
Why Do Migrations Fail and What Can We Do about It?

Gong Zhang and Ling Liu

College of Computing, Georgia Institute of Technology, Atlanta, USA

Abstract

This paper investigates the main causes that make the application migration to Cloud complicated and error-prone through
two case studies. We first discuss the typical configuration errors in each migration case study based on our error catego-
rization model, which classifies the configuration errors into seven categories. Then we describe the common installation
errors across both case studies. By analyzing operator errors in our case studies for migrating applications to cloud, we
present the design of CloudMig, a semi-automated migrationvalidation system with two unique characteristics. First,we
develop a continual query (CQ) based configuration policy checking system, which facilitate operators to weave important
configuration constraints into CQ-based policies and periodically run these policies to monitor the configuration changes
and detect and alert the possible configuration constraintsviolations. Second, CloudMig combines the CQ based policy
checking with the template based installation automation to help operators reduce the installation errors and increase the
correctness assurance of application migration. Our experiments show that CloudMig can effectively detect a majorityof the
configuration errors in the migration process.
Keywords:System management, Cloud Computing, Application Migration
Technical area: Cloud Computing

1 Introduction

Cloud computing infrastructures, such as Amazon EC2 [3], provide elastic, economical and scalable solutions and out-
sourcing opportunities for different types of consumers and end-users. Its pay-as-you-go utility-based computing model
attracts many enterprises to build their information technology services and applications on the EC2-like cloud platform(s)
and many successfully achieve their business objectives, such as SmugMug, Twistage and so forth. An increasing number of
enterprises embrace Cloud computing by making their deployment plans or engaging in the process to migrate their services
or applications from a local data center to the Cloud computing platform like EC2, because this will greatly reduce their
infrastructure investments, simplify operations, and obtain better quality of information service.

However, the application migration process from the local data center to the Cloud environment turns out to be quite com-
plicated: error-prone, time-consuming and costly. Even worse, the application may not work correctly after the sophisticated
migration process. Existing approaches mainly complete this process in an ad-hoc manual manner and thus the chances of
error are very high. Thus how to migrate the applications to the Cloud platform correctly and effectively poses a critical
challenge for both the research community and the computingservice industry.

In this paper, we investigate the factors and the causes thatmake the application migration process complicated and error-
prone through two case studies, which migrate Hadoop distributed system and RUBiUS multi-tier Internet service from a
local data center to Amazon EC2. We first discuss the typical configuration errors in each migration case study based on our
error categorization model, which classifies the configuration errors into seven categories. Then we describe the common
installation errors across both case studies. We illustrate each category of errors by examples through selecting a subset of
the typical errors observed in our experiments. We also present the statistical results on the error distributions in each case
study and across case studies. By analyzing operator errorsin our case studies for migrating applications to cloud, we present
the design of CloudMig, a semi-automated migration validation system that offers effective configuration management to
simplify and facilitate the migration configuration process. The CloudMig system makes two unique contributions. First,
we develop a continual query based configuration policy checking system, which facilitate operators to weave important
configuration constraints into continual query policies and periodically run these policies to monitor the configuration changes

1

and detect and alert the possible configuration constraintsviolations. Second, CloudMig combines the continual querybased
policy checking system with the template based installation automation system, offering effective ways to help operators
reduce the installation errors and increase the correctness assurance of application migration. Our experiments showthat
CloudMig can effectively detect a majority of the configuration errors in the migration process.

In the following sections, we discuss the potential causes that lead to the complicated and error-prone nature of the
migration process in Section 2. We review the existing approaches and their limitations in Section 3. We report our operator-
based case studies in Section 4 through a series of experiments conducted on migrating distributed system applicationsand
multi-tier Internet services from local data center to Amazon EC2-like cloud, including the common migration problems
observed and the key insights for solving the problems. In Section 5 we present the design of the CloudMig system, which
provides both the configuration validation and installation automation to simplify the migration process.

