic Normalization, and End-to-
End Protocol Semantics. In USENIX Security Symposium (2001).

[17] HILZINGER, M. Fedora: Chronicle of a Server Break-in.
http://www.linux-magazine.com/linux magazine com/

online/news/update fedora chronicle of a server

break in, March 2009. Linux Magazine.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 239

[18] KATHY WANG. Frustrating OS Fingerprinting with
Morph. In Proceedings of DEFCON 12 (July 2004).
http://www.windowsecurity.com/uplarticle/1/ICMP\
Scanning\ v2.5.pdf.

[19] LOCASTO, M. E., BURNSIDE, M., AND BETHEA, D. Push-
ing boulders uphill: the difficulty of network intrusion recovery.
In Proceedings of the 23rd conference on Large installation sys-
tem administration (Berkeley, CA, USA, Nov 2009), LISA’09,
USENIX Association.

[20] LYON, G. Remote OS Detection, nmap reference guide, chapter
8 ed., 2010.

[21] MAREK MAJKOWSKI. sniffer-detect.nse.
Nmap Scripting Engine Documentation Portal.
http://nmap.org/nsedoc/scripts/sniffer-detect.html.

[22] MARKOFF, J. Worm infects millions of computers worldwide.
The New York Times (January 22, 2009).

[23] MOCKAPETRIS, P. RFC 1034: Domain Names - Concepts and
Facilities, 1987. http://www.ietf.org/rfc/rfc1034.txt.

[24] MOCKAPETRIS, P. RFC 1035: Domain Names - Implementation
and Specification, 1987. http://www.ietf.org/rfc/rfc1035.txt.

[25] OZGIT, A., DAYIOGLU, B., ANUK, E., KANBUR, I.,
ALPTEKIN, O., AND ERMIS, U. Design of a log server for dis-
tributed and large-scale server environments.

[26] PETERSEN, B. Intrusion Detection FAQ: What is p0f
and what does it do? Tech. rep., The SANS Institute.
http://www.sans.org/security-resources/idfaq/p0f.php.

[27] PHILIPPE BIONDI. Scapy v2.1.1-dev documentation, April 19,
2010. http://www.secdev.org/projects/scapy/doc/.

[28] PLUMMER, D. C. RFC 826: An Ethernet Address Resolution
Protocol or Converting Network Protocol Addresses to 48.bit
Ethernet Address for Transmission on Ethernet Hardware, 1982.
http://tools.ietf.org/html/rfc826.

[29] PROVOS, N. A virtual honeypot framework. In Proceedings of
the 13th USENIX Security Symposium (2004), pp. 1–14.

[30] PTACEK, T. H., AND NEWSHAM, T. N. Insertion, evasion, and
denial of service: Eluding network intrusion detection. Tech. rep.,
Secure Networks, Inc., January 1998.

[31] ROESCH, M. Snort - Lightweight Intrusion Detection for
Networks. In Proceedings of 13th LISA Conference (Novem-
ber 1999), pp. 229–238. http://www.usenix.org/event/

lisa99/roesch.html.

[32] SINGER, A. Tempting Fate. USENIX login; 30, 1 (February
2005), 27–30.

[33] SPAFFORD, E. H. The Internet Worm: Crisis and Aftermath.
Communications of the ACM 32, 6 (June 1989), 678–687.

[34] STOLL, C. Stalking the Wily Hacker. Communications of the
ACM 31, 5 (May 1988), 484.

[35] VERN PAXSON. Bro: A system for detecting network in-
truders in real-time. In Proceedings of the 7th USENIX Secu-
rity Symposium (Berkeley, CA, USA, 1998), USENIX Associ-
ation. http://www.usenix.org/publications/library/

proceedings/sec98/paxson.html.

Notes
1http://www.h-online.com/security/news/item/

Worm-uses-built-in-DHCP-server-to-spread-1255388.

html
2http://www.secdev.org/projects/scapy/

3http://www.rapid7.com/products/

nexpose-community-edition.jsp
4http://www.tenable.com/products/nessus
5Although DHCP in IPv6 operates slightly differently, opportuni-

ties for masquerading still exist, and active probing can help detect such
attacks.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 241

Community-based analysis of netflow for early
detection of security incidents

Stefan Weigert† Matti A. Hiltunen‡ Christof Fetzer†

†TU Dresden
Dresden, Germany

{stefan,christof}@se.inf.tu-dresden.de

‡AT&T Labs Research
180 Park Ave.

Florham Park, NJ, USA
hiltunen@research.att.com

Abstract—Detection and remediation of security incidents (e.g.,
attacks, compromised machines, policy violations) is an increas-
ingly important task of system administrators. While numerous
tools and techniques are available (e.g., Snort, nmap, netflow),
novel attacks and low-grade events may still be hard to detect
in a timely manner. In this paper, we present a novel approach
for detecting stealthy, low-grade security incidents by utilizing
information across a community of organizations (e.g., banking
industry, energy generation and distribution industry, govern-
mental organizations in a specific country, etc). The approach
uses netflow, a commonly available non-intrusive data source,
analyzes communication to/from the community, and alerts the
community members when suspicious activity is detected. A
community-based detection has the ability to detect incidents that
would fall below local detection thresholds while maintaining the
number of alerts at a manageable level for each day.

I. INTRODUCTION

Detection and remediation of security incidents (e.g., at-
tacks, compromised machines, policy violations) is an increas-
ingly important task of system administrators. While numerous
tools and techniques are available, novel attacks and low-
grade security events may still be hard to detect in a timely
manner. Specifically, system administrators typically have to
base their actions on observing the local traffic to and from
their own networks as well as global security incident alerts
from organizations such as SEI CERT1, Arbor Atlas2, or
software and hardware vendors. However, stealthy targeted
attacks may slip below detection thresholds both in the local
data alone or on the global scale.

Furthermore, the nature of internet-based attacks is changing
from random hacking to financially or politically motivated
attacks. For example, botnets are increasingly leased out to
highest bidders and DDoS attacks are often used as a means for
blackmail. Moreover, attacks targeting industries with financial
information (e-commerce, banking, gaming, insurance) are in-
creasing and the threat of attacks against SCADA (supervisory
control and data acquisition) systems in electrical power gen-
eration, transmission, and distribution (among other industrial
process control systems) is even considered a potential target
for terrorism [10].

1http://www.cert.org/
2http://atlas.arbor.net/

Targeted attacks might not leave a large traffic footprint in
the targeted organization since one machine with access to
the desired information or control system may be sufficient
for the attacker to achieve their goals. It is often difficult to
detect such low-footprint attacks based on local monitoring
alone because it is often necessary to set local alerting thresh-
olds high enough not to generate too many false positives
and overwhelm the system administrators. But as a result, a
stealthy attack or compromise may lay undetected. Therefore,
it is possible for an attacker to target many such organizations
without being detected. For example, the attacker may want to
maximize profit by attacking multiple financial organizations
concurrently before the vulnerability used is detected and
corrected. Similarly, terrorists may require the control of many
companies to achieve their goal of large scale damage.

In this paper, we present a novel approach for detecting
stealthy, low-grade security incidents by utilizing information
across a community of organizations (e.g., banking industry,
energy generation and distribution industry). We will show
by using an example that we can find possible attacks (or
attempts) that only transfer very little data (e.g., a few bytes)
and thus would remain undetected by conventional approaches.

The remainder of this paper is structured as follows. In
Section II, we present the technical approach based on netflow
data and construction of communities of interest. Section III
describes the implementation of the system, including the
algorithms used for the analysis. We evaluate the performance
of our system in Section IVi and present selected case studies
of suspicious activity we have identified in Section V .
Section VI outlines related work in the area and Section VII
concludes the paper.

II. APPROACH

A. Service vision

Our technique is based on the concept of community, in our
case defined as a collection of (at least two) organizations. A
community can be specified based on any criteria relevant for
attack detection. For example, it could consists of businesses in
a particular industry (e.g., banking, health care, insurance, etc),
organizations within a country (e.g., businesses and govern-
ment agencies in one country), or organizations with particular

242 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

type of valuable information (e.g., industrial espionage or
customer credit card information). We detect stealthy security
attacks by observing the communication to/from the member
organizations of a community. The intuition being that within
each organization only very few machines may be attacked
or compromised and as a result an attack can be very hard
to detect within each organization. However, by observing the
communication behavior across multiple organizations in the
community, such stealthy behavior may become visible.

Given that we analyze communication in the Internet, each
organization is defined by the list or range of IP addresses
belonging to the organization. We consider Internet communi-
cation connections (reported by netflow, for example) within
the communities and between communities and external IP
addresses who do not belong to any community. For our
analysis, all the IP addresses within an organization can be
collapsed into one identifier representing the organization.
Any communication between two IP addresses where neither
belongs to one of our communities and neither has com-
municated with a community in the past can be ignored.
Furthermore, communication with IP addresses belonging to
commonly used Internet services (e.g., search, news, social
media) can be white listed and removed from consideration.

We construct a communication graph for each IP address
that communicates with at least one organization in a com-
munity as illustrated in Figure 1. This figure shows the
communication graph for an external IP address (i.e., some IP
address outside any of the communities of interest). This node
has communicated with two communities, one consisting of
organizations 7 and 8, and the other consisting of organizations
1 through 6. A directed edge from some node A to some other
node B in the graph indicates that A has sent messages to B.
Although not depicted in the figure, each edge may contain
additional information, such as the combinations of source and
destination ports used.

The weight of the edge is used to quantify the importance
of the communication. The importance can be based simply
on the number of messages or bytes sent, or the number
of contacted individual members in the targeted organization.
However, some communication may be more important than
others from security point of view. For example, some port
numbers are more often involved with malicious activity (e.g.,
based on CERT reports) and communication using such ports
can be weighted more heavily.

The weight is also used to limit the size of each graph. The
size of the graph is determined by the number of nodes it
contains. If the size exceeds a given threshold, we remove the
weakest links until the threshold is reached. This is necessary
because storing all communications would require too much
space even for a single day. For example, in our data set con-
sisting of heavily sampled netflow, a given weekday contains
about 860 million entries. These 860 million recorded netflows
originate in 28 million distinct IP addresses. Therefore, if we
would not filter unimportant IP addresses, we would need to
store 28 million graphs. Moreover, each of these 28 million IP
addresses often connects with 1 to 2 million other IP addresses.

Fig. 1: Communication graph for an IP address

Fig. 2: Communication graph for a community member

Thus, if we did not limit the size of each graph, we would
have some graphs that are too large to fit into memory. The
situation would be even more challenging if we analyzed the
data for one month or a week instead of the current one day
at a time.

As already stated, we also consider communication within a
community and across communities. With that, we are able to
detect already compromised computers inside an organization
when they try to attack further organizations as shown in
Figure 2. To reduce the number of false positives (many
organizations have frequent contact with other organizations
of the same or other communities), a computer inside an
organization that belongs to a community (or is contained in
the whitelist) has to show more suspicious behavior than an
external IP address before an alarm is generated. For example,
we do not consider communication via port 443 with or across
communities.

Given such communication graphs, a potential security
incident is suspected when an IP address communicates with
a specified number of community members. Typical examples
of security threats that can be detected using this approach
include botnet controllers managing a number of bots in the

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 243

community, compromised machines downloading stolen infor-
mation on a dedicated server, an attacker targeting machines
in multiple organizations, as well as many security policy
violations (e.g., illegal software download sites, etc). The
number of alarms can be controlled using thresholds and the
system can memorize IP addresses that have already been
reported recently. When there are false positives, the system
administrators can extend the whitelist.

An IP address may contact a large number of community
members either because the community is actually targetted
or if the attacker is targetting all or most of the Internet (e.g.,
broad port scan). The system administrators may want to react
differently to these alternative scenarios. Therefore, for each IP
address that has contacted a community member, our system
keeps track of how many times it has communicated with IP
addresses outside our communities of interest.

B. Input data

Our community-based alerting service uses netflow as its
input data source (although other types of information could
be utilized as well). Netflow is a standard data format collected
and exported by most networking equipment, in particular,
network routers. It provides summary information about each
network communication passing through the network equip-
ment. Specifically, a network flow is defined as an unidirec-
tional sequence of packets that share source and destination IP
addresses, source and destination port numbers, and protocol
(e.g., TCP or UDP). Each netflow record carries information
about a network flow including the timestamp of the first
packet received, duration, total number of packets and bytes,
input and output interfaces, IP address of the next hop,
source and destination IP masks, and cumulative TCP flags
in the case of TCP flows. Note, however, that the netflow
record does not contain any information about the contents
of the communication between the source and destination IP
addresses.

The community-based alerting service requires access to
netflow to/from each of the organizations in the community.
Such data can be collected by each of the organizations in the
community at their edge routers and then collected at a central
location for processing. Alternatively, it can be provided by
an ISP that serves a number of the organizations in the
community. Note that the netflow data may be sampled (to
reduce the volume of the data) and the actual IP addresses
of the computers within each organization can be obfuscated
prior to the analysis (e.g., all IP addresses belonging to an
organization can be collapsed into one address) if desired.

Given the collected netflows and the IP address ranges
belonging to each member organization in the community,
our alerting service analyses the data (either real time or in
daily or hourly batches) and generates alerts to the system
administrators. The analysis algorithm is described in Sec-
tion III. A whitelist can be used to eliminate any legitimate
communication destinations from consideration (e.g., search
engines, CDNs, banking, on-line retailers, etc).

III. IMPLEMENTATION

A. Architecture

The architecture of our system is presented in Figure 3. We
use three different types of processing components that do not
share any state and are executed as individual processes: the
parse, the filter, and the graph components. Each component
can be replicated and executed by any number of processes
(e.g., L, M , N1, and N2 in the figure). Every process of every
component has a unique id (from 0 to the number of processes
for the component-1) that is used for message routing. Since
the parse component is connected to the filter component, each
parse process is connected to each filter process. The same is
true for the filter and graph components. Note that the system
supports multiple different kinds of graph components in one
system configuration as illustrated by Graph 1 and Graph 2 in
the figure. Different graph components can be used to realize
different alerting conditions as we will describe below.

The communication between components is based on event
messages that are sent via TCP-channels. A message consists
of a key and a body that are defined by the pair of interacting
components (e.g., parse and filter, or filter and graph) and may
contain any information desired by these components. For the
key, a hash function h must be available that maps the contents
of a key into an unsigned integer, which is used to route the
event message to the right receiving process. For example, if a
parse process is connected to 2 filter processes (i.e., M = 2),
the receiving filter process is chosen by calculating the modulo
of the hash of the key and 2. Thus, in this particular example,
all keys with even hashes would be routed to the first and all
keys with odd hashes to the second filter process.

The internal state maintained by each component is parti-
tioned by the same key, making it possible to distribute their
processing load onto multiple cores efficiently.

Fig. 3: Data processing architecture

Each network flow is processed as follows. First, the netflow
data is read from a local storage device (it could also be re-
ceived in real time from a router). The parse component trans-
forms the IP addresses from their original string representation
(i.e., “AAA.BBB.CCC.DDD”) into an integer representing the

244 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

IP address3 and constructs a message with 5 fields: sourceIP,
source-port, destinationIP, destination-port, and transferred-
bytes. The parse component sends this message to the filter
component. It uses the sourceIP field of the message as the
key. The filter component either forwards (using the same key)
or discards the received message. This decision is based on
various factors, like used ports and source and destination IPs.
If the message is forwarded, it is forwarded to one process of
every graph component (e.g., Graph 1 and Graph 2). Finally,
the graph components construct a community graph for each
source IP. The filtering and community graph construction are
described in detail below.

B. Filtering

The filter is an essential part of our analysis and its role is
to remove irrelevant flow records and to reduce the amount
of data that needs to be processed by the graph component.
For example, commonly used search, news, social media, and
entertainment web sites are used so frequently that they would
appear with almost every community. Furthermore, any traffic
that does not involve at least one community member is not
relevant for the analysis and is filtered out. Other filtering
actions can be chosen based on data volume and perceived
threat vectors. For example, HTTP-traffic may be filtered to
reduce data volume, but at the risk of missing attacks that use
HTTP (port 80).

1: Example Filter algorithm
input : (src-IP, src-port, dst-IP, dst-port, transferred-bytes)
output: The same as the input, if not filtered

//collapse IP addresses
src-IP, dst-IP = collapse(src-IP), collapse(dst-IP);
//filter IPs of commonly used web sites
if src-IP ∈ whitelist then

return ∅;
end
//filter web-accesses to community-members
if dst-IP ∈ community then

if src-IP /∈ community then
if src-port = 80 then

return ∅;
end

end
end
//only forward if one of the IPs is in the community
if dst-IP ∈ community OR src-IP ∈ community then

return (src-IP, src-port, dst-IP, dst-port, transferred bytes);
end

Algorithm 1 shows an example filter component that filters
connections based on their ports, and source and destination
IP addresses. First, the algorithm collapses IP addresses for an
organization into one address. If, for example, an organization
has the IP range from 141.1.0.0 to 141.85.255.255 and
either the src-IP or dst-IP are within this range, it is set
to 141.1.0.0. We then discard every connection from IP

3We will continue calling this identifier an IP address to enforce the one
to one connection between these numerical IDs and the IP addresses.

addresses that are contained in the whitelist. Second, accesses
to a community member’s web-server are filtered. Finally,
we only forward the event message if at least one of the
connection end-points is contained in the community.

C. Community Graph

We build a fixed size (K) Community of Interest (COI)
graph for each IP address that is received by the graph
component. Essentially, we use a windowed top-K algorithm,
as described in [3]. However, there are two significant dif-
ferences in our implementation compared to [3]. First, our
window is not based on a fixed time interval, but rather on
the observed connections. This has the benefit that the COIs
of IP addresses with many connections will be updated more
often than of those with very few. Second, we introduce
several COI views ({V1, . . . ,Vn}) that use different methods
to determine the weight of a connection. We can, for example,
favor connections that transfer many bytes over those that
only transfer a few by using the transferred bytes as the
edge weight. Obviously, in this case we would not be able
to detect attacks that transfer only a small set of data if these
connections are dominated by large file transfers. Therefore,
we define another view that uses the port numbers involved in
security incidents to weight the edges (i.e., the more reported
security incidents for a port, the larger the weight). Our system
supports any number of such views running in parallel, as
depicted in Figure 3 (with Graph 1 implementing a different
view than Graph 2).

Algorithm 2 shows how the COI is constructed in more
detail. The algorithm uses two main data structures: a window
that is used to collect recent data and a COI graph that stores
the COI graph as seen from the beginning of the analysis run.
We first add the received connection to the window. If more
than 1000 connections have already been added, the window
is merged with the COI graph. To this end, for each IP in
the window, the weight of each edge is calculated, multiplied
with a damping factor 1 − θ and added to the weight in the
COI, which is first multiplied with θ. Since θ = 0.85, the
influence of the new connections in the window is dampened.
We also merge the port-mapping per destination-IP. It maps the
source-port to the destination-port and a counter, counting how
often this port-combination was used. Thereafter, the weights
of all contacts in the COI that have not been observed during
the current window are decayed by multiplying them with θ.
To keep the COI at a maximum size of K, we remove the
weakest links until the size of the COI is equal to K. Finally,
the window and the counter are reset.

D. Generating Alarms

We showed above how the COI graph is constructed. Here,
we provide two complementary algorithms to detect suspicious
IP addresses.

The first, shown in Algorithm 3, is used to pre-filter all IP
addresses that belong to a community. However, if a computer
inside the community is compromised, we still want it to be
checked further. To this end, we iterate over all connections in

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 245

2: Example Community graph construction
input : (src-IP, src-port, dst-IP, dst-port, transferred-bytes), s =

State[src-IP], F
output: None

//Save connection in window
s.window[dst-IP].transferred bytes += transferred-bytes;
s.window[dst-IP].port map[src-port][dst-port]++;
s.counter++;
//Merge window into topK after 1000 events
if s.counter > 1000 then

foreach IP ∈ s.window do
//θ has a value of 0.85 in our analysis.
s.topk[IP].weight = 1 - θ * V(s.window[IP])

+ θ * s.topk[IP].weight;
//Merge the window’s port map with the top-k’s
foreach {source-port, dest-port} ∈
s.window[IP].port map do

s.topk[IP].port map[source-port][dest-port] +=
s.window[IP].port map[source-port][dest-port];

end
end
//Decay weight of old connections
foreach IP /∈ s.window do

s.topk[IP].weight = θ * s.topk[IP].weight;
end
//Remove the weakest links
while size(s.topk) > K do

remove weakest link from(s.topk);
end
s.window = ∅;
s.counter = 0;

end

the IP’s top-K and check each pair of ports. The pairs of ports,
considered suspicious, are specified using a configuration file.

We call Algorithm 4 for all IP addresses returned by
Algorithm 3. It assures that (1) only those IP addresses that
connected to at least min_cnt members of the community
will be reported and (2) that the connections to the community
make at least min_part percent of all the connections of the
current IP address.

The detection algorithm can be run either for all IP ad-
dresses at once or individually for each IP address. Therefore,
it is possible to provide different detection latencies. For
example, to detect a suspicious IP address the earliest possible,
the algorithm must be executed as soon as a message is
received for its source-IP’s top-K. If this is not necessary, the
algorithm can be run for all top-Ks in one graph process at
any desired interval.

The generated alarms can be emailed to the system admin-
istrators in the affected organizations or posted on a security
dashboard. The reports contain the complete top-K for each
suspicious IP address, including the port mappings.

IV. EVALUATION

A. Input data and general setup

We currently run the experiment on a per-day basis. This
means we fetch the netflow entries of the last 24 hours and

3: Suspicious IP detection (1)
input : IP, community, s = State[IP]
output: IP, if suspicious; ∅, if not

//blacklisted IPs are always suspicious
if IP ∈ blacklist then

return IP;
end
//check if IP is in the community
if IP ∈ community then

//iterate over all of IP’s connections
foreach conn ∈ s.topk do

//iterate over all ports of one connection
foreach p ∈ s.topk[conn].port map do

//check if src port and dst port are suspicious
if is suspicious(src port, dst port) then

return IP;
end

end
end
//no strange ports -¿ skip
return ∅;

end
//not in community -¿ check
return IP;

4: Suspicious IP detection (2)
input : IP, community, min cnt, min part, s = State[IP]
output: Alarm

//check if top-K connections of this IP are in the community
often enough

cnt = count community(community, s.topk);
part = cnt / size(s.topk);

if IP /∈ blacklist then
if cnt ≤ min cnt OR part ≤ min part then

return false;
end

end
return true;

run our analysis. We do not carry any state from one daily
run to the next. In principle, we could leave the system
running continuously or checkpoint the graph component and
re-initiate its state on the next day. However, we found it useful
to start with a clean system every day since this makes it easier
to reason about the impact of changes in the community and
white lists.

Moreover, we introduced the concept of different views in
June 2011. Since then, we use three different views: one that
weighs the bytes transferred, another that weighs the number
of connections made, and the last one that weighs the security
risk for the ports used (as described in Section III). For any
measurements that were conducted before this date, we only
used the view based on the bytes transferred.

Our input data-set is heavily sampled netflow from an ISP.
In the first step, we remove all unimportant fields, leaving only
the source-IP, destination-IP, source-port, destination-port, and
the number of transferred bytes. This sums up to roughly

246 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

time in minutes

pr
oc

es
se

d
10

00
 e

nt
rie

s
pe

r s
ec

on
d

200

400

600

800

0 10 20 30

Fig. 4: Processed netflow-entries per second over the complete analysis execution

50GB of processed netflow per day.
The community lists define a community with the IP address

ranges of all its members and each community is stored in a
separate file (the white list is simply a “special” community).
For example, if we wanted to add “TU-Dresden” to a “univer-
sities community” we would add the following line into the
corresponding file:

141.1.0.0 - 141.85.255.255 TU.DRESDEN.DE

If a company or institution has more than one IP address
range assigned, we can simply add each range as a separate
entry. Moreover, an entry in one community is allowed to be
a member in other communities as well.

B. Performance

We implemented the parse, filter, and graph components on
top of StreamMine [12], a highly scalable stream processing
system. While StreamMine supports scaling to hundreds of
physical machines, a scalability and performance evaluation
involving multiple machines is out of the scope of this paper.
Therefore, we only used a single machine with 24GB of
RAM and 16 processing cores for the analysis. For the top-K
algorithm we used a value of 100 for K.

Figure 4 shows the read-throughput of the parse component
of one such run in which we processed one day of netflow
data (using only one view). The measurement was taken every
second throughout the whole run. The parse component can
read around 400,000 netflow entries per second with this single
machine. Each entry is converted into a message and sent to
the filter component. The filter component discards a large
fraction of these messages and only send around one in a

hundred of the incoming messages to the graph component.
Naturally, the read throughput varies over time, since the
amount of processing that needs to be done in the system
depends heavily on the content of the input data. However, it
is important to note that the mean throughput stays constant,
i.e., the system performance does not decline with time as
more graphs are added.

In the experiments reported in this paper, the filter com-
ponent uses 13 of the available cores, since it has to filter
the 400,000 netflow entries arriving every second. The graph
component uses only one core since the amount of data it has
to process is only a fraction of the data the filter receives. Note
that even if one would assign more processing resources (i.e.,
cores) to the graph component, it would still be impossible
to process unfiltered traffic (i.e., system without the filter
component)— the system would simply run out of memory.
The parse component uses the remaining two cores for reading
the input files and parsing their contents.

To avoid queuing, StreamMine uses the TCP back-pressure
mechanism on the network-connections. Hence, if a message
cannot be processed by the filter component because all its
threads are already busy processing other messages, the parse
component will eventually stop sending new messages (the
TCP send blocks if messages are not read fast enough on the
other side). This will eventually lead to the parse component
not reading any new netflow entries, because all its threads
are blocked trying to send messages.

Figure 5 shows the size of the daily alarm report (=
number of suspicious IPs communicating with the community)
and community sizes (approximately the number of member
organizations) over time for several months. The size of the

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 247

date of report

nu
m

be
r o

f i
te

m
s

0
20

40
60

80

Mar 15 Apr 01 Apr 15 May 01 May 15

number of alarms per community

0
50

10
0

15
0 complete report size

0
20

0
40

0
60

0 community and whitelist sizes

A Whitelist B C D E

Fig. 5: Community and alarm sizes over time

alarm report is subject to a weekly pattern with larger sizes
for weekdays (for alarm reports produced from Tuesday to
Saturday) and smaller for weekend traffic. The community
lists and the white list were updated manually on a daily basis.
Given a fixed community, the community list would typically
stay relatively fixed but in our case we occasionally identified
additional community members. For the alarm reports, we only
plot the report sizes for communities E and C. We did not
generate reports for the other communities because (1) we
found E and C to be the most interesting ones and (2) because
of time-constraints as we need to scan the reports manually for
attacks and new members of the community or white lists. It is
natural that the reports, especially initially, contain a number of
false positives. Some of them will be new community members
that have to be added to the community list, while others are
companies and organizations that can be added to the white
list. The white list is used to filter out trusted traffic, i.e., from
well known search engines, entertainment web sites, social
media, popular CDNs, banking, government services, etc.

In an actual usage of the system, the system administrators
analyzing the alarm reports would also add other known
“good” IP addresses to the white list to prevent them from
being reported daily. Lacking such domain knowledge, our
experiments used the white list conservatively. The bottom plot
approximates the size of the daily alarm report under real us-

age scenario where suspected IP addresses are processed daily
and either added to the white list or the suspect communication
is stopped (e.g., clean up infected machine, add firewall rules).
This alarm size is approximated simply by only listing the IP
addresses that have not been reported before.

V. CASE STUDIES

While we do not typically know the ground truth, we have
observed a number of suspicious cases in our analysis. In this
section, we outline some of these examples.

A. Case 1

Table I shows an anonymized part of the report, generated
for the netflow on May 13th, 2011. The report was obtained
using the view based on the number of bytes transferred. It
depicts the anonymized source-IP address (X.Y.Z.W) and the
communities it was connected to, which ports were used (to
help identify the application or service used), and a measure
of the frequency of communication—the “Occurence” field
indicates how often this connection was observed in the COI.
In the actual report, the IP address and the exact community
member are visible, of course.

In the next step, we usually use the whois service, to
determine to whom the IP address belongs. This way, we may
also find new members of the community by looking up the
company names, displayed in the whois information. For this

248 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

IP Address Src Port Community Dst port Occurrences

X.Y.Z.W 6000 E 1433 2
X.Y.Z.W 6000 E 1433 2
X.Y.Z.W 6000 E 1433 1
X.Y.Z.W 6000 E,C 1433 1
X.Y.Z.W 6000 B 1433 1
X.Y.Z.W 6000 E,C 1433 1

TABLE I: Anonymized report-snippet (port-mapping) from
May 13th, 2011

particular example, the only information we could get, was
that it belongs to an Asian ISP. Since the IP address likely
does not belong to a company that the community members
would typically collaborate with, we have a closer look at
the ports being used. We assume that the lower port number
(1433) belongs to the server and the higher port-number to the
client (6000). Figures 6 and 7 show the output of the “SANS
Internet Storm Center” web-site4 related to port 1433. The
web-site shows the services that usually run on these ports—
in this example, “Microsoft-SQL-Server”. The SANS reports
indicate many potential vulnerabilities, which may be used,
for example, to steal data.

Unfortunately, this is usually everything we are able to
derive from the netflow alone. While we consider this to be
a potential attack, final certainty could only be provided by
the system administrators of the individual companies, given
they have deeper knowledge about legitimate communication
connections of each organization and access to lower-level logs
on the targeted machines.

B. Case 2

Table II shows a summary of the COI of another
anonymized IP address for August 8th, 2011. It shows the
IP address, each community and two numbers. The report
was generated using the view based on the security risk of
used ports. The first number is simply a count of how many
members of the current community had an entry in the COI
of this IP address. The second number shows how often the
IP address connected to other IP addresses that are in none of
the communities. We stated in Section II that this number is
a good indicator of the severity and specificity of an attack.
Here, it is relatively low, which leads to the assumption that
the connections were not driven by a brute-force or port-scan-
like technique.

To verify this intuition, Table III shows the used ports
for each community member individually. In contrast to the
previous example, the source port is not constant anymore but
seems to be chosen randomly. The destination port, however,
is constant 445. Port 445 is usually used by “Win2k+ Server
Message Block”. Note that every connection only appeared
once in the netflow. This either means there was in fact just
one connection being used or the attempt to connect failed.

In the next step, we use again the whois service, to deter-
mine that the IP address belongs to an European ISP. However,

4http://isc.sans.org

IP Address Community # in
Top-K

outside
Community

X.Y.Z.W A 0 42
X.Y.Z.W B 0 42
X.Y.Z.W C 1 42
X.Y.Z.W D 0 42
X.Y.Z.W E 1 42
X.Y.Z.W F 6 42

TABLE II: Anonymized report-overview-snippet from August
8th, 2011. The last two columns contain the following num-
bers: (1) Number of members of the current community which
had an entry in the COI of the current IP address and (2)
number of connections to non-community members after the
first connection to a community-member.

IP Address Src Port Community Dst port Occurrences

X.Y.Z.W 4798 F 445 1
X.Y.Z.W 1238 F 445 1
X.Y.Z.W 1256 F 445 1
X.Y.Z.W 1682 F 445 1
X.Y.Z.W 3143 C,E,F 445 1
X.Y.Z.W 4243 F 445 1

TABLE III: Anonymized report-snippet from August 8th, 2011

it is not clear if this address belongs to a community member.
An attempt to ping the address did not succeed. A query
to “SANS Internet Storm Center” (Figure 8) shows a long
list of reports about worms using this port with the famous
“Conficker” being one of them.

As with the previous example, we cannot determine if this
case is a true attack. To this end, we would need the help of the
system administrators of the various community members who
have access to the log-files of the corresponding machines.
However, there are two interesting points concerning this IP
address. First, there are only a total of 69 entries in the netflow,
where this address is the source of communication. Second, all
connections transfer only a very small amount of data—around
60 bytes each. Even in total, this only sums up to several kilo
bytes. Therefore, this address only appears in the ports view
and not in the other views that consider either the number of
bytes or connections. Hence, an administrator would need to
set the detection threshold very low to see an alarm concerning
this address.

C. Case 3

In contrast to the previous two cases, this case is not an
attack. It occurred in all views and if one only looks at the
report (an excerpt is shown in Table IV), it is not immediately
clear what service is being used since the address seems to be
using random ports on both ends of the communication. The
query to whois does also not reveal any useful information,
except that the address belongs to a US ISP.

However, looking at the connections with IP addresses
outside of the communities provides a hint that this is not
targeted against any of our specified communities as shown in

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 249

Fig. 6: Screenshot of “http://isc.sans.org/port.html?port=1433” from September 8th, 2011

Fig. 7: Screenshot of “http://isc.sans.org/port.html?port=1433” from September 8th, 2011

250 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Fig. 8: Screenshot of “http://isc.sans.org/port.html?port=445” from September 8th, 2011

IP Address Src Port Community Dst port Occurrences

X.Y.Z.W 13397 B 38426 1
X.Y.Z.W 41748 F 41387 1
X.Y.Z.W 49534 C 23068 1
X.Y.Z.W 16249 C 22654 1
X.Y.Z.W 29167 C 43183 2
X.Y.Z.W 20 F 7205 4
.

TABLE IV: Anonymized report-snippet from August 8th, 2011

Table V. Moreover, the use of port 20 (the last line in Table IV)
gives a hint that at least some part of the communication
involved anonymous ftp, which uses port 20 to initiate the
connection but uses random ports thereafter. Finally, using
an ftp-client (i.e., a web-browser) revealed indeed that this
is simply an ftp server hosting software updates. As a result
of this analysis, we added the address to the white list.

IP Address Community # in
Top-K

outside
Community

X.Y.Z.W A 0 14250
X.Y.Z.W B 2 14250
X.Y.Z.W C 1 14250
X.Y.Z.W D 0 14250
X.Y.Z.W E 0 14250
X.Y.Z.W F 6 14250

TABLE V: Anonymized report-overview-snippet from August
8th, 2011. The last two columns contain the following num-
bers: (1) Number of members of the current community which
had an entry in the COI of the current IP address and (2)
number of connections to non-community members after the
first connection to a community member.

D. Building Communities

In real use of the system, the community members might
be known a priori and even stay relatively fixed. However,
in our case we built the community lists incrementally by
identified new community members based on the COIs gener-

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 251

ated. Specifically, we assumed that members of a community
exchange information with one another and often the data
exchange is encrypted. Therefore, we focused on new IP
addresses that used the https-port (443) for communication.
However, a certain minimal set of known members is needed
before reports can be generated. This set should be as large as
possible for two reasons. First, the likelihood that an unknown
address that belongs to the community (and thus, should be
added) connects to one or more entries of a large set of
members is higher than if the set contains only very few
entries. Second, if the set is large, one can set the reporting
threshold higher and reduce the amount of noise.

Building a community this way is a task that lasts for
weeks, depending on how much communication is observed
between the individual members and how large the community
is initially. We start by adding the new community to the list of
communities. With every subsequent report, we scan for new
members and add them to the corresponding lists. This way,
the community grows every day, and with it the likelihood
of finding any missing members. The community stabilizes
eventually with fewer and fewer new members per day.

VI. RELATED WORK

A number of tools and techniques have been developed to
process and visualize netflow data(see [17] for a survey). Net-
flow processing tools include OSU flow-tools [16], SiLK [7],
and Nfdump5. In addition to command line tools, numerous
graphical user interfaces exist to visualize and query network
activity, including NTOP6, Nfsen [9], NfSight [1], VisFlow-
Connect [20], FlowScan [14], NetPY [2], FloVis [18], VIAssist
[5], and NFlowVis [6]. While visualization tools allow the
users to view the netflow data from different perspectives
to locate suspicious activity, our approach analyzes the data
and produces small number of meaningful alarms each day.
Also, our focus on communities allows us to detect attacks
and suspicious behavior that is focused on a potentially small
community, but would not show significantly on a global scale.

Detection of similar communication behavior in multiple
hosts has been used previously to raise suspicion that hosts
with the correlated behavior may be members of the same
botnet. For example, [21] uses netflow data to identify sets of
suspicious hosts and then uses host level information (collected
on each host by a local monitor) to confirm or reject the
suspicions. However, detection of botnets is simplified by the
fact that the bots typically act in unison (e.g., start spamming
or DDoS attack against a target at the same time). Indeed,
much of the work in this area (e.g., BotMiner [8]) specifically
build detection mechanisms based on the assumptions of the
communication behavior required for a botnet. Furthermore,
to our knowledge, prior work is limited to detecting similar
behavior within one organization.

The concept of using a community to help detect security
events has been used in the past. For example, the Ensemble

5http://nfdump.sourceforge.net
6http://www.ntop.org

[15] system detects applications that have been hijacked by
using the idea of a trusted community of users contributing
system-call level local profiles of an application to a com-
mon merging engine. The merging engine generates a global
profile that can be used to detect or prevent anomalies in
application behavior at each end-host in real time. A similar
concept of collaborative learning for security [13] is applied
to automatically generate a patch to the problematic software
without affecting application functionality. PeerPressure [19]
automatically detects and troubleshoots misconfigurations by
assuming that most users in the community have the correct
configuration. Cooperative Bug Isolation [11] leverages the
community to do statistical debugging based on the feedback
data automatically generated by community users. Vigilante
[4] apply the community concept for containment of Internet
worms by community members running detection engines on
their machines, where the detection engines distribute attack
signatures to other community members when a machine is
infected.

VII. CONCLUSIONS

In this paper, we have presented a community-based analy-
sis and alerting technique for detecting small-footprint attacks
targeting communities of interest for attackers such as financial
institutions, e-commerce web site, or the electricity generation
and distribution infrastructure. By comparing communication
behavior across the member organizations in the community,
it is possible to detect suspect behavior that may fall below
detection thresholds at individual member organizations. A
white list can be used to avoid repeating false positives.
We have implemented the analysis algorithm in a scaleable
distributed architecture that can process large volumes of
netflow data efficiently.

REFERENCES

[1] R. Berthier, M. Cukier, M. Hiltunen, D. Kormann, G. Vesonder, and
D. Sheleheda. Nfsight: netflow-based network awareness tool. In
Proceedings of the 24th USENIX LISA, 2010.

[2] A. Cirneci, S. Boboc, C. Leordeanu, V. Cristea, and C. Estan. Netpy:
Advanced Network Traffic Monitoring. In Proc. Int Conf. on Intelligent
Networking and Collaborative Systems (INCOS’09), pages 253–254,
2009.

[3] Corinna Cortes, Daryl Pregibon, and Chris Volinsky. Communities of
interest. In Frank Hoffmann, David Hand, Niall Adams, Douglas Fisher,
and Gabriela Guimaraes, editors, Advances in Intelligent Data Analysis,
volume 2189 of Lecture Notes in Computer Science, pages 105–114.
Springer Berlin / Heidelberg, 2001. 10.1007/3-540-44816-0 11.

[4] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham. Vigilante: End-to-end containment of internet worms. In
Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), 2005.

[5] A.D. D’Amico, J.R. Goodall, D.R. Tesone, and J.K. Kopylec. Visual
discovery in computer network defense. IEEE Computer Graphics and
Applications, 27(5):20–27, 2007.

[6] F. Fischer, F. Mansmann, D.A. Keim, S. Pietzko, and M. Waldvogel.
Large-scale network monitoring for visual analysis of attacks. In Proc.
Workshop on Visualization for Computer Security (VizSEC), page 111.
Springer, 2008.

[7] C. Gates, M. Collins, M. Duggan, A. Kompanek, and M. Thomas. More
NetFlow tools: For performance and security. In Proc. 18th USENIX
LISA, pages 121–132, 2004.

252 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

[8] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clustering
analysis of network traffic for protocol- and structure-independent botnet
detection. In Proceedings of the USENIX Security Conference, 2008.

[9] P. Haag. Watch your Flows with NfSen and NFDUMP. In 50th RIPE
Meeting, 2005.

[10] V. Igure, S. Laughter, and R. Williams. Security issues in scada
networks. Computers & Security, 25(7):498 – 506, 2006.

[11] Ben Liblit. Cooperative bug isolation: winning thesis of the 2005 ACM
doctoral dissertation competition. Springer-Verlag, Berlin, Heidelberg,
2007.

[12] André Martin, Thomas Knauth, Stephan Creutz, Diogo Becker de Brum,
Stefan Weigert, Andrey Brito, and Christof Fetzer. Low-overhead fault
tolerance for high-throughput data processing systems. In ICDCS
’11: Proceedings of the 2011 31st IEEE International Conference on
Distributed Computing Systems, page TBD, Los Alamitos, CA, USA,
June 2011. IEEE Computer Society.

[13] J. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin,
C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F. Wong,
Y. Zibin, M. Ernst, and M. Rinard. Self-defending software: Auto-
matically patching security vulnerabilities. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2009.

[14] D. Plonka. Flowscan: A Network Traffic Flow Reporting and Visual-
ization Tool. In Proc. 14th USENIX LISA, pages 305–318, 2000.

[15] F. Qian, Z. Qian, Z. M. Mao, and A. Prakash. Ensemble: Community-
based anomaly detection for popular applications. 5th International ICST
Conference on Security and Privacy in Communication Networks, May
2009.

[16] S. Romig, M. Fullmer, and R. Luman. The OSU flow-tools package
and CISCO NetFlow logs. In Proc. 14th USENIX LISA, pages 291–
304, 2000.

[17] C. So-In. A Survey of Network Traffic Monitoring and Analysis Tools.
Cse 576m computer system analysis project, Washington University in
St. Louis, 2009.

[18] T. Taylor, D. Paterson, J. Glanfield, C. Gates, S. Brooks, and J. McHugh.
FloVis: Flow Visualization System. In Proc. Cybersecurity Applications
and Technologies Conference for Homeland Security (CATCH), pages
186–198, 2009.

[19] H. Wang, J. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic
misconfiguration troubleshooting with peerpressure. In In OSDI, pages
245–258, 2004.

[20] W. Yurcik. VisFlowConnect-IP: a link-based visualization of Netflows
for security monitoring. In 18th Annual FIRST Conf. on Computer
Security Incident Handling, 2006.

[21] Y. Zeng, X. Hu, and K. Shin. Detection of botnets using combined
host- and network-level information. In Proceedings of the 40th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2010.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 253

WCIS: A Prototype for Detecting Zero-Day Attacks in Web Server Requests

Melissa Danforth
Department of Computer and Electrical Engineering and Computer Science

California State University, Bakersfield
melissa@cs.csubak.edu or mdanforth@csub.edu

Abstract
This work presents the Web Classifying Immune System
(WCIS) which is a prototype system to detect zero-day
attacks against web servers by examining web server re-
quests. WCIS is intended to work in conjunction with
more traditional intrusion detection systems to detect
new and emerging threats that are not detected by the
traditional IDS database. WCIS is at its core an artifi-
cial immune system, but WCIS expands on the concept
of artificial immune systems by adding a classifier for
web server requests. This gives the system administra-
tor more information about the nature of the detected
threat which is not given by a traditional artificial im-
mune system. This prototype system also seeks to im-
prove the efficiency of an artificial immune system by
employing back-end, batch processing so that WCIS can
detect threats on higher capacity networks. This work
shows that WCIS is able to achieve a high rate of ac-
curacy at detecting and classifying attacks against web
servers with very few false positives.

Tags: Research, Security, Web, Artificial Immune Sys-
tem

1 Introduction

Traditional intrusion detection systems (IDS) are very ef-
ficient at detecting known threats and even some emerg-
ing variants, but are not as effective at detecting zero-day
attacks. Artificial immune systems (AIS) are appealing
for detecting zero-day attacks because they are inspired
by the adaptive concepts of biological immune systems.
Biological immune systems are alluring to the computer
security realm because they can innately adapt to new
pathogens or variations on previously seen pathogens,
something which even modern intrusion detection sys-
tems struggle to do. The primary goal of an artificial
immune system is to apply these biological principles to

the problem of distinguishing normal traffic or data from
abnormal traffic or data, even if the abnormal traffic cor-
responds to a completely new attack.
This work presents a variation of the artificial immune

system concept called Web Classifying Immune System
(WCIS). WCIS is intended to work in concert with a tra-
ditional IDS, scanning the traffic that the IDS has labeled
as normal to see if there is a zero-day attack, or even just
a new, unknown variant of an existing attack, present in
the traffic. As the name implies, WCIS focuses on at-
tacks conveyed in web server requests. While the con-
cepts can apply to other problem domains, this work fo-
cuses on web server requests as a “proof of concept”.

There are limitations to the traditional AIS model that
WCIS seeks to overcome. Most traditional artificial im-
mune systems only provide this binary classification of
traffic or data as “normal” or “attack”. For many prob-
lem domains, particularly the problem domain of mali-
cious web server requests, this simple classification is not
sufficient. There are a variety of web server attacks rang-
ing from simple information gathering via HEAD or OP-
TIONS requests to attacks that attempt to execute code
on the web server. The administrative response to an at-
tack will vary based on the type of attack. The prototype
system presented in this work overcomes this limitation
by adding classifications to a traditional AIS.
Since WCIS classifies the attacks as they are detected,

this provides the web administrator with more informa-
tion about the nature of the attack than a simple alert
would provide. For example, an attack which has a di-
rectory traversal component would require different con-
figuration changes than a CGI or PHP script with a buffer
overflow. By providing classifications along with alerts,
WCIS can help direct the administrative response to a
zero-day attack more effectively. The administrators
might not know the name of the attack, but if they know
it’s a buffer overflow on index.ida, that will allow them
to focus their response far more than they could with an
“attack detected” alert provided by traditional artificial

1

254 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

immune systems.
Another limitation of traditional artificial immune sys-

tems is the training of the immune system “antibodies”,
e.g. the sensors for detecting attacks. The traditional AIS
model assumes a continual process of evolution occur-
ring in real-time as it sees and classifies network traffic.
Most evolutionary algorithms require extensive memory
and CPU cycles to operate. This leads to two main is-
sues using AISes when high-volume, real-time detection
is desired: the sensors take a long time to train, during
which they are not capable of accurately labeling traffic,
and sensor refinement after initial training can cause a
CPU and/or memory bottleneck that limits the volume of
traffic that the sensors can process.

WCIS seeks to minimize these issues by separating
the evolutionary processes from the detection process.
The evolutionary processes, pre-deployment training and
sensor refinement, occur “offline” on a back-end system.
The detection process, monitoring the network traffic,
occurs “online” in real-time on the network. The “of-
fline” evolutionary processes produce a set of sensors,
which essentially detect patterns in the traffic, that are
deployed to monitor the network traffic in real-time. It
should be noted that the “online” mode of WCIS is in-
tended to work in conjunction with a traditional IDS by
scanning the traffic which the traditional IDS has not
alerted upon. WCIS however does not produce tradi-
tional IDS rules as those rules would be unable to gather
the statistics at the sensor, classification population and
overall population levels that are needed for sensor re-
finement.

In order to maintain one highly desirable feature of an
AIS, the customization of the sensors for that particular
network’s traffic, WCIS uses a system profile to train the
sensors in the pre-deployment phase. These profiles in-
clude a sampling of normal traffic for the network which
will be used to train the AIS and a set of labeled attacks
that will be used to “prime” the classifier. The proto-
type implementation of WCIS takes Apache logs as the
source of these two datasets, which makes customization
of the datasets very easy. One simply has to copy log
entries over into the appropriate dataset file and rerun the
pre-deployment phase of WCIS.
To enable “offline” sensor refinement, the “online”

WCIS sensors record statistics about their detection and
classification rates at the individual sensor, classification
population and overall sensor population levels. This in-
formation can be sent to a back-end system, which will
enable WCIS to run the sensor refinement process as a
batch process on the back-end system while the live sen-
sors keep detecting. Once the batch process is complete,
the live sensors can be replaced with the newly refined
(“next generation”) sensors. The current prototype does
not yet implement this aspect as the prototype could not

be run on live network traffic due to policies and bu-
reaucratic limitations about collecting data that may con-
tain personal or confidential information at the university.
However, it is already supported by the internal structure
of the sensors and merely requires a live network (or iso-
lated network) test environment to implement and fully
test this feature.
In summary, WCIS is a variation of an artificial im-

mune system that is intended to work in conjunction with
a traditional intrusion detection system to detect attacks
that the IDS cannot yet detect. WCIS seeks to overcome
the usability limitations of traditional artificial immune
systems by adding a classifier to provide more informa-
tion about detected attacks. Additionally, WCIS seeks to
optimize the scalability of the AIS concept by separating
the evolutionary processes from the detection process.
This allows the resource intensive aspects of an AIS to
occur “offline” on a back-end system rather than on the
detection system.
Section 2 provides an overview of artificial immune

systems and the biological principles that inspired them.
Related work in the area of artificial immune systems and
classifiers is presented in Section 3. The methodology
used to add classifications to an artificial immune sys-
tem is described in Section 4. Section 5 describes how
WCIS models web server requests. The results of run-
ning WCIS on sample datasets is presented in Section
6 and conclusions drawn from these results are given in
Section 7. Finally, future avenues of research and im-
provement for WCIS are discussed in Section 8.

2 Artificial Immune Systems

An artificial immune system (AIS) is a type of anomaly-
based intrusion detection system (IDS) inspired by the
adaptive nature of the biological immune system. A
biological immune system has to be responsive to new
and unknown pathogens while also recalling previously
defeated pathogens to prevent a recurrence of illness.
While not 100% effective at this task (e.g. auto-immune
disorders and other immune system malfunctions), the
biological immune system is more adaptive to new
pathogens and variants of known pathogens than the
analogous anomaly-based IDSes.

Using biological methods to create a better IDS is the
core concept behind artificial immune systems. The goal
of an AIS is to distinguish normal traffic (called “self”
data) from abnormal traffic (called “non-self” data). It
does so by creating immune “sensors” as analogs to bio-
logical immune cells. These sensors use pattern match-
ing functions to determine if data is “non-self”. Several
key features of a biological immune system that serve as
inspiration for an AIS are affinity maturation, negative
selection and peripheral tolerance. Other features of bi-

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 255

ological immune systems can also be incorporated, but
these are far more weighty concepts that are beyond the
scope of this paper.
Affinity relates to pattern matching. Each immune cell

(antibody) has a set of proteins on its surface that form
a three dimensional “lock” pattern which can match the
“key” pattern of proteins on the surface of a pathogen
(also called an antigen). Affinity measures how “tightly”
the lock and key patterns fit together, with a higher affin-
ity meaning a tighter bond between the antibody and
pathogen exists. Affinity maturation is the process of re-
fining an antibody’s lock pattern until it can tightly bind
to a specific pathogen. This allows the body to “mem-
orize” specific pathogen patterns, e.g. learn a “signa-
ture” for that pathogen. This is the basis of immuniza-
tions in biological immune systems. For AISes, affinity
maturation allows generic immune system sensors to de-
velop “signatures” for novel attacks or new variants of
old attacks. This is accomplished by training the sensors
against attack data in the pre-deployment phase and by
refining the sensors during deployment using an evolu-
tionary technique, such as a genetic algorithm.

Negative selection is a process for creating new im-
mune cells that do not react to the body’s own proteins
(“self”). Most of the artificial immune system works fo-
cus on this feature of biological immune systems. The
immune cells are initially created with a random pattern
of “lock” proteins. The cells are then tested against a
random sampling of “self” proteins and structures. If the
immune cell has too high of an affinity for “self”, it is de-
stroyed. For AISes, this means the immune sensors are
initialized with random patterns and each sensor is tested
against a sample of “normal” data. Those which react too
strongly to normal data are removed and replaced with a
new randomly generated and tested sensor. A negative
selection phase can be used along with affinity matura-
tion to be sure that the sensors do not start reacting to
normal data while they are developing an affinity for at-
tack data.

Since negative selection uses a random sampling of
“self” proteins to test new immune cells, there is a pos-
sibility that cells which are reactive to self will survive
negative selection. Auto-immune disorders are caused
by such cells. In an AIS, such sensors would lead to false
positives, where normal traffic is labeled as an attack.
The immune system has some protection against this by
using peripheral tolerance. Peripheral tolerance deacti-
vates or destroys immune cells that are too reactive to
self proteins. Not many AISes explore the use of periph-
eral tolerance in their systems since it is hard to detect
false positives automatically. One technique might be to
have a human verify each alert and deactivate any sensor
which is noted to have an excessive number of false pos-
itives. In WCIS, the person can also modify the sensor’s

internal statistics to mark the sensor as “bad”, which will
prevent the sensor from being used to refine the sensors
during the next sensor refinement phase. This essentially
removes the sensor from the “genetic pool” used for sen-
sor refinement.

3 Related Work

The research group of Stephanie Forrest at the University
of New Mexico has produced several pioneering works
in the field of artificial immune systems. Forrest, et
al. [9] focused on distinguishing self from non-self and
laid the foundations for the negative selection algorithm.
Somayaji, Hofmeyer and Forrest [16] explored the ap-
plication of these concepts to computer security. This
work ultimately resulted in the production of the LY-
SIS [12, 13] immune system for TCP connections. LY-
SIS monitored the TCP/IP headers of SYN packets to
detect abnormal traffic.

Williams, et al. [22] expanded LYSIS to monitor TCP,
UDP and ICMP traffic. This system, called CDIS, also
monitored all packets instead of just TCP SYN pack-
ets. Each AIS sensor in the system monitored a random
subset of features from the packet headers. The pattern
matching function used by CDIS used a mix of binary,
discrete and real value features.
Gonzales, Dasgupta and Gomez [10] showed that the

negative selection algorithm is very sensitive to the type
of matching function used. Ultimately, one hopes that
negative selection results in sensors with a wide cover-
age of the non-self space, as this represents potential at-
tacks. But [10] showed that the algorithms of Forrest,
et al. [1, 9, 12, 13, 16] and Farmer, et al. [8] resulted
in restricted coverage of the non-self space. These algo-
rithms work best with binary and discrete data. Of the
algorithms tested, the real value matching function used
by Gonzales, Dasgupta and Kozma [11] had the best cov-
erage of the non-self space.

In Dasgupta, Yu and Majumdar [5], a multilevel im-
mune learning algorithm was introduced, in part to over-
come deficiencies in simple negative selection algo-
rithms. This system used collaborations and interactions
between various types of sensors, analogous to the vari-
ous types of immune system cells in a biological immune
system. By requiring collaborations between sensors to
label data as non-self, the experiments showed the AIS
achieved better results than simple negative selection.
The first version of WCIS that was published [2, 4]

was built off the work of CDIS and LYSIS to monitor
web server requests. As with CDIS, the sensors moni-
tored a random subset of features and the pattern match-
ing function used a mix of binary, discrete and real value
features. The system also incorporated basic collabora-
tion between sensors to reduce the false positive rate.

3

256 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Table 1: The classification scheme used for the web
server attacks.

Class Instances Description
info 5 Gathers information about

server (read only)
traversal 37 Directory traversal attempt

(read only)
sql 4 SQL injection attack
buffer 7 Buffer overflow attack
script 86 Cause a script to do something

malicious (execute)
xss 40 Cross site scripting

This first version of WCIS was simply an AIS for web
server requests and included none of the enhancements
that this work covers. The concept of adding a classi-
fier to WCIS was explored in [3], but the classifier used
in that version was prone to overfitting and poor clas-
sifications and was deemed unsuitable. Neither previous
version separated the evolutionary processes from the de-
tection process.

Watkins, Timmis and Boggess [17, 18, 19, 20, 21] pro-
posed an artificial immune recognition system for for su-
pervised learning and reinforcement learning. The pro-
posed AIS functioned as a classifier. As with [5], it mod-
eled a variety of immune cells working in collaboration
to classify data. It required the features be represented as
a vector of real value ranges and used vector mathematics
to calculate affinity and distance between cells. A vari-
ation on k-nearest neighbors was used to calculate the
class of unknown data once the cells had been trained.
While this method worked well on datasets that can be
modeled as a feature vector, its mathematical approach
limits its application to other feature sets that cannot be
easily modeled as a vector.

4 Methodology for the Classifying AIS

Previously [2, 3, 4], WCIS was defined as an AIS for
web server attacks and a rudimentary, but poor, classifier
was implemented. The scheme for fingerprinting web
server requests, detailed in Section 5, was developed in
those works. The classifier developed in [3] was prone to
overfitting and misclassification. A better classifier was
developed, which is the focus of this section. The sim-
ple classification scheme given in Table 1 was preserved
from [3] however, as the classification scheme was not
the issue with the previous classifier.
The classification scheme in Table 1 was developed

based on several common groups of web server re-
quest attacks that can be found encoded in URIs. The
“info” classification covers various information gather-

ing attacks that do not alter the server. Likewise, the
“traversal” category solely covers the attacks which uti-
lize directory traversal, but do not attempt to execute
anything on the web server, such as attempting to read
/etc/passwd. If the traversal tries to execute a program,
it is instead labeled “script”. The “script” class also cov-
ers other attempts to maliciously execute a program or
script on the web server. The “sql” class covers SQL in-
jection attacks. The “buffer” class covers buffer overflow
attacks, which may also result in commands being exe-
cuted. Finally, the “xss” class covers cross site scripting
attacks. Table 2 lists some examples for each class ex-
cept buffer overflow attacks as those examples were too
long to easily fit into the table.
The classification training occurs during the pre-

deployment stage where the field of potential sensors is
trained against a system profile. The system profile con-
sists of a normal dataset (Apache log entries from non-
malicious web requests) and an attack dataset (Apache
log entries from actual attacks on a web server). Each
attack in the attack dataset was hand inspected and la-
beled with a classification. One main issue faced while
developing the attack dataset was obtaining sufficient ex-
amples of each classification of attack. Attack exam-
ples were gleaned from Bugtraq [15], live Apache web
servers and an un-networked machine where selected at-
tacks were run against a local web server. As seen from
Table 1, most of the examples fell into the category of
traversal, script or xss. To prevent the sensors from be-
coming biased towards those classes, each sensor tracks
the percentage of the class that it is able to detect rather
than a raw count.
To add classification to WCIS, each sensor not only

tracks the percentage of each category it reacted to dur-
ing pre-deployment training, it also has a desired cat-
egory for which it should develop affinity. Previously
in [3], WCIS did not have this second feature and it
was discovered that the population of sensors optimized
for the “script” and “traversal” classes. To prevent this
from happening, the sensors were divided into groups
and each group was tasked with optimizing affinity for
a particular classification. This is a niching algorithm,
which is intended to develop “specialists” for all classifi-
cation labels.
To optimize affinity, the sensors must be trained and

matured. This is accomplished with a typical artifi-
cial immune system lifecycle conducted during the pre-
deployment and sensor refinement phases. The lifecy-
cle is an iterative process which repeatedly applies the
affinity maturation steps. This results in a set of trained
sensors that have higher affinity towards attacks than the
initial sensors. The steps for the lifecycle are detailed in
the following subsections.

The primary difference between the pre-deployment

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 257

Table 2: A sample of requests in the attack dataset.
Class URL
info GET x HTTP/1.0
traversal GET ../../../boot.ini HTTP/1.0
traversal GET %2E%2E/%2E%2E/%2E%2E/%2E%2E/%2E%2E/winnt/win.ini HTTP/1.0
sql GET /scripts/test.asp?var=foo‘;EXECmaster.dbo.xp cmdshell’cmd.exe’ HTTP/1.0
script GET /scripts/..%%35%63../winnt/system32/cmd.exe?/c+cmd.exe HTTP/1.0
script GET /ans.pl?p=../../../../bin/command%20argument|&blah HTTP /1.1
xss GET /<script>alert(’Vulnerable’)</script> HTTP/1.1
xss GET /javascript:void%20window.open(HTTP/1.0

Table 3: A sample of requests in the normal dataset.
GET /00master/hqafgate.gif HTTP/1.0
GET /Copy%20of%2010.gif HTTP/1.0
GET /faq/web/viewfaq.php3 HTTP/1.0
GET /forums/newmsg.php?fid=2&pid=30HTTP/1.1
GET /index.html?browsePage=commands.html HTTP/1.1
GET /index.html?browsePage=kb/item detail.php&id=19 HTTP/1.1
GET /index.html?secure=1&PHPSESSID=db80c486ee8cef8090a532b93619cd7a HTTP/1.1
GET /%7E930www/Images/front y2k logo02.jpg HTTP/1.0
GET /ADTracker.asp?linkid=AHCX030&linktype=Room&RID=8 HTTP/1.0
GET /CGI-BIN/centralad/getimage.exe/19980714243?GROUP=default buttons HTTP/1.0

and sensor refinement phases is the source of the statis-
tics used for training. In the pre-deployment phase, train-
ing statistics come purely from the sensor’s reaction to
the system profile datasets. In the sensor refinement
phase, statistics come from the sensor’s reaction to live
traffic, with negative selection against the normal dataset
also conducted to prevent sensors from reacting to nor-
mal traffic.

Before going into the details of the pre-deployment
phase, some key terminology should be reviewed. The
sensor population size is the number of unique sensors
being processed. Each individual sensor within the pop-
ulation has its own data structure to store its pattern, clas-
sification label and statistics. Patterns may be repeated in
multiple individual sensors within the population. This is
called a loss of diversity or overfitting which essentially
leads to redundancy (e.g. multiple sensors have the same
“signature”). The sensor lifecycle is the process of cre-
ating, refining and perhaps destroying individual sensors
within the population. Throughout the lifecycle, the pop-
ulation size remains constant. Every destroyed sensor is
replaced with exactly one sensor. The sensors that exist
in each iteration through the lifecycle process are called
a generation of the population. Each new generation is
generated by the affinity maturation process, which uses
a genetic algorithm to refine the sensor population as a
whole. The sensor’s chromosome is a method to repre-
sent the sensor’s pattern by using data structures that can
be manipulated by a genetic algorithm. The chromosome

contains all possible features that a pattern in WCIS may
use (see Section 5 for a description of the features), the
current values for each feature and a flag to indicate if
the sensor is using that feature in its pattern (e.g. if the
feature is expressed in that particular sensor). The fit-
ness of a sensor is determined by its statistics and is used
to gauge its accuracy at detecting attacks in its classifica-
tion label. The most fit sensors contribute more “genetic
information” to the next generation than the less fit sen-
sors.

4.1 Lifecycle
In pre-deployment training, a normal dataset, samples
of which can be seen in Table 3, and the labeled attack
dataset are given as input to the lifecycle function. The
pre-deployment lifecycle begins by randomly generating
a population of sensors for each classification group. The
random generation process selects a subset of features for
each sensor’s matching pattern and randomly assigns val-
ues to those features. In the sensor refinement phase, the
lifecycle function would instead begin with copies of the
existing sensors and any sensors which have been deacti-
vated by the system administrator (peripheral tolerance)
will be discarded and replaced by a random sensor.
For both phases, the iterative affinity maturation pro-

cess is then entered, which refines the sensors over a se-
ries of generations. It is important to note that affinity
maturation occurs within each population for a classi-

5

258 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

fication label, not across all classification label popula-
tions. The goal of affinity maturation is to produce sen-
sors which specialize in detecting attacks for that partic-
ular classification label, so each population is kept dis-
tinct.

4.2 Negative Selection Phase
The affinity maturation process begins with negative se-
lection. The population of sensors is compared to the
normal dataset. Any sensor that has too strong of an
affinity to requests in the normal dataset is discarded and
replaced with a random sensor. The replacement is like-
wise tested against the normal dataset and is not allowed
to replace the discarded sensor until its random feature
set (e.g. pattern) does not have strong affinity towards
the normal dataset. The exact level of affinity towards
the normal dataset that is tolerated in this phase is tun-
able in WCIS.

4.3 Training Phase
After negative selection, the sensors enter two phases of
training. During the first phase of training, the sensors
are compared to all of the attack requests and a random
subset of normal requests. If a sensor has affinity to an
attack, it records the classification of that attack. At the
end of the first phase, each sensor will know the percent-
age of attacks in each category it can detect. It then sees
which classification it is best at detecting and marks that
classification as its class. The sensor may mark itself as
a different classification than what its group is supposed
to be optimizing for. This simply means the sensor is not
as good at detecting the desired classification as it is at
detecting a different classification.

During the second phase of training, the sensors make
a second pass over the attack dataset. For each attack, the
sensors which can detect it vote on the classification of
the attack. The accuracy of each group of sensors at de-
tecting its desired classification is recorded. This second
phase is purely for computing the accuracy statistics and
does not affect the affinity maturation process. The accu-
racy of the sensors during experimental testing is given
in Section 6.

4.4 Genetic Algorithm Phase
After training, the sensors move on to the genetic al-
gorithm phase. This phase first “breeds” the sensors to
create the next generation of sensors and then mutates
the next generation. The breeding phase uses a single-
objective genetic algorithm which optimizes for a sin-
gle fitness metric (multi-objective algorithms allow opti-
mization for multiple fitness metrics). The fitness of each

sensor for this phase is its ability to classify the attacks
in the desired classification for its population. For ex-
ample, if a “script” sensor can detect 70 of the 86 script
attacks, it would have a fitness of 0.814 even if it could
also detect 100% of the “traversal” attacks. A secondary
fitness value is also computed for each sensor but is not
directly used by the genetic algorithm. This fitness value
measures how well the sensor can detect attacks without
excessive false positives. The secondary fitness ranges in
value from -2 (all of its alerts are on normal requests in-
stead of attack requests) to +2 (all of its alerts are attack
requests).

Rank selection with elitism using the primary fitness
value is used to select the “parent” sensors. Rank se-
lection chooses the most fit sensors to be parent sensors.
Elitism allows a percentage of highly fit parent sensors
to survive into the next generation. The exact percent-
age is tunable in WCIS. Once two parent sensors are
selected, single point crossover on the parents’ chromo-
somes is used to create the chromosomes for the “chil-
dren” sensors. The chromosome is the complete feature
set, a subset of which will be expressed in each parent.
The expressed feature set for each child sensor is the
intersection of the expressed feature sets of the parent
sensors. Additionally, a feature that only one parent ex-
presses will be randomly expressed in the child. Even if
the feature is not expressed, the child will still inherit the
values for that feature from the parent. It just will not be
used by the child to match against requests. But this pre-
serves the genetic information in a dormant state in case
future offspring randomly choose to express that feature.
Finally, if a child exits this expressed feature selection
phase with less than two features expressed, it randomly
chooses features to add to its expressed feature set until
the set size is two.

Besides the children sensors created by crossover, ran-
domly selected parent sensors are also be chosen as sur-
vivors during the elitism process. The population for
the next generation of the affinity maturation process is
the combination of the children and the survivors. Addi-
tionally, to prevent overfitting, breeding ceases when the
population for a specific class achieves 100% accuracy
at detecting that class. In that case, the next generation
consists entirely of survivors.

After breeding is completed, mutation is performed on
the next generation. A subset of sensors is selected ran-
domly from the population. A random expressed feature
in the sensor’s chromosome is selected for mutation. If
the feature is binary or discrete, a bit is flipped. If the
feature is a real value, the value is altered by a random
number.

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 259

4.5 Sensor Deployment and Refinement

The lifecycle continues by iterating through the nega-
tive selection, training and genetic algorithm phases un-
til a maximum number of generations is reached. At this
point, the sensors are considered trained (or refined), al-
though they may not have perfect accuracy for their clas-
sification. In the pre-deployment phase, the sensors with
a secondary fitness greater than 0.5 will become the live
sensors. In the sensor refinement phase, those sensors
would replace the existing live sensors, as the “next gen-
eration” of sensors. The threshold of secondary fitness
may be refined to trade off between covering potential
attacks and generating too many false positives.

Live deployment of the sensors could not be tested due
to bureaucratic issues obtaining the appropriate autho-
rization for live monitoring of the department network.
Since live network traffic could contain personally iden-
tifying or confidential information, the campus requires
assurance that WCIS will protect such information from
unauthorized view before granting authorization. As of
this time, the authorization is still pending.

Since this bureaucratic restriction prevented the live
deployment of sensors to test the concept, the sensors
are instead presented with unlabeled data to see how they
perform in a real-world scenario. Any sensor with a sec-
ondary fitness less than the above threshold is not used
for this phase as it has difficulty distinguishing normal
requests from attack requests. The sensors determine if
each unlabeled request is an attack or a normal request.
If the request is labeled an attack by a sensor, the classi-
fication of the sensor is recorded. After passing the unla-
beled request past all sensors, the classification with the
highest “vote” count is chosen as the class label for the
request. Those results are then hand-verified to see their
accuracy. The results of testing the sensors against un-
known data are given in Section 6.
The bureaucratic restriction also made it difficult to

fully test the scalability of the pre-deployment, detec-
tion and sensor refinement phases. In particular, this
made it difficult to fully implement the back-end pro-
cessing aspects of the sensor refinement phase, as there
were no deployment and back-end systems to commu-
nicate between. While WCIS contains the algorithmic
components of sensor refinement, the practical aspects
of deploying sensors, recording statistics, communicat-
ing those statistics back to the back-end system, refin-
ing sensors on the back-end system and re-deploying the
next generation of sensors could not be fully investigated.

The department is currently in the process of building
an isolated network. The sensors can be deployed on the
isolated network since the data will be simulated, which
means campus authorization is not required. This will
allow testing of the sensor refinement phase. Scalability

Table 4: The special characters used in the fingerprinting
method.

Character Description
% Used by various encoding methods

such as hex encoding
’ Used by SQL injection attacks
+ Interpreted by Microsoft IIS as a

space
.. Used in directory traversal attacks
\ Used in directory traversal attacks

since URIs contain only /
(Used in cross site scripting attacks
) Used in cross site scripting attacks
< Used in cross site scripting attacks
> Used in cross site scripting attacks
// Used in proxy attempts or to exploit

an old Apache vulnerability

testing can also be conducted. Based on the promising
results presented in Section 6, it is expected that WCIS
will perform well in a simulated live environment. While
this is still not an ideal scenario, it will allow continued
development and testing of WCIS while the attempts to
get campus authorization for live deployment continue.

5 Fingerprinting URIs

In order to adapt the AIS method to detect malicious web
server requests in WCIS, the web request data must be
converted into a pattern consisting of binary, discrete and
real value features. The chromosome in each sensors
would then seek to match these features. The features
from the web request chosen for WCIS are the Uniform
Resource Identifier (URI), the HTTP command (GET,
POST, HEAD, etc) and the HTTP version. Additional
features from the request, such as headers, referrer, and
so on, could also be added as features, although they are
not supported at this time in WCIS due to the nature of
the Apache logs available for data processing. Due to
the restrictions imposed by the campus, WCIS has had
to run off of Apache logs rather than the live network
and the logs are not always configured to log these fea-
tures. Additionally, WCIS does not look at the IP address
of the client or the return code as it is not concerned with
detecting the activities of unique clients or whether an
attack failed or succeeded. It is concerned with discov-
ering patterns that indicate a zero-day attack has been
attempted.

The HTTP command is converted into a discrete
bitmap where each set bit refers to a specific command.
For example, bit 0 is set for GET, bit 1 is set for POST
and so on. The HTTP protocol is likewise converted into

7

260 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

a discrete bitmap, although it could also be modeled as a
real value. The length of the URI is converted into a real
value feature. Likewise, the number of variables in the
URI is also converted into a real value feature. The URI
is then parsed to develop a fingerprint of special char-
acters used in the URI. Table 4 summarizes the special
characters modeled in the fingerprint. These characters
were chosen based on the whitepapers published online
at cgisecurity.com [23, 24] and based on the inspection of
later web server attacks. Each special character or char-
acter sequence listed in Table 4 is modeled as a real value
feature.