2 Why Migration to Cloud is Complicated and Error-prone

There are some causes that make the migration process to Cloud complicated and error-prone.First, the computing
environmental changes render many environment dependent configurations invalid. For example, as the database server is
migrated from local data center to the Cloud, the IP address is possibly changed and this inevitably imposes the requirement
of updating the IP address in all the components that depend on this database server. The migration process incurs large
number of configuration update operations and even a single negligence of a single update may render the whole system out
of operation.Second, the deployment of today’s enterprise system consists of large number of different components. For
example, for load balancing purpose, there may be multiple web servers and application servers in the systems. Thus the
dependencies among the many components are rather complicated and can be broken very easily in the migration process.
Sorting the dependency out to restore the normal operational status of the applications may take much more time than the
migration process itself.Third, there are massive hidden controlling settings which may bebroken inadvertently in the
migration process. For example, the access controls of different components may be rumpled, which confront the system to
the security threats.Lastly, the human operators in the complicated migration process may make many careless errors which
are very difficult to identify. Overall, the complicated deployments, the massive dependencies, and the lack of automation
make the migration process difficult and error-prone.

3 Related Work

Most of the existing migration approaches are either done manually or limited to only certain types of applications. For
example, the suggestions recommended by Opencrowd are rather high level and abstract and lack the concrete assistancesto
the migration problem [4]. The solution provided by OfficetoCloud is only limited to the type of Microsoft Office products
and does not even scratch the surface of large application migration [5]. We argue that a systematic and realistic study on the
complexity of migrating large scale applications to Cloud is essential to direct the Cloud migration efforts. Furthermore, an
automatic and operational approach is highly demanded to simplify and facilitate the migration process.

Nagaraja et al. [8] proposed a testbed for inserting faults to study the error behaviors. In our study, we study operator
errors by migrating real practical applications from localdata center to EC2. This forms a solid problem analysis context
which motivates the effective solution for the migration problem. Vieira and Madeira [9] proposed to assess recoverability
of database management systems through fault emulation andrecovery procedure emulation. However, they assumed that
human operators had the fault identification capability. Inour work, we assume that human operators only have certain error
identification capability but still cannot avoid errors.

Thus an automated configuration management system is highlydemanded. There is already intensive research work on
design and evaluation of interactive systems with human operators involved in the field of human computer interaction. For
example, Maxion and Reeder in [7] studied the genesis of human operator errors and how to reduce them through user
interface.

4 Migration Operations and Error Model

In this section, we describe a series of application migration practices conducted in migrating typical applications from a
local data center to EC2 Cloud platform. We first introduce the experimental setup and then discuss the migration practices
on representative applications in details and in particular, we focus on the most common errors made during the migration
process. Based on our observations, we build the migration error model through the categorization of the migration errors.

2

4.1 Experiment Setup

Our experimental testbed involves both a local data center and EC2 Cloud. The local data center in College of Computing,
Georgia Institute of Technology, is called “loki”, which isa 12-node,24-core Dell PowerEdge1850 cluster. Because the
majority of today’s enterprise infrastructures are not virtualized, the physical to virtual (P2V) migration paradigmis the
mainstream for migrating applications to virtualized cloud datacenters. In this work, we focus on P2V migration.

We deliberately selected representative applications as migration subjects. These applications are first deployed inthe
local data center and then operators are instructed to migrate from local data center to the Cloud. Our hypothesis is that
application migration to the cloud is a complicated and error-prone process and thus a semi-automated migration validation
system can significantly improve the efficiency and effectiveness of application migration. With the experimental setup across
the local data center and Amazon EC2 platform, we are able to deploy moderate enterprise scale of applications for migration
from a real local data center to the real Cloud platform and test the hypothesis under the setting of real workload, real massive
systems, and real powerful Cloud.

We selected two types of applications in the migration case studies: Hadoop and RUBiS. These represent typical types of
applications used in many enterprise computing systems today. The selection was made mainly by taking into account the
service type, the architecture design and the migration content.