Real value features are all modeled as a pair of values:
[base, offset]. The sensor will match a URI if the URI
value is within the range of base to base+offset. When
mutating a real value feature, a random value may be
added or subtracted from the base, the offset or both. The
base can only be altered by a value from -2 to +2. The
offset can only be altered by a value of -4 to +4. This
prevents mutation from wildly changing the range that a
feature detects.

A sensor is considered to match a web request when all
of its expressed features matches the features in the web
request. For binary features, the feature matches when
the corresponding bit to the feature is set in the sensor.
For real value features, a feature matches when its value
falls within the range of values in the sensor. Note that
the web request may contain additional features that the
sensor does not check. The matching is driven by the
feature set that the sensor expresses, not the feature set
in the request.

6 Experimental Results

WCIS was tested using an attack dataset, a normal
dataset and an unknown dataset, as described in Section
4. The attack dataset consists of 179 labeled attacks gath-
ered from Bugtraq, live web server logs and tests run on
an un-networked machine. The normal dataset consists
of 52977 regular requests gathered from the Lincoln Lab-
oratory DARPA dataset [14] and live web server logs.

Obviously, the preferred method of testing WCIS
would have been actual live requests to a web server, as
this would best approximation of the real-world perfor-
mance of WCIS. Unfortunately, as described in previous
sections, the regulations at this university have made it
difficult to do such testing on live web servers due to
privacy concerns. Instead, the Apache access.log
repository for the Computer Science department web
server was used for the unknown dataset. 11659 random
requests were pulled from the logs and placed into the
unknown dataset.

Besides the datasets, WCIS has many parameters that
tune its performance. These parameters are:

pop The population size for each classification cate-
gory. A larger population size creates a larger pool
of initial random sensors and thus a greater likeli-
hood of randomly creating a “good” sensor.

gen The maximum number of generations for the affin-
ity maturation process. The higher this value is, the
more likely it is that affinity maturation can derive
“good” sensors even if the random initial sensors
are only mediocre.

xover The percentage of the next generation that
comes from breeding. The remaining percentage of
the next generation will be survivors.

mut The mutation rate for the next generation. A higher
value introduces more random change in each gen-
eration, which can be beneficial, harmful or benign.

thresh The threshold for affinity when doing negative
selection. Sensors with affinity above this threshold
are destroyed.

agree The number of sensors that must agree a request
is an attack before it is labeled as an attack. For
classification, 2 * agree must label an unknown
data as an attack before it will be classified.

WCIS was tested with population sizes of 25, 50 and
75 for each classification category. Each sensor in a pop-
ulation is analogous to a rule in an IDS in that it looks for
a specific pattern in the web request. Note that the actual
total number of sensors tested in each tested run of WCIS
was pop*number of classifications. Refer-
ences to “population size” in this section refers to
the number of sensors for each classification cate-
gory (pop), not the total number of sensors tested
(pop*number of classifications).

The maximum number of generations tested were 10,
20, 30, 40 and 50. The mutation rates tested were 1%,
2.5%, 5% and 10%. The value for xover was 0.6,
the value for threshold was 0.0002 and the value for
agree was 3, as prior testing has shown these values
yield good results.

6.1 Runtime
One of the first concerns with any method that uses evo-
lutionary computation, such as genetic algorithms, is
how long it takes the algorithm to complete. This is
one of the motivations behind separating the operation of
WCIS into phases: pre-deployment, detection and sensor
refinement. Only the pre-deployment and sensor refine-
ment phases will need to run the genetic algorithm.

To test the runtime for the pre-deployment phase,
WCIS was tested on a Xeon E5410 2.33GHz machine

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 261

 0

 50

 100

 150

 200

 250

 300

 350

 10 15 20 25 30 35 40 45 50

R
un

tim
e

in
 S

ec
on

ds

Max Generations
Pop=25 Pop=50 Pop=75

Figure 1: Average runtime for the pre-deployment phase
of WCIS for the three tested population sizes for each
classification label. Note that the actual total number of
sensors is pop ∗ 6 since there were 6 classification la-
bels tested. This is purely the pre-deployment phase run-
time, not the detection or sensor refinement phase run-
time. The detection phase runtime was 0.23 to 0.61 sec-
onds.

with 4GB of RAM. The pre-deployment phase was
coded as a single-threaded process. The population for
each classification label was processed in a series, using
round-robin scheduling (e.g. it processed the first gen-
eration of the info class, then the first generation of the
traversal class, and so on). With sufficient memory to
hold multiple copies of the normal and attack datasets,
WCIS could easily be changed to a multi-threaded pro-
gram with a thread for each population, which would
lead to a substantial decrease in the runtime and increase
in scalability. The current prototype was also coded in
C++, which could be changed to a more efficient pro-
gramming language in future versions to provide addi-
tional scalability.

These changes were not made because the point of this
test was to run the genetic algorithm under less than ideal
conditions to illuminate choke-points in the underlying
algorithms. These choke-points might not be apparent if
the code runs too quickly for any differences between in-
put parameters to become significant. This might leave
inefficient areas in the underlying algorithms that could
affect future scalability. Additionally, if the runtime for
WCIS is reasonable under these less than ideal, and eas-
ily remedied, coding conditions, then we can be reason-
ably assured that there are not choke-points in the under-
lying algorithms.
As shown in Figure 1, even with the largest popula-

tion sizes and number of generations, WCIS trained the
sensors in the pre-deployment phase in under six min-
utes. This is very reasonable for an evolutionary algo-

rithm, so it is unlikely that there are hidden scalability
issues in the underlying algorithms. Converting WCIS
to a multi-threaded program in a more efficient program-
ming language should yield even faster results. The sen-
sor refinement phase is expected to have a similar run-
time as it needs to run through a similar lifecycle. These
results also emphasize why it is important to separate off
the evolutionary phases as back-end processes on a sep-
arate system from the deployment system. It would be
unacceptable to wait 6 minutes for the sensors to refine
themselves on a live system, but the separation allows
the deployed sensors to continue monitoring live traffic
while the back-end system refines the sensors.

While it was not possible at this time to test the detec-
tion phase with live data due to the previously described
issues, presenting WCIS with the 11659 unknown re-
quests to emulate the detection phase took from 0.23 to
0.61 additional seconds on average, including the extra
I/O time to load the unknown dataset from disk, log clas-
sifications and log the classification statistics that are pre-
sented in the remaining results. There seemed to be lit-
tle correlation between population size and the additional
time required forWCIS to test the unknown requests. For
example, the population size of 50 had the lowest aver-
age time, while the population size of 25 had the highest
average time. This suggests most of variance in the time
to test the unknown dataset was due to I/O latency, par-
ticularly since the test system had only a consumer-grade
SATA drive.

More testing will need to be done to determine the re-
alistic traffic rates that WCIS can handle during the de-
tection phase. These can be conducted once the depart-
ment’s isolated network is completed.

6.2 Accuracy at Classification
Since the primary fitness function was the accuracy at
classifying the attack dataset, let us look at the best ac-
curacy for each population in the test runs. Five separate
populations for each classification label were tested for
each possible combination of variables. The best per-
forming population for each classification and combina-
tion was examined.

The best performing populations when the population
size was 25 had a maximum number of generations of 40
and a mutation rate of 1%, as shown in Figure 2. The
small population size means that WCIS starts with less
random diversity. This means the affinity of the initial
sensors might be quite low for their desired classifica-
tion, whereas with a larger population there is a higher
chance of randomly generating an antibody with moder-
ate to strong affinity for the class. Because of this low
affinity in early generations, the small population size
needs more generations for affinity maturation. In par-

9

262 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

Ac
cu

ra
cy

Generations
Info

Traversal
SQL

Buffer
Script
XSS

Figure 2: Detection accuracy for each class when the
population size for each classification is 25, the maxi-
mum generations is 40 and the mutation rate is 1%. This
was the best performing population when the population
size for each classification was 25.

ticular, Figure 2 shows that the “script” and “traversal”
classes took the longest number of generations to plateau
in accuracy. However, increasing the maximum genera-
tion to 50 actually led to overfitting, where the fitness
started to decrease in the final generations. This popu-
lation size also needed the lowest mutation rate of the
best tested population sizes. While mutation can help
increase the likelihood that the appropriate feature(s) for
that classification are affected in a beneficial way, there is
also the possibility that mutation might negatively affect
the accuracy. A small population is less able to recover
from a negative mutation than a large population.

The best performing populations when the population
size was 50 had a maximum number of generations of
10 and a mutation rate of 2.5%, as shown in Figure 3.
Since WCIS starts off with a larger random population,
it is better able to withstand negative mutations and a
higher mutation rate can also increase the likelihood of
beneficial mutations. This population size also does not
need as many generations to achieve good accuracy at
classification since it starts with a larger random pool of
sensors and there is a greater likelihood of a good sensor
being randomly generated in the initial generation. As
with a population size of 25, too many generations led to
overfitting and a decrease in accuracy, as shown in Figure
4 where the maximum number of generations is 30.

The best performing populations when the population
size was 75 had a maximum number of generations of 20
and a mutation rate of 5%, as shown in Figure 5. While
most of the classification accuracies plateaued in early
generations, the slightly higher rate of mutation allowed
for the “info” and “traversal” classifications to randomly
find the right combination of features to increase accu-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9

Ac
cu

ra
cy

Generations
Info

Traversal
SQL

Buffer
Script
XSS

Figure 3: Detection accuracy for each class when the
population size for each classification is 50, the maxi-
mum generations is 10 and the mutation rate is 2.5%.
This was the best performing population when the popu-
lation size for each classification was 50.

racy in later generations. As noted with the other pop-
ulation sizes, a higher number of maximum generations
led to overfitting.

Several trends were noticed across all combinations
of variables tested. First, regardless of population size,
maximum generations and mutation rates, the popula-
tions had great difficulty correctly identifying the “info”
class of attacks, as shown in Figures 2 through 4. This is
not surprising as the “info” class is the hardest to distin-
guish from normal data. Information gathering attacks
are also hard to distinguish from innocent mistakes, such
as a typo in the URI.
Second, as noted above, overfitting and loss of accu-

racy is seen in all tested combinations of variables when
the number of generations is high. This is a general
problem in single-objective, single-crossover genetic al-
gorithms. This is caused by a loss of diversity within the
population. In essence, the sensors become too special-
ized for specific attack instances and lose the ability to
detect more generalized attacks or attacks which lay on
the peripheral of the non-self space. It may be the case
that another genetic algorithm would be better suited to
this problem domain. For example, a multi-objective ge-
netic algorithm, such as NSGA-II [6, 7], is designed to
maintain diversity by balancing multiple fitness objec-
tives.
Overall however, the classification scheme employed

by WCIS achieves a high rate of accuracy, particularly
in the classifications with a large set of attack instances
such as “traversal”, “script” and “xss”. While no popu-
lation was able to obtain 100% accuracy in those cate-
gories, this may be due to the diversity issue. Even so,
the accuracy for “traversal” was 81% in many popula-

10

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 263

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

Ac
cu

ra
cy

Generations
Info

Traversal
SQL

Buffer
Script
XSS

Figure 4: Detection accuracy for each class when the
population size for each classification is 50, the maxi-
mum generations is 30 and the mutation rate is 2.5%.
Note that the extra generations do not yield better results
than Figure 3. In fact, overfitting occurs within several
classification populations.

tions, the accuracy for “script” was 92% in many popu-
lations and the accuracy for “xss” was 92 – 97% in many
populations.

6.3 Labeling Unknown Data
After inspecting the accuracy rates, next let us look at
how well WCIS could label unknown data gleaned from
Apache access logs. The access logs for the Computer
Science web server are rotated on a monthly basis, with
data going back for several years. Random entries were
selected out of two months of access logs. This created
an unknown dataset with 11659 entries in it.
After each population finished affinity maturation, it

was presented this dataset to label. This emulated a live
scan of web traffic. While this test was sufficient to eval-
uate the effectiveness of WCIS at detecting zero-day at-
tacks, it does not provide metrics for the scalability of
WCIS. That would require live testing on networks with
various traffic capacities. Unfortunately, due to the previ-
ously described challenges with conducting this research
in our campus environment, that was not possible at this
time. So this test purely focuses on gauging WCIS’s abil-
ity to detect zero-day attacks and attack variants and its
false positive rate when given a large dataset of unlabeled
web requests.

It quickly became apparent when looking at the alerts
that WCIS raised that someone had tried to attack the
web server repeatedly during the time frame covered by
the Apache logs. Table 5 shows a subset of the attacks
detected by the best population of size 25. Table 6 shows
a subset of the attacks detected by the best population of

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16 18 20

Ac
cu

ra
cy

Generations
Info

Traversal
SQL

Buffer
Script
XSS

Figure 5: Detection accuracy for each class when the
population size for each classification is 75, the maxi-
mum generations is 20 and the mutation rate is 5%. This
combination of variables had the best classification accu-
racies of all tested parameters.

size 50. Finally, Table 7 shows a subset of the attacks
detected by the best performing population of size 75.

As seen in the sample of detected attacks, someone at-
tempted to access the /proc/self/environ file, which con-
tains a list of environmental variables, using various di-
rectory traversal attempts. This particular attack is actu-
ally associated with getting a shell on poorly configured
web servers using a combination of directory traversals
and shellcode or shell commands injected via the User-
Agent field. Even though WCIS does not include the
User-Agent field in its feature set, and thus didn’t see the
actual shellcode that was attempted, it still detected this
attack as it appeared in the unknown dataset.
WCIS did have difficulty deciding whether this attack

was a “traversal” or a “script” attack since this attack
uses directory traversals to access /proc/self/environ to
execute code. The attack dataset does classify such at-
tacks as “script” even though they contain features of a
“traversal”. As pointed out in Table 1, only the attacks
which were read-only (such as retrieving the password
file) were labeled as “traversal” in the attack dataset. If
the directory traversal resulted in an attempt to execute
code, it was labeled as a “script” in the attack dataset.
Thus, it is not unexpected to see that WCIS has difficulty
determining if these attacks were a “script” or a “traver-
sal” since its feature set does not, as of now, include the
portion of the attack (the User-Agent field) that would
have made it clear it was a “script” attack.

Additionally, looking at the voting data, the attacks
labeled as “traversal” also had votes for “script”, with
many cases having only a difference of one or two votes
between the two labels. So the “script” population was
detecting these attacks, just not quite as vigorously as the

11

264 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Table 5: A sample of unknown requests detected as attacks in the unknown dataset for the population in Figure 2.
Class URL
script GET /*.php?option=com dump&controller=..//..//..//..//..//..//..//..///proc/self/environ%0000

HTTP/1.1
traversal GET /.php?index=../../../../../../../../../../../../../../../proc/self/environ%00 HTTP/1.1
traversal GET /courses/ls290//index.php?p=../../../../../../../../../../../../../../..//proc/self/environ%0000 HTTP/1.1

Table 6: A sample of unknown requests detected as attacks in the unknown dataset for the population in Figure 3.
Class URL
script GET /////?option=com dump&controller=../..

//proc/self/environ%0000 HTTP/1.1
script GET /cs150/index.php?p=../../ HTTP/1.1
traversal GET /*.php?option=com dump&controller=..//..//..//..//..//..//..//..///proc/self/environ%0000

HTTP/1.1

“traversal” population.
Being able to detect attacks is desirable, but one also

wants an IDS to have a low rate of false alarms. WCIS
did not falsely alarm on any of the normal requests in the
unknown dataset. This may be due to the fact that some
of the requests in the normal dataset were also gleaned
from the department Apache access logs. However, this
is a good result since it shows that WCIS is easily tuned
to the normal traffic for a specific website by using a sam-
pling of that normal traffic to generate the normal dataset.

7 Conclusions

This paper presented a method of detecting zero-day at-
tacks on web servers via malicious requests that is based
on artificial immune systems. This prototype system,
called Web Classifying Immune System (WCIS), is in-
tended to augment the capabilities of an existing intru-
sion detection system (IDS) by detecting attacks that are
not detectable by the existing IDS. WCIS is a modified
artificial immune system (AIS) that adds classification.
WCIS also seeks to improve the efficiency of an AIS by
separating tasks into the pre-deployment phase, detection
phase and sensor refinement phase instead of requiring
all these tasks to take place within a single AIS lifecycle.
This allows the detection phase to focus on low-resource,
speedy sensors while the more costly evolutionary com-
putation associated with the other phases occurs on a sep-
arate back-end system.

Notably, WCIS is able to achieve a high rate of ac-
curacy at detecting most classes of attacks in the at-
tack dataset, with the exception of the “info” attacks,
which are difficult to distinguish from normal requests.
When tested against unlabeled data from Apache access
logs, WCIS is able to identify attacks within the requests
without falsely alerting on normal traffic. WCIS does
have some difficulty choosing between the “traversal”

and “script” classifications when the “script” attack uses
some elements of directory traversal in its URI. This is
likely due to the fact that WCIS only models the HTTP
method, URI and HTTP protocol. However, even with
this limitation, WCIS is able to detect that an attack con-
taining elements of a directory traversal has occurred.

In summary, WCIS is able to achieve a high rate of
accuracy at detecting and classifying attacks against web
servers without falsely alarming on normal traffic when
properly trained on the normal traffic patterns of the net-
work. WCIS can be easily trained on the normal traf-
fic patterns by giving it a sampling of web server logs,
such as Apache logs. The ability to classify the attacks
is particularly noteworthy as it allows an administrator to
rapidly focus on the initial mitigation and response tech-
niques. It might also lead to integration with an auto-
mated response engine, although that has not yet been
explored for WCIS.

8 Future Work

The next phase of development for WCIS will focus on
creating an appropriate test bed. The department has re-
cently secured a Department of Education grant that is
funding the expansion of research laboratory space. A
portion of this grant is being used to develop an isolated
network. This can be used to test WCIS (and other se-
curity tools) without concern about running afoul of the
campus privacy regulations. This is not a perfect solu-
tion, as it will still be a simulated environment instead of
a live environment, but it will permit the full testing of
the sensor refinement phase, which has been hampered
by the campus regulations. This will also allow scala-
bility testing, although the isolated network funding cur-
rently limits the test bed to Gigabit Ethernet instead of
10 Gigabit Ethernet, so there will be limitations to test-
ing the scalability to high capacity networks.

12

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 265

Table 7: A sample of unknown requests detected as attacks in the unknown dataset for the population in Figure 5.
Class URL
script GET /.../ports labeled.jpg HTTP/1.1
traversal GET /index2.php?option=com dump&controller=..//..//..//..//..//..//..//..///proc/self/environ%0000

HTTP/1.1
traversal GET /index.php?t=1&p=technical info/howto//index.php?filename=../../../../../../../../../../

../../../../../proc/self/environ%00 HTTP/1.1
script GET /faculty/interests/..\\index.html HTTP/1.1

Another area of future development is expanding the
feature set used by WCIS sensors. Currently, the feature
set of WCIS only models the request line from the re-
quest, consisting of the HTTP method, URI and HTTP
version. It does not model the general headers, request
headers, entity headers or message body specified by Hy-
pertext Transfer Protocol version 1.1 for the HTTP re-
quest. This limitation arose because WCIS had to be run
on Apache access logs, instead of live data, due to pol-
icy restrictions at the institution. The available Apache
logs did not consistently record any header fields. How-
ever, attackers are using the header fields as a part of their
attacks so WCIS should expand its feature set to model
these aspects of malicious web server requests. The iso-
lated network test bed should enable the incorporation of
these fields into the sensor feature set, since WCIS will
no longer be constrained by the formatting of the Apache
logs.

Additionally, as noted in Section 6, the genetic algo-
rithm currently being used by WCIS may not be the best
algorithm for this problem domain. It suffers from a loss
of diversity, which leads to overfitting and a decreased
accuracy at detecting and classifying attacks as the gen-
erations progress. Another avenue of future research is
to explore how other genetic algorithms such as multi-
objective genetic algorithms can improve diversity in the
sensor population. This diversity will also be useful in
detecting novel attacks that do not clearly fall under one
of the existing classification categories.

References
[1] BALTHROP, J., ESPONDA, F., FORREST, S., AND GLICKMAN,

M. Coverage and generalization in an artificial immune sys-
tem. In Proc. Genetic and Evolutionary Computation Conference
(GECCO 2002) (July 2002), pp. 3 – 10.

[2] DANFORTH, M. Models for Threat Assessment in Networks. PhD
thesis, University of Califonia, Davis, Davis, CA, USA, June
2006.

[3] DANFORTH, M. Towards a Classifying Artificial Immune Sys-
tem for Web Server Attacks. In Proceedings of the International
Conference on Machine Learning a nd Applications (ICMLA
2009) (Miami, FL, USA, December 2009).

[4] DANFORTH, M., AND LEVITT, K. Immune System Model
for Detecting Web Server Attacks. In Proceedings of the In-
ternational Conference on Machine Learning and Applications

(ICMLA 2003) (Los Angeles, CA, USA, June 2003), pp. 161 –
167.

[5] DASGUPTA, D., YU, S., AND MAJUMDAR, N. S. MILA - mul-
tilevel immune learning algorithm. In Proc. Genetic and Evolun-
tionary Computation Conference (GECCO 2003) (Chicago, IL,
USA, July 2003), pp. 183 – 194.

[6] DEB, K., AGRAWAL, S., PRATAB, A., AND MEYARIVAN, T. A
Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-
Objective Optimization: NSGA-II. In Proceedings of the Paral-
lel Problem Solving from Nature VI Conference (Paris, France,
2000), Springer. Lecture Notes in Computer Science No. 1917,
pp. 849–858.

[7] DEB, K., PRATAB, A., AGRAWAL, S., AND MEYARIVAN, T. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation 6, 2 (April 2002), 182
– 197.

[8] FARMER, J. D., PACKARD, N. H., AND PERELSON, A. S. The
immune system, adaptation, and machine learning. In Physica D
(1986), pp. 22:187 – 204.

[9] FORREST, S., PERELSON, A. S., ALLEN, L., AND
CHERUKURI, R. Self-nonself discrimination in a computer. In
Proc. 1994 IEEE Symposium on Research in Security and Privacy
(Los Alamitos, CA, USA, 1994), pp. 202 – 214.

[10] GONZALES, F., DASGUPTA, D., AND GOMEZ, J. The ef-
fect of binary matching rules in negative selection. In Proc.
Genetic and Evoluntionary Computation Conference (GECCO
2003) (Chicago, IL, USA, July 2003), pp. 195 – 206.

[11] GONZALEZ, F., DASGUPTA, D., AND KOZMA, R. Combining
negative selection and classification techniques for anomaly de-
tection. In Proc. 2002 Congress on Evoluntionary Computation
(CEC 2002) (Honolulu, HI, USA, May 2002), pp. 705 – 710.

[12] HOFMEYER, S., AND FORREST, S. Architecture for an artificial
immune system. Evolutionary Computation Journal 8, 4 (2000),
433 – 473.

[13] HOFMEYER, S. A., AND FORREST, S. Immunity by design:
An artificial immune system. In Proc. Genetic and Evolutionary
Computation Conference (GECCO) (San Francisco, CA, USA,
1999), pp. 1289 – 1296.

[14] MIT LINCOLN LABORATORY. Darpa intrusion detection evalu-
ation, 1999. http://www.ll.mit.edu/IST/ideval/.

[15] SECURITYFOCUS. Bugtraq mailing list, 2002 – present.
http://www.securityfocus.com/archive/1.

[16] SOMAYAJI, A., HOFMEYER, S., AND FORREST, S. Principles
of a computer immune system. In Proc. New Security Paradigms
Workshop (NSPW-97) (Langdale, UK, 1997), pp. 75 – 82.

[17] WATKINS, A. A resource limited artificial immune classifier.
PhD thesis, Mississippi State University, 2001.

[18] WATKINS, A., AND BOGGESS, L. A new classifier based on
resource limited artificial immune systems. In IEEE Congress
on Evolutionary Computation (Honolulu, HI, USA, May 2002),
pp. 1546 – 1551.

13

266 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

[19] WATKINS, A., AND BOGGESS, L. A resource limited artificial
immune classifier. In IEEE Congress on Evolutionary Computa-
tion (Honolulu, HI, USA, May 2002), pp. 926 – 931.

[20] WATKINS, A., AND TIMMIS, J. Artificial Immune Recognition
System (AIRS): Revisions and refinements. In Proceedings of
the 1st International Conference on Artificial Immune Systems
(ICARIS) (University of Kent at Canterbury, UK, 2002), pp. 173
– 181.

[21] WATKINS, A., TIMMIS, J., AND BOGGESS, L. Artificial Im-
mune Recognition System (AIRS): An Immune-Inspired Super-
vised Learning Algorithm. Genetic Programming and Evolvable
Machines 5, 3 (2004), 291 – 317.

[22] WILLIAMS, P. D., ANCHOR, K. P., BEBO, J. L., GUNSCH,
G. H., AND LAMONT, G. D. CDIS: Towards a computer im-
mune system for detecting network intrusions. In Proc. Recent
Advances in Intrusion Detection (RAID 2001) (Davis, CA, USA,
October 2001), pp. 117 – 133.

[23] ZENOMORPH (ADMIN@CGISECURITY.COM). Fingerprinting
port 80 attacks: A look into web server, and web ap-
plication attack signatures. Whitepaper, November 2001.
http://www.cgisecurity.com/papers/fingerprint-port80.txt.

[24] ZENOMORPH (ADMIN@CGISECURITY.COM). Fingerprinting
port 80 attacks: A look into web server, and web appli-
cation attack signatures: Part 2. Whitepaper, March 2002.
http://www.cgisecurity.com/papers/fingerprinting-2.txt.

14

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 267

Automating Network and Service Configuration
Using NETCONF and YANG

Stefan Wallin
Luleå University of Technology

stefan.wallin@ltu.se

Claes Wikström
Tail-f Systems AB
klacke@tail-f.com

Abstract

Network providers are challenged by new requirements
for fast and error-free service turn-up. Existing ap-
proaches to configuration management such as CLI
scripting, device-specific adapters, and entrenched com-
mercial tools are an impediment to meeting these new re-
quirements. Up until recently, there has been no standard
way of configuring network devices other then SNMP
and SNMP is not optimal for configuration management.
The IETF has released NETCONF and YANG which are
standards focusing on Configuration management. We
have validated that NETCONF and YANG greatly sim-
plify the configuration management of devices and ser-
vices and still provide good performance. Our perfor-
mance tests are run in a cloud managing 2000 devices.

Our work can help existing vendors and service
providers to validate a standardized way to build con-
figuration management solutions.

1 Introduction

The industry is rapidly moving towards a service-
oriented approach to network management where com-
plex services are supported by many different systems.
Service operators are starting a transition from managing
pieces of equipment towards a situation where an opera-
tor is actively managing the various aspects of services.
Configuration of the services and the affected equip-
ment is among the largest cost-drivers in provider net-
works [9]. Delivering valued-added services, like MPLS
VPNS, Metro Ethernet, and IP TV is critical to the prof-
itability and growth of service providers. Time-to-market
requirements are critical for new services; any delay in
configuring the corresponding tools directly affects de-
ployment and can have a big impact on revenue. In re-
cent years, there has been an increasing interest in find-
ing tools that address the complex problem of deploying
service configurations. These tools need to replace the

current configuration management practices that are de-
pendent on pervasive manual work or ad hoc scripting.
Why do we still apply these sorts of blocking techniques
to the configuration management problem? As Enck [9]
points out, two of the primary reasons are the variations
of services and the constant change of devices. These
underlying characteristics block the introduction of au-
tomated solutions, since it will take too much time to
update the solution to cope with daily changes. We will
illustrate that a NETCONF [10] and YANG [4] based so-
lution can overcome these underlying challenges.

Service providers need to be able to dynamically adopt
the service configuration solutions according to changes
in their service portfolio without defining low level de-
vice configuration commands. At the same time, we need
to find a way to remove the time and cost involved in the
plumbing of device interfaces and data models by au-
tomating device integration. We have built and evaluated
a management solution based on the IETF NETCONF
and YANG standards to address these configuration man-
agement challenges. NETCONF is a configuration man-
agement protocol with support for transactions and dedi-
cated configuration management operations. YANG is a
data modeling language used to model configuration and
state data manipulated by NETCONF. NETCONF was
pioneered by Juniper which has a good implementation
in their devices. See the work by Tran [23] et. al for
interoperability tests of NETCONF.

Our solution is characterized by the following key
characteristics:

1. Unified YANG modeling for both services and de-
vices.

2. One database that combines device configuration
and service configuration.

3. Rendering of northbound and southbound interfaces
and database schemas from the service and device
model. Northbound are the APIs published to users

268 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

of NCS, be it human or programmatic interfaces.
Southbound is the integration point of managed de-
vices, for example NETCONF.

4. A transaction engine that handles transactions from
the service order to the actual device configuration
deployment.

5. An in-memory high-performance database.

To keep the service and device model synchronized,
(item 1 and 2 above), it is crucial to understand how a
specific service instance is actually configured on each
network device. A common problem is that when you
tear down a service you do not know how to clean up the
configuration data on a device. It is also a well-known
problem that whenever you introduce a new feature or
a new network device, a large amount of glue code is
needed. We have addressed this again with annotated
YANG models rather then adaptor development. So for
example, the YANG service model renders a northbound
CLI to create services. From a device model in YANG
we are actually able to render the required Cisco CLI
commands and interpret the response without the need
for the traditional Perl and Expect scripting. Currently
our solution can integrate without any plumbing.

It is important to address the configuration manage-
ment problem using a transactional approach. The trans-
action should cover the whole chain including the indi-
vidual devices. Finally, in order to manipulate config-
uration data for a large network and many service in-
stances we need fast response to read and write oper-
ations. Traditional SQL and file-based database tech-
nologies fall short in this category. We have used an in-
memory database journaled to disk in order to address
performance and persistence at the same time.

The objectives of this research are to determine
whether these new standards can help to eliminate the de-
vice integration problem and provide a service configu-
ration solution utilizing automatically integrated devices.
We have studied challenges around data-model discov-
ery, interface versioning, synchronization of configura-
tion data, multi-node configuration deployment, trans-
actional models, and service modeling issues. In order
to validate the approach we have used simulated scenar-
ios for configuring load balancers, web servers, and web
sites services. Throughout the use-cases we also illus-
trate the possibilities for automated rendering of Com-
mand Line interfaces as well as User Interfaces from
YANG models.

Our studies show that a NETCONF/YANG based con-
figuration management approach removes unnecessary
manual device integration steps and provides a platform
for multi-device service configurations. We see that
problems around finding correct modules, loading them

and creating a management solution can largely be auto-
mated. In addition to this, the transaction engine in our
solution combined with inherent NETCONF transaction
capabilities resolves problems around multi-device con-
figuration deployment.

We have run performance tests with 2000 devices in an
Amazon cloud to validate the performance of NETCONF
and our solution. Based on these tests we see that the
solution scales and NETCONF provides a configuration
management protocol with good performance.

2 Introduction to NETCONF and YANG

The work with NETCONF and YANG started as a result
of an IAB workshop held in 2002. This is documented
in RFC 3535 [18].

“The goal of the workshop was to continue the
important dialog started between network op-
erators and protocol developers, and to guide
the IETFs focus on future work regarding net-
work management.”

The workshop concluded that SNMP is not being
used for configuration management. Operators put
forth a number of requirements that are important for
a standards-based configuration management solution.
Some of the requirements were:

1. Distinction between configuration data and data that
describes operational state and statistics.

2. The capability for operators to configure the net-
work as a whole rather than individual devices.

3. It must be easy to do consistency checks of config-
urations.

4. The availability of text processing tools such as diff,
and version management tools such as RCS or CVS.

5. The ability to distinguish between the distribution
of configurations and the activation of a certain con-
figuration.

NETCONF addresses the requirements above. The de-
sign of NETCONF has been influenced by proprietary
protocols such as Juniper Networks JUNOScript appli-
cation programming interface [14].

For a more complete introduction see the Communi-
cations Magazine article [19] written by Schönwälder et
al.

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 269

2.1 NETCONF

The Network Configuration Protocol, NETCONF, is an
IETF network management protocol and is published in
RFC 4741. NETCONF is being adopted by major net-
work equipment providers and has gained strong industry
support. Equipment vendors are starting to support NET-
CONF on their devices, see the NETCONF presentation
by Moberg [16] for a list of public known implementa-
tions.

NETCONF provides mechanisms to install, manipu-
late, and delete the configuration of network devices. Its
operations are realized on top of a simple Remote Pro-
cedure Call (RPC) layer. The NETCONF protocol uses
XML based data encoding for the configuration data as
well as the protocol messages. NETCONF is designed
to be a replacement for CLI-based programmatic inter-
faces, such as Perl + Expect over Secure Shell (SSH).
NETCONF is usually transported over the SSH protocol,
using the “NETCONF” sub-system and in many ways
it mimics the native proprietary CLI over SSH inter-
face available in the device. However, it uses structured
schema-driven data and provides detailed structured er-
ror return information, which the CLI cannot provide.

NETCONF has the concept of logical data-stores such
as “writable-running” or “candidate” (Figure 1). Opera-
tors need a way to distribute changes to the devices and
validate them locally before activating them. This is in-
dicated by the two bottom options in Figure 1 where con-
figuration data can be sent to candidate databases in the
devices before they are committed to running in produc-
tion applications.

All NETCONF devices must allow the configuration
data to be locked, edited, saved, and unlocked. In ad-
dition, all modifications to the configuration data must
be saved in non-volatile storage. An example from RFC
4741 that adds an interface named “Ethernet0/0” to the
running configuration, replacing any previous interface
with that name is shown in Figure 2.

2.2 YANG

YANG is a data modeling language used to model con-
figuration and state data. The YANG modeling lan-
guage is a standard defined by the IETF in the NETMOD
working group. YANG can be said to be tree-structured
rather than object-oriented. Configuration data is struc-
tured into a tree and the data can be of complex types
such as lists and unions. The definitions are contained
in modules and one module can augment the tree in an-
other module. Strong revision rules are defined for mod-
ules. Figure 3 shows a simple YANG example. YANG
is mapped to a NETCONF XML representation on the
wire.

running
automatic-save

edit-config
copy-config

WRITABLE-RUNNING

running

copy-config

edit-config
copy-config

WRITABLE-RUNNING + STARTUP

startup

candidate

commit

edit-config
copy-config

CANDIDATE

running

automatic-save

candidate

commit

edit-config
copy-config

CANDIDATE + STARTUP

running

copy-config

startup

Figure 1: NETCONF Datastores

<rpc message-id="101"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<edit-config>

<target>

<running/>

</target>

<config

xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

<top xmlns="http://example.com/schema/1.2/config">

<interface xc:operation="replace">

<name>Ethernet0/0</name>

<mtu>1500</mtu>

<address>

<name>192.0.2.4</name>

<prefix-length>24</prefix-length>

</address>

</interface>

</top>

</config>

</edit-config>

</rpc>

<rpc-reply message-id="101"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>

</rpc-reply>

Figure 2: NETCONF edit-config Operation

3

270 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

module acme-system {
namespace
"http://acme.example.com/system";
prefix "acme";
organization "ACME Inc.";
contact "joe@acme.example.com";
description
"The ACME system.";

revision 2007-11-05 {
description "Initial revision.";

}
container system {
leaf host-name {

type string;
}
leaf-list domain-search {
type string;

}
list interface {
key "name";
leaf name {

type string;
}
leaf type {

type enumeration {
enum ethernet;
enum atm;

}
}

leaf mtu {
type int32;

}
must ‘‘ifType != ’ethernet’ or ‘‘+
‘‘(ifType = ’ethernet’ and ‘‘ +
‘‘mtu = 1500)‘‘ {
}

...

Figure 3: YANG Sample

YANG also differs from previous network manage-
ment data model languages through its strong support
of constraints and data validation rules. The suitability
of YANG for data models can be further studied in the
work by Xu et. al [24].