• Hadoop [1], as a powerful distributed computing paradigm, has been increasingly attractive to many enterprises to
analyze large scale data generated daily, such as Facebook,Yahoo, etc. Many enterprises utilize Hadoop as a key com-
ponent to achieve data intelligence. Because of its distributed nature, the more nodes participating in the computation,
the more computation power is obtained in running Hadoop. Thus, when the computation resources are limited at
local site, enterprises tend to migrate their data intelligence applications to Cloud to scale out the computation. From
the aspect of service functionality, Hadoop is a very typical representation of data-intensive computation applications
and thus the migration study on Hadoop provides us good referential value on data intensive application migration
behaviors.

Hadoop consists of two subsystems, map-reduce computationsubsystem and Hadoop Distributed File System (HDFS),
and thus migrating Hadoop from local data center to the Cloudincludes both computation migration and file system
migration or data migration. Thus it is a good example of composite migration. From the angle of architecture design,
Hadoop adopts the typical master-slave structure in its twolayers of subsystems. Namely, in map-reduce layer, a job
tracker manages multiple task trackers and in the HDFS layer, a NameNode manages multiple DataNodes. Thus the
dependency relationships among multiple system components form a typical tree structure. The migration study on
Hadoop reveals the major difficulties or pitfalls in migrating applications with tree-style dependency relationships.

In our P2V experiment setup, we deploy a4-node physical Hadoop cluster, and designate one physical node to work
as NameNode in HDFS or job tracker in map-reduce and four physical nodes as DataNode in HDFS or task tracker in
map-reduce (the NameNode or job tracker also hosts a DataNode or task tracker). The Hadoop version we are using is
Hadoop-0.20.2. The migration job is to migrate source Hadoop cluster to the EC2 platform into a virtual cluster with
4 virtual nodes.

• RUBiS [2] is an emulation of multi-tiered Internet services. We selected RUBiS as a representative case of large scale
enterprise services. To achieve the scalability, enterprises often adopt the muti-tiered service architecture. Multiple
servers are used for receiving Web requests, managing business logic, and storing and managing data: Web tier,
application tier, and database tier. Depending on the workload, one can add or reduce the computation capability at a
certain tier by adding more servers or removing some existing servers. Concretely, a typical three tier setup consists of
using an Apache HTTP server, Tomcat application server and MYSQL database as the Web tier, application tier and
database tier respectively.

We selected RUBiS benchmark in our second migration case study by considering the following factors. First, Internet
service is a very basic and prevalent application type in daily life. E-commerce enterprises such as EBay, usually
adopts multi-tiered architecture as emulated by RUBiS to deploy their services and this renders RUBiS a representative
case of Internet service architecture migration. Second, the dependency relationship among the tiers of multi-tiered
services follows an acyclic graph structure, rather than a rigid tree structure, making it a good alternative in studying
the dependency relationship preservation during the migration process. Third, the migration content of this type of
application involves reallocation of application, logic and data and thus its migration provides a good case study on
rich content migration. In the P2V experiment setup, one machine installs the Apache HTTPD server as the first

3

tier, and two machines install the Tomcat application server as the second tier, and two machines install the MYSQL
database as the third tier.

In the following subsections, we introduce two migration case studies we have conducted: Hadoop migration and RUBiS
migration, focusing mainly on configuration errors and installations errors. The configuration errors are our primary focus
because they are the most frequent operator errors, some of which are also difficult to identify and correct. Installation errors
can be corrected or eliminated by more organized installation steps or semi-automated installation tools with more detailed
installation scripts and instructions.

We first discuss the typical configuration errors in each migration case study based on our error categorization model,
which classifies the configuration errors into seven categories: dependency preservation error, network connectivityerror,
platform difference error, reliability error, shutdown and restart error, software and hardware compatibility error, and access
control and security error. Then we describe the common installation errors across both case studies. We illustrate each
category of errors by examples through selecting a subset ofthe typical errors observed in our experiments. Finally we
present the statistical results on the error distributionsin each case study and across case studies. This experimental analytic
study of major errors lays a solid foundation for the design of a semi-automated migration validation system that offers
effective configuration management.