3 Our Config Manager Solution - NCS

3.1 Overview
We have built a layered configuration solution, NCS,
Network Configuration Server. See Figure 4. The De-
vice Manager manages the NETCONF devices in the

Config
Database

Rendering
Engine

Service
Manager

Device
Manager

NETCONF

Service
Logic

CLI, Web UI

YANG
Service Models
Device Models

Figure 4: NCS - The Configuration Manager

network and heavily leverage the features of NETCONF
and YANG to render a Configuration Manager from the
YANG models. At this layer, the YANG models repre-
sent the capabilities of the devices and NCS provides the
device configuration management capabilities.

The Service Manager in turn lets developers add
YANG service models. For example, it is easy to repre-
sent end-to-end connections over L2/L3 devices or web
sites utilizing load balancers and web servers. The most
important feature of the Service Manager is to transform
a service creation request into the corresponding device
configurations. This mapping is expressed by defining
service logic in Java which basically does a model trans-
formation from the service model to the device models.

The Configuration Database, (CDB), is an in-memory
database journaled to disk. CDB is a special-purpose
database that targets network management and the in-
memory capability enables fast configuration valida-
tion and performs diffs between running and candidate
databases. Furthermore the database schema is directly
rendered from the YANG models which removes the
need for mapping between the models and for exam-
ple a SQL database. A fundamental problem in net-
work management is dealing with different versions of
device interfaces. NCS is able to detect the device in-
terfaces through its NETCONF capabilities and this in-
formation is used by CDB to tag the database with re-
vision information. Whenever a new model revision is
detected, NCS can perform a schema upgrade operation.
CDB stores the configuration of services and devices and
the relationships between them. NETCONF defines ded-
icated operations to read the configuration from devices
and this drastically reduces the synchronization and rec-
onciliation problem.

Tightly connected to CDB is the transaction manager

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 271

web site

IP
Port
URL

Web Server
www1

Listeners: {IP, Port}

Web Server
www2

Listeners: {IP, Port}

Web Server
www3

Listeners: {IP, Port}

Listeners: {IP, Port}

Load balancer
lb

Backend. IP.Port

Profile

Figure 5: The Example

which manages every configuration change as a transac-
tion. Transactions include all aspects from the service
model to all related device changes.

At this point it is important to understand that the
NETCONF and NCS approach to configuration manage-
ment does not use a push and pull approach to versioned
configuration files. Rather, it is a fine-grained transac-
tional view based on data models.

The Rendering Engine renders the database schemas,
a CLI, and a Web UI from the YANG models. In this way
the Device Manager features will be available without
any coding.

3.2 The Example
Throughout the rest of this paper we will use an exam-
ple that targets configuration of web-sites across a load
balancer and web servers. See Figure 5.

The service model covers the aspects of a web site; IP
Address, Port, and URL. Whenever you provision a web
site you refer to a profile which controls the selection of
load balancers and web servers. A web site allocates a
listener on the load balancer which in turn creates back-
ends that refer to physical web servers. So when provi-
sioning a new web site you do not have to deal with the
actual load balancer and web server configuration. You
just refer to the profile and the service logic will config-
ure the devices. The involved YANG models are :

• website.yang : the service model for a web site, it
defines web site attributes like url, IP Address, port,
and pointer to profile.

• lb.yang : the device model for load balancers, it
defines listeners and backends where the listeners

refers to the web site and backends to the corre-
sponding web servers.

• webserver.yang : the device model for a physical
web server, it defines listeners, document roots etc.

The devices in our example are:

– Load Balancer : lb

– Web Servers : www1, www2, www3

3.3 The Device Manager
The Device Manager layer is responsible for config-
uring devices using their specific data-models and in-
terfaces. The NETCONF standard defines a capabil-
ity exchange mechanism. This implies that a device
reports its supported data-models and their revisions
when a connection is established. The capability ex-
change mechanism also reports if the device supports a
<writable-running> or <candidate> database.

After connection the Device Manager can then use the
get-schema RPC, as defined in the netconf-monitoring
RFC [20] to get the actual YANG models from all the
devices. NCS now renders northbound interfaces such as
a common CLI and Web UI from the models. The NCS
database schema is also rendered from the data-models.

The NCS CLI in Figure 6 shows the discov-
ered capabilities for device “www1”. We see that
www1 supports 6 YANG data-models, interfaces,
webserver, notif, and 3 standard IETF modules. Fur-
thermore the web-server supports NETCONF features
like confirmed-commit, rollback-on-error and
validation of configuration data.

In Figure 7 we show a sequence of NCS CLI com-
mands that first uploads the configuration from all de-
vices and then displays the configuration from the NCS
configuration database. So with this scenario we show
that we could render the database schema from the
YANG models and persist the configuration in the con-
figuration manager.

Now, let’s do some transaction-based configuration
changes. The CLI sequence in Figure 8 starts a trans-
action that will update the ntp server on www1 and the
load-balancer. Note that NCS has the concept of a can-
didate database and a running. The first represents the
desired configuration change and the running database
represents the actual configuration of the devices. At the
end of the sequence in Figure 8 we use the CLI command
‘‘compare running brief’’ to show the difference
between the running and the candidate database. This is
what will be committed to the devices. Note that we do
a diff and only send the diff. Our in-memory database
enables good performance even for large configurations
and large networks.

5

272 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

ncs> show ncs managed-device www1 capability <RET>

URI REVISION MODULE

--

candidate:1.0 - -

confirmed-commit:1.0 - -

confirmed-commit:1.1 - -

http://acme.com/if 2009-12-06 interfaces

http://acme.com/ws 2009-12-06 webserver

http://router.com/notif - notif

rollback-on-error:1.0 - -

urn:ietf:params:netconf:capability:notification:1.0 - -

urn:ietf:params:xml:ns:yang:ietf-inet-types 2010-09-24 ietf-inet-types

urn:ietf:params:xml:ns:yang:ietf-yang-types 2010-09-24 ietf-yang-types

urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring 2010-06-22 ietf-netconf-monitoring

validate:1.0 - -

validate:1.1 - -

writable-running:1.0 - -

xpath:1.0 - -

Figure 6: NETCONF Capability Discovery

ncs> request ncs sync direction from-device <RET>

...

ncs> show configuration ncs \

managed-device www1 config <RET>

host-settings {

syslog {

server 18.4.5.6 {

enabled;

selector 1;

}

...

}

ncs> show configuration ncs \

managed-device lb config <RET>

lbConfig {

system {

ntp-server 18.4.5.6;

resolver {

search acme.com;

nameserver 18.4.5.6;

}

}

}

Figure 7: Synchronize Configuration Data from Devices

In the configuration scenarios shown in Figure 8 we
used the auto-rendered CLI based on the native YANG
modules that we discovered from the devices. So it gives
the administrator one CLI with transactions across the
devices, but still with different commands for different

ncs% set ncs managed-device \

www1 config host-settings ntp server 18.4.5.7 <RET>

ncs% set ncs managed-device \

lb config lbConfig system ntp-server 18.4.5.7 <RET>

ncs% compare running brief <RET>

ncs {

managed-device lb {

config {

lbConfig {

system {

- ntp-server 18.4.5.6;

+ ntp-server 18.4.5.7;

}

...

ncs% commit

Figure 8: Configuring two Devices in one Transaction

vendors in case of non-standard modules. NCS allows
for device abstractions, where you can provide a generic
YANG module across vendor-specific ones.

Every commit in the scenarios described above re-
sulted in a transaction across the involved devices. In this
case the devices support the confirmed-commit capabil-
ity. This means that the manager performs a commit to
the device with a time-out. If the device does not get the
confirming commit within the time-out period it reverts
to the previous configuration. This is also true for restarts
or if the SSH connection closes.

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 273

3.4 The Service Manager

In our example we have defined a service model cor-
responding to web-sites and the corresponding service
logic that maps the service model to load balancers and
web servers. The auto-rendered Web UI let operators
create a web site like the one illustrated in Figure 9.

Figure 9: Instantiating a Web-site Service

A fundamental part of the Service Manager is that we
use YANG to model services as well as devices. In this
way we can ensure that the service model is consistent
with the device model. We do this at compile time by
checking the YANG service model references to the de-
vice model elements. At run-time, the service model
constraints can validate elements in the device-model in-
cluding referential integrity of any references. Let’s il-
lustrate this with a simple example. Figure 10 shows a
type-safe reference from the web-site service model to
the devices. The YANG leafref construct refers to a
path in the model. The path is verified to be correct ac-
cording to the model at compile time. At run-time, if
someone tries to delete a managed device that is referred
to by a service this would violate referential integrity and
NCS would reject the operation.

This service provisioning request initiates a hierarchi-
cal transaction where the service instance is a parent
transaction which fires off child transactions for every

leaf lb {

description "The load balancer to use.";

mandatory true;

type leafref {

path "/ncs:ncs/ncs:managed-device/ncs:name";

}

}

Figure 10: Service-Model Reference to Device-Model

device. In this specific case the selected profile uses
all web servers at the device layer. Either the complete
transaction succeeds or nothing will happen. As a result
the transaction manager stores the resulting device con-
figurations in CDB as shown in Figure 11.

Figure 11: The relationship from a Service to the Actual
Device Configurations.

You see that the web-site for acme created a listener
on the load balancer with backends that maps to the ac-
tual web servers. The service also created a listener on
the web server. You might wonder why there is a minus-
sign for the diff. The reason is that we are actually stor-
ing how to delete the service. This means that there will
never be any stale configurations in the network. As soon
as you delete a service, NCS will automatically clean up.

7

274 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

4 Evaluation

4.1 Performance Evaluation
We have evaluated the performance of the solution us-
ing 2000 devices in an Amazon Cloud. The Server is a
4 Core CPU, 4 GB RAM, 1.0 GHz, Ubuntu 10.10 Ma-
chine. Here we illustrate 4 test-cases. All test-cases are
performed as one single transaction:

1. Start the system with an empty database and upload
the configuration over NETCONF from all devices
(Figure 12 A).

2. Check if the configuration database is in sync with
all the devices (Figure 12 B).

3. Perform a configuration change on all devices (Fig-
ure 13 A).

4. Create 500 services instances that touch 2 devices
each (Figure 13 B).

5. In Figure 14 we show the memory and database
journal disc space for configuring 500 service in-
stances.

All of the test-cases involve the complete transaction
including the NETCONF round-trip to the actual devices
in the cloud. So, cold-starting NCS and uploading the
configuration from 500 devices takes about 8 minutes
(Figure 12) and 2000 devices takes about 25 minutes.
The configuration synchronization check utilizes a trans-
action ID to compare the last performed change from
NCS to any local changes made to the device. This test
assumes that there is some way to get a transaction ID
or checksum from the device that corresponds to the last
change irrespective of which interface is used. If that is
not available and you had to get the complete configura-
tion, then the numbers would be higher.

Updating the config on 500 devices takes roughly one
minute, (Figure 8). As seen by Figure 14 the in-memory
database has a small footprint even for large networks.
In this scenario it is important to note that we always diff
the configuration change within NCS before sending it
to the device. This means that we only send the actual
changes that are needed and this database comparison is
included in the numbers. This is an area where we have
seen performance bottlenecks in previous solutions when
traditional database technologies are used.

These performance tests cover two aspects: perfor-
mance of NETCONF, and our actual implementation.

NETCONF as a protocol ensures that we achieve at
least equal performance to CLI screen scraped solutions
and superior performance to SNMP based configuration
solutions. XML processing is considerably less CPU in-
tensive than SSH processing.

When running a transaction that touches many man-
aged devices, we use two tricks that affect performance.
We pipeline NETCONF RPCs, sending several RPCs in
a row, and collecting all the replies in a row. We can also
(in parallel) send the requests to all participating man-
aged devices, and then (in parallel) harvest the pipelined
replies.

NCS is implemented in Erlang [3, 11] and OTP (Open
Telecom Platform) [22] which have excellent support for
concurrency and multi-core processors. A lot of effort
has gone into parallelizing the southbound requests. For
example initial NETCONF SSH connection establish-
ment is done in parallel, greatly enhancing performance.

The network configuration data is kept in a RAM
database together with a disk journaling component. If
the network is huge, the amount of RAM required can be
substantial. When the YANG files are compiled we hash
all the symbols in the data models, thus the database is
actually a large tree of integers. This increases process-
ing speed and decreases memory footprint of the configu-
ration daemon. The RAM database itself is implemented
as an Erlang driver that uses skip lists [17].

Our measurements show that we can handle thousands
of devices and hundred thousands of services on off-the-
shelf hardware, (4 Core CPU, 4 GB RAM, 1.0 GHz).

We have also made some measurements comparing
SNMP and NETCONF performance. We read the in-
terface table using SNMP get-bulk and NETCONF get.
In general NETCONF performed 3 times quicker than
SNMP. The same kind of performance improvements us-
ing NETCONF rather than SNMP can be found in the
work by Yu and Ajarmeh [25].

4.2 NETCONF/YANG Evaluation

Let’s look at the requirements set forth by RFC 3535 and
validate these based on our implementation.

4.2.1 Distinction between configuration data, and
data that describes operational state and
statistics

This requirement is fulfilled by YANG and NETCONF in
that you can explicitly request to get only the configura-
tion data from the device, and elements in YANG are an-
notated if they are configuration data or not. This greatly
simplifies the procedure to read and synchronize config-
uration data from the devices to a network management
system. In our case, NCS can easily synchronize its con-
figuration database with the actual devices.

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 275

Figure 12: Starting NCS and Reading the Configuration from all Devices
(Dotted line represents Wall Clock Time, Solid Line CPU Time).

Figure 13: Making Device Configurations and Service Configurations

4.2.2 It is necessary to enable operators to concen-
trate on the configuration of the network as a
whole rather than individual devices

We have validated this from two perspectives

1. Configuring a set of devices as one transaction.

2. Transforming a service configuration to the corre-
sponding device configurations.

Using NCS, we can apply configurations to a group
of devices and the transactional capabilities of NET-
CONF will make sure that the whole transaction is ap-
plied or no changes are made at all. The NETCONF
confirmed-commit operation has proven to be espe-
cially useful in order to resolve failure scenarios. A
problem scenario in network configuration is that de-
vices may become unreachable after a reconfiguration.
The confirmed-commit operation requests the device
to take the new configuration live but if an acknowledge-

9

276 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Figure 14: Memory and Journaling Disc Space

ment is not received within a time-out the device auto-
matically rolls-back. This is the way NCS manages to
roll-back configurations if one or several of the devices
in a transaction does not accept the configuration. It is
notable to see the lack of complex state-machines in NCS
to do roll-backs and avoid multiple failure scenarios.

In some cases, you would like to apply a global con-
figuration change to all your devices in the network. In
the general case the transaction would fail if one of the
devices was not reachable. There is an option in NCS
to backlog unresponsive devices. In this case NCS will
make the transaction succeed and store outstanding re-
quests for later execution.

4.2.3 It must be easy to do consistency checks of
configurations.

Models in YANG contain ‘‘must’’ expressions that put
constraints on the configuration data. See for example
Figure 3 where the must expression makes sure that the
MTU is set to correct size. So for example, a NETCONF
manager can edit the candidate configuration in a device
and ask the device to validate it. In NCS we also use
YANG to specify service models. In this way we can
use must expressions to make sure that a service config-
uration is consistent including the participating devices.
Figure 15 shows a service configuration expression that
verifies that the subnet only exists once in the VPN.

4.2.4 It is highly desirable that text processing tools
[...] can be used to process configurations.

Since NETCONF operations use well-defined XML pay-
loads, it is easy to process configurations. For example

must "count(

../../mv:access-link[subnet =

current()/../subnet]) = 1" {

error-message "Subnet must be unique

within the VPN";

}

Figure 15: Service Configuration Consistency

doing a diff between the configuration in the device ver-
sus the desired configuration in the management system.
The CLI output in Figure 16 shows a diff between a de-
vice configuration and the NCS Configuration Database.
In this case a system administrator has used local tools
on web server 1 and changed the document root, and re-
moved the listener.

4.2.5 It is important to distinguish between the dis-
tribution of configurations and the activation
of a particular configuration.

The concept of multiple data-stores in NETCONF lets
managers push the configuration to a candidate database,
validate it, and then activate the configuration by com-
mitting it to the running datastore. Figure 17 shows an
extract from the NCS trace when activating a new con-
figuration in web server 2.

10

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 277

ncs> request ncs managed-device \

www1 compare-config outformat cli <RET>

diff

ncs {

managed-device www1 {

config {

wsConfig {

global {

- ServerRoot /etc/doc;

+ ServerRoot /etc/docroot;

}

- listener 192.168.0.9 8008 {

- }

}

}

}

}

Figure 16: Comparing Configurations

ncs% set ncs managed-device \

www2 config wsConfig global ServerRoot /etc/doc <RET>

ncs% commit | details <RET>

ncs: SSH Connecting to admin@www2

ncs: Device: www2 Sending edit-config

ncs: Device: www2 Send commit

Commit complete.

Figure 17: Separation of Distribution of Configurations
and Activation

5 Related Work

5.1 Mapping to Taxonomy of Configura-
tion Management Tools

We can map our solution to other Configuration Manage-
ment solutions based on the taxonomy defined by Delaet
and Joosen [7]. They define a taxonomy based on 4 cri-
teria: abstraction level, specification language, consis-
tency, and distributed management.

The abstraction level ranges from high-level end-to-
end requirements to low-level bit-requirements. As
shown in Figure 18 and described below, in our solution
we work with level 1-5 of the 6 mentioned abstraction
levels.

1. End-to-end Requirements - The service models in
the Service Manager expresses end-to-end require-
ments including constraints expressed as XPATH
must expressions. In the case of our web site provi-
sioning example this corresponds to the model for a
web site - website.yang.

Service Manager :
• website.yang

Device Manager
• hostsettings.yang
• loadbalancer.yang
• webserver.yang

NETCONF
XML payload

Service Logic
• web-site.java

Load BalancerWeb Server

1. End-to-end requirements

2. Instance distribution rules

3. Instance configurations

4. Implementation dependent
 instances

5. Configuration files

Figure 18: NCS in the Configuration Taxonomy Defined
by Delaet and Joosen

2. Instance Distribution Rules - How an end-to-end
service is allocated to resources is expressed in the
Java Service Logic Layer. In this layer we map the
provisioning of a web site to the corresponding load
balancer and web-server models.

3. Instance Configurations - The changed configura-
tion of devices in the Device Manager. The result
of the previous point is a diff, configuration change,
sent to NCS Device Manager. The Device Man-
ager has two layers. The device independent layer
that can abstract different data-models for the same
feature and the concrete device model layer. This
layer may be vendor-independent. In Figure 18 we
indicate a vendor-independent hostsetting.yang
model which contains a unified model for host set-
tings like DNS and NTP.

4. Implementation Dependent Instances - The con-
crete device configuration in the NCS Device Man-
ager. This is the actual configuration that is sent to
the devices in order to achieve the service instanti-
ation. In the specific example of a web site it is the
configuration change to the load balancers and web
servers.

5. Configuration Files - The NETCONF XML,
editconfig, payload sent to the devices. Note
however whereas most tools work with configura-
tion files, NETCONF does fine-grained configura-
tion changes.

6. Bit-Configurations - Disk images are not directly
managed by NETCONF as such.

When it comes to the specification language we
have a uniform approach based on YANG at all lev-

11

278 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

els. Delaet and Joosen characterize the specification lan-
guage from four perspectives: language-based or user-
interface-based, domain coverage, grouping mechanism
and multi-level specification. We will elaborate on these
perspectives below.

We certainly focus on a language-based approach
which can render various interface representations.
Users can edit the configuration using the auto-rendered
CLI and Web UI. You can also feed NCS with the NET-
CONF XML encoding of the YANG models. NCS is a
general purpose solution in that the domain is defined
by the YANG models and not the system itself. YANG
supports groupings at the modeling level and NCS sup-
ports groupings of instance configurations as config-
urable templates. Templates can be applied to groups of
devices.

NCS supports multi-level specifications which in De-
laets and Joosens taxonomy refers to the ability to trans-
form the configuration specifications to other formats.
In our case, we are actually able to render Cisco CLI
commands automatically from the configuration change.
This is a topic of its own and will not be fully covered
here. However NCS supports YANG model-driven CLI
engines that can be fed with a YANG data-model and
the engine is capable of rendering the corresponding CLI
commands.

Consistency has three perspectives in the taxonomy:
dependency modeling, conflict management, and work-
flow management. We do not cover workflow manage-
ment. We consider workflow systems to be a client to
NCS. NCS manages dependencies and conflicts based
on constraints in the models and runtime policies. The
model constraints specifiy dependencies and rules that
are constrained by the model itself while policies are run-
time constrained defined by system administrators. We
use XPATH [6] expressions in both contexts.

Regarding conflict management NCS will detect con-
flicts as violations to policies as described above. The
result is an error message when the user tries to commit
the conflicting configuration.

The final component of the taxonomy covers the as-
pect of distribution. NCS supports a fine-grained AAA
system that lets different users and client systems per-
form different tasks. The agent is a NETCONF client on
the managed devices. The NCS server itself is central-
ized. The primary reason here is to enable quick valida-
tion of cross-device policy validation. The performance
is guaranteed by the in-memory database.

5.2 Comparison to other major configura-
tion management tools

There are many well-designed configuration manage-
ment tools like: CFengine [5], Puppet [15], LCFG [2]

and Bcfg2 [8]. These tools are more focused on system
and host configuration whereas we focus mostly on net-
work devices and network services. This is mostly de-
termined by the overall approach taken for configuration
management. In our model the management system has a
data-model that represents the device and service config-
uration. Administrators and client programs express an
imperative desired change based on the data-model. NCS
manages the overall transaction by the concept of a can-
didate and running database which is a well-established
principle for network devices.

Many host-management uses concepts of centralized
versioned configuration files rather than a database with
roll-back files. Also in a host environment you can put
your specific agents on the hosts which is not the case for
network devices. Therefore a protocol based approach
like NETCONF/YANG is needed.

Another difference is the concept of desired state. For
host configuration it is important to make sure that the
hosts follow a centrally defined configuration which is
fairly long-lived. In our case we are more focused on
doing fine-grained real-time changes based on require-
ments for new services. There is room for combination
of the two approaches where host-based approaches fo-
cused on configuration files address the more static setup
of the device and our approach on top if that addresses
dynamic changes.

It is also worth-while noting that most of the existing
tools have made up their own specific languages to de-
scribe configuration. YANG is a viable options for the
above mentioned tools to change to a standardized lan-
guage.

There is of course a whole range of commercial tools,
like Telcordia Activator [21], HP Service Activator [12],
Amdocs [1], that address network and service configu-
ration. While they are successfully being used for ser-
vice configuration, the underlying challenges of cost and
release-cycles for device adapters and flexibility of ser-
vice models can be a challenge.

6 Conclusion and Future Work

6.1 Conclusion
We have shown that a standards-based approach for net-
work configuration based on NETCONF and YANG can
ease the configuration management scenarios for opera-
tors. Also the richness of YANG as a configuration de-
scription language lends itself to automating not only the
device communication but also the rendering of inter-
faces like Command Line Interfaces and Web User In-
terfaces. Much of the value in this IETF standard lies in
the transaction-based approach to configuration manage-
ment and a rich domain-specific language to describe the

12

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 279

configuration and operational data. We used Erlang and
in-memory database technology for our reference imple-
mentation. These two choices provide performance for
parallel configuration requests and fast validation of con-
figuration constraints.

6.2 Future Work
We have started to work on a NETCONF SNMP adap-
tation solution which is critical to migrate from cur-
rent implementations. This will allow for two scenar-
ios: read-only and read-write. The read-only view is a
direct mapping of SNMP MIBs to corresponding NET-
CONF/YANG view, this mapping is being standardized
by IETF [13]. The read-write view is more complex
and cannot be fully automated. The main reason is that
the transactional capabilities and dependencies between
MIB variables are not formally defined in the SNMP
SMI, for example it is common that you need to set
one variable before changing others. We are working on
catching the most common scenarios and define YANG
extensions for those in order to automatically render as
much as possible.

Furthermore we are working on a solution where we
can have hierarchical NCS systems in order to cover huge
networks like nation-wide Radio Access Networks. We
will base this on partitioning of the instantiated model
into separate CDBs. NCS will then proxy any NET-
CONF requests to the corresponding NCS system.

We are also working on two interesting features in or-
der to understand the service configuration versus the de-
vice configuration: “dry-run” and “service check-sync”.
Committing a service activation request with dry-run cal-
culates the resulting configuration changes to the devices
and displays the diff without committing it. This is help-
ful in a what-if scenario: “If I provision this VPN, what
happens to my devices?”. The service check-sync fea-
ture will compare a service instance with the actual con-
figuration that is on devices and display any conflicting
configurations. This is useful to detect and analyze if
and how the device configurations have been changed by
any local tools in a way that breaks the service configu-
rations.

References
[1] AMDOCS. Amdocs service fulfillment, 2011.

http://www.amdocs.com/Products/OSS/Pages/Service-
Fulfillment.aspx.

[2] ANDERSON, P., SCOBIE, A., ET AL. Lcfg: The next generation.
In UKUUG Winter conference (2002), Citeseer.

[3] ARMSTRONG, J., VIRDING, R., WIKSTRÖM, C., AND
WILLIAMS, M. Concurrent Programming in ERLANG, 1993.

[4] BJORKLUND, M. YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF). RFC 6020 (Pro-
posed Standard), Oct. 2010.

[5] BURGESS, M. A tiny overview of cfengine: Convergent mainte-
nance agent. In Proceedings of the 1st International Workshop on
Multi-Agent and Robotic Systems, MARS/ICINCO (2005), Cite-
seer.

[6] CLARK, J., DEROSE, S., ET AL. XML path language (XPath)
version 1.0. W3C recommendation (1999).

[7] DELAET, T., AND JOOSEN, W. Survey of configuration manage-
ment tools. Katholieke Universiteit Leuven, Tech. Rep (2007).

[8] DESAI, N., LUSK, A., BRADSHAW, R., AND EVARD, R. Bcfg:
A configuration management tool for heterogeneous environ-
ments. Cluster Computing, IEEE International Conference on
0 (2003), 500.

[9] ENCK, W., MCDANIEL, P., SEN, S., SEBOS, P., SPOEREL, S.,
GREENBERG, A., RAO, S., AND AIELLO, W. Configuration
management at massive scale: System design and experience. In
Proc. of the 2007 USENIX: 21st Large Installation System Ad-
ministration Conference (LISA ’07) (2007), pp. 73–86.

[10] ENNS, R. NETCONF Configuration Protocol. RFC 4741 (Pro-
posed Standard), Dec. 2006.

[11] ERLANG.ORG. The erlang programming langugage, 2011.
http://www.erlang.org/.

[12] HP. HP Service Activator, 2011.
http://h20208.www2.hp.com/cms/solutions/ngoss/fulfillment/hpsa-
suite/index.html.

[13] J. SCHÖNWÄLDER. Translation of SMIv2 MIB Mod-
ules to YANG Modules. Internet-Draft, July 2011.
http://tools.ietf.org/html/draft-ietf-netmod-smi-yang-01.

[14] JUNIPER. Junos XML Management Protocol, 2011.
http://www.juniper.net/support/products/junoscript/.

[15] KANIES, L. Puppet: Next-generation configuration manage-
ment.; login: the USENIX Association newsletter, 31 (1), 2006.

[16] MOBERG, C. A 30 Minute Introduction To NETCONF and
YANG, 2011. http://www.slideshare.net/cmoberg/a-30minute-
introduction-to-netconf-and-yang.

[17] PUGH, W. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM 33 (June 1990), 668–676.

[18] SCHOENWAELDER, J. Overview of the 2002 IAB Network Man-
agement Workshop. RFC 3535 (Informational), May 2003.

[19] SCHÖNWÄLDER, J., BJÖRKLUND, M., AND SHAFER, P. Net-
work configuration management using NETCONF and YANG.
Communications Magazine, IEEE 48, 9 (sept. 2010), 166 –173.

[20] SCOTT, M., AND BJORKLUND, M. YANG Module for NET-
CONF Monitoring. RFC 6022 (Proposed Standard), Oct. 2010.

[21] TELCORDIA. Telcordia activator, 2011.
http://www.telcordia.com/products/activator/index.html.

[22] TORSTENDAHL, S. Open telecom platform. Ericsson Re-
view(English Edition) 74, 1 (1997), 14–23.

[23] TRAN, H., TUMAR, I., AND SCHÖNWÄLDER, J. Netconf in-
teroperability testing. In Scalability of Networks and Services,
R. Sadre and A. Pras, Eds., vol. 5637 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2009, pp. 83–94.
10.1007/978-3-642-02627-0-7.

[24] XU, H., AND XIAO, D. Considerations on NETCONF-Based
Data Modeling. In Proceedings of the 11th Asia-Pacific Sympo-
sium on Network Operations and Management: Challenges for
Next Generation Network Operations and Service Management
(2008), Springer, p. 176.

[25] YU, J., AND AL AJARMEH, I. An Empirical Study of the NET-
CONF Protocol. In Networking and Services (ICNS), 2010 Sixth
International Conference on (march 2010), pp. 253 –258.

13

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 281

Deploying IPv6 in the Google Enterprise Network. Lessons learned.

Haythum Babiker <haythum@google.com>
Irena Nikolova <iren@google.com>

Kiran Kumar Chittimaneni <kk@google.com>

Abstract

This paper describes how we deployed IPv6 in our corporate network in a relatively short time with a small core
team that carried most of the work, the challenges we faced during the different implementation phases, and the net-
work design used for IPv6 connectivity.

The scope of this document is the Google enterprise network. That is, the internal corporate network that involves
desktops, offices and so on. It is not the network or machines used to provide search and other Google public ser-
vices.

Our enterprise network consists of heterogeneous vendors, equipment, devices, and hundreds of in-house developed
applications and setups; not only different OSes like Linux, Mac OS X, and Microsoft Windows, but also different
networking vendors and device models including Cisco, Juniper, Aruba, and Silverpeak. These devices are deployed
globally in hundreds of offices, corporate data centers and other locations around the world. They support tens of
thousands of employees, using a variety of network topologies and access mechanisms to provide connectivity.

Tags: IPv6, deployment, enterprise, early adoption, case study.

1. Introduction

The need to move to IPv6 is well-documented and well-
known - the most obvious motivation being IANA IPv4
exhaustion in Feb 2011. Compared to alternatives like
Carrier-Grade NAT, IPv6 is the only strategy that
makes sense for the long term since only IPv6 can as-
sure the continuous growth of the Internet, improved
openness, and the simplicity and innovation that comes
with end-to-end connectivity.

There were also a number of internal factors that helped
motivate the design and implementation process. The
most important was to break the chicken-or-egg prob-
lem, both internally and as an industry. Historically,
different sectors of the Internet have pointed the finger
at other sectors for the lack of IPv6 demand, either for
not delivering IPv6 access to users to motivate content
or not delivering IPv6 content to motivate the migration
of user networks. To help end this public stalemate, we
knew we had to enable IPv6 access to Google engineers
to launch IPv6-ready products and services.

Google has always had a strong culture of innovation
and we strongly believed that IPv6 will allow us to
build for the future. And when it comes to universal

access to information we want to provide it to all users,
regardless of whether they connect using IPv4 or IPv6.

We needed to innovate and act promptly. We knew that
the sooner we started working with networking equip-
ment vendors and with our transit service providers to
improve the new protocol support, the earlier we could
adopt the new technology and shake the bugs out.
Another interesting problem we were trying to solve in
our enterprise organization was the fact that we are run-
ning tight on private RFC1918 addresses - we wanted to
evaluate techniques like Dual-Stack Lite, i.e to make
hosts IPv6-only and run DS-Lite on the hosts to provide
IPv4 connectivity to the rest of the world if needed.

2. Methodology

Our project started as a grass-roots activity undertaken
by enthusiastic volunteers who followed the Google
practice of contributing 20% of their time to internal
projects that fascinate them. The first volunteers had to
learn about the new protocol from books and then plan
labs to start building practical experience. Our essential
first step was to enable IPv6 on our corporate network,
so that internal services and applications could follow.

282 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Our methodology was driven by four principles:

1. Think globally and try to enable IPv6 every-
where: in every office, on every host and every
service and application we run or use inside
our corporate network.

2. Work iteratively: plan, implement, and iterate
launching small pieces rather than try to com-
plete everything at once.

3. Implement reliably: Every IPv6 implementa-
tion had to be as reliable and capable as the
IPv4 ones, or else no one would use and rely
on the new protocol connectivity.

4. Don't add downtime: Fold the IPv6 deploy-
ments into our normal upgrade cycles, to avoid
additional network outages.

3. Planning and early deployment phases

First, we started creating a comprehensive addressing
plan for the different sized offices, campus buildings,
and data centers. Our initial IPv6 addressing scheme
followed the guidelines specified in RFC5375 (IPv6
Unicast address assignment):

 Assign /64 for each VLAN
 Assign /56 for each building
 Assign /48 for each campus or office

We decided to use the Stateless Address Auto-
Configuration capability (SLAAC) for IPv6 address
assignments to end hosts. This stateless mechanism al-
lows a host to generate its own addresses using a com-
bination of locally available information and infor-
mation advertised by routers, thus no manual address
assignment is required.

As manually configuring IP addresses has never really
been an option, this approach addressed various operat-
ing systems DHCPv6 client support limitations and
therefore sped the rollout of IPv6. It also provides a
seamless method to re-number and provide address pri-
vacy via the privacy extension feature (RFC 4941).
Meanwhile, we also requested various sized IPv6 space
assignments from the Regional Internet Registries. Hav-
ing PI (Provider Independent) IPv6 space was required
to solve any potential multihoming issues with our mul-
tiple service providers.

Next, we had to design the IPv6 network connectivity
itself. We obviously had several choices here; we pre-

ferred dual-stack if possible, but if not then we had to
build different types of tunnels (as a 6-to-4 transitioning
mechanism) on top of the existing IPv4 infrastructure or
to create a separate IPv6 infrastructure. The latter was
not our preferred choice since this would have meant
the need for additional time and resources to order data
circuits and to build a separate infrastructure for IPv6
connectivity.

We also tried to design a scalable IPv6 backbone to
accommodate all existing WAN clouds (MPLS, Internet
Transit and the Google Production network, which we
use as our service provider for some of the locations).
Along with the decision to build the IPv6 network on
top of the existing physical one we tried to keep the
IPv6 network design as close to the IPv4 network in
terms of routing and traffic flows as possible. The prin-
ciple of changing only the minimum amount necessary
was applied here.

By keeping the IPv6 design simple, we wanted to en-
sure scalability and manageability; also it is much easier
for the network operations team to support it. In order
to comply with this policy we decided to use the follow-
ing routing protocols and policies:

 HSRPv2 - First hop redundancy
 OSPFv3 - Interior gateway protocol
 MP-BGP - Exterior gateway protocol
 SLAAC - for IP addresses assignments for the

end hosts.

Our proposed routing policy consist of the following
rules: we advertise the office aggregate routes to the
providers, while only accept the default route from the
transit provider.

We also aggressively started testing and certifying code
for the various hardware vendors’ platforms and work-
ing on building or deploying IPv6 support into our in-
house built network management tools.

In 2008 we got our first ARIN-assigned /40 IPv6 space
for GOOGLE IT and we deployed a single test router
having a dual-stacked link with our upstream transit
provider. The reason for having a separate device was
to be able to experiment with non-standard IOS ver-
sions and also to avoid the danger of having higher re-
source usage (like CPU power).

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 283

The early enthusiasts and volunteers to test the IPv6
protocol had one GRE tunnel each running from their
workstations to this only IPv6 capable router, which
was sometimes giving around 200ms latency, due to
reaching relatively closely located IPv6 sites via a bro-

ker device on the other side of the world.

The next steps during this initial implementation phase
were to create several fully dual-stacked labs (Figure 1)
and connect them to the dual-stacked router using the
same GRE tunnels, but instead of at certain hosts, these
GRE tunnels were now terminated at the lab routers.
In the next phase we started dual-stacking entire offices
and campus buildings (Figure 2) and then building a
GRE tunnel from the WAN Border router at each loca-
tion to the egress IPv6 peering router.