4.2 Hadoop Migration Study

In the Hadoop migration case study, we migrate the source Hadoop application from the local data center to EC2 platform.
This section discusses the typical configuration errors observed in this process.

Dependency Preservation. This is the most common error present in our experiments. Such a pitfall is very easy to
make and very difficult to discover and may lead to disastrousresults. According to the degree of severe impacts of this type
of error on the deployment and migration, it can be further classified into four levels of errors.

The first level of errors is the “dependency preservation” error generated when the migration administrator fails to meet
the necessity of dependency preservation checking. Even ifthe dependency information presents explicitly, lacking of en-
forcement to review the component dependency may lead to stale dependency information. For example, in our experiments,
if the migration operator forgets to update the dependency information among the nodes in the Hadoop application, then the
DataNodes (or task tracker) after migration will still initiate the connection with the old NameNode (or job tracker). This
directly renders the system unoperational.

The second level of errors in Hadoop migration is due to incorrect formatting and typos in the dependency files. For
example, a typo hidden in the host name or IP address renders some DataNodes to be unable to locate the NameNodes.

The third level of the dependency preservation error type isdue to incomplete updates of dependency constraints. For
example, one operator only updated the configuration files named “masters” and “slaves” which record the NameNode and
list of DataNodes respectively. However, Hadoop dependency information is also located in some other configuration files
such as “fs.default.name” in “core-site.xml” and “mapred.job.tracker” in mapred-site.xml. Thus Hadoop was still notable to
boot with the new NameNode. This is a typical pitfall in migration, and is also difficult to detect by the operator because the
operator may think that the whole dependency is updated and may spend intense efforts in locating faults in other locales.

The fourth level of the dependency preservation error type is due to inconsistency in updating the number of machines
in the system. Often, an insufficient number of updated machines may lead to unexpected errors that are hard to debug by
operators. For example, although the operator realizes thenecessity to update the dependency constraints and also identifies
all the locations of constraints on a single node, the operator may fail to update all the machines in the system, which are
involved in the system-wide dependency constraints. For example, in Hadoop migration, if not all the DataNodes update
their dependency constraints, the system cannot run with the participation of all the nodes.

Network Connectivity Bearing the distributed computing nature, Hadoop involvesintensive communication across
nodes in the sense that the NameNode keeps communication with DataNodes and job tracker communicates with task tracker
continuously. Thus for such system to work correctly, inter-connectivities among nodes become an indispensible prerequisite
condition. In our experiments, operators showed two types of network connectivity configuration errors after migrating
Hadoop from the local data center to EC2 in the P2V migraton paradigm.

The first type of such error is that some operators did not set the network to enable all the machines to be able to reach
each other over the network. For example, some operators forgot to update the file “/etc/hosts” and led to IP resolvement
problems. The second type of such error is local DNS resolution error. For example, some operators did not set the local
DNS resolution correctly, which led to the consequence thatonly the DataNodes residing in the same host as the master node
were booted after the migration.

4

Platform Difference The platform difference between EC2 Cloud and local data center also creates some errors in
migrating applications. These errors can be classified intothree levels:security, communication, and incorrect instance
operation. In our experiment, when the applications are hosted in the local data center, the machines are protected by the
firewalls, and thus even if the operators set simple passwords, the security is complemented by the firewalls. However, when
the applications are migrated into the public Cloud, the machine can experience all kinds of attacks and thus too simple
passwords may render the virtual hosts susceptible to security threats. The second level of the platform difference error
type is related to the communication setting difference between cloud and local data center. For example, such error may
occur after the applications are migrated into EC2 Cloud, ifthe communication between two virtual instances is still set in
the same way as if the applications were hosted in the local data center. Concretely, for the operator in one virtual instance
to ssh another virtual instance, the identify file which is granted by Amazon must be provided. Without the identify file,
the communication within virtual instance cannot be set correctly. The third level of the platform difference error type is
rooted in the difference between virtual instance management infrastructures. In the experiments, there were operators who
terminated an instance but his actual intention is to stop the instance. In EC2 platform, termination of an instance willlead
to the elimination of the virtual instance from Cloud and thus all the applications installed and all the data stored within the
virtual instance are lost if data is not backed up in persistent storage like Amazon Elastic Block storage. Thus, this poses
critical risks on the instance operations, because a wrong instance operation may wipe out all the applications and data.