In the third phase we started dual-stacking entire offic-
es, while trying to prioritize deployment in offices with
immediate need for IPv6 (Figure 3), e.g. engineers
working on developing or supporting applications for
IPv6.

Using this phased approach allowed us to gradually gain
skills and confidence and also to confirm that IPv6 is
stable and manageable enough to be deployed in our
network globally.

4. Challenges

We faced numerous challenges during the planning and
deployment phases, not only technical, but also admin-
istrative and organizational such as resource assign-
ment, project prioritization and the most important -
education, training and gaining experience.

4.1 Networking challenges
The most important technical issue we faced was the
fact that the major networking vendors lack enterprise
IPv6 features, especially on some of the mid-range de-
vices and platforms. Also certain hardware platforms
support IPv6 in software only, which causes high CPU
usage when the packets are handled by the software.
This has a severe performance impact when using ac-
cess control lists (ACLs). In another example of limita-
tions with some of our routing platfors vendors, the only
IPv6 tunneling mechanism available is Generic Routing
Encapsulation (GRE). The main reason for this partial
IPv6 implementation in the networking devices is that
most vendors are not even running IPv6 in their own

Figure 1: phase I - dual-stack separate hosts and labs

Figure 2: phase II - dual-stack offices

284 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

corporate networks. Also the TCAM table in one of the
switch platforms we use is limited when you enable an
IPv6 SDM routing template. Another example of a net-
work challenge is the software only routing support of
IPv6 in the platforms we deploy as wireless core
switches.

Our wireless equipment vendor did not have support for
IPv6 ACLs and currently lacks support for IPv6 routing.
We also faced the problem with VLAN pooling on the
wireless controllers - in that mechanism, the wireless
controller assigns IP addresses from the different
VLANs (subnets) on a round-robin basis as each wire-
less client logs in. We wanted to utilize multiple
VLANs using this technique to provide easy address
management and scalability. However, the VLANs
pooling implementation on our specific vendor leaked
IPv6 neighbor discovery and multicast Router Adver-
tisements (RAs) between the VLANs. This introduced
IPv6 connectivity issues as the clients were able to see
multiple RAs from outside the client VLANs. The solu-
tion provided by the vendor in a later software release
was to implement IPv6 firewalling to restrict the neigh-
bor discovery and Routers Announcement multicast
traffic leaking across VLANs.

One more example is the WAN Acceleration devices
we use in our corporate network - we cannot encrypt or
accelerate IPv6 traffic using WCCP (Web Cache Con-
trol Protocol), since the current protocol standard
(WCCPv2) does not even support IPv6 and thus is not
implemented on the devices. Currently we are evaluat-
ing workarounds like PBR (Policy Based Routing) to
overcome this.

A related problem is that we lacked good test tools that
support IPv6 and thus we could not do real stress testing
with IPv6 traffic. One interesting unexpected challenge

with the dual-stack infrastructure is getting a feel how
much traffic on the links is IPv4 and how much IPv6.
We still needed to work on collecting, parsing, and
properly displaying Netflow stats for IPv6 traffic. The
problem that we have here is due to a specific routing
platform vendor that is no longer developing the OS
branch for the specific hardware model we use, while
the current OS versions do not support NetFlow v9.

We also faced some big challenges when working with
various service providers. The SLA that they support is
very different than the SLA for IPv4, and, in our expe-
rience, the implementation time for turning up IPv6
peering sessions takes much longer than IPv4 ones. In
addition, our internal network monitoring tools were
unable to alert on base monitoring for IPv6 connectivity
until recently.

4.2 Application and client software
The main problem was that the many application white-
lists we use for multiple internal applications were ini-
tially not developed to support IPv6, so when we first
started implementing IPv6 the users on the IPv6 ena-
bled VLANs and offices were not able to reach lots of
our internal online tools. We even got some false posi-
tive security reports saying that some unknown address-
es were trying to access restricted online applications.

In order to fight this problem, we aimed at phasing out
old end-host OSes and applications that do not support
IPv6 or where IPv6 is disabled by default. Although we
no longer support obsolete host OSes in our corporate
network, there are still some IPv6 related issues with
some of the supported ones. For example, some of
them use ISATAP tunneling as their default IPv6 con-
nectivity method, which means that very often the IPv6

Figure 3: phase III - dual-stack the upstream WAN connections to the transit and MPLS VPN providers

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 285

connectivity might be broken due to problems with the
remote ISATAP router and infrastructure.

We also still have not fully solved the printer problem,
an most do not support IPv6 at all or just for manage-
ment.

Unfortunately large groups of systems and applications
exist that cannot be easily modified, even to enable
IPv6 - for example heavy databases and some of the
billing applications due to the critical service they offer.
And on top of that, the systems administrators are often
too busy with other priorities and do not have the cycles
to work on IPv6 related problems.

5. Lessons Learned

We learned a lot of valuable lessons during the deploy-
ment process. Unfortunately, the majority of the prob-
lems we’ve faced were unexpected.

Since lots of providers still do not offer dual-stack sup-
port to the CPE (customer-premises equipment), we had
to use manually built GRE over IPSec tunnels to pro-
vide IPv6 connectivity for our distributed offices and
locations.

Creating tunnels causes changes in the maximum trans-
mission unit (MTU) of the packets. This often causes
extra load on the router’s CPU and memory, and all
possible fragmentation and reassembly adds extra laten-
cy. Since we often do not have full control over the
network connectivity from end to end (e.g. between the
different office locations) we had to lower the IPv6 path
MTU to 1416 to avoid possible packets being lost due
to lost ICMPv6 messages on the way to the destination.

Another big problem we had to deal with was the end
host OSes immature IPv6 support. For example, some
of them still prefer IPv4 over IPv6 connectivity by de-
fault. Some others do not even have IPv6 connectivity
turned on by default, which makes the users of this OS
incapable of testing and providing feedback for the IPv6
deployment. It also turned out that another popular host
OS does not have client support for DHCPv6 and thus
we were forced to go with SLAAC for assigning IPv6
addresses to the end hosts.

We ran into countless applications problems too: No
WCCP support for IPv6, no proxy, no VoIP call man-
agers, and many more. When trying to talk to the ven-
dors they were always saying - if there is a demand for
IPv6 support at all, we’ve never heard it before.

In summary, when it comes to technical problems we
can confirm that there is a lot of new, unproven and
therefore buggy code, and getting our vendors aligned
so that everything supports IPv6 has been a challenge.

Regarding the organizational lessons we learned - the
most important one is that IPv6 migration potentially
touches everything, and so migrating just the network or
just a single service or application or platform does not
make sense by itself. This project also turned out to be a
much longer term project than originally intended.
We've been working on this project for 4 years already
and we are still probably only half way to completion.
Still, the biggest challenge is not deploying IPv6 itself,
but integrating the new protocol in all management pro-
cedures and applying all IPv4 current practice concepts
for it too - for example the demand for redundancy,
reliability and security.

6. Summary

The migration to IPv6 is not an L3 problem. It is more
of an L7-9 problem: resources, vendor relation-
ship/management, and organizational buy-in. The net-
working vendors’ implementations mostly work, but
they do have bugs: we should not expect something to
work just because it is declared supported.

Because of that we had to test every single IPv6 related
feature, then if a bug was found in the lab we reported it
and kept on testing!

7. Current status and future work

Around 95% of the engineers accessing our corporate
network have IPv6 access on their desks and are
whitelisted for accessing Google public services
(search, Gmail, Youtube etc.) over IPv6. This way they
can work on creating, testing and improving IPv6 aware
applications and Google products. At the same time
internally we keep on working on enabling IPv6 support
on all our internal tools and applications used in the
corporate network.

286 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Figure 4: Timeline for dual-stacking Google corporate

locations

In the long run, the potential of introducing DHCPv6
(state-full auto-configuration) can be investigated given
the advantages of DHCP flexibility and better manage-
ment. However enabling this functionality still depends
on the support of the end hosts DHCPv6 client on the
desktop platforms.

We also want to revisit the IP addressing allocation of
/64 to every subnet on the corporate network, since a
new RFC 6164 has been published that recommends
assigning /127 addresses on P2P links.

Since the highest priority for all organizations is to
IPv6-enable their public-facing services, following our
experience we can confirm - dual-stack works well to-
day as a transition mechanism!

There is still quite a lot of work before IPv4 can be
turned off anywhere, but we are working hard towards
it. The ultimate goal is to successfully support employ-
ees working on an IPv6-only network.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 287

Experiences with BOWL: Managing an Outdoor WiFi Network

(or How to Keep Both Internet Users and Researchers Happy?)

T. Fischer, T. Hühn, R. Kuck, R. Merz, J. Schulz-Zander, C. Sengul

TU Berlin/Deutsche Telekom Laboratories

{thorsten,thomas,rkuck,julius,cigdem}@net.t-labs.tu-berlin.de,ruben.merz@telekom.de

Abstract

The Berlin Open Wireless Lab (BOWL) project at

Technische Universität Berlin (TUB) maintains an out-

door WiFi network which is used both for Internet ac-

cess and as a testbed for wireless research. From the

very beginning of the BOWL project, we experienced

several development and operations challenges to keep

Internet users and researchers happy. Development chal-

lenges included allowing multiple researchers with very

different requirements to run experiments in the network

while maintaining reliable Internet access. On the oper-

ations side, one of the recent issues we faced was au-

thentication of users from different domains, which re-

quired us to integrate with various external authentica-

tion services. In this paper, we present our experience

in handling these challenges on both development and

operations sides and the lessons we learned.

Keywords: WiFi, configuration management, authenti-

cation, research, DevOps, infrastructure, testbed

1 Introduction

Wireless testbeds are invaluable for researchers to test

their solutions under real system and network condi-

tions. However, these testbeds typically remain ex-

perimental and are not designed for providing Internet

access to users. In the BOWL project [2, 7, 9], we

stepped away from the typical and designed, deployed

and currently maintain a live outdoor wireless network

that serves both purposes. The benefits are twofold [9]:

• University staff and students have outdoor wireless

network access. Our network covers almost the en-

tire Technische Universität Berlin (TUB) campus in

central Berlin (see Fig. 1).

• Researchers have a fully reconfigurable research

platform for wireless networking experimentation

that includes real network traffic (compared to syn-

thetic traffic).

During its lifetime, the BOWL network has signif-

icantly evolved from a prototype architecture and de-

sign in 2009 [7, 9] towards a production network, which

brings out several administrational and development

challenges. The network and its components, including

traffic generators, routers and switches interconnect with

Figure 1: Coverage of the BOWL network on the TU-

Berlin campus.

a variety of other networks and infrastructures which are

not controlled by the BOWL project, adding to the in-

herent complexity of running a production network. In

this paper, we focus on two of our many challenges that

we have experienced in the last year while moving from

a prototype to a more stable infrastructure. We present

our challenges from the perspective of development and

network operations and its reliance on external services,

respectively.

Development challenges were - and still are - numer-

ous [9]. The most prominent is the variety of people

that work on different subsets of network components,

and change network configuration and operating system

images. The requirements for associated services and in-

frastructure, as well as the research goals, continuously

change as we and other users change the way the BOWL

network is used on a daily basis. In fact, our experience

showed that it was necessary to rewrite the BOWL soft-

ware significantly during the development as well as the

operational lifetime of the BOWL project. Many of the

changes were also triggered with the feedback received

from external users.

From a purely operational point of view, authentica-

tion of users to the BOWL network has proven surpris-

ingly complex. A project-specific remote authentication

dial-in user service (RADIUS) installation is used as the

288 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

pivot point to integrate a number of other distributed

and disparate authentication solutions. Users include (1)

centrally managed university IT accounts, (2) users from

our own department, (3) users of the affiliated external

institution Deutsche Telekom Laboratories (hereafter T-

Labs), (4) project-only user accounts, and (5) eduroam

users. TUB user authentication is a critical part of the

contractual relationship with the university central IT de-

partment. The major challenge we faced and still face

is the recovering from errors that might lie in external

authentication services that we rely on to support these

accounts. In this paper, we present a major outage we

went through due to such problems and the lessons we

learned.

2 BOWL (Berlin Open Wireless Lab) and

DevOps Challenges

The main task of the BOWL project is to satisfy two

somehow conflicting requirements from two user groups

– Internet users and researchers (which are often devel-

opers). We see the following requirements as DevOps

challenges:

• Researchers demand a configurable network

(development): The testbed is intended for a wide

selection of research topics ranging from enhancing

measurement-based physical layer models for wire-

less simulation [8] to routing protocols [11, 12].

Hence, one of the goals of the BOWL project is to

allow multiple researchers to access the network,

deploy experimental services, change configura-

tions and run new experiments or repeat old exper-

iments while still ensuring Internet access. There-

fore, the BOWL project required the development

of several tools to automate software and configu-

ration deployment in the testbed. We discuss our

experience with these tools, and how they evolved

in Section 4.

• Internet users demand a reliable network (op-

eration): Changing the network configuration, de-

ploying and running experiments should not affect

the availability of Internet access. This implies that

basic connectivity should not be affected, or only

for a negligible time duration. It also means that

services such as authentication, DHCP and DNS

need to remain available in any experiment setup.

How BOWL network architecture addressed this

problem is summarized in Section 3. A major oper-

ational challenge is the authentication of different

type of users (e.g., Internet users from TUB and T-

Labs, and researchers) to the BOWL network, and

we discuss this in detail in Section 5.

3 BOWL Network Architecture

In addition to its outdoor network, the BOWL project is

in charge of two additional networks: (1) a smoketest

network, for early development and testing and (2) an

indoor network, for small-scale deployment and testing.

These networks are used for development and staging

before a full-scale deployment and measurements in the

outdoor network. Therefore, the research usage pattern

of the outdoor network is more bursty, with periods of

heavy activity followed by lighter usage, whereas the

smoketest and the indoor networks have been in heavy

use since their deployment in early 2008. In this paper,

we mainly focus on our experience with the outdoor net-

work.

The BOWL network architecture was first presented

in [9]. In this section, we summarize this architecture to

give the necessary information to understand the BOWL

environment and its challenges. The outdoor network

comprises more than 60 nodes deployed on the rooftops

of TUB buildings. It spans three different hardware ar-

chitectures (ARM, MIPS and x86). Each node is pow-

ered by Power over Ethernet (PoE), which simplifies ca-

bling requirements. All nodes are equipped with a hard-

ware watchdog, multiple IEEE 802.11a/b/g/n radio in-

terfaces and a wired Ethernet interface. One radio in-

terface is always dedicated to Internet access, the addi-

tional radio interfaces are free to be used in research ex-

periments, and the wired interface is used for network

management and Internet connectivity. All nodes are

connected via at least 100 Mbit/s Ethernet to a router

that is managed by the project. A VLAN network en-

sures a flat layer 2 connectivity from our router to each

node. Our router ensures connectivity to the BOWL in-

ternal network, the TUB network and the Internet. In

its default configuration (which is called the rescue con-

figuration), the network is set up as a bridged layer 2
infrastructure network. Association to the access inter-

face and encryption of the traffic is protected by WPA2

(from the standard IEEE 802.11i [1]). Authentication is

performed with IEEE 802.1x and RADIUS.

Each node runs OpenWrt [5] as the operating system.

The OpenWrt build system typically produces a mini-

mally configured image. To tailor this image to each

node, the image is configured at boot time by an auto-

configuration system that applies a so-called configura-

tion to the image. A configuration includes all the con-

figuration files that go under the /etc/config direc-

tory (the layout is specific to OpenWrt), and additional

files, scripts and packages that may be needed by the ex-

perimenter. The details of the auto-configuration system

are explained in Section 4.

By default, every node runs a default rescue image

and uses the aforementioned rescue configuration. Re-

searchers install guest images in extra partitions and

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 289

use guest configurations. Because of the unique needs

of experiment monitoring and reconfiguration at run-

time, a network management and experiment monitor-

ing system was developed, which also went through sig-

nificant changes from its version presented in [9]. In

essence, it comprises two main components: a node-

controller, which runs on each node and a central node-

manager. Each node-controller connects to one node-

manager. However, with the recent changes, several

node-managers can be now run in parallel i.e. one

for each experiment if several parallel experiments are

needed to be run or for development. Our typical op-

eration requires one node manager per network (e.g.,

smoketest, indoor and outdoor). Thanks to the under-

lying VLAN infrastructure and virtualization of the cen-

tral router, the traffic generated by each experiment can

be isolated, if multiple experiments are running in the

network. More details on this topic can be found in [9].

Unwanted side effects due to using experiment soft-

ware (e.g., crashes, slowing down of network services)

are expected to occur in practice but their effect needs

to be minimized as much as possible. This is achieved

thanks to the locally installed images. Indeed, a node

that is experiencing problems can be rescued by an im-

mediate reboot into the rescue image. This mode of

operation is implemented making use of hardware and

software watchdogs that periodically check that certain

services are operational. One example is that, node-

controllers at each node periodically check connectivity

to the central node manager and when a disconnection is

detected, the node is rebooted to the rescue image within

60s. Note that since each node independently triggers a

switch to the rescue mode based on its own hardware

and software watchdogs, nodes do not go down all at the

same time limiting network disruptions. More details

on how experiment problems are detected can be found

in [9].

In the remainder of the paper, we focus on how we

addressed two main challenges: the development chal-

lenge of supporting multiple network configurations for

different researchers and the operational challenge of au-

thentication in the BOWL network.

4 A Development Challenge: Support-

ingMultiple Network Configurations for

Wireless Experimentation

One of the main goals of the BOWL project is to al-

low multiple researchers to create experiments, and be

able to run and repeat their experiments in a consis-

tent fashion. In the remainder of this section, we first

summarize the system that we started off with around

mid 2008, and describe how it evolved during the life-

time of the project. Essentially, the reliability of the

Operator domain

Researcher domain

oldest

v
e
rs
io
n
in
g

latest

rescue

guest #1

researcher #3

researcher #1

researcher #2

Figure 2: An example of how three researchers maintain

their own configuration in the BOWL network.

BOWL network was jeopardized due to several configu-

ration glitches and therefore, our complete software re-

write decisions were significantly affected by the need

to maintain network reliability at all times.

The node configuration of a given experiment con-

sists of two parts: (1) an operating system image and

(2) an experiment configuration. OpenWrt manages

the whole configuration of the operating system using

the universal configuration interface (UCI)[6]. We also

take advantage of the UCI. As the network is used for

very different purposes, it becomes necessary to main-

tain consistent network configurations across the users.

Therefore, initially, we had a configuration database and

stand-alone scripts to apply these configurations from

a central server manually. As more nodes were de-

ployed in the BOWL network, it became a necessity

to have a more scalable and manageable solution. To

this end, the existing node-manager and node-controller

framework was extended to support node configurations.

The important components to a BOWL user are: (i)

the web-based front-end to a configuration database,

and (ii) a client-server auto-configuration process that

runs in node-controllers and the node-manager, respec-

tively. The auto-configuration scheme was added af-

ter mid 2010 due to the several failures that occurred

with the earlier version. Figure 2 illustrates how, for in-

stance, three researchers maintain their configurations in

the BOWL system.

Using the web-based front-end, a researcher can pick

a configuration, image and the node partition to deploy

its experiment. From this step on, the user flashes his

own image to this partition and nodes are configured by

the auto-configuration process at boot time (or before the

image is booted). However, currently, a researcher still

needs to record the information about which image was

used with which experiment configuration. In the fu-

ture, we are planning to automate this lab bookkeeping

290 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

process. Finally, a reservation system prevents node and

image usage conflicts. Currently, the reservation system

used in BOWL is primitive, in the sense that the entire

network is reserved to a single researcher for a given pe-

riod of time. Each researcher is responsible of his image

and configuration and deploys this image to a given node

partition. Hence, merging of multiple images from dif-

ferent experimenters is not expected.

This framework, complete with a new auto-

configuration scheme, is in use since mid 2010 by the

BOWL group and visiting researchers, that also re-

motely access our network. We learned several lessons

since then, which resulted in the current state of the

framework as we use today. For instance, one issue

resulted from the inheritance of configurations in the

database. It was not obvious to us at the beginning that

researchers would have difficulties discovering the in-

heritance hierarchy. But some of our early users ap-

plied changes to the base configuration expecting them

to take effect in the descendant configuration. To avoid

such problems, we now expose the inheritance hierarchy

to the users of our system and visualize it in the web-

based front-end. Finding a right way to do this also was

a challenging task. Furthermore, being too accommo-

dating was not a good idea and we ended up limiting

the functionality of the web-based front-end. Earlier,

researchers could push a configuration to a given node

by just pressing a button. However, since installing im-

ages and configurations were separated from each other,

it sometimes resulted in applying a wrong configuration

to the wrong image. Therefore, we removed this func-

tionality from the front-end. Actually, this was the main

reason why an auto-configuration scheme was added to

the system. A final lesson learned was not to assume any

network stability during configurations. With our first

auto-configuration implementation, the nodes fetched

their configurations from the node-manager right after

booting. However, if there were any network instabil-

ities during this time, the watchdog would trigger and

interfere with the auto-configuration. We now avoid this

problem by having nodes first fetch their configurations

before booting the image, configure the image, and boot

only if all checks pass. While our development activ-

ities have slowed down as users become more used to

working with our framework, we are still looking into

simplifying things even further to lower the entry barrier

of using the BOWL network.

5 An Operational Challenge: Authentica-

tion in the BOWL network

In exchange of the rooftop usage and installation sup-

port, the BOWL project has contractual obligations with

TUB to provide wireless Internet access to staff and stu-

dents. Hence, we need to provide the usual authenti-

Figure 3: Logical diagram of the BOWL authentication

infrastructure.

cation and accounting services that would be expected

from any WiFi access network. To this end, we use the

widely deployed FreeRADIUS software [4], which is a

server implementation of RADIUS [10]. When a user

tries to authenticate to our network, the authenticator

(hostapd) at the WiFi access point communicates with

the RADIUS server. Using challenge-based protocols,

the RADIUS server determines whether credentials pro-

vided by a user are valid. Using the results from this

decision process, the access point either allows the user

to join the network or rejects him.

One of the main reasons that makes authentication in

the BOWL network a challenging task is the intercon-

nections with other networks and the need to provide ac-

cess to different type of accounts. FreeRADIUS does

support this by allowing access decisions based on local

account databases or using the results of requests prox-

ied to further upstream services, which may in turn again

be other RADIUS implementations or entirely different

services. Currently, the BOWL network needs to pro-

vide access for the following types of accounts (see Fig-

ure 3):

• TUB accounts as held by students and members

of staff in another RADIUS server, administered

by TUB. Access is provided using PEAP with

MSCHAPv2. The BOWL network does not hold

(or ever sees in any other way) passwords associ-

ated with these accounts, because it just proxies the

encrypted challenge and response messages.

• eduroam [3] access is provided by TUB using the

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 291

same scheme as described above. Accounting data

for this and the previous scheme are forwarded to

TUB.

• Accounts for the local department FG INET, ad-

ministered by the department of which BOWL is a

part. The upstream authentication service is a Ker-

beros installation. Access is provided using TTLS

with PAP, because this kind of upstream service

requires that the FreeRADIUS server handles the

passwords of the users.

• Local accounts for demonstration and guest access

purposes, administered by the BOWL network. Im-

plemented using PEAP with MSCHAPv2. Con-

trary to the previous schemes, all schemes available

as default settings in FreeRADIUS provide work-

ing options here. The credentials are held in a local

database.

• Experiment-specific accounts for researchers, ad-

ministered by the BOWL network. Implemented in

a vein similar to the local accounts. These special

accounts are available for us to be able to filter out

data about traffic generated for the purpose of ex-

perimentation from the accounting database.

From this list it follows immediately that support re-

quirements towards users tend to vary with upstream au-

thentication source. Administration and support com-

plexity inevitably increases rapidly with additional sup-

ported schemes. This complexity which results from the

highly interconnected nature of BOWL is only bound

to increase. For example, there are discussions whether

some parts of Deutsche Telekom Laboratories are to be

provided access to BOWL using a limited subset of the

accounts held in an Active Directory service. Also, there

are plans to move local accounts into a LDAP installa-

tion for centralized administration.

In the process of creating all these authentication in-

terconnections, we have learned that unlike some other

pieces of server software, FreeRADIUS makes it some-

what difficult to set up a fresh installation with self-

written configuration files, because of the inherent com-

plexity of the flow of authentication requests within the

server. The developers make a point of telling their users

to proceed only from the default settings, making small

incremental changes. Therefore, keeping the configu-

ration files in a version control system has proven to

be even more invaluable than with any other service.

In summary, FreeRADIUS setup and handling can be

daunting and time-consuming for the administrator who

works with it extensively for the first time. However, we

still feel that we have made the right choice. The soft-

ware is freely available under the terms of the GPL, it

works without any need for modification on the BOWL

network and it provides an extremely rich feature set.

Now, monitoring of availability of external authen-

tication services has become one of our major chal-

lenges, which requires working test accounts for those

services. Monitoring software like Nagios provides sup-

port for self-written plug-ins, but not all upstream ser-

vice providers are prepared to provide such accounts.

Testing installations are needed, but they are hard to re-

alize as they require testing configurations on live nodes.

Furthermore, the upstream providers may be required

to accept and serve requests from these testing instal-

lations. Also, obviously, it must be avoided that the ac-

counting database is not polluted by bogus/testing data.

All of this must be done carefully, as FreeRADIUS has

proven to be a piece of software to which configuration

changes need to be made with special care because of

unintentional interactions with other configuration sec-

tions.

One important consequence from not being able to

fully test and monitor external authentication services is

the loss of usage of the network. This is quite annoy-

ing when it is due to problems in external services that

we do not fully control. And loss of control is not just

a hypothetical scenario. During the spring of 2011, no

TUB users were able to authenticate to the BOWL net-

work. Local testing revealed that the reason did not lie

in the BOWL network installation; requests were passed

on to the upstream server correctly. The fact that all

authentication protocols in use are encrypted and state-

less made further debugging difficult. The hospitaliza-

tion of our main technical contact person at TUB, who

was also the only person knowledgeable about the RA-

DIUS configurations, at exactly this point in time put

another obstacle in our way to successfully resolve this

issue. Eventually, it was found that a server certificate

of one of the upstream servers had expired, leading to

rejection of user authentication attempts. Luckily, the

BOWL network bounced back from this incident, and

we observed a speedy uptake by users again shortly af-

terwards. The first power users returned the morning

after the upstream servers were fixed; the number of dis-

tinct users increased continuously and two weeks later,

the number of distinct users per day peaked.

The most that an operational team can do in these

cases is to rely on its own monitoring tools in order to be

able to find the source of problems as quickly as possi-

ble; and to build open and positive relationships with up-

stream operations teams that make communication and

collaboration as smooth as possible. We also noticed

that solving the problem was delayed due to the unavail-

ability of the only person with the know-how. Based on

this experience, on our side, we try to make sure that

the BOWL system knowledge is shared among multiple

people, who can handle issues independently.

292 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

6 Current State and Lessons Learned

To manage a live and experimental testbed is a signifi-

cant challenge, as one needs to keep both Internet users

and researchers happy. In this paper, we described the

auto-configuration and authentication solutions that we

run to be able to serve both communities.

We learned several lessons during this phase, which

we summarize as follows:

1. It is important to have complete and thorough docu-

mentation that details the know-how of the BOWL

project group. Using our system for the first time is

currently not trivial. Therefore, more time needs to

be invested in educating future users and simplify-

ing operation.

2. Early adopters of the BOWL framework proved

that people always find a way to use an interface

differently than you expect them to. Well-defined

user interfaces with less functionality turned out to

be much more useful than providing more function-

ality with specifications unclear to the user. There-

fore, it is better to design simple first, and add extra

functionality when only it is absolutely required by

the users.

3. While building the BOWL framework, we once

more realized how important user-friendly inter-

faces are. People should be exposed all the neces-

sary information to run the system correctly easily.

4. In a live network, network disruptions will hap-

pen. Therefore, all functionality should be de-

signed around issues that can rise from network in-

stability.

5. Our authentication problems showed that the most

important thing is to maintain a good contact with

all the parties that can affect operation. More than

expected, the problem lies outside our own net-

work, and we need to rely on problem solving skills

of the upstream service providers.

6. FreeRADIUS configuration changes should be

maintained in a version control system. This makes

it a lot easier to revert to a previously working ver-

sion.

7. The complexity of any important component of the

network, such as authentication services, is only

going to increase as the number of interconnections

increases. Being aware of this fact aids in the plan-

ning of upcoming changes and aids with the inte-

gration into previously existing configuration op-

tions.

8. Finally, we learned that it is essential not to create

information bottlenecks in a project team, and there

should always be multiple people who know how to

handle problems independently of others.

7 Acknowledgments

We thank Harald Schiöberg for the architecture of the

BOWL testbeds and the implementation of the origi-

nal BOWL software suite. This work was supported by

Deutsche Telekom Laboratories, in the framework of the

BOWL project.

References

[1] 802.11-2007 IEEE standard for information

technology-telecommunications and information

exchange between systems-local and metropolitan

area networks-specific requirements - part 11:

Wireless LAN medium access control (MAC) and

physical layer (PHY) specifications.

[2] Berlin Open Wireless Lab. http://www.

bowl.tu-berlin.de/.

[3] eduroam. http://www.eduroam.org/.

[4] FreeRADIUS. http://www.freeradius.

org/.

[5] OpenWrt. http://openwrt.org/.

[6] The UCI System. http://wiki.openwrt.

org/doc/uci.

[7] M. Al-Bado, A. Feldmann, T. Fischer, T. Hühn,

R. Merz, H. Schiöberg, J. Schulz-Zander, C. Sen-

gul, and B. Vahl. Automated online reconfigura-

tions in an outdoor live wireless mesh network. In

Proceedings of the ACM SIGCOMM Conference

(demo session), August 2009.

[8] M. Al-Bado, R. Merz, C. Sengul, and A. Feld-

mann. A site-specific indoor link model for real-

istic wireless network simulations. In 4th Interna-

tional Conference on Simulation Tools and Tech-

niques (SimuTools), 2011.

[9] R. Merz, H. Schiöberg, and C. Sengul. Design of

a configurable wireless network testbed with live

traffic. In Proceedings of TridentCom 2010, vol-

ume 46 of Lecture Notes of the Institute for Com-

puter Sciences, Social Informatics and Telecommu-

nications Engineering (LNICST), pages 189–198.

Springer, May 2010.

[10] C. Rigney, S. Willens, A. Rubens, and W. Simp-

son. Remote Authentication Dial In User Service

(RADIUS), 2000.

[11] N. Sarrar. Implementation and evaluation of an op-

portunistic mesh routing protocol. Master’s thesis,

Technische Universität Berlin, 2009.

[12] F. Sesser. A performance analysis of scalable

source routing (ssr) in real-world wireless net-

works. Master’s thesis, Technische Universität

München, 2011.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 293

Why Do Migrations Fail and What Can We Do about It?

Gong Zhang and Ling Liu
College of Computing, Georgia Institute of Technology, Atlanta, USA

Abstract

This paper investigates the main causes that make the application migration to Cloud complicated and error-prone through
two case studies. We first discuss the typical configuration errors in each migration case study based on our error catego-
rization model, which classifies the configuration errors into seven categories. Then we describe the common installation
errors across both case studies. By analyzing operator errors in our case studies for migrating applications to cloud, we
present the design of CloudMig, a semi-automated migration validation system with two unique characteristics. First, we
develop a continual query (CQ) based configuration policy checking system, which facilitate operators to weave important
configuration constraints into CQ-based policies and periodically run these policies to monitor the configuration changes
and detect and alert the possible configuration constraints violations. Second, CloudMig combines the CQ based policy
checking with the template based installation automation to help operators reduce the installation errors and increase the
correctness assurance of application migration. Our experiments show that CloudMig can effectively detect a majority of the
configuration errors in the migration process.
Keywords:System management, Cloud Computing, Application Migration
Technical area: Cloud Computing

1 Introduction

Cloud computing infrastructures, such as Amazon EC2 [3], provide elastic, economical and scalable solutions and out-
sourcing opportunities for different types of consumers and end-users. Its pay-as-you-go utility-based computing model
attracts many enterprises to build their information technology services and applications on the EC2-like cloud platform(s)
and many successfully achieve their business objectives, such as SmugMug, Twistage and so forth. An increasing number of
enterprises embrace Cloud computing by making their deployment plans or engaging in the process to migrate their services
or applications from a local data center to the Cloud computing platform like EC2, because this will greatly reduce their
infrastructure investments, simplify operations, and obtain better quality of information service.

However, the application migration process from the local data center to the Cloud environment turns out to be quite com-
plicated: error-prone, time-consuming and costly. Even worse, the application may not work correctly after the sophisticated
migration process. Existing approaches mainly complete this process in an ad-hoc manual manner and thus the chances of
error are very high. Thus how to migrate the applications to the Cloud platform correctly and effectively poses a critical
challenge for both the research community and the computing service industry.

In this paper, we investigate the factors and the causes that make the application migration process complicated and error-
prone through two case studies, which migrate Hadoop distributed system and RUBiUS multi-tier Internet service from a
local data center to Amazon EC2. We first discuss the typical configuration errors in each migration case study based on our
error categorization model, which classifies the configuration errors into seven categories. Then we describe the common
installation errors across both case studies. We illustrate each category of errors by examples through selecting a subset of
the typical errors observed in our experiments. We also present the statistical results on the error distributions in each case
study and across case studies. By analyzing operator errors in our case studies for migrating applications to cloud, we present
the design of CloudMig, a semi-automated migration validation system that offers effective configuration management to
simplify and facilitate the migration configuration process. The CloudMig system makes two unique contributions. First,
we develop a continual query based configuration policy checking system, which facilitate operators to weave important
configuration constraints into continual query policies and periodically run these policies to monitor the configuration changes

1

294 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

and detect and alert the possible configuration constraints violations. Second, CloudMig combines the continual query based
policy checking system with the template based installation automation system, offering effective ways to help operators
reduce the installation errors and increase the correctness assurance of application migration. Our experiments show that
CloudMig can effectively detect a majority of the configuration errors in the migration process.

In the following sections, we discuss the potential causes that lead to the complicated and error-prone nature of the
migration process in Section 2. We review the existing approaches and their limitations in Section 3. We report our operator-
based case studies in Section 4 through a series of experiments conducted on migrating distributed system applications and
multi-tier Internet services from local data center to Amazon EC2-like cloud, including the common migration problems
observed and the key insights for solving the problems. In Section 5 we present the design of the CloudMig system, which
provides both the configuration validation and installation automation to simplify the migration process.

2 Why Migration to Cloud is Complicated and Error-prone

There are some causes that make the migration process to Cloud complicated and error-prone. First, the computing
environmental changes render many environment dependent configurations invalid. For example, as the database server is
migrated from local data center to the Cloud, the IP address is possibly changed and this inevitably imposes the requirement
of updating the IP address in all the components that depend on this database server. The migration process incurs large
number of configuration update operations and even a single negligence of a single update may render the whole system out
of operation. Second, the deployment of today’s enterprise system consists of large number of different components. For
example, for load balancing purpose, there may be multiple web servers and application servers in the systems. Thus the
dependencies among the many components are rather complicated and can be broken very easily in the migration process.
Sorting the dependency out to restore the normal operational status of the applications may take much more time than the
migration process itself. Third, there are massive hidden controlling settings which may be broken inadvertently in the
migration process. For example, the access controls of different components may be rumpled, which confront the system to
the security threats. Lastly, the human operators in the complicated migration process may make many careless errors which
are very difficult to identify. Overall, the complicated deployments, the massive dependencies, and the lack of automation
make the migration process difficult and error-prone.

3 Related Work

Most of the existing migration approaches are either done manually or limited to only certain types of applications. For
example, the suggestions recommended by Opencrowd are rather high level and abstract and lack the concrete assistances to
the migration problem [4]. The solution provided by OfficetoCloud is only limited to the type of Microsoft Office products
and does not even scratch the surface of large application migration [5]. We argue that a systematic and realistic study on the
complexity of migrating large scale applications to Cloud is essential to direct the Cloud migration efforts. Furthermore, an
automatic and operational approach is highly demanded to simplify and facilitate the migration process.