Reliability Error : In order to achieve fault tolerance and performance improvements, many enterprise applications like
Hadoop and multi-tiered Internet services replicate its data or components. For example, in Hadoop, data is replicatedin
certain number of DataNodes, while in multi-tiered Internet services, there may exist multiple application servers ordatabase
servers. Thus after the migation, if the replication degreeis not set correctly, either the migrated application failsto work
correctly or the fault tolerance level is compromised. For example, in the experiments, there were cases in which the operator
made errors that set the replication degree more than the total number of DataNodes in the system. The reliability errorsare
sometimes latent errors.

Shutdown and Restart: This type of error means that the shutdown or restart operation in the migration process may
cause errors if not operating correctly. For example, a common data consistency error may occur if Hadoop is incorrectly
shuts down the HDFS. More seriously,a shutdown or restart error sometimes may compromise the source system. In our
experiment, when the dependency graph was not updated consistently and the source cluster was not shut down completely,
the destination Hadoop cluster initiated to connect to the source cluster and acted as the client to connect to the sourcecluster.
As a result, all the operations issued by the destination cluster actually manipulated the data in the source cluster andthus the
source cluster data was contaminated. Such errors may create disastrous impacts on the source cluster and are dangerousif
the configuration errors are not detected in time.

Software and Hardware Compatibility : This type of error is less common in Hadoop migration than inRUBiS migration
partly because Hadoop is built on top of Java and thus has better interoperability and also Hadoop involves a relatively smaller
number of different components than RUBiS. Sometimes, the difference in software versions may lead to errors. For instance,
the initial Hadoop version selected by one operator was Hadoop 0.19, which showed bugs in the physical machine. After the
operator turned to the latest 0.20.2 version, the issue disappeared.

Access Control and Security: It is noted that a single node Hadoop cluster can be set and migrated without root access.
However, because a multi-node Hadoop cluster needs to change the network inter-connectivity and solve the local DNS
resolution issue, the root access privilege is necessary. One operator assumed that the root privilege was not necessary for
multi-node Hadoop installation and was blocked due to the network connectivity problem for about one hour and then sought
help for access to the root privilege.

4.3 RUBiS Migration Study

In the RUBiS migration experiments, we migrate a RUBiS system with one web server and two application servers and
two database servers from the local data center to EC2 Cloud.We below discuss the configuration errors present in the
experiments in terms of the seven types of error categories.

Dependency Preservation: Similar to Hadoop migration, the dependency preservationerror type is also the most com-
mon error in RUBiS migration. Because RUBiS has more intensive dependency among different components than Hadoop,
operators made more configuration errors in the migration. For different tiers of a RUBiS system to run cooperatively, de-
pendency constraints need to be specified explicitly in relevant configuration locales. For example, for each Tomcat server,
its relevant information needs to be recorded in the configuration file named “ workers.properties” in Apache HTTPD server.
The MYSQL database server needs to be recorded in the RUBiS configuration file named “mysql.properties”. Thus an error

5

in any of these dependency configuration files will lead to theoperation error. In our experiments, operators made different
kinds of dependency errors. For example, some operator migrated the application but forgot to update the Tomcat server
name in workers.properties. As a consequence, although theApache HTTPD server was running correctly, RUBiS was not
operating correctly because the Tomcat server could not be connected. One operator could not find the configuration file
location to update the MYSQL database server information inRUBiS residing in the same host as Tomcat and this led to
errors and the operator therefore gave up the installation.

Network Connectivity: Relative to Hadoop migration, there is less node interoperability in a multi-tiered system like
RUBiS, and different tiers present less needs on network connectivity, thus the network connectivity configuration errors are
less frequently seen in RUBiS migration. One typical error was seen when the operator was connecting the Cloud virtual
instance, he forgot to provide the identity file to enable twovirtual instances to connect via ssh.

Platform Difference : This error type turns out to be a serious fundamental concern in RUBiS migration. Because
sometimes the instance rebooting operation may change the domain name, public IP and internal IP, even if the multi-tiered
service is migrated successfully, a rebooting operation may render the application to service interruption. One operator
finished the migration and after fixed a few configuration errors, the application was working correctly in EC2. After we
turned off the system on EC2 for one day and then rebooted the service, we found that because the domain name had totally
changed, all of the IP addresses or host name information in configuration files needed to be updated.

Reliability Error : Due to the widely used replication in enterprise systems, it is typical that the system may have
more than one application server and/or more than one database server. One operator spelt the name wrong for the second
Tomcat server, but because there remained a working Tomcat server due to replication, the service was still going on without
interruption. However, a hidden error as such was hidden inside the system and it may cause unexpected errors that could
lead to detrimental damage and yet is hard to debug and correct. This further validates our argument that configuration error
detection and correction tools are critical for cloud migration validation.

Shutdown and Restart: This type of error shows that incorrect server start or shutdown operation in multi-tiered services
may render the whole service unavailable. For example, the Ubuntu virtual instance selected for the MYSQL tier has a dif-
ferent version of MYSQL database installed by default. One operator forgot to shut down and remove the default installation
first before installing the new version of MYSQL and thus caused errors. The operator spent about half an hour to find the
issuses and fixed them. Also we observed a couple of incidentswhere the operator forgot to boot the Tomcat server first
before the shutdown operation, thus causing errors that aretime consuming to debug.

Software and Hardware Compatability: this type of error also happens frequently in RUBiS migration. The physical
machine is 64 bits, while one operator selected the 32 bits version of modjk (the component used to forward the HTTP
request from Apache HTTPD server to Tomcat server) and thus incompatibility issues occured. The operator was stuck for
about two hours, and finally identified the version error. After the software version was changed into 64 bits, the operator
successfully fixed the error. A similar error was observed where an operator selected an arbitrary MYSQL version which
took about one hour for the failed installation and then switched to a newer version before finally successfully installed the
MYSQL database server.

Access Control and Security: This type of error also occurs frequently in RUBiS migration. For example, the virtual
instance in EC2 Cloud bears the default feature of all ports closed. To enable the SSH operation possible, the security group
where the virtual instance resides must open the corresponding port 22. Also one operator configured the Apache HTTPD
server successfully but the Web server was unable to connectthrough port 80 and it took about30 mins to identify the
restrictions from EC2 documentation. Similar errors also happened for port 8080 which was for accessing Tomcat server.
Another interesting error is that one operator set up the Apache HTTPD server, but forgot to set the root directory to be
accessible and thus the index.html was not accessible. The operator reinstalled the HTTPD server but still did not discover
the error. With the help of our configuration assistant, thisoperator finally identified the error and changed the access
permission and fixed the error. We also found that operators also made errors in granting privileges to different users and one
case was solved by seeking help in the MYSQL documentation.

4.4 Installation Errors

In our experiments-based case studies, we observe that operators may make all kinds of errors in installation or redeploy-
ment of the applications in Cloud. More importantly, these errors seem to be common across all types of applications. In this
section we classify these errors into the following categories: Context information error : This is a very common installa-
tion error type. A typical example is that operators forget the context information they have used in the past installation. For
example, the operators remembered the wrong path to installtheir applications and have to reinstall the applications from

6

scratch. Also if there are no automatic installation scripts or an incorrect or incomplete installation script is used,it can be a
very frustrating experience with the same procedures repeated again and again. If the scale of the computing system is large,
then the repeated installation process turns out to be a heavy burden for system operators. Thus a template based installation
approach is highly recommended.