Nagaraja et al. [8] proposed a testbed for inserting faults to study the error behaviors. In our study, we study operator
errors by migrating real practical applications from local data center to EC2. This forms a solid problem analysis context
which motivates the effective solution for the migration problem. Vieira and Madeira [9] proposed to assess recoverability
of database management systems through fault emulation and recovery procedure emulation. However, they assumed that
human operators had the fault identification capability. In our work, we assume that human operators only have certain error
identification capability but still cannot avoid errors.

Thus an automated configuration management system is highly demanded. There is already intensive research work on
design and evaluation of interactive systems with human operators involved in the field of human computer interaction. For
example, Maxion and Reeder in [7] studied the genesis of human operator errors and how to reduce them through user
interface.

4 Migration Operations and Error Model

In this section, we describe a series of application migration practices conducted in migrating typical applications from a
local data center to EC2 Cloud platform. We first introduce the experimental setup and then discuss the migration practices
on representative applications in details and in particular, we focus on the most common errors made during the migration
process. Based on our observations, we build the migration error model through the categorization of the migration errors.

2

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 295

4.1 Experiment Setup

Our experimental testbed involves both a local data center and EC2 Cloud. The local data center in College of Computing,
Georgia Institute of Technology, is called “loki”, which is a 12-node, 24-core Dell PowerEdge 1850 cluster. Because the
majority of today’s enterprise infrastructures are not virtualized, the physical to virtual (P2V) migration paradigm is the
mainstream for migrating applications to virtualized cloud datacenters. In this work, we focus on P2V migration.

We deliberately selected representative applications as migration subjects. These applications are first deployed in the
local data center and then operators are instructed to migrate from local data center to the Cloud. Our hypothesis is that
application migration to the cloud is a complicated and error-prone process and thus a semi-automated migration validation
system can significantly improve the efficiency and effectiveness of application migration. With the experimental setup across
the local data center and Amazon EC2 platform, we are able to deploy moderate enterprise scale of applications for migration
from a real local data center to the real Cloud platform and test the hypothesis under the setting of real workload, real massive
systems, and real powerful Cloud.

We selected two types of applications in the migration case studies: Hadoop and RUBiS. These represent typical types of
applications used in many enterprise computing systems today. The selection was made mainly by taking into account the
service type, the architecture design and the migration content.

• Hadoop [1], as a powerful distributed computing paradigm, has been increasingly attractive to many enterprises to
analyze large scale data generated daily, such as Facebook, Yahoo, etc. Many enterprises utilize Hadoop as a key com-
ponent to achieve data intelligence. Because of its distributed nature, the more nodes participating in the computation,
the more computation power is obtained in running Hadoop. Thus, when the computation resources are limited at
local site, enterprises tend to migrate their data intelligence applications to Cloud to scale out the computation. From
the aspect of service functionality, Hadoop is a very typical representation of data-intensive computation applications
and thus the migration study on Hadoop provides us good referential value on data intensive application migration
behaviors.
Hadoop consists of two subsystems, map-reduce computation subsystem and Hadoop Distributed File System (HDFS),
and thus migrating Hadoop from local data center to the Cloud includes both computation migration and file system
migration or data migration. Thus it is a good example of composite migration. From the angle of architecture design,
Hadoop adopts the typical master-slave structure in its two layers of subsystems. Namely, in map-reduce layer, a job
tracker manages multiple task trackers and in the HDFS layer, a NameNode manages multiple DataNodes. Thus the
dependency relationships among multiple system components form a typical tree structure. The migration study on
Hadoop reveals the major difficulties or pitfalls in migrating applications with tree-style dependency relationships.
In our P2V experiment setup, we deploy a 4-node physical Hadoop cluster, and designate one physical node to work
as NameNode in HDFS or job tracker in map-reduce and four physical nodes as DataNode in HDFS or task tracker in
map-reduce (the NameNode or job tracker also hosts a DataNode or task tracker). The Hadoop version we are using is
Hadoop-0.20.2. The migration job is to migrate source Hadoop cluster to the EC2 platform into a virtual cluster with
4 virtual nodes.

• RUBiS [2] is an emulation of multi-tiered Internet services. We selected RUBiS as a representative case of large scale
enterprise services. To achieve the scalability, enterprises often adopt the muti-tiered service architecture. Multiple
servers are used for receiving Web requests, managing business logic, and storing and managing data: Web tier,
application tier, and database tier. Depending on the workload, one can add or reduce the computation capability at a
certain tier by adding more servers or removing some existing servers. Concretely, a typical three tier setup consists of
using an Apache HTTP server, Tomcat application server and MYSQL database as the Web tier, application tier and
database tier respectively.
We selected RUBiS benchmark in our second migration case study by considering the following factors. First, Internet
service is a very basic and prevalent application type in daily life. E-commerce enterprises such as EBay, usually
adopts multi-tiered architecture as emulated by RUBiS to deploy their services and this renders RUBiS a representative
case of Internet service architecture migration. Second, the dependency relationship among the tiers of multi-tiered
services follows an acyclic graph structure, rather than a rigid tree structure, making it a good alternative in studying
the dependency relationship preservation during the migration process. Third, the migration content of this type of
application involves reallocation of application, logic and data and thus its migration provides a good case study on
rich content migration. In the P2V experiment setup, one machine installs the Apache HTTPD server as the first

3

296 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

tier, and two machines install the Tomcat application server as the second tier, and two machines install the MYSQL
database as the third tier.

In the following subsections, we introduce two migration case studies we have conducted: Hadoop migration and RUBiS
migration, focusing mainly on configuration errors and installations errors. The configuration errors are our primary focus
because they are the most frequent operator errors, some of which are also difficult to identify and correct. Installation errors
can be corrected or eliminated by more organized installation steps or semi-automated installation tools with more detailed
installation scripts and instructions.

We first discuss the typical configuration errors in each migration case study based on our error categorization model,
which classifies the configuration errors into seven categories: dependency preservation error, network connectivity error,
platform difference error, reliability error, shutdown and restart error, software and hardware compatibility error, and access
control and security error. Then we describe the common installation errors across both case studies. We illustrate each
category of errors by examples through selecting a subset of the typical errors observed in our experiments. Finally we
present the statistical results on the error distributions in each case study and across case studies. This experimental analytic
study of major errors lays a solid foundation for the design of a semi-automated migration validation system that offers
effective configuration management.

4.2 Hadoop Migration Study

In the Hadoop migration case study, we migrate the source Hadoop application from the local data center to EC2 platform.
This section discusses the typical configuration errors observed in this process.

Dependency Preservation. This is the most common error present in our experiments. Such a pitfall is very easy to
make and very difficult to discover and may lead to disastrous results. According to the degree of severe impacts of this type
of error on the deployment and migration, it can be further classified into four levels of errors.

The first level of errors is the “dependency preservation” error generated when the migration administrator fails to meet
the necessity of dependency preservation checking. Even if the dependency information presents explicitly, lacking of en-
forcement to review the component dependency may lead to stale dependency information. For example, in our experiments,
if the migration operator forgets to update the dependency information among the nodes in the Hadoop application, then the
DataNodes (or task tracker) after migration will still initiate the connection with the old NameNode (or job tracker). This
directly renders the system unoperational.

The second level of errors in Hadoop migration is due to incorrect formatting and typos in the dependency files. For
example, a typo hidden in the host name or IP address renders some DataNodes to be unable to locate the NameNodes.

The third level of the dependency preservation error type is due to incomplete updates of dependency constraints. For
example, one operator only updated the configuration files named “masters” and “slaves” which record the NameNode and
list of DataNodes respectively. However, Hadoop dependency information is also located in some other configuration files
such as “fs.default.name” in “core-site.xml” and “mapred.job.tracker” in mapred-site.xml. Thus Hadoop was still not able to
boot with the new NameNode. This is a typical pitfall in migration, and is also difficult to detect by the operator because the
operator may think that the whole dependency is updated and may spend intense efforts in locating faults in other locales.

The fourth level of the dependency preservation error type is due to inconsistency in updating the number of machines
in the system. Often, an insufficient number of updated machines may lead to unexpected errors that are hard to debug by
operators. For example, although the operator realizes the necessity to update the dependency constraints and also identifies
all the locations of constraints on a single node, the operator may fail to update all the machines in the system, which are
involved in the system-wide dependency constraints. For example, in Hadoop migration, if not all the DataNodes update
their dependency constraints, the system cannot run with the participation of all the nodes.

Network Connectivity Bearing the distributed computing nature, Hadoop involves intensive communication across
nodes in the sense that the NameNode keeps communication with DataNodes and job tracker communicates with task tracker
continuously. Thus for such system to work correctly, inter-connectivities among nodes become an indispensible prerequisite
condition. In our experiments, operators showed two types of network connectivity configuration errors after migrating
Hadoop from the local data center to EC2 in the P2V migraton paradigm.

The first type of such error is that some operators did not set the network to enable all the machines to be able to reach
each other over the network. For example, some operators forgot to update the file “/etc/hosts” and led to IP resolvement
problems. The second type of such error is local DNS resolution error. For example, some operators did not set the local
DNS resolution correctly, which led to the consequence that only the DataNodes residing in the same host as the master node
were booted after the migration.

4

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 297

Platform Difference The platform difference between EC2 Cloud and local data center also creates some errors in
migrating applications. These errors can be classified into three levels: security, communication, and incorrect instance
operation. In our experiment, when the applications are hosted in the local data center, the machines are protected by the
firewalls, and thus even if the operators set simple passwords, the security is complemented by the firewalls. However, when
the applications are migrated into the public Cloud, the machine can experience all kinds of attacks and thus too simple
passwords may render the virtual hosts susceptible to security threats. The second level of the platform difference error
type is related to the communication setting difference between cloud and local data center. For example, such error may
occur after the applications are migrated into EC2 Cloud, if the communication between two virtual instances is still set in
the same way as if the applications were hosted in the local data center. Concretely, for the operator in one virtual instance
to ssh another virtual instance, the identify file which is granted by Amazon must be provided. Without the identify file,
the communication within virtual instance cannot be set correctly. The third level of the platform difference error type is
rooted in the difference between virtual instance management infrastructures. In the experiments, there were operators who
terminated an instance but his actual intention is to stop the instance. In EC2 platform, termination of an instance will lead
to the elimination of the virtual instance from Cloud and thus all the applications installed and all the data stored within the
virtual instance are lost if data is not backed up in persistent storage like Amazon Elastic Block storage. Thus, this poses
critical risks on the instance operations, because a wrong instance operation may wipe out all the applications and data.

Reliability Error: In order to achieve fault tolerance and performance improvements, many enterprise applications like
Hadoop and multi-tiered Internet services replicate its data or components. For example, in Hadoop, data is replicated in
certain number of DataNodes, while in multi-tiered Internet services, there may exist multiple application servers or database
servers. Thus after the migation, if the replication degree is not set correctly, either the migrated application fails to work
correctly or the fault tolerance level is compromised. For example, in the experiments, there were cases in which the operator
made errors that set the replication degree more than the total number of DataNodes in the system. The reliability errors are
sometimes latent errors.

Shutdown and Restart: This type of error means that the shutdown or restart operation in the migration process may
cause errors if not operating correctly. For example, a common data consistency error may occur if Hadoop is incorrectly
shuts down the HDFS. More seriously,a shutdown or restart error sometimes may compromise the source system. In our
experiment, when the dependency graph was not updated consistently and the source cluster was not shut down completely,
the destination Hadoop cluster initiated to connect to the source cluster and acted as the client to connect to the source cluster.
As a result, all the operations issued by the destination cluster actually manipulated the data in the source cluster and thus the
source cluster data was contaminated. Such errors may create disastrous impacts on the source cluster and are dangerous if
the configuration errors are not detected in time.

Software and Hardware Compatibility: This type of error is less common in Hadoop migration than in RUBiS migration
partly because Hadoop is built on top of Java and thus has better interoperability and also Hadoop involves a relatively smaller
number of different components than RUBiS. Sometimes, the difference in software versions may lead to errors. For instance,
the initial Hadoop version selected by one operator was Hadoop 0.19, which showed bugs in the physical machine. After the
operator turned to the latest 0.20.2 version, the issue disappeared.

Access Control and Security: It is noted that a single node Hadoop cluster can be set and migrated without root access.
However, because a multi-node Hadoop cluster needs to change the network inter-connectivity and solve the local DNS
resolution issue, the root access privilege is necessary. One operator assumed that the root privilege was not necessary for
multi-node Hadoop installation and was blocked due to the network connectivity problem for about one hour and then sought
help for access to the root privilege.

4.3 RUBiS Migration Study

In the RUBiS migration experiments, we migrate a RUBiS system with one web server and two application servers and
two database servers from the local data center to EC2 Cloud. We below discuss the configuration errors present in the
experiments in terms of the seven types of error categories.

Dependency Preservation: Similar to Hadoop migration, the dependency preservation error type is also the most com-
mon error in RUBiS migration. Because RUBiS has more intensive dependency among different components than Hadoop,
operators made more configuration errors in the migration. For different tiers of a RUBiS system to run cooperatively, de-
pendency constraints need to be specified explicitly in relevant configuration locales. For example, for each Tomcat server,
its relevant information needs to be recorded in the configuration file named “ workers.properties” in Apache HTTPD server.
The MYSQL database server needs to be recorded in the RUBiS configuration file named “mysql.properties”. Thus an error

5

298 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

in any of these dependency configuration files will lead to the operation error. In our experiments, operators made different
kinds of dependency errors. For example, some operator migrated the application but forgot to update the Tomcat server
name in workers.properties. As a consequence, although the Apache HTTPD server was running correctly, RUBiS was not
operating correctly because the Tomcat server could not be connected. One operator could not find the configuration file
location to update the MYSQL database server information in RUBiS residing in the same host as Tomcat and this led to
errors and the operator therefore gave up the installation.

Network Connectivity: Relative to Hadoop migration, there is less node interoperability in a multi-tiered system like
RUBiS, and different tiers present less needs on network connectivity, thus the network connectivity configuration errors are
less frequently seen in RUBiS migration. One typical error was seen when the operator was connecting the Cloud virtual
instance, he forgot to provide the identity file to enable two virtual instances to connect via ssh.

Platform Difference : This error type turns out to be a serious fundamental concern in RUBiS migration. Because
sometimes the instance rebooting operation may change the domain name, public IP and internal IP, even if the multi-tiered
service is migrated successfully, a rebooting operation may render the application to service interruption. One operator
finished the migration and after fixed a few configuration errors, the application was working correctly in EC2. After we
turned off the system on EC2 for one day and then rebooted the service, we found that because the domain name had totally
changed, all of the IP addresses or host name information in configuration files needed to be updated.

Reliability Error: Due to the widely used replication in enterprise systems, it is typical that the system may have
more than one application server and/or more than one database server. One operator spelt the name wrong for the second
Tomcat server, but because there remained a working Tomcat server due to replication, the service was still going on without
interruption. However, a hidden error as such was hidden inside the system and it may cause unexpected errors that could
lead to detrimental damage and yet is hard to debug and correct. This further validates our argument that configuration error
detection and correction tools are critical for cloud migration validation.

Shutdown and Restart: This type of error shows that incorrect server start or shutdown operation in multi-tiered services
may render the whole service unavailable. For example, the Ubuntu virtual instance selected for the MYSQL tier has a dif-
ferent version of MYSQL database installed by default. One operator forgot to shut down and remove the default installation
first before installing the new version of MYSQL and thus caused errors. The operator spent about half an hour to find the
issuses and fixed them. Also we observed a couple of incidents where the operator forgot to boot the Tomcat server first
before the shutdown operation, thus causing errors that are time consuming to debug.

Software and Hardware Compatability: this type of error also happens frequently in RUBiS migration. The physical
machine is 64 bits, while one operator selected the 32 bits version of mod jk (the component used to forward the HTTP
request from Apache HTTPD server to Tomcat server) and thus incompatibility issues occured. The operator was stuck for
about two hours, and finally identified the version error. After the software version was changed into 64 bits, the operator
successfully fixed the error. A similar error was observed where an operator selected an arbitrary MYSQL version which
took about one hour for the failed installation and then switched to a newer version before finally successfully installed the
MYSQL database server.

Access Control and Security: This type of error also occurs frequently in RUBiS migration. For example, the virtual
instance in EC2 Cloud bears the default feature of all ports closed. To enable the SSH operation possible, the security group
where the virtual instance resides must open the corresponding port 22. Also one operator configured the Apache HTTPD
server successfully but the Web server was unable to connect through port 80 and it took about 30 mins to identify the
restrictions from EC2 documentation. Similar errors also happened for port 8080 which was for accessing Tomcat server.
Another interesting error is that one operator set up the Apache HTTPD server, but forgot to set the root directory to be
accessible and thus the index.html was not accessible. The operator reinstalled the HTTPD server but still did not discover
the error. With the help of our configuration assistant, this operator finally identified the error and changed the access
permission and fixed the error. We also found that operators also made errors in granting privileges to different users and one
case was solved by seeking help in the MYSQL documentation.

4.4 Installation Errors

In our experiments-based case studies, we observe that operators may make all kinds of errors in installation or redeploy-
ment of the applications in Cloud. More importantly, these errors seem to be common across all types of applications. In this
section we classify these errors into the following categories: Context information error: This is a very common installa-
tion error type. A typical example is that operators forget the context information they have used in the past installation. For
example, the operators remembered the wrong path to install their applications and have to reinstall the applications from

6

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 299

scratch. Also if there are no automatic installation scripts or an incorrect or incomplete installation script is used, it can be a
very frustrating experience with the same procedures repeated again and again. If the scale of the computing system is large,
then the repeated installation process turns out to be a heavy burden for system operators. Thus a template based installation
approach is highly recommended.

Environment compatibility error : In this migration case study, before any application can be installed, the computing
environment compatibility needs to be ensured at both the hardware and software level. For example, there were migration
failures created due to the small available disk space in virtual instance in migrating RUBiS. A similar errors is that the
operator created a virtual instance with 32 bits operating system, while the application was a 64 bits version. Thus, it
is necessary to check the environment compatibility before the application installation starts. An automatic environment
checking process helps to reduce the errors caused by incorrect environment settings.

Prerequisite resource checking error : This type of error is originated from the fact that every application depends on
a certain set of prerequisite facilities. For example, the installations of Hadoop and Tomcat server presume the installation of
Java. In the experiments, we observed that the migration or installation process were prone to be interrupted by the ignorance
of installing prerequisite standard facilities. For example, the compilation process needs to restart again due the lack of
“gcc” installation in the system. Thus, a complete check-list of the prerequisite resources or facilities can help us reduce the
interruptions of the migration process.

Application installation error: this error is the most common error type experienced by the operators. The concrete
application installation process usually consists of multiple procedures. We found that the operator made many repeated
errors even when the installation process for the same application was almost the same. For example, operators forgot the
building location of the applications. Thus a template based application installation process will help facilitate the installation
process.

4.5 Migration Error Distribution Analysis

In this section, we analyze the error distributions for each specific application and the error distribution across the appli-
cations.

Figure 1. Hadoop migration error

Figure 1 and Figure 2 show
the number of errors and per-
centage of error distribution
in the Hadoop migration case
study. In both figures, the X-
axis indicates the error types
as we analyzed in the previous
sections. The Y-axis in Figure 1
shows the number of errors for
each particular error type. The
Y-axis in Figure 2 shows the
share of each error type in terms
of the percentage over the to-
tal number of errors. In this set
of experiments, there were a to-
tal of 24 errors and some errors
cause violation in multiple error
categories. In comparison, the
dependency preservation error
happened most frequently. 42%

of the errors belong to this error
type with 10 occurrences. Op-
erators typically made all four
levels of dependency preserva-
tion errors as we discussed in
Section 4.2. These kinds of errors took a long time for operators to detect. For example, an incomplete dependency constraint
checking error took one operator two and a half hours to identify the cause of the error and fix it. Network connectivity error

7

300 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Figure 2. Hadoop migration error distribu-
tion. The legend lists the error types in the
decreasing frequency order.

Figure 3. RUBiS error distribution. The leg-
end lists the error types in the decreasing fre-
quency order.

Figure 4. RUBiS migration error

and platform difference error were the next most frequent error types, each taking 17% of the total errors. Network connec-
tivity errors included local DNS resolution and IP address update errors. One typical platform difference error was that the
termination of an instance led to the data loss. Interesting to note is that these three types of errors take 76% of the total errors
and are the dominating types of the error occurrences observed in the experiments we conducted.

Figure 4 and Figure 3 show the number of error occurrences and the percentage of error distribution for RUBiS migration
case study respectively. There were a total of 26 error occurrences observed in this process and some errors fall into several

8

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 301

error categories. The dependency preservation error and access control and security errors were the two most frequent error
types, each with 8 occurrences, taking 31% of the total erorrs. Together, both error types covered 62% of all the errors and
dominated the error occurrences. It is interesting to note that the distribution of errors in the RUBiS migration case study was
very different from the distribution in the Hadoop migration case study. For example, the number of access and security errors
in RUBiS was 4 times the number of errors of this type in Hadoop migration. This is because RUBiS migration demanded the
correct access control settings for many more entities than Hadoop. Not surprisingly, the majority of the access control errors
were file access permission errors. This is because changing the file access permission is a common operation in setting up
web services and sometimes operators forgot to validate whether the access permissions were set correctly or not. Also when
there were errors and the system could not run correctly, the operators often ignored the possibility of this type of simple errors
and thus led to longer time spent on error identification. For example, one error of this type took more than 1 hour to identify.
Also there were more ports to open in RUBiS migration than in Hadoop migration, which also led to the high frequency
of access control errors in RUBiS migration. RUBiS migration presented more software and hardware compatibility errors
than Hadoop migration because the number of different components that were involved in RUBiS application is, relatively
speaking, much more than in the typical Hadoop migration. Similarly, there were more “shutdown/restart” errors in the
RUBiS migration. On the other hand, Hadoop migration presented more network connectivity errors and platform difference
errors than RUBiS migration, because Hadoop nodes require more tightly coupled connectivity than the nodes in RUBiS. For
example, the master node needs to have direct access without password control to all of its slave nodes.

Figure 5. Overall migration error

Figure 5 and Figure 6 sum-
marize across Hadoop migra-
tion and RUBiS migration case
studies by showing the num-
ber of error occurrences and
the percentage of error distri-
bution, respectively.The depen-
dency preservation errors are
the most frequent error occur-
rences and accounted for 36%

of the total errors. In practice,
this was also the type of error
that on average took the longest
time to identify and fix. This
is primarily because depen-
dency constraints are widely
distributed among system con-
figurations, it is very prone to
be broken by changes to the
common configuration param-
eters. The second biggest er-
ror source was the “access con-
trol and security” errors, which
accounted for 20% of the total
number of error occurences. It was very easy for operators to change the file permissions to incorrect settings or some
other habits which were fitting in local data center might render the application susceptible to security threats in the Cloud
environment. The operational or environmental differences between Cloud and local data centers formed the third largest
source of error, accounting for 12% of all the errors. Many common operations in local data center might lead to errors in
Cloud if no adjustments to Cloud environment were made. These three types of errors dominated the error distribution, and
accumulatively accounted for 68% of the total errors. In addition to these three types of errors, network connectivity was also
an important source of errors, accounting for 10% of the total errors, because of the heavy inter-nodes operations in many
enterprise applications today. The rest of errors accounted for 32% of the total errors. These error distributions provide a
good reference model for us to build a solid testbed to test the design of our CloudMig migration validation approach to be
presented in the subsequent sections of this paper. We argue that a cloud migration validation system should be equipped with
an effective configuration management component that not only provides a mechanism to reduce the configuration errors, but
also equips the system with active configuration error detection and debugging as well as semi-automated error correction

9

302 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

and repairs.

5 Migration Validation with CloudMig

Figure 6. Overall migration error distribution. The legend lists the
error types in the decreasing frequency order.

The case studies showed that
the installation mistakes and
configuration errors were the
two major sources of errors
in migrating applications from
local data centers to Cloud.
Thus a migration management
framework is highly recom-
mended to provide the installa-
tion automation and configura-
tion validation. We present the
design of CloudMig, a semi-
automated configuration man-
agement system, which utilizes
a “template” to simplify the
large scale enterprise system in-
stallation process and utilizes a
“policy” as an effective means
to capture configuration depen-
dency constraints, validate the
configuration correctness, and
monitor and respond to the con-
figuration changes.

The architecture design of
the CloudMig system aims at
coordinating the migration pro-
cess across different data centers by utilizing template-based installation procedures to simplify the migration process and
utilizing policy-based configuration management to capture and enforce configuration related dependency constraints and
improve migration assurance.

The first prototype of CloudMig configuration management and validation system consists of four main components: the
centralized configuration management engine, the client-based local configuration management engine, the configuration
template management tool and the configuration policy management tool. The template model and the configuration policy
model form the core of CloudMig for semi-automated installation and configuration validation system. In the subsequent
sections we will briefly describe the functionality of each of these four components.

5.1 Configuration Template Model

CloudMig uses a template as an effective mechanism to simplify the installation process. Template is a pre-formatted
script-based example file containing place holders for dynamic and application-specific information to be substituted at
application migration time for concrete use.

In CloudMig, the installation and configuration management is operating in the unit of the application. That is, each
application corresponds to a template set and a validation policy set. The central management server is responsible to manage
the collection of templates and configurations on a per application basis and provides migration planning for the migration
process.

Recall that in the observations obtained from our migration experiments in Section 4, one big obstacle and source of errors
in application migration is the installation and configuration process which is also a recurring process in system deployment
and application migration. We propose to use the template approach to reduce the complexities of the installation process
and reduce the chances of errors. An installation template is defined by an installation script with place holders for dynamic
and application specific information. Templates simplify the recurring installation practice of particular applications by

10

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 303

substituting the dynamic information with new values. For example, in an enterprise system with 100 nodes, there will
be multiple applications ranging from MYSQL database nodes, Tomcat application server nodes, to Hadoop distributed
system nodes and so forth. Distributed applications may span and extend to more nodes on demand to scale out. For each
application, its installation templates are stored in the installation template repository. These templates are sorted by the
application type and an application identifier. The intuitive idea of template is that through information abstraction, the
template can be used and refined for many similar nodes through parameter substitution to simplify the installation process
for large scale systems. For example, if a Hadoop system consists of 100 DataNodes, then only a single installation template
is stored in the installation template repository and each DataNode will receive the same copy of the installation template
with only parameter substitution efforts needed before running the installation scripts to set up the DataNode component in
each individual node. The configuration dependency constraints are defined in the policy repository to be described in the
next subsection. CloudMig classifies the templates into the following four types:

1. Context dictionary: This is the template specifying the context information about the application installation. For
example, the installation path, the preassumed Java package version, etc. A context dictionary template can be as simple
as a collection of the key-value pairs. Users specify the concrete values before a particular application installation.
Dynamic place holders for certain key context information achieve the installation flexibility and increase the ability
to find out the relevant installation information in the presence of system failures.

2. Standard facility checklist template: This is the script template to check the prerequisites to install the application.
Usually these are some standard facilities, such as Java or OpenSSH. Typical checklists include those for verifying
the Java path setting, checking installation package existence, and so on. These checklists are common to many
applications and are prerequisites for the success of installing the applications and thus performing a template check
before the actual installation can effectively reduce the errors caused by ignorance of the checklist items. For example,
both Hadoop and Tomcat server rely on the correct Java path setting and thus the correct setting of Java path is the
prerequisite of successfully installing these two applications. In CloudMig, we collect and maintain such templates
in a template library, which is shared by multiple applications. Running the checklist validation check can effectively
speed up the installation process by reducing the amount of errors caused by carelessness on prerequisites.

3. Local resource checklist template: This is the script template to check the hidden conditions for an application to be
installed. A typical example is to perform the check of whether or not there is enough available disk space quota for a
given application. Similarly, such resource checklist templates are also organized by application type and application
identifier in the template library and utilized by the configuration management client to reduce the local installation
errors and installation delay.

4. Application installation template: This is the script template used to install a particular application. The context
dictionary is included as a component of the template. Organizing installation templates simplifies the installation
process and thus reduces the overhead in recurring installations and migration deployments.

5.2 Configuration Policy Model

In this section, we first introduce the basic concept of configuration policy, which plays the key role in capturing and
specifying configuration dependency constraints and monitoring and detecting configuration anomalies in large enterprise
application migration. Then we introduce the concept of continual query (CQ) and the design of a CQ enabled configuration
policy enforcement model.

5.2.1 Modeling Dependency Constraints with Configuration Policies

A configuration policy defines an application-specific configuration dependency constraint. Here is an example of such
constraints for RUBiS: for each Tomcat server, its relevant information needs to be specified explicitly in the configuration
file named “workers.properties” in Apache HTTPD server. Configuration files are usually application-specific and usually
specify the settings of the system parameters, the dependencies among the system components and thus directly impact the
way of how the system is running. As enterprise applications scale out, the number of components may increase rapidly and
the correlations among the system components evolve with added complexity. In term of complexity, configuration files for a
large system may cover many aspects of the system configuration, ranging from host system information, to network setting,
to security protocol and so on. Any typo or error may disable the operational behavior of the whole application system

11

304 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

as we showed and analyzed in the previous experiments. Configuration setting and management are usually a long term
practice, starting from the time when the application is set up until the time when the application is ceased its use. During
this long application life cycle, different operators may be involved in the configuration management practices and operate
on the configuration settings based on their understandings, thus it further increases the probability of errors in configuration
management. In order to fully utilize resources, enterprises may bundle multiple applications to run on top of a single physical
node, and the addition of new applications may necessitate the need to change the configurations of existing applications.
Security threats such as viruses, also pose demands to effective configuration monitoring and management.

Figure 7. CloudMig Architecture Design

In CloudMig, we propose to use policy
as an effective means of ensuring the con-
straints of configurations to be captured cor-
rectly and enforced consistently. A policy
can be viewed as a specialized tool to spec-
ify the constraints on the configuration of
a specific application. It specifies the con-
straints to which the application configura-
tion must conform in order to assure that
the whole application is migrated correctly
to run in the new environment. For exam-
ple, in the Hadoop system, the configuration
constraint that “the replication degree can-
not exceed the number of DataNodes” can
be represented as a Hadoop specific config-
uration policy. The basic idea of introduc-
ing the policy-based configuration manage-
ment model is that if operators are equipped
with a migration configuration tool to define
the constraints that configuration must fol-
low in the form of policies, then running the
policy enforcement checks at a certain fre-
quency will help to detect and eliminate cer-
tain types of errors, even although errors are
unavoidable. Here are a few configuration
policy examples that operators may have in
migrating a Hadoop system.

1. The replication degree can not be larger than the number of DataNodes

2. There is only one master node

3. The master node of Hadoop cluster should be named “dummy1”

4. The task tracker node should be named “dummy2”

As the system evolves and the configuration repository grows, performing such checking manually will become a heavy
and error-prone process. For example, in enterprise Internet service systems, there may be hundreds of nodes, and the
configuration of each node needs to follow certain constraints. For load balancing purpose, different Apache HTTPD servers
correspond to different sets of Tomcat servers. Incorrect setting of relevant configuration entries will directly lead to an
unbalanced system and even cause the system to crash when workload burst happens. With thousands of configuration entries,
hundreds of nodes, and many applications, it is impractical if not impossible to perform manual configuration correctness
checking and error correction. We argue that a semi-automated configuration constraint checking framework can greatly
simplify the migration configuration and validation management of large scale enterprise systems. In CloudMig, we advocate
the use of continual query as the basic mechanism for automating the configuration validation process of operator-defined
configuration policies. In the next section we will describe how CQ-enabled configuration policy management engine can
improve the error detection and debugging efficiency, thus reducing the complexity of migrating applications from a local
data center to Cloud.

12

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 305

5.2.2 Continual Query Based Policy Model

In CloudMig, we propose a continual query based policy specification and enforcement model. A continual query (CQ) [6]
is defined as a triple in the form of (Query, Trigger, Stop). A continual query (CQ) can be seen as a standing query, in which
the trigger component specifies the monitoring condition and is being evaluated periodically upon the installation of the CQ
and whenever the trigger condition is true, the query component will be executed. The Stop component defines the condition
to terminate the execution of the CQ. Trigger condition can be either time-based or content-based, such as “checking the free
disk space every hour or trigger a configuration action when the free disk space is less than 1GB”.

In CloudMig, we define a policy in the format of continual query and refer to the configuration policy as the Contiual
Query Policy (CQP), denoted by : CQP(policyID, appName, query, trigger, action, stopCondition). Each element of the CQP
is defined as follows:

1. policyID is the unique numeric identifier of the policy.

2. appName is the name of the application that is installed or migrated to the host machine.

3. query refers to the search of matching policies and the execution of policy checking. The query can be a Boolean
expression over a simple key-value repository or SQL-like query or XQuery on a relational database of policies.

4. trigger is the condition upon which the policy query will be executed. Triggers can be classified into time-based or
content-based.

5. action indicates the action to be taken upon the query results. It can be a warning flag in the configuration table or an
warning message sent by email or displayed on the command line of an operator’s terminal.

6. stopCondition is the condition upon which the CQP will stop to execute.

An example CQ-based policy is to check whether the replication degree is larger than the number of DataNodes in Hadoop
prior to migration or changing the replica factor (replication degree) or reducing the number of DataNodes. Whenever
the check returns a true value, send an alert to re-configure the system. Clearly, the query component is responsible for
checking if the replication degree is larger than the number of DataNodes in Hadoop. The trigger condition is Hadoop
migration or changing the replica factor (replication degree) or reducing the number of DataNodes. The action is defined as
re-configuration of the Hadoop system upon the true value of the policy checking. In CloudMig, we introduce default stop
condition of one month for all CQ-enabled configuration policies.

5.3 CloudMig Server side Template Management and Policy Management

CloudMig aims at managing the installation templates and configuration policies to simplify the migration for large scale
enterprise systems which may be comprised of thousands of nodes with multi-tier applications. Each application has its own
configuration policy set and installation template set and the whole system needs to manage a large collection of configuration
policies and installation templates. The CloudMig server side configuration management system helps to manage the large
collection of templates and configuration policies effectively by providing system administrators (operators) with convenient
tools to operate on the templates and policies. Typical operations include policy or template search, indexing, application
specific packaging and shipping, to name a few. Detaching the template and policy management from individual application
and utilizing a centralized server also improves the reliability of CloudMig in the presence of individual node failures.

In CloudMig, the configuration management server operates at the unit of a single application. Each application corre-
sponds to an installation template set and a configuration validation policy set. The central management server is responsible
for managing the large collection of configurations on a per application basis and providing migration planning to speed up
the migration process and increase the assurance of application migration. Concretely, the configuration management server
mainly coordinate the tasks of the installation template management engine and the configuration policy management engine.
Installation Template Management Engine.

As shown in Figure 7, the installation template management engine is the system component which is responsible for
creating template, update template, advise the template for installation. It consists of a central template repository and a
template advisor. The template repository stores and maintains the template collections of all the applications. The template
advisor provides the operators with the template manipulation capabilities such as creating, updating, deleting, searching and

13

306 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Table 1. Migration Error Detection Rate
Migration Type Error Detection Rate
Hadoop migration 83%
RUBiS migration 55%
all migrations 70%

indexing templates over the template repository. On a per application basis, operators may create an application template
set, add new templates to the set, update templates from this set or delete templates. The template advisor assumes the job
to search and dispatch templates for new installations and propagate template updates to corresponding application hosting
nodes. For example, during the process of RUBiS installation, for a specific node, the template advisor dispatches the
appropriate template depending on the server type (web server, application server or database server) and transmits (ships)
the new installation set to the particular node.

Concretely, for each application, the central installation template management engine builds the context library which
stores all the source information in the key-value pairs, and selects a collection of standard facility checklist templates which
apply to the particular application, and pick a set of local resource checklist templates as the checklist collection for the
application, and finally builds the specific application installation template. The central management engine then bundles the
collections of templates and policies for the particular application and transmits the bundle to the client installation template
manager to start the installation instance.