Environment compatibility error : In this migration case study, before any application can beinstalled, the computing
environment compatibility needs to be ensured at both the hardware and software level. For example, there were migration
failures created due to the small available disk space in virtual instance in migrating RUBiS. A similar errors is that the
operator created a virtual instance with 32 bits operating system, while the application was a 64 bits version. Thus, it
is necessary to check the environment compatibility beforethe application installation starts. An automatic environment
checking process helps to reduce the errors caused by incorrect environment settings.

Prerequisite resource checking error: This type of error is originated from the fact that every application depends on
a certain set of prerequisite facilities. For example, the installations of Hadoop and Tomcat server presume the installation of
Java. In the experiments, we observed that the migration or installation process were prone to be interrupted by the ignorance
of installing prerequisite standard facilities. For example, the compilation process needs to restart again due the lack of
“gcc” installation in the system. Thus, a complete check-list of the prerequisite resources or facilities can help us reduce the
interruptions of the migration process.

Application installation error : this error is the most common error type experienced by the operators. The concrete
application installation process usually consists of multiple procedures. We found that the operator made many repeated
errors even when the installation process for the same application was almost the same. For example, operators forgot the
building location of the applications. Thus a template based application installation process will help facilitate the installation
process.

4.5 Migration Error Distribution Analysis

In this section, we analyze the error distributions for eachspecific application and the error distribution across the appli-
cations.

Figure 1. Hadoop migration error

Figure 1 and Figure 2 show
the number of errors and per-
centage of error distribution
in the Hadoop migration case
study. In both figures, the X-
axis indicates the error types
as we analyzed in the previous
sections. The Y-axis in Figure 1
shows the number of errors for
each particular error type. The
Y-axis in Figure 2 shows the
share of each error type in terms
of the percentage over the to-
tal number of errors. In this set
of experiments, there were a to-
tal of 24 errors and some errors
cause violation in multiple error
categories. In comparison, the
dependency preservation error
happened most frequently.42%

of the errors belong to this error
type with 10 occurrences. Op-
erators typically made all four
levels of dependency preserva-
tion errors as we discussed in
Section 4.2. These kinds of errors took a long time for operators to detect. For example, an incomplete dependency constraint
checking error took one operator two and a half hours to identify the cause of the error and fix it. Network connectivity error

7

Figure 2. Hadoop migration error distribu-
tion. The legend lists the error types in the
decreasing frequency order.

Figure 3. RUBiS error distribution. The leg-
end lists the error types in the decreasing fre-
quency order.

Figure 4. RUBiS migration error

and platform difference error were the next most frequent error types, each taking17% of the total errors. Network connec-
tivity errors included local DNS resolution and IP address update errors. One typical platform difference error was that the
termination of an instance led to the data loss. Interestingto note is that these three types of errors take76% of the total errors
and are the dominating types of the error occurrences observed in the experiments we conducted.

Figure 4 and Figure 3 show the number of error occurrences andthe percentage of error distribution for RUBiS migration
case study respectively. There were a total of26 error occurrences observed in this process and some errors fall into several

8

error categories. The dependency preservation error and access control and security errors were the two most frequent error
types, each with8 occurrences, taking31% of the total erorrs. Together, both error types covered62% of all the errors and
dominated the error occurrences. It is interesting to note that the distribution of errors in the RUBiS migration case study was
very different from the distribution in the Hadoop migration case study. For example, the number of access and security errors
in RUBiS was4 times the number of errors of this type in Hadoop migration. This is because RUBiS migration demanded the
correct access control settings for many more entities thanHadoop. Not surprisingly, the majority of the access control errors
were file access permission errors. This is because changingthe file access permission is a common operation in setting up
web services and sometimes operators forgot to validate whether the access permissions were set correctly or not. Also when
there were errors and the system could not run correctly, theoperators often ignored the possibility of this type of simple errors
and thus led to longer time spent on error identification. Forexample, one error of this type took more than1 hour to identify.
Also there were more ports to open in RUBiS migration than in Hadoop migration, which also led to the high frequency
of access control errors in RUBiS migration. RUBiS migration presented more software and hardware compatibility errors
than Hadoop migration because the number of different components that were involved in RUBiS application is, relatively
speaking, much more than in the typical Hadoop migration. Similarly, there were more “shutdown/restart” errors in the
RUBiS migration. On the other hand, Hadoop migration presented more network connectivity errors and platform difference
errors than RUBiS migration, because Hadoop nodes require more tightly coupled connectivity than the nodes in RUBiS. For
example, the master node needs to have direct access withoutpassword control to all of its slave nodes.