Configuration Policy Management Engine.
As the central management unit for the policies, the policy engine consists of four components: policy repository, config-
uration repository, policy advisor, and action manager. Together they cooperate to provide the service to create, maintain,
dispatch and monitor policies and execute the corresponding actions based on the policy execution results. Concretely, we
below describe the different components of the policy engine:

1. The policy repository is the central store where all the policies for all the applications are maintained. It is also
organized on a per application basis. Each application corresponds to a specific policy set. This policy set is open to
addition, update, or delete operations. Each policy corresponds to a constraint set on the application.

2. The policy advisor works on the policies in the policy repository directly and provides the functionalities for application
operators to express the constraints in the form of CQ-based policy. Application operators creates policies through this
interface.

3. The configuration repository stores all the configuration files on a per application basis. It ships the configurations from
the CloudMig configuration server to the local configuration repository on the individual node (cient) of the system.

4. The action manager handles the validation results from the policy validator running on client and triggers the corre-
sponding action based on certain policy query result, in the form of an alert through message posting or email or other
notification methods.

5.4 CloudMig Configuration Management Client

The CloudMig configuration management client is running at each node of a distributed or multi-tier system, which is
responsible for managing the configuration policies related to the node locally. Corresponding to the CloudMig configuration
management engine at the server side, CloudMig client works as a thin local manager for the templates and policies which
only apply to a particular node. A client engine mainly consists of two components: client template manager and client policy
manager.
Client Template Manager.
Client template manager manages the templates for all the applications installed in the host node on per application basis. It
consists of three components: template receiver, template operator and local template repository. The template receiver re-
ceives the templates from the remote CloudMig configuration management server and delivers the templates to local template
manager. The local template manager installs the application based on the template with necessary substitution operations.
The local template manager is also responsible for managing the local template repository which stores all the templates for
the applications that reside at this node.

14

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 307

Figure 8. Hadoop error detection

The concrete process of tem-
plate based installation works
as follows: after the client
template manager receives
the collection of installation
templates from the server side
installation template man-
agement engine, it will run
the local resource checklist
templates first to detect if there
are any prerequisite checklist
items which are not met. For
example, it checks if the avail-
able disk space is less than the
amount needed to install the
application, or if the user has
the access permissions to the
installation path, etc. Next,
the standard facility checklist
template will run to detect
if all the standard facilities
are installed or not. Finally,
the dynamic information in
application specific templates
are substituted and the context dictionary is integrated to run this normal installation process.

Client Policy Manager.

Figure 9. RUBiS error detection

There is a client policy man-
ager residing together with the
host node to manage the poli-
cies for the local node. It
mainly consists of policy re-
ceiver, policy validator, lo-
cal policy repository and lo-
cal config repository. The pol-
icy receiver receives the poli-
cies transmitted from the pol-
icy advisor in the central policy
server, and stores the policies
in the local policy repository.
The local config repository re-
ceives the configuration data di-
rectly from the central config
repository. The local policy
validator runs each policy. It
retrieves the policy from local
policy repository and searches
the related configuration data to
run the policy upon the config-
uration data. The policy valida-
tor transmits the validation re-
sults to the action manager in

15

308 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

the central server to take the alert actions.

6 Case Studies with CloudMig

Figure 10. Overall migration error detection

We run CloudMig with the
same set of operators on the
same set of case studies af-
ter the manual migration pro-
cess is done (recall Section 4).
We count the number of er-
rors that are detected by Cloud-
Mig configuration management
and installation automation sys-
tem. We show through a set of
experimental results below that
CloudMig overall achieves high
error detection rate.

Figure 8 shows the error de-
tection results for Hadoop mi-
gration case study. As one can
see, the configuration checking
system can detect all the depen-
dency preservation errors, net-
work connectivity errors, shut-
down restart errors, and all the
access control errors. This con-
firms the effectiveness of the
proposed system, in that it can
detect the majority of the con-
figuration errors. The two types of error that can not be fully detected are platform difference error and software/hardware
compatibility errors. For platform difference errors, this is because the special property of the platform difference error
requires the operators to fully understand the uniqueness of the particular Cloud platform first. As long as the operator
understands the platform sufficiently, for example, by lessons learned from others or policies shared by others, we believe
that such errors can be reduced significantly as well. The reason that current implementation of CloudMig cannot de-
tect software/hardware compatibility errors notably is due to the quality of the default configuration data which lacks of
application-specific software/hardware compatibility information. Although in the first phase of implementation, we mainly
focus on the configuration checking triggered by the original configuration data, we believe that as operators weave more
compatibility policies into CloudMig policy engine, such type of errors can also be reduced significantly. As Table 1 shows,
totally CloudMig could detect 83% of the errors in Hadoop migration.

Figure 9 shows the error detection result for RUBiS migration case study. In this study, we can see that CloudMig can
detect all the dependency preservation errors and reliability errors.

However, because multi-tiered Internet service system involves a higher number of different applications, it leads to more
complicated software/hardware compatibility issues compared to the case of Hadoop migration. In the experiments reported
in this paper we are focusing on the configuration driven by the default configuration policies, which lacks of adequate
software/hardware compatibility policies for RUBiS, thus CloudMig system did not detect the software/hardware errors. On
the other hand, this result also indicates that in the RUBiS migration process, the operators are suggested to pay special
attention to the software/hardware compatibility issues because such errors are difficult to detect with automated tools. It
is interesting to note that the CloudMig was able to detect only half of the access control errors in RUBiS. This is because
these errors include MYSQL privilege grant operations which are embedded in the application itself and the CloudMig
configuration validation tool cannot intervene with the internal operations of MYSQL. Overall, CloudMig detected 55% of
the errors in RUBiS migration as shown in Table 1.

16

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 309

Figure 11. Overall migration error detection ratio

Figure 12. Overall migration error detection percentage. The legend
lists the error types in the decreasing percentage order.

Figure 10 and Figure 11
show the number of detected er-
rors and the error detection ra-
tio of each error type summa-
rized across the Hadoop migra-
tion case study and RUBiS mi-
gration case study respectively.
Overall, CloudMig can detect
all the dependency preservation
and reliability errors and 80%

of the network errors and 60%

of the access control and se-
curity errors. In total, these
four types of errors accounted
for 74% of the total error oc-
currences. For shutdown/restart
errors, CloudMig detected 50%

of such errors and did not detect
the software/hardware compat-
ibility errors. This is be-
cause the application config-
uration data usually contains
less information related with
shutdown/restart operations or
software/hardware compatibil-
ity constraints and this fact
makes the configuration checking on these types of errors difficult without adding additional configuration policies. Fig-
ure 12 shows the percentage of error types in the total number of detected errors. One can see that 51% of the detected errors
are dependency preservation errors, and 17% of the detected errors are network errors. Table 1 shows that totally across all
the migrations, the error detection rate of CloudMig system is 70%.

Overall these experimental results show the efficacy of CloudMig in reducing the migration configuration errors, simpli-

17

310 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

fying the migration process and increasing the level of assurance of migration correctness.

7 Conclusion

We have discussed the system migration challenge faced by enterprises in migrating local data center applications to the
Cloud platform. We analyze why such migration is a complicated and error-prone process and pointed out the limitations of
the existing approaches to address this problem. Then we introduce the operator-based experimental study conducted over
two representative systems (Hadoop and RUBiS) to investigate the error sources. From these experiments, we build the error
classification model and analyze the demands for an semi-automated configuration management and migration validation
system. Based on the operator study, we design the CloudMig system with two unique characteristics. First, we develop
a continual query based configuration policy checking system, which facilitate operators to weave important configuration
constraints into continual query policies and periodically run these policies to monitor the configuration changes and detect
and alert the possible configuration constraints violations. In addition, CloudMig combines the continual query based policy
checking system with the template based installation automation system, offering effective ways to help operators reduce the
installation errors and increase the correctness assurance of application migration. Our experiments show that CloudMig can
effectively detect a majority of the configuration errors in the migration process.

8 Aknowlegement

This work is partly sponsored by grants from NSF CISE NetSE program, CyberTrust program, Cross-cutting program and
an IBM faculty award, an IBM SUR grant and a grant from Intel Research Council.

References

[1] Hadoop project. http://hadoop.apache.org/.
[2] RUBiS benchmark. http://rubis.ow2.org/.
[3] Amazon EC2. http://aws.amazon.com/ec2/, April 2011.
[4] Cloud Migration. http://www.opencrowd.com/services/migration.php, April 2011.
[5] Office Cloud. http://www.officetocloud.com, April 2011.
[6] L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven information delivery. Knowledge and Data

Engineering, IEEE Transactions on, 11(4):610 –628, jul/aug 1999.
[7] R. A. Maxion and R. W. Reeder. Improving user-interface dependability through mitigation of human error. Int. J.

Hum.-Comput. Stud., 63:25–50, July 2005.
[8] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen. Understanding and dealing with operator mistakes

in internet services. In In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation
(OSDI 04, 2004.

[9] M. Vieira and H. Madeira. Recovery and performance balance of a cots dbms in the presence of operator faults. In
Proceedings of the 2002 International Conference on Dependable Systems and Networks, DSN ’02, pages 615–626,
Washington, DC, USA, 2002. IEEE Computer Society.

18

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 311

Provenance for System Troubleshooting

Marc Chiarini
Harvard SEAS

chiarini@seas.harvard.edu

Abstract

System administrators use a variety of techniques to
track down and repair (or avoid) problems that occur in
the systems under their purview. Analyzing log files,
cross-correlating events on different machines, establish-
ing liveness and performance monitors, and automating
configuration procedures are just a few of the approaches
used to stave off entropy. These efforts are often stymied
by the presence of hidden dependencies between com-
ponents in a system (e.g., processes, pipes, files, etc). In
this paper we argue that system-level provenance (meta-
data that records the history of files, pipes, processes and
other system-level objects) can help expose these depen-
dencies, giving system administrators a more complete
picture of component interactions, thus easing the task
of troubleshooting.

KEYWORDS: troubleshooting; diagnosis; depen-
dencies; provenance; mental models.

1 Introduction

Most highly experienced system administrators can re-
member a time in their career when they were virtu-
ally clueless about the configuration of their systems.
Whether learning on the job as a junior sysadmin or
walking into a brand new infrastructure, nobody is ever
handed a comprehensive guide to “the way things work
around here.” Instead, sysadmins must slowly develop a
mental model of the systems in their care [6, 15]. They
study existing documentation and Internet sources, so-
licit expert advice, explore component interactions, and
much more. While this process is valuable in the long
run, it is also time-consuming and error prone, and com-
petes with the efficiency of whatever task is at hand (e.g.,
tracking down and fixing the root causes of problems).

Additionally, mental models are developed on an as-
needed basis and fail to account for hidden dependencies
between system components, resulting in large gaps and
inaccuracies.

This paper explores how system-level provenance can
effectively expose hidden dependencies, improve men-
tal models, and help improve the troubleshooting process
for system administrators. Our goal is to build a prove-
nance analysis engine that can automatically construct an
accurate, queryable map of component interactions for
single systems, networked sites, and beyond. Imagine ar-
riving at your desk on a Monday morning and being able
to explore what your site looks like based on provenance
collected over the weekend.

2 Dependencies

Efficient troubleshooting requires mental models that
are sufficiently accurate and complete to suggest proper
courses of action. One part of a good mental model is
a map of dependencies between the various components
in a system. At a high level, components can be thought
of as subsystems (e.g., the web subsystem depends upon
the filesystem). At the lowest level of abstraction, com-
ponents consist of programs and their individual config-
uration parameters. At this level, a good mental model
maps how parameter changes affect a program’s depen-
dencies.

For the purposes of this research, we loosely define
dependency as the relationship created when information
flows from one component to another in order for the re-
cipient of that information to function correctly. For ex-
ample, when a process loads a library, functions neces-
sary to the core behavior of the process are transmitted to
it from a file. The process is dependent upon the library
being loaded into some part of memory and being made
accessible. Likewise, when Apache starts, it reads neces-
sary parameters from an external source of information
(e.g., httpd.conf). Furthermore, Apache depends upon

312 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

its runtime environment to properly specify the location
of httpd.conf.

These are obvious examples of dependencies, but note
that the way in which we have defined dependency re-
quires a clear understanding of what it means for a com-
ponent to function correctly. Formally, functional cor-
rectness is determined by behavior: every input produces
correct output, where the output also comprises error
conditions. Thus, if a process outputs “file not found”
for some input, it may still be functioning correctly. But
this definition is too strict for our purposes.

System administrators have a general sense of how
components are supposed to behave, and they can usually
determine when something is awry. For example, mis-
configuration of one or more components is a frequent
cause of “abnormal” behavior. Formally, a DBMS that is
configured with a parameter that directs it to the wrong
dataset will produce the correct behavior for how it is
configured, i.e., it will still answer queries as directed,
etc. But the admin will see unexpected outputs because
the inputs were different than expected. This leads us
to an imprecise definition of “functioning correctly” as
“exhibiting expected behavior”.

3 The PASS Project

Digital provenance is metadata that describes the ances-
try or history of a digital object. In non-digital domains,
such as art curation, provenance is often collected man-
ually. But in the digital domain, we have the capabil-
ity to record provenance automatically. The provenance-
aware storage system (PASS) project [26] currently col-
lects system-level provenance from inside a running ker-
nel and builds a directed acyclic graph that describes an-
cestral relationships between files, pipes, and processes1.

The provenance graph would be virtually useless with-
out a way of extracting pertinent information. We have
developed a query language for graph-structured data
called PQL [14, 13], which is capable of expressing com-
plex queries with transitive closures. PQL operates on a
semi-structured data model that allows us to ask ques-
tions about ancestors and descendants as well as about
paths and subgraphs.

Consider the case in which we want to find all out-
puts of the sendmail daemon. The following SPARQL2

query produces the desired result:

SELECT ? o u t p u t WHERE {
p r o g f i l e ” / u s r / s b i n / s e n d m a i l ” ? p r o c e s s .
? o u t p u t o u t p u t−of ? p r o c e s s

} ;

1This includes variables and other information about the environ-
ment in which they execute.

2PQL is similar to SPARQL [32], an SQL-like query language for
RDF.

Lasagna

Log

Interceptor

User
Kernel

VFS Layer

Observer

Analyzer

Distributor

App
libpass

App Waldo
Indexing
& Query

Figure 1: A diagram of the PASS Architecture.

In this example, ?output and ?process are variables.
For every process that is an instantiation of sendmail,
the query will return the process’s output objects (e.g.
files, pipes, processes, etc) in the variable ?output. With
PQL or a similar graph query language, we can issue
simple queries such as the one in our example or com-
plex queries such as “find all objects that result from the
same (or similar) sequence of events”, which is a path
finding query.

If we think of files, pipes, and processes as system
components between which information flows, then the
provenance graph can be viewed as a graph of potential
dependencies. Nodes of the graph represent components
and edges represent a “may depend upon” relationship
from one component to another. In practical terms, for a
process P that reads from a file F , there exists a directed
edge from the descendant P to the ancestor F . Likewise,
if the same process writes to a pipe I, an edge from I to
P will be generated in the graph. The graph describes
only potential dependencies, because in the absence of
code and dataflow analysis, we cannot be certain that
any descendant depends upon its ancestors to function
correctly.

3.1 PASS Architecture
Figure 1 shows the PASS architecture.3 The intercep-
tor is a set of system call hooks that extract arguments
and other necessary information from kernel data struc-
tures, passing them to the observer. Currently, PASS
intercepts execve, fork, exit, read, readv, write,
writev, mmap, open, pipe, and the kernel operation
drop inode. These calls are sufficient to capture the

3The modified image and description of architecture are used with
permission from the authors [26].

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 313

rich ancestry relationships between Linux files, pipes,
and processes. In addition, applications can be compiled
to use libpass, which allows us to send application-
specific provenance directly to PASS.

This raw “proto-provenance” goes to the observer,
which translates proto-provenance into provenance
records. For example, when a process P reads a file A,
the observer generates a record that includes the fact that
P potentially depends upon A (i.e., a cross-reference to
A). The first time an object is created, the observer as-
signs to it a unique pnode identifier. A pnode number is
similar to an inode number except that it is never recy-
cled, even after an object is destroyed. This allows us to
maintain provenance for every object of interest that ever
existed. Suppose that files A and B and process P have
all been assigned pnodes. When P exits, its pnode must
be maintained so that the transitive potential dependency
of B upon A can be queried. The same logic holds for the
case in which A is deleted.

The analyzer then processes the stream of provenance
records to eliminate duplicates and cyclic dependencies.
Duplicates occur when a provenance object is used as
input multiple times in the same “session” by another
object. For example, after the initial read of pipe I by
process P, every further read creates a duplicate record
until the pipe is closed. Yet a record of the initial read is
all we require to posit a potential dependency.4 In similar
fashion, the provenance of a file F to which P has written
multiple times will only contain a single record of the
initial write.

Unless time travel is possible5, it is impossible for a
descendant object to affect its ancestor. This is why cy-
cles in the provenance graph must be broken or avoided
by the analyzer. PASS avoids cycles by versioning. At
the time of its creation, each provenance object is as-
signed a version number of 0. New versions of an object
will be assigned monotonically increasing numbers. If
process P reads from file F , and later writes to that same
file, the analyzer will avoid a cycle by versioning the
file’s provenance. If P reads the file again, the new record
for this event will contain a cross-reference to Fv1. That
is to say that once F is written, further provenance will
be collected only for subsequent new versions, and the
provenance of Fv0 will contain only whatever may have
happened to F prior to the write and that didn’t involve
a cycle. The versioning algorithm works well on cycles
of any length, involving any type of object at any version
level.

The PASS system is not limited to collecting prove-
nance from local storage. We have implemented exten-

4In general, this level of granularity imposes limitations on our abil-
ity to classify dependencies, i.e., we could keep the duplicates with a
timestamp for more accurate resolution.

5There is now strong evidence to suggest that it is not [40]!

sions that enable provenance collection from NFS shares
and Amazon’s S3 service [3]. This capability is espe-
cially important to the multitude of organizations that
have shifted their infrastructure into the cloud [27, 28].

Note that the interceptor is platform-specific by neces-
sity, but that the observer and analyzer can be separated
entirely from the operating system. The remaining com-
ponents of the PASS architecture are not germane to the
goals of this research. For a more complete description,
we direct the reader to several prior works [25, 26].

4 Troubleshooting

4.1 Related Work
In the past decade, there has been exciting research
on improving failure diagnosis for system administra-
tors. Some approaches use visualization to help opera-
tors rapidly detect and diagnose problems [36]. Others
use event correlation in log-file analysis to identify ex-
tant and potential problems [1, 12, 17, 20, 34]. Wang et
al. [37, 38] use comparisons of current system configu-
rations against golden state configurations that have been
generated via statistical analysis of machine populations.
The HPC community has made significant strides in
tracking down and diagnosing the root causes of failures
in grids and clusters [2, 9, 31, 39]. Most of these ap-
proaches rely upon log analysis and can be extremely
effective, especially in prescribed domains. However,
log analysis may suffer from several drawbacks, includ-
ing a lack of operational context (expected behavior); a
“butterfly” effect on log messages that stem from small
changes; corrupted messages; inconsistent log formats;
and asymmetric log reports [29].

In the absence of formal documentation, sysadmins
have few resources for determining the dependencies
of a program. There exist tools that support static ex-
traction of dependencies via analysis of package man-
agement repositories [18] and program images [35], but
these have quite limited capabilities. For example, the
former tool relies upon the correctness of package pre-
requisite information, and the latter tool only exposes
compile-time dependencies.

Some tools [7, 33] are able to automatically construct
operational dependency models by actively perturbing
or probing live systems. Active perturbation involves
performing multiple transactions or injecting “problems”
outside of normal operation and tracking the affected
components by observing likely execution paths. These
methods are invasive, with the potential to cause un-
wanted load or unforeseen failures, and thus may be un-
tenable in a production environment.

There are also many other approaches for exposing
complex dependencies and causal relationships in dis-

314 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

tributed systems[4, 8, 11, 30], but their ability to docu-
ment, present, and query the models they build is limited.
This makes them ill-suited for improving mental models
and for generalized system and site-wide troubleshoot-
ing.

Two research projects reflect well the philosophy we
wish to propagate. PDA is a tool for automated prob-
lem determination developed at IBM [16]. The tool starts
with high-level health indicators that trigger custom-built
probes when something is awry. The probes are built
manually via analysis of trouble-ticket corpora. Their
use-case scenarios reveal that a large number of prob-
lems fall into several categories to which standard trou-
bleshooting procedures can be applied and perhaps even
automated. We are optimistic that these categories will
also manifest in our provenance graphs.

We recently discovered a tool that is similar–both in
concept and implementation–to the framework we pro-
pose in this paper, but more narrow in scope and no
longer actively developed. BackTracker [19] is designed
to analyze system intrusions by tracing chains of events
from a detection point (e.g., a suspicious process) back
through a dependency graph to likely points of entry. The
goal is to document the attack vectors that expose un-
known vulnerabilities. Similar to our approach, the graph
is constructed by intercepting and recording the informa-
tion in system calls. The authors also provide several
security-specific methods by which to prioritize and fil-
ter large portions of the dependency graph to help the
user along. The requirements for system troubleshoot-
ing are more general, thus our work may be viewed as
an attempt to address a superset of the issues tackled by
BackTracker.

Although one may assume that documentation is avail-
able for general-use tools, many organizations develop
in-house solutions. When these solutions are intended
for internal use only, there is little economic incentive
to create polished user interfaces or comprehensive doc-
umentation; tools must simply be “good enough.” As
the number of internal libraries, scripts, and programs
increases, making changes to the system becomes in-
creasingly difficult. For example, deleting old libraries
becomes virtually impossible when sysadmins have lit-
tle knowledge of what programs utilize which libraries.
The complexity of these poorly understood systems will
continue to grow without bound as long as they are ac-
tively developed. Sysadmins in this situation would ben-
efit greatly from a comprehensive and explorable graph
of component dependencies.

4.2 A “Simple” Example

As suggested earlier, a clear and accurate system model
is paramount to troubleshooting. Although sysadmins al-

ready troubleshoot in the absence of such models, their
efforts have been significantly hindered by complexity.
When something fails in a system, knowing where to
look first is usually a “gimme”. Under progressively
greater pressure, knowing where to look second, third,
fourth, and so on, requires experience and perseverance.

For example, in most UNIX distributions, the re-
solver, which sends DNS queries to translate names
into IP addresses, loads its configuration from the file
/etc/resolv.conf. Traditionally, this file was edited
manually. In modern distributions such as Ubuntu, the
file is now automatically generated and modified by the
NetworkManager daemon. Various options for the net-
work manager can be configured via GUI or the com-
mand line, but not resolver-specific options. Instead,
if the host obtains its network configuration via DHCP,
changes to resolv.conf are governed by the network
manager’s communication with the dhclient daemon,
using D-Bus IPC6. The behavior of dhclient is in turn
configured via the file /etc/dhcp3/dhclient.conf.

Given the dependencies just described, where does the
system administrator look when she determines there is
a problem with name resolution? The first place she
may look is resolv.conf. Luckily for her, there is
a comment in the file that states it has been automati-
cally generated by the network manager. However, this is
where the trail goes lukewarm. The manual page for the
network manager says nothing about the resolver. Per-
haps the sysadmin recalls that name resolution failures
can be symptomatic of DHCP misconfiguration, lead-
ing her to check the dhclient manpage and subsequently
dhclient.conf. She may find some useful information
there, but she is hard pressed to discover that the net-
work manager is modifying the resolver’s configuration
by talking to the DHCP client. Also, dhclient.conf
may have been configured by an automated script. The
trail goes cold until Google is consulted and a solution is
discovered. But this is unsustainable as a standard proce-
dure for troubleshooting; eventually, even Google is out
of answers.

Using a provenance graph (Figure 2) and the right
query types (or tools we build specifically for this pur-
pose), our fearless administrator would more quickly dis-
cover the dependencies in our example. Let us walk
through the troubleshooting session once more with the
help of provenance. The graph has been trimmed and
condensed for clarity, so the steps taken in an actual ses-
sion may be more involved. Also, the following analysis
suggests that we are able to collect provenance for re-
mote sockets. This is not currently the case for PASS,
but we are working on such a mechanism.

6The D-Bus implements inter-process communication (IPC) via
Unix sockets, with each endpoint represented as an inode object and
two file objects in the kernel.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 315

network
manager

dhclient

resolv.conf

dhclient
socket

endpoint

D-Bus

resolver

NetMan
socket

endpoint other inputs

dhclient.conf other inputs

many
other inputs

Figure 2: A partial provenance graph representing potential
dependencies between components involved in Linux name
resolution.

We may safely start at the network manager node
(hereafter referred to as netman), since we already know
the source of the generated resolv.conf. The ancestors
of netman include a socket endpoint (a “special” file) and
various other inputs, one of which will be a configuration
file. We can probably safely exclude the configuration
file, because there is nothing in netman’s documentation
about resolver options. But why has netman received in-
formation from a socket via the D-Bus? It has obviously
communicated with another process. Here is where we
run into a slight snag: D-Bus often has a plethora of
socket endpoints as inputs (in addition to other inputs),

so how can we determine the right ancestor? In many
cases we may not be able to directly identify the most
important ancestor but we can probably narrow down our
choices.

One possibility involves checking timestamps of the
provenance edges between objects of interest. In this
case we could compare the timestamp of outputs to net-
man’s socket endpoint with the timestamps of D-Bus in-
puts from any of its ancestors. We would discard D-Bus
inputs that occurred after outputs to the socket as well as
inputs that occur too long before outputs. Other techni-
cal solutions are also possible, including the recording of
socket descriptors in provenance objects.

Once we have reasonably narrowed our choices, we
will have to rely on experience to take us the rest of the
way. Knowing that our machine receives network con-
figuration parameters via DHCP will allow us to discard
many other D-Bus ancestors, such as the audio, printing,
and display subsystems. Once we reach the dhclient an-
cestor, we can determine which of its configuration op-
tions found in dhclient.conf are likely to be involved
in name resolution.

The D-Bus example represents one of the worst-case
scenarios in tracing root causes. The problem is twofold:
at any given time, the number of ancestors and descen-
dants of the daemon is usually very large, which re-
sults in an overwhelming path explosion; but the larger
problem is that valuable provenance is hidden inside the
D-Bus black box. For instance, if we had access to
the internal dbus object name that identifies the connec-
tion between two clients, we could easily narrow our
search to the real ancestors of the network manager. One
way in which to accomplish this would be to create a
provenance-aware version of D-Bus using the libpass

library. This may be feasible for a small portion of par-
ticularly “opaque” system programs with many distinct
inputs and outputs.

5 Ranking Dependencies

While the provenance of a process’s outputs depends
upon the process’s inputs, the process itself is not neces-
sarily dependent upon every input to function correctly.
For example, the program cat, which reads the contents
of an input stream, only depends upon three shared li-
braries to function correctly, yet a provenance graph in-
cludes edges to every distinct input object that cat opens.
Though the absence of these inputs may cause a script to
fail, none of them is essential to the core behavior of cat.
This is why we have described the provenance graph as
a graph of potential dependencies only.

A similar fact holds for many programs; almost every
file (or other input) that is necessary for them to function
properly is loaded with their image or shortly thereafter.

316 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

There are notable exceptions: programs such as Apache
and PERL frequently load modules on-demand; dae-
mons may reload their configuration files when a HUP
signal is received, but will rarely reload a library; and
shell scripts frequently defy all notions of predictability.

It would appear that the generated graph contains too
much information for our purposes. Too many “unim-
portant” edges will make troubleshooting more difficult.
Thus we need a way to limit the scope of our queries to
those ancestral objects that are most likely to have con-
tributed to the behavior or contents of a target descen-
dant.

5.1 Statistical Approaches
There is a statistical approach that will help us rank the
contribution to dependency made by individual edges,
full paths, and ancestral subgraphs.

Consider that any given snapshot of a provenance
graph represents events as they actually happened. Sup-
pose that we look at a snapshot of the provenance graph
generated between time t1 and time t2. We see an
edge from the process /usr/sbin/chpasswd to the file
/etc/pam.conf. We also see several edges leading
from other objects to chpasswd. Let us examine what
we know. We do not track information flow, so we do not
know what chpasswd did with information that it read
from pam.conf. We do not know if the process or its de-
scendants would have functioned correctly if pam.conf
was missing or contained different content. The graph
only tells us that the provenance of chpasswd and its de-
scendants depended upon pam.conf in its current state.

Let us assume that the process functioned correctly
during the snapshot period. How do we assign a depen-
dency rank to edges in the graph? One way might be to
take multiple snapshots at equally spaced intervals and
count the number of snapshots in which the edge of in-
terest appears. A high count would indicate a higher like-
lihood of dependence. While this may seem reasonable,
it will not work.

Recall that an object is uniquely identified by a pnode
number, which remains the same through successive ver-
sions (and even unto death). Once a node becomes a part
of the graph, it is never removed. Any edges connected
to the node remain in the graph as well. Thus, there is no
difference between snapshots except for the creation of
nodes and edges, and increases in object versions.

The correct approach takes advantage of the logical
separation between provenance objects. A process is the
running instantiation of a particular program. As such,
two separate invocations of a program (processes) will
be assigned distinct pnodes and appear as distinct nodes
in the graph. Figure 3 shows an example of this scenario.

Process P1 has read file A, written file B and then

P
1

A

Pnode ID 43

P
2

Pnode ID 49

B

1 1

 1

1 1

/bin/P

Figure 3: Processes with distinct pnodes. The program P
(grouped processes) depends upon A with a ranking of 1 (thick
edge).

terminated. Some time later, process P2 takes the ex-
act same actions. Notice that both processes have a
provenance edge that points to the program executable
/bin/P. For all processes that have a given executable as
input, we can query whether or not they have a particular
input (A in this case). If the same input object appears in
the provenance of every process, then we declare that the
current version of the program depends upon the input
object with a ranking of 1.0. We denote this by group-
ing all such processes, drawing an edge from the group
to the file, and labeling the edge with its rank. Alterna-
tively, we can merge process nodes into a super-node to
keep the graph clean.

There will be cases where only some instances of a
program read from the same file. In these cases, only
those instances are grouped and an edge is drawn to the
file with a dependency rank given by

of instances that read

total # of instances

We must not apply the same logic to rank the depen-
dency of files upon programs. We do not know for cer-
tain what happens to the information that is read from a
file by a process, e.g., whether it changes the behavior of
the process. By contrast, a file always depends upon the
process(es) that created and/or wrote to it. The reason is
that a file is a passive object whose existence and con-
tent is governed by processes only. There is never any
doubt that every bit of information in a file came from
the process(es) that wrote to it.7

7Note that conceptually, if a process Q removes from a file all infor-

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 317

fixmount

mk-amd-map

wire-test

fixmount.o

mk-amd-map.o

wire-test.o

as

as

as

ccliZH6H.s

cclaS26C.s

cclsHS2D.s

fixmount.c

mk-amd-map.c

wire-test.c

ld

ld

ld

gcc

gcc

gcc

/usr/bin/ld

meminfo

ld.so.conf

/usr/bin/as

libbfd.so

locale.alias

/usr/bin/gcc

libc-2.4.so

stdlib.h

libc-2.6.so

0.251.0 1.0 1.0

1.0

0.25

Path rank = 0.75

Figure 4: Dependency ranking for the path from wire-test to libc-2.4.so. The graph represents a mostly real provenance trace
but the edge ranks are for demonstration only. If the executable really compiled, it would be difficult to identify the discrepancy
between the two versions of libc.

Unnamed pipes are also passive objects that depend
with certainty upon the process(es) that create them. Like
processes, every new pipe is identified by a unique pn-
ode number, and there always exists an edge to the pro-
cess that created it. It might seem strange to claim that
a pipe depends upon the processes that write to it, espe-
cially since we think of it as a simple channel by which
processes communicate. The information sent to a pipe
is meant to be consumed by one or more processes dur-
ing the pipe’s (relatively fleeting) lifetime. Unlike a file,
none of the information in a pipe persists after it is torn
down. Nonetheless, except for the timeframe, a pipe is
serving one of the same purposes as a file; it is an infor-
mation conduit between two processes.

Since named pipes are implemented as device special
files, they remain usable after the process that created
them exits. Thus we can use the same grouping tech-
nique to identify all processes that read from the same
pipe, i.e., special file. With unnamed pipes, we need to
go a step further. They are only connected between two
single processes. It does not make much sense to claim
that a program reads from the same pipe on every in-
vocation. But we can claim that one program (i.e., every
process from the same executable) always receives infor-
mation from another program via a pipe, which implies
a high-ranking transitive dependency upon the writer by
the reader. A good way to represent this is to draw a di-
rected edge from the group of processes to the group of
pipes.

Armed with this metric, we can rank the potential de-
pendence of paths or ancestral subgraphs. A path ranking
is the average rank of all edges in the path. Similarly, a

mation written by another process P, we might want to say that the file
no longer depends upon P. But we have no way of representing this at
our current level of granularity.

subgraph ranking is the average rank of all edges in the
subgraph. For example, Figure 4 shows the rank of the
highlighted path from the wire-test executable back
to the ancestral file libc-2.4.so. We have omitted pro-
cess grouping for clarity. When we query for the can-
didates that are likely causes of root problems, our tools
should suggest exploration of the highest ranking paths
first (accounting for rank adjustments from rules, filters,
etc).

There are three caveats regarding this approach. First,
it is has yet to be empirically tested. But our knowl-
edge of operating systems provides a solid foundation.
Second, the approach requires a bootstrap period during
which rankings may be heavily influenced by existing
abnormal behavior. This has the potential to mislead sys-
tem administrators during analyses. We must therefore
provide the ability for admins to manually adjust rank-
ings in the graph, either permanently or via a “what-if”
mode in a query session. The last warning is that while
we expect the accuracy of rankings to improve over time,
a large number of abnormal events may throw certain
subgraph rankings into chaos at any time. We might be
able to mitigate this by having the provenance subsys-
tem alert us to statistical changes that exceed a certain
threshold.

5.2 Heuristics

Statistical methods (and others) will carry us a fair dis-
tance in compressing the query space. But there is no
reason to exclude existing knowledge about dependen-
cies or rules of thumb. We now present several observa-
tions that will help us improve our rankings and refine
our queries even further:

318 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

• Our current rules assign a dependency rank to edges
based upon how many instances of a program read
from the same input object. Informally, this says
that for an edge with a higher rank than another,
there is a greater chance that the input object affects
the program’s behavior.

We might make the assertion that all but the sim-
plest of daemons will always attempt to open and
read from their associated configuration files. But
note that if a daemon accepts a parameter that pre-
vents loading of config files or specifies a different
config file than the default (as many do), its input
edges may receive a much lower rank than expected.

Whether the daemon is dependent upon a specific
config file is usually conditioned upon its start-
ing parameters. Fortunately, PASS includes prove-
nance about the environment in which a program is
started. If we observe that a daemon always opens
the same configuration file in the presence of some
starting parameter, then we will be able to rank de-
pendencies for different instances of the daemon
(e.g., when ’-c’ is provided, the daemon always
loads config file C, but in the absence of ’-c’, the
daemon always loads config file A.). That is to say
that we will group processes as usual but the group
edge rank will indicate how many instances of the
program read from an input object when started
with a given parameter.

• The first-order dependencies of many programs are
known a priori, either via direct experience, docu-
mentation, or technical detail, e.g. statically-linked
programs. We can assign a rank of 1 to the out-
bound edges of these programs automatically upon
first invocation.

• Popular objects, as measured by descendant sub-
graph size, are less likely to be the singular cause
of a problem. It is a reasonable assumption that if
a popular object is the cause of a problem, descen-
dants along more than one path would exhibit unex-
pected behavior. In the case that we are only seeing
one or a few objects with unexpected behavior, we
can have our query engine dynamically reduce the
dependency ranking for paths or subgraphs that in-
clude popular ancestors. The triggers for such a re-
duction and the amount of rank reduction will need
to be determined by experiment.

Example: almost every program has libc as a core
library. This means that almost every edge that
points to the libc node will have a dependency
rank of 1. But this node is uninteresting exactly be-
cause so many programs depend upon it. If libc is

broken or missing, we are likely to know immedi-
ately.

• Edges to files residing in well-known configuration
directories or files with well-known names can be
labeled with a high rank when all other indicators
are equal or nearly so.

For example, if a program P opens a file called
logrotate.conf in directory /etc, then we have
two more pieces of evidence to support the assertion
that P depends upon logrotate.conf. The weight
of this evidence will need to be adjusted according
to several factors, which is left for future work.

Of course, we must also provide a means by which
we can fix the dependency or non-dependency of
an object upon another object. This allows us to
correct edges in the graph for which our algorithm
has failed. There may be a semi-automated way in
which to do this, which is also left for future work.

• Edges to files residing in well-known log directories
can be labeled with a low rank.

For example, /var/log/messages is a file that is
frequently written, but certain log viewing/analy-
sis/filtering/aggregation tools, such as Splunk, will
frequently read the file as well.8 In many cases, the
absence or corruption of a log will not affect the
proper functioning of the reading process. But it is
difficult to know how far such a failure might prop-
agate.

• Edges to files residing in well-known temporary di-
rectories can be labeled with a low rank.

By definition, programs should not rely upon any
data stored in a temporary directory (e.g. /tmp).
However, programs do sometimes use such direc-
tories to create temporary pipes or to communicate
information to themselves in the near future. These
kinds of dependencies will need to be reviewed.

• Edges to files that are created by and opened for
reading and writing in short intervals and across
multiple invocations by a single program may be
safely labeled with a low rank.

For example, applications such as Emacs create
backup files during editing. While the user may rely
upon such backups, Emacs does not require these
files to function correctly.

• Files that are created/written by an editor like vi are
not dependent upon vi. They are dependent upon

8Many of these tools avoid the local filesystem altogether by log-
ging to a centralized host via the network. In this case, provenance
would be captured using network service extensions to PASS.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 319

the human being using vi. This is a dependency
that we can capture because we record the (E)UID
of every process. If the file is created or written
via shell redirection, we can still capture the depen-
dency based upon the shell owner.

• Files created or modified by a script are dependent
upon the script and probably many of its ancestors.
But the path must ultimately lead back to the pro-
cess that generated the script, whether manual or
automatic.

• Any troubleshooting tools we build can integrate
the use of whitelist, blacklist, Bayesian, and other
filters. These will give the user flexibility in their
queries and will certainly encourage use of the tool
for purposes other than troubleshooting.

Acting intelligently upon the given observations will
reduce the size and density of the query space. Note
that none of our algorithms or heuristics is modifying
the graph. Edge rankings will be applied only at query
time based upon specified rules and filters, and will be
computed in a lazy fashion. We do not want to rank one
million edges for a single query unless it is necessary.
For example, if a filter limits the query space to files in
a particular directory, we do not need to rank edges from
or to files in other directories, nor unnamed pipes.

As an example of where filtering may fail, suppose we
determine that a program is behaving abnormally. It has
file A as input, amongst others. A conventional rule of
thumb may lead us to filter based upon time; the pro-
gram was working until a certain point in time, so it is
reasonable to ask which process most recently wrote to
A around that time. But this may not help us because at
the granularity of our provenance, the information that
was most recently written to A might not be the infor-
mation that is causing a malfunction. It is possible that
some previous write is causing a malfunction. Perhaps
the program did not run during the period between the
previous write and the most recent write. Thus the ef-
fect of the previous write to A did not manifest until the
program was run again.

6 Under-specified Queries

Filters and rules will help, but they are not sufficient.
Even if we assume that the graph contains only actual
dependencies, we still need the ability to limit the scope
of under-specified queries. Such a query has the potential
to return a very large subgraph because it does not suffi-
ciently constrain ancestral breadth and depth. For exam-
ple, if we query on the full lineage of /var/log/dmesg,
we are likely to see all ancestors going back to installa-
tion of the operating system. Depending upon the con-

text, this may be unhelpful. The ability to specify queries
precisely assumes the existence of an excellent mental
model by which to navigate the provenance graph. As
the graph expands, “surgical” queries demand a familiar-
ity that is unsustainable without aid. Thus, our tool needs
to be able to guess at good places to stop in the lineage
of a target object.

Several researchers in our group are attempting to
tackle this problem based upon ideas inspired by web
search [23]. Provrank is an algorithm that judges the im-
portance of objects based upon their frequency across all
possible lineage queries. Objects with a high frequency
appear in too many lineage queries. Thus, if some pro-
cess appears in the query path of every descendant object
of interest, it does not add any important information to a
query result and represents a good cutoff point. Another
metric – frequency dissimilarity – captures the relative
frequency of an object. That is to say, it measures how
often an object appears in query results that contain ob-
jects of the same kind (based upon some criteria). Thus,
the bash shell will have a lower frequency dissimilar-
ity in queries that ask for the lineage of mkdir, than in
queries that ask for the lineage of a random user docu-
ment (i.e., the bash node would be a good cutoff point
for queries about user documents).

Further work is required in this area to help sysadmins
semi-automatically constrain their queries.

7 Building Tools

With a few decent algorithms under our belt, a gaggle of
heuristics, and a good working knowledge of operating
systems, what capabilities do we want for our tools and
their interfaces?

In our resolver example, we guided the reader through
a troubleshooting session that uses the provenance graph.
Although based on a real use case, the example was di-
rected and abbreviated for clarity. In a real session, a
sysadmin would need a guide as well; something to im-
prove their chances of diagnosing the problem.

Ideally, our tool must be able to present a relatively
small group of root-cause candidates. But we are also
helping admins build mental models. We expect to intro-
duce several interfaces that leverage web technologies as
well as the familiar command-line interface for conven-
tional programmatic control.

Since PQL is the primary method of querying the
provenance graph, we also plan to introduce a set of pre-
defined query classes that will help users learn how to
construct and refine more complex queries. A graphical
tool is in the works that will enable the construction of
queries via example as well.

Finally, integration is paramount. The user must be
able to build the toolchain with relative ease and con-

320 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

nect it to existing monitoring and troubleshooting frame-
works. For example, as problems are solved, relevant
snippets of the graph and associated queries can be en-
tered into a trouble ticket system and reviewed in subse-
quent incidents that exhibit similar symptoms.

7.1 Visualization

Provenance graphs can grow to enormous proportions,
which tends to work against building robust mental mod-
els. Visualization can dramatically improve the ability
for users to absorb and understand complex structures.
As such, it is one of the most important aids to prove-
nance analysis.

We have already built a tool called Orbiter [22] that
can, among other capabilities, display provenance graphs
with adjustable magnification, perform rudimentary fil-
tering (e.g., degree, object type, timestamp, etc) and
querying of ancestors and descendants, and summarize
subgraphs at customized levels of granularity. We plan to
extend Orbiter’s capabilities with query subgraph high-
lighting, regular expression filters, process grouping, an-
notations, and programmable views. We will encourage
system administrators to describe the most useful aspects
of the tool, as well as their thoughts on whether and how
to eliminate or improve its failings.

8 Future Work

The current implementation of PASS examines prove-
nance as expressed only via pipes, shared memory
(mmap), process environments, and the filesystem. Un-
fortunately, more sources of provenance (and potential
dependencies) are expressed via other information vec-
tors, e.g., signals, sockets, message queues, shared mem-
ory, semaphores, and exit codes. As a result, prove-
nance graphs generated by our implementation are not
comprehensive. We believe that analysis of network
I/O will prove to be a powerful technique. By track-
ing socket pairs, we can identify dependencies that span
physical machines. For example, a network-aware ap-
proach would be able to identify dependencies between
a web server and a DNS server. Expanding the collection
and analysis phases in this way will require considerable
effort.

Another drawback in our current implementation is
the inability to collect provenance from root volumes
or to aggregate provenance from multiple disparate vol-
umes. We are working to address these shortcomings
by building a new collection platform [21] based in the
Xen hypervisor [5] that obtains provenance directly from
system calls inside of guest VMs. We expect this re-
orientation to yield new benefits, which include support-

ing a better case for adoption than a patched Linux ker-
nel.

There are many other technologies that might be em-
ployed to help build and answer domain-specific trou-
bleshooting queries, including further analysis of graph
structure, more advanced statistical techniques, and a
community-based query database. We also plan to in-
corporate ideas from machine-learning, not only to help
conduct semi-automatic analyses of provenance graphs
and provide better dependency rankings, but to augment
graphs with information gleaned from interactions of
system administrators with our tools [10, 24].

9 Conclusions

In our introduction, we made the claim that complete
and accurate mental models are necessary to most tasks
performed by system administrators, including trou-
bleshooting and maintenance. As such, any tool that aids
in the timely development of accurate mental models will
be of great benefit to sysadmins at both the junior and se-
nior level.

In this paper, we have explored the idea that analy-
sis of provenance graphs can aid system administrators
in troubleshooting problems that involve complex hidden
dependencies. We are confident that if system adminis-
trators are amenable to automatic provenance collection,
then this idea will emerge as an effective utility in every-
day system administration.

10 Acknowledgments

The author would like to thank several members of the
PASS group at Harvard University SEAS for their com-
ments and insights on this research: Uri Braun, Peter
Macko, Daniel Margo, and Margo Seltzer. He would
also like to thank his LISA shepherd, Nicole Forsgren
Velasquez, and the LISA program committee.

11 Availability

A working prototype is not yet available. However, read-
ers are encouraged to periodically check the website be-
low for news and updates.

http://www.eecs.harvard.edu/syrah/pass/

References
[1] Splunk. Web, June 2011. http://www.splunk.com/.

[2] AHARON, M., BARASH, G., COHEN, I., AND MORDECHAI, E.
One graph is worth a thousand logs: Uncovering hidden struc-
tures in massive system event logs. In Proceedings of the Euro-
pean Conference on Machine Learning and Knowledge Discov-
ery in Databases: Part I (2009), Springer-Verlag, pp. 227–243.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 321

[3] Amazon Simple Storage Service (Amazon S3). Web, June 2011.
http://aws.amazon.com/s3.

[4] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S.,
MALTZ, D. A., AND ZHANG, M. Towards highly reliable en-
terprise network services via inference of multi-level dependen-
cies. In ACM SIGCOMM Computer Communication Review
(Aug. 2007), vol. 37, ACM, pp. 13–24.

[5] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. ACM SIGOPS
Operating Systems Review 37, 5 (2003), 164–177.

[6] BARRETT, R., KANDOGAN, E., MAGLIO, P. P., HABER, E. M.,
TAKAYAMA, L. A., AND PRABAKER, M. Field studies of
computer system administrators: analysis of system management
tools and practices. In Proceedings of the 2004 ACM Conference
on Computer Supported Cooperative Work (CSCW) (November
2004), J. D. Herbsleb and G. M. Olson, Eds., ACM, pp. 388–395.

[7] BROWN, A., KAR, G., AND KELLER, A. An active approach
to characterizing dynamic dependencies for problem determina-
tion in a distributed environment. In Proceedings of the IEEE/I-
FIP International Symposium on Integrated Network Manage-
ment (2001), pp. 377 –390.

[8] CHEN, M. Y., KICIMAN, E., FRATKIN, E., FOX, A., AND
BREWER, E. Pinpoint: Problem determination in large, dynamic
internet services. In Proceedings of the IEEE/IFIP 32nd Interna-
tional Conference on Dependable Systems and Networks (DSN)
(2002), IEEE Computer Society, pp. 595–604.

[9] CHUAH, E., KUO, S.-H., HIEW, P., TJHI, W. C., LEE,
G., HAMMOND, J., MICHALEWICZ, M. T., HUNG, T., AND
BROWNE, J. C. Diagnosing the root-causes of failures from clus-
ter log files. In Proceedings of the 2010 International Confer-
ence on High Performance Computing (HiPC) (Singapore, Dec.
2010), pp. 1 –10.

[10] CUNNINGHAM, S. J., WITTEN, I. H., AND LITTIN, J. Applica-
tions of machine learning in information retrieval. Annual Review
of Information Science 34 (1999), 341–384.

[11] ENSEL, C. New approach for automated generation of ser-
vice dependency models. In Proceedings of the Second Latin
American Network Operations and Management Symposium
(LANOMS) (Belo Horizonte, Brazil, Jan. 2001).

[12] HANSEN, S. E., AND ATKINS, E. T. Automated system mon-
itoring and notification with swatch. In Proceedings of the 7th
USENIX Conference on System Administration (1993), USENIX
Association, pp. 145–152.

[13] HOLLAND, D. PQL language guide and reference. Web, June
2011. http://www.eecs.harvard.edu/syrah/pql/docs/

guide.pdf.

[14] HOLLAND, D. A., BRAUN, U., MACLEAN, D., MUNISWAMY-
REDDY, K., AND SELTZER, M. Choosing a data model and
query language for provenance. In Proceedings of the 2nd In-
ternational Provenance and Annotation Workshop (IPAW) (June
2008).

[15] HREBEC, D. G., AND STIBER, M. A survey of system admin-
istrator mental models and situation awareness. In Proceedings
of the 2001 ACM SIGCPR Conference on Computer Personnel
Research (2001), ACM, pp. 166–172.

[16] HUANG, H., JENNINGS, III, R., RUAN, Y., SAHOO, R., SAHU,
S., AND SHAIKH, A. PDA: a tool for automated problem deter-
mination. In Proceedings of the 21st Conference on Large Instal-
lation System Administration (LISA) (2007), USENIX Associa-
tion, pp. 153–166.

[17] HUANG, L., KE, X., WONG, K., AND MANKOVSKII, S.
Symptom-based problem determination using log data abstrac-
tion. In Proceedings of the 2010 Conference of the Center for
Advanced Studies on Collaborative Research (CASCON) (2010),
ACM, pp. 313–326.

[18] KAR, G., KELLER, A., AND CALO, S. B. Managing appli-
cation services over service provider networks: architecture and
dependency analysis. In Proceedings of the IEEE/IFIP 7th Net-
work Operations and Management Symposium (NOMS) (2000),
J. W.-K. Hong and R. Weihmayer, Eds., IEEE, pp. 61–74.

[19] KING, S. T., AND CHEN, P. M. Backtracking intrusions. ACM
Transactions on Computer Systems 23, 1 (Feb. 2005), 51–76.

[20] KRIZAK, P. Log analysis and event correlation using variable
temporal event correlator (VTEC). In Proceedings of the 24th
International Conference on Large Installation System Adminis-
tration (LISA) (2010), USENIX Association, pp. 1–11.

[21] MACKO, P., CHIARINI, M., AND SELTZER, M. Collecting
provenance in the xen hypervisor. In Proceedings of the 3rd
Workshop on the Theory and Application of Provenance (TaPP)
(June 2011), USENIX Association.

[22] MACKO, P., AND SELTZER, M. Provenance map orbiter: In-
teractive exploration of large provenance graphs. In Proceedings
of the 3rd Workshop on the Theory and Practice of Provenance
(TaPP) (June 2011), USENIX Association.

[23] MARGO, D., MACKO, P., AND SELTZER, M. Constraining
provenance queries. NEDB Poster Session, January 2011. Pre-
sented at poster session of New England Database Summit 2011.

[24] MARGO, D., AND SMOGOR, R. Using provenance to extract
semantic file attributes. In Proceedings of the 2nd Workshop on
the Theory and Practice of Provenance (TaPP) (2010), USENIX
Association.

[25] MUNISWAMY-REDDY, K. Foundations for Provenance-Aware
Systems. Dissertation, Harvard, Mar. 2010.

[26] MUNISWAMY-REDDY, K., BRAUN, U., HOLLAND, D. A.,
MACKO, P., MACLEAN, D., MARGO, D., SELTZER, M., AND
SMOGOR, R. Layering in provenance systems. In Proceedings
of the 2009 USENIX Annual Technical Conference ATC (2009).

[27] MUNISWAMY-REDDY, K., MACKO, P., AND SELTZER, M.
Making a cloud Provenance-Aware. In Proceedings of the 1st
Workshop on the Theory and Practice of Provenance (TaPP)
(2009).

[28] MUNISWAMY-REDDY, K., MACKO, P., AND SELTZER, M.
Provenance for the cloud. In Proceedings of the 8th USENIX
Conference on File and Storage Technologies FAST (2010),
USENIX Association, pp. 197–210.

[29] OLINER, A., AND STEARLEY, J. What supercomputers say:
A study of five system logs. In Proceedings of the IEEE/IFIP
37th Annual International Conference on Dependable Systems
and Networks (DSN) (2007), IEEE Computer Society, pp. 575–
584.

[30] OLINER, A. J., AND AIKEN, A. Online detection of Multi-
Component interactions in production systems. In Proceedings
of the IEEE/IFIP 41st International Conference on Dependable
Systems & Networks (DSN) (June 2011).

[31] OLINER, A. J., AIKEN, A., AND STEARLEY, J. Alert detection
in system logs. In Proceedings of the IEEE International Confer-
ence on Data Mining (2008), IEEE Computer Society, pp. 959–
964.

[32] PRUD’HOMMEAUX, E., AND SEABORNE, A. SPARQL Query
Language for RDF. W3C Recommendation, 2008.

322 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

[33] RISH, I., BRODIE, M., ODINTSOVA, N., MA, S., AND
GRABARNIK, G. Real-time problem determination in distributed
systems using active probing. In Proceedings of the IEEE/IFIP
11th Network Operations and Management Symposium (NOMS)
(2004), pp. 133–146.

[34] ROUILLARD, J. P. Real-time log file analysis using the sim-
ple event correlator (SEC). In Proceedings of the 18th Confer-
ence on Large Installation System Administration (LISA) (2004),
USENIX, pp. 133–150.

[35] SUN, Y., AND COUCH, A. L. Global impact analysis of dy-
namic library dependencies. In Proceedings of the 15th Confer-
ence on Large Installation System Administration (LISA) (2001),
USENIX, pp. 145–150.

[36] TAKADA, T., AND KOIKE, H. Mielog: A highly interactive vi-
sual log browser using information visualization and statistical
analysis. In Proceedings of the 16th Conference on Large Instal-
lation System Administration (LISA) (2002), USENIX, pp. 133–
144.

[37] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND
WANG, Y.-M. Automatic misconfiguration troubleshooting with
peerpressure. In Proceedings of the 6th Conference on Operating
Systems Design & Implementation OSDI (2004), pp. 245–258.

[38] WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y.,
WANG, H. J., YUAN, C., AND ZHANG, Z. Strider: A black-
box, state-based approach to change and configuration man-
agement and support. In Proceedings of the 17th Confer-
ence on Large Installation System Administration (LISA) (2003),
USENIX, pp. 159–172.

[39] XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JOR-
DAN, M. I. Detecting large-scale system problems by mining
console logs. In Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating Systems Principles (SOSP) (2009), ACM,
pp. 117–132.

[40] ZHANG, S., CHEN, J. F., LIU, C., LOY, M. M. T., WONG, G.
K. L., AND DU, S. Optical precursor of a single photon. Physical
Review Letters 106, 24 (June 2011).

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 323

Debugging Makefiles with remake

Rocky Bernstein

324 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

1 Remake

Autotools[Fou09, Fou10a] is still very popular as a framework for configuring and building open-source software.

Since it is a collection of smaller tools, such as autoconf, automake, libtool, and m4, debugging code that it generates

can be difficult.

When I wrote my first POSIX shell debugger for bash, one of my initial goals was to be able to debug autotools

configure scripts, and I was rather pleased when it worked. It required, however, writing a custom bash module to

read the 20,000 lines of shell script into an array much faster than bash was able to. (This module has since been

incorporated into bash as built-in function readarray.) It was only after completing this task that I realized a POSIX

shell debugger was just one part of the bigger problem of debugging autotools script. Here, I describe the next step in

that endeavor, adding debugging to GNU Make[Fou10b, Ber11]. We will see how to use remake and a POSIX shell

debugger (the one for bash) together.

Makefiles have been around for quite a while, and over time, largely through the success of automake, they have gotten

more complex. Make can be somewhat opaque, but after writing the debugger component of remake, I can usually

solve make problems very quickly and easily.

In many programming languages, such as POSIX shell, Perl, Python, Ruby, and Lisp, type expressions or statements

have interactive shells to see what happens when they run. Although GNUMake is every bit as dynamic as these other

languages, currently there is no such interactive shell. But the debugger briefly described here can serve as a handy

substitute.

The programming language Ruby has a really interesting make equivalent called rake. (If you are writing something

from scratch, please consider using both Ruby and rake.) But systems administrators often find themselves using tools

and code written by others, and much open-source software uses make, via automake. Make is so pervasive that the

reference implementations of Ruby use make to build themselves.

In keeping with my philosophy of trying to use the smallest hammer that will do the job, this paper shows some of

the smallest changes of my forked version of GNU Make. When used in conjunction with one of my POSIX shell

debuggers, you can dynamically debug commands issued by GNU Make into the POSIX shell.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 325

1.1 remake –tasks

A useful feature of Ruby’s rake program is that there is an option to print a list of “tasks” that one can perform. Tasks

include things such as building the software, installing it, and running the tests.

In make terminology, tasks are a subset of “files” or “targets.” However in make, we have to distinguish those files

which are just supposed to be there in the source code from those that somehow get created; and many of the files

that get created represent intermediate steps along the way to producing something larger. I find it good practice to

borrow ideas from related tools, and I have added the --tasks option from Ruby’s rake. This handles files in this

way: if a target has a command to build it, then it is probably “interesting”; conversely, if there are no commands to

build a target, that is, it is only listed as a dependency, then it probably is not interesting—it is there only to support

other targets, and when it changes, it triggers other targets to be remade. Also, if a rule is a default rule of make, then

it is probably not interesting. This would include things like the pattern rules for compiling a C program or extracting

something from an archive or source-control system. The same notion of “interesting” is used in debugger stepping.

Here is remake --tasks for a typical Makefile system, using the Makefile that comes with the GNU Make

distribution.

$ remake --tasks

.c.o

.c.obj

.dep_segment

CTAGS

ChangeLog

...

NMakefile

README

...

dist

dist-all

dist-bzip2

...

upload-alpha

upload-ftp

When I first looked at the output and saw README in this list of targets that have commands associated with them, I

thought there must be a mistake, because README is usually a distribution file. So I broke out the debugger to check

what was going on. The answer will become clear below, when I describe how to investigate targets with the debugger.

Another piece of interesting information we learn from this output is that there is a way to make the ChangeLog file,

presumably from version control, and a way to make just the bzip2 tarball, or upload the distribution to the alpha and

FTP sites.

Additionally, targets can have a description added for them so that they appear when the --tasks option is given. A

description must consist of only one line and begins with #:. Here is a Makefile tagged this way:

#: Build everything

all:

perl Build --makefile_env_macros 1

#: Create distribution tarball

dist:

326 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

perl Build --makefile_env_macros 1 dist

#: Build and install package

install:

perl Build --makefile_env_macros 1 install

#: Create or update MANIFEST file

manifest:

perl Build --makefile_env_macros 1 manifest

#: Create or update manual pages

manpages:

perl Build --makefile_env_macros 1 manpages

When run with the --tasks option we get:

all # Build everything

dist # Create distribution tarball

install # Build and install package

manifest # Create or update MANIFEST file

manpages # Create or update manual pages

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 327

1.2 remake –trace example

Here is a real-world example of tracing and then debugging.

I made a change to the GNUMake source code and I wanted to make a new distribution. I ran the usual command that

does this:

$ make dist

NEWS not updated; not releasing

make: *** [distdir] Error 1

It is not clear how NEWS needs to be updated, but more information might be available by consulting the rules for the

distdir target.

Now let us run remake:

$ remake dist

NEWS not updated; not releasing

Makefile:887: *** [distdir] Error 1

#0 distdir at /tmp/remake/Makefile:887

#1 dist at /tmp/remake/Makefile:1004

Command-line invocation:

"remake dist"

This shows additional information: the line number inside the Makefile for target distdir (887), the target that got

us to this one, and the command-line invocation.

With standard make, we could use the name of the target distdir and search inside Makefile for that, but fre-

quently it might not be in the top-level Makefile. Instead, it might be in some recursive invocation or in a file included

from the top-level Makefle. The traceback information and file names reduce the detective work needed.

Now let us run remake with tracing turned on:

$ remake --trace dist

GNU Make 3.82+dbg-0.7.dev

...

Reading makefiles...

Updating goal targets....

/tmp/remake/Makefile:1004 File ‘dist’ does not exist.

/tmp/remake/Makefile:887 File ‘distdir’ does not exist.

/tmp/remake/Makefile:887 Must remake target ‘distdir’.

to be continued...

The indentation in the lines containing file name and line numbers gives target level nesting: target distdir was

asked to be remade because it is a dependency of target dist. With this option, we show the dependency nesting as

we build and traverse the tree. Without it, we show these only at the point of error, if there is one.

Invoking recipe from Makefile:888 to update target ‘distdir’.

##>>

328 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

case ‘sed 15q ./NEWS‘ in \

"3.82+dbg-0.7.dev") : ;; \

*) \

echo "NEWS not updated; not releasing" 1>&2; \

exit 1;; \

esac

##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

NEWS not updated; not releasing

Makefile:887: *** [distdir] Error 1

#0 distdir at /tmp/remake/Makefile:887

#1 dist at /tmp/remake/Makefile:1004

Command-line invocation:

"remake -x dist"

So finally we get the commands that were run to get that message, indicating which check was performed.

Another difference between remake and standard GNU Make is that remake has lines of the form:

##>>

##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

These lines serve to separate shell commands about to be run from the output that they produce.

In brief, the changes to GNU Make to improve tracing and error reporting are:

• The Makefile file name and the line inside this file are reported when referring to a target

• On error:

– a stack of relevant targets is shown, again with their locations

– the command invocation used to run make is shown

– an option allows for entering the debugger on error

• Shell input that is about to be run is separated from the output in running that shell code

• a --tasks option prints a list of interesting targets and any associated description line for each

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 329

1.3 remake –debugger example

The tracing described in the previous section will be enough for some purposes. But we can make the computer do

more work to show us what is going on by using the built-in debugger.

Why does README appear when we run rake --tasks ? We can ask the debugger to describe the target README:

$ remake --debugger

GNU Make 3.82+dbg-0.7.dev

Reading makefiles...

Updating makefiles....

-> (/tmp/remake/Makefile:477)

Makefile: Makefile.in config.status

remake<0> target README

README: README.template Makefile

Implicit rule search has not been done.

Implicit/static pattern stem: ‘README’

Modification time never checked.

File has not been updated.

Commands not yet started.

automatic

@ := README

automatic

...

< := README.template

automatic

...

commands to execute (from ‘Makefile’, line 1329):

rm -f $@

sed -e ’s@%VERSION%@$(VERSION)@g’ \

-e ’s@%PACKAGE%@$(PACKAGE)@g’ \

$< > $@

chmod a-w $@

remake<1>

The file README is created from README.template. In the commands section, there are a number of expanded

variables such as $@ and $<. Earlier though, the values of the automatic variables @ and < are shown; here they are

README and README.template respectively. If, however, we want remake to do the expansion when showing the

commands, there is an option to the target command for that:

remake<1> target README expand

README:

commands to execute (from ‘Makefile’, line 1329):

rm -f README

sed -e ’s@%VERSION%@3.82+dbg-0.7.dev@g’ \

-e ’s@%PACKAGE%@remake@g’ \

README.template > README

chmod a-w README

remake<1>

Although is is not immediately apparent, some expansion was done in showing the target and dependencies. Line

1328 in file Makefile looks like this:

330 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

$(TEMPLATES) : % : %.template Makefile

The debugger command expand can be used to get the expanded value of the variable TEMPLATES:

remake<2> expand TEMPLATES

Makefile:1319 (origin: makefile) TEMPLATES := README README.DOS ...

Now we return to tracking down what was happening when we tried to run make dist. Again we go into the

debugger:

$ remake --debugger dist

GNU Make 3.82+dbg-0.7.dev

...

Reading makefiles...

Updating makefiles....

-> (/tmp/remake/Makefile:477)

Makefile: Makefile.in config.status

It appears that the first thing that is done is to check whether the Makefile itself is up to date. As before, we could list

information from the target that we crashed on, distdir. However instead let us run until the target:

remake<0> continue distdir run

Breakpoint 1 on target distdir: file Makefile, line 887.

Updating goal targets....

/tmp/remake/Makefile:1004 File ‘dist’ does not exist.

/tmp/remake/Makefile:887 File ‘distdir’ does not exist.

.. (/tmp/remake/Makefile:887)

distdir

There are three interesting points in time when updating a target:

1. before checking dependencies of the target

2. after checking but before running commands to update the target

3. after runnning commands when the target update is finished

Adding run to the end of continue distdir causes us to stop after dependency checking.

The debugger first stopped before dependency checking, as shown by an icon, the two-character arrow ->, so it lists

the dependencies for the target. For the Makefile target, they were Makefile.in and config.status. After

continuing, it next stops dependency checking, so dependencies of the target are not automatically shown, unless

explicitly requested with target just as for the commands.

A common problem in designing this kind of tool is trying to figure out how to cut down the amount of information

shown. We usually do not want a list of all dependencies for distdir here since that would include a list of all of

the files in the distribution. With the --tasks option above, files without associated commands are dropped from

the listing.

Another indication that the debugger stopped after dependency checking is that the two-character icon is .. rather

than ->. I try to use analogous gdb commands when possible. Here, the gdb-like command info program makes

the stopping place more explicit:

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 331

remake<3> info program

Starting directory ‘/tmp/remake’

Program invocation:

remake -X distdir

Recursion level: 0

Line 887 of "/tmp/remake/Makefile"

Program is stopped after rule-prerequisite checking.

At this point we can list the commands that are to be run next using the target command, which shows information

regarding a target. We will use variables that have been set up by GNU Make when giving a target name. As we saw

when listing variables for README, @ is an automatically set variable containing the name of the current target. Since

we have run to target distdir, @ is set to that.

remake<1> target @ commands

distdir:

commands to execute (from ‘Makefile’, line 888):

@case ‘sed 15q $(srcdir)/NEWS‘ in \

"$(VERSION)") : ;; \

*) \

echo "NEWS not updated; not releasing" 1>\&2; \

exit 1;; \

esac

@list=’$(MANS)’; if test -n "$$list"; then \

list=‘for p in $$list; do \

if test -f $$p; then d=; else d="$(srcdir)/"; fi; \

if test -f "$$d$$p"; then echo "$$d$$p"; else :; fi; done‘; \

.. about 90 other lines.

Makefile commands can be confusing because there are two sources for variables: GNU Make variables and POSIX-

shell variables. Here we see things like $(VERSION) which is a GNU make variable and $$p which is the POSIX-

shell variable $p. An extra $ needs to be added in the Makefile. We can ask the debugger to expand all of the Makefile

variables, but instead, let us write this code out to a file using the write command:

remake<2> write

File "/tmp/distdir.sh" written.

We can use the bash debugger bashdb to debug the rest.

remake<3> quit

remake: That’s all, folks...

$ bashdb /tmp/distdir.sh

bash debugger, bashdb, release 4.2-0.7

...

(/tmp/distdir.sh:4):

4: case ‘sed 15q ./NEWS‘ in \

bashdb<3> step

(/tmp/distdir.sh:4):

4: case ‘sed 15q ./NEWS‘ in \

sed 15q ./NEWS

332 LISA ’11: 25th Large Installation System Administration Conference USENIX Association

If we do not know what sed 15q ./NEWS does, rather than look this up in a manual, we can let the debugger

show us. The parentheses in the bashdb prompt mean that we are inside a subshell, the backtick part of ‘sed 15q

./NEWS‘.

A useful command I added not too long ago to the debuggers is eval without any arguments. Here, it takes the line

that is about to be run and runs it.

bashdb<(4)> eval

eval: sed 15q ./NEWS

Version 3.82+dbg-0.6

GNU make NEWS

History of user-visible changes.

28 July 2010

...

One more step and we go to where we do not want to be:

bashdb<(5)> step

(/tmp/distdir.sh:7):

7: echo "NEWS not updated; not releasing" 1>&2; \

bashdb<6> list

2: #/tmp/remake/Makefile:887

3: #cd /tmp/remake

4: case ‘sed 15q ./NEWS‘ in \

5: *"3.82+dbg-0.7.dev"*) : ;; \

6: *) \

7: => echo "NEWS not updated; not releasing" 1>&2; \

8: exit 1;; \

9: esac

10: @list=’make.1’; if test -n "$list"; then \

11: list=‘for p in $list; do \

bashdb<7>

What is wrong is that we were looking for 3.82+dbg+0.7dev inside the first 15 lines of the file NEWS and we did

not find that.

The above example barely scratches the surface of what is available in both my GNU Make debugger and my

POSIX shell debuggers. There is extensive help inside the debuggers and in the online manuals http://bashdb.

sourceforge.net/remake/remake.html/index.html and http://bashdb.sourceforge.net/

bashdb.html.

USENIX Association LISA ’11: 25th Large Installation System Administration Conference 333

1.4 History and Acknowledgments

The idea for a GNU Make debugger came about after I had completed a debugger for bash[Ber09] and realized that

there was much more to debugging distribution building in autoconf and automake scripts than just the configure

script. So I first floated the idea in freshmeat forum[McC03]. A year later, in response to a challenge[Smi04], I wrote

the first code without much trouble.

GNU Make already had a wealth of debugging information stored, so all that was needed was to keep track of a

dependency stack and add calls to a REPL (read, eval, print loop) at appropriate times. Delving into the code to figure

out the right times and places was the bulk of the hard work.

One suggestion is to display a tree or subtree of targets, possibly as a graph. Unfortunately, GNU Make does not save

a tree of targets. Instead, it grows the branch it needs as it traverses targets and removes it afterwards. In order to

provide debugging, I had to extend the code to save information from the current target back to the goal target.

So, some target actions can affect whether subsequent targets are up-to-date or not. To make things more complex,

targets can be patterns that dynamically match the files created at run-time, and short of “building” the code, one can

only give an approximation of existing dependencies.

I would like to thank Calyxa D. Tokay for her constant encouragement, and Stuart Frankel for turning my jumble

of ideas into a slightly more coherent and well-organized paper. Tthe anonymous reviewers’ comments were very

helpful.

1.5 Availability

The home page for this project is http://bashdb.sourceforge.net/remake/. Download links for source

code can be found there.

Yaroslav Halchenko has been providing Debian packages. The git source repository is at:

https://github.com/rocky/remake.

References

[Ber09] Rocky Bernstein. Debugging with the Bash Debugger, 4.2-0.8 edition, April 2009. Available from http://bashdb.sourceforge.

net/bashdbOutline.html.

[Ber11] Rocky Bernstein. Remake — GNU Make with comprehensible tracing and a debugger, 3.82+dbg-0.7 edition, October 2011. Available

from http://bashdb.sourceforge.net/remake.

[Fou09] Free Software Foundation. GNU Automake, 1.11.1 edition, July 2009. Available from http://sources.redhat.com/

automake/.

[Fou10a] Free Software Foundation. GNU Autoconf, 2.6.8 edition, September 2010. Available from http://www.gnu.org/software/

autoconf/.

[Fou10b] Free Software Foundation. GNU Make, 3.82 edition, July 2010. Available from http://www.gnu.org/software/make/.

[McC03] Andrew McCall. Stop the autoconf insanity! why we need a new build system., June 2003. Available from http://fresh-

meat.net/articles/stop-the-autoconf-insanity-why-we-need-a-new-build-system.

[Smi04] Paul D. Smith. Re: Adding debugging to GNU make (Mailing lists are a disaster lately!), March 2004. Available from https://

lists.gnu.org/archive/html/make-alpha/2004-03/msg00001.html.