Figure 5. Overall migration error

Figure 5 and Figure 6 sum-
marize across Hadoop migra-
tion and RUBiS migration case
studies by showing the num-
ber of error occurrences and
the percentage of error distri-
bution, respectively.The depen-
dency preservation errors are
the most frequent error occur-
rences and accounted for36%

of the total errors. In practice,
this was also the type of error
that on average took the longest
time to identify and fix. This
is primarily because depen-
dency constraints are widely
distributed among system con-
figurations, it is very prone to
be broken by changes to the
common configuration param-
eters. The second biggest er-
ror source was the “access con-
trol and security” errors, which
accounted for20% of the total
number of error occurences. It was very easy for operators tochange the file permissions to incorrect settings or some
other habits which were fitting in local data center might render the application susceptible to security threats in the Cloud
environment. The operational or environmental differences between Cloud and local data centers formed the third largest
source of error, accounting for12% of all the errors. Many common operations in local data center might lead to errors in
Cloud if no adjustments to Cloud environment were made. These three types of errors dominated the error distribution, and
accumulatively accounted for68% of the total errors. In addition to these three types of errors, network connectivity was also
an important source of errors, accounting for10% of the total errors, because of the heavy inter-nodes operations in many
enterprise applications today. The rest of errors accounted for 32% of the total errors. These error distributions provide a
good reference model for us to build a solid testbed to test the design of our CloudMig migration validation approach to be
presented in the subsequent sections of this paper. We arguethat a cloud migration validation system should be equippedwith
an effective configuration management component that not only provides a mechanism to reduce the configuration errors, but
also equips the system with active configuration error detection and debugging as well as semi-automated error correction

9

and repairs.

5 Migration Validation with CloudMig

Figure 6. Overall migration error distribution. The legend lists the
error types in the decreasing frequency order.

The case studies showed that
the installation mistakes and
configuration errors were the
two major sources of errors
in migrating applications from
local data centers to Cloud.
Thus a migration management
framework is highly recom-
mended to provide the installa-
tion automation and configura-
tion validation. We present the
design of CloudMig, a semi-
automated configuration man-
agement system, which utilizes
a “template” to simplify the
large scale enterprise system in-
stallation process and utilizes a
“policy” as an effective means
to capture configuration depen-
dency constraints, validate the
configuration correctness, and
monitor and respond to the con-
figuration changes.

The architecture design of
the CloudMig system aims at
coordinating the migration pro-
cess across different data centers by utilizing template-based installation procedures to simplify the migration process and
utilizing policy-based configuration management to capture and enforce configuration related dependency constraintsand
improve migration assurance.

The first prototype of CloudMig configuration management andvalidation system consists of four main components: the
centralized configuration management engine, the client-based local configuration management engine, the configuration
template management tool and the configuration policy management tool. The template model and the configuration policy
model form the core of CloudMig for semi-automated installation and configuration validation system. In the subsequent
sections we will briefly describe the functionality of each of these four components.

5.1 Configuration Template Model

CloudMig uses a template as an effective mechanism to simplify the installation process. Template is a pre-formatted
script-based example file containing place holders for dynamic and application-specific information to be substitutedat
application migration time for concrete use.

In CloudMig, the installation and configuration managementis operating in the unit of the application. That is, each
application corresponds to a template set and a validation policy set. The central management server is responsible to manage
the collection of templates and configurations on a per application basis and provides migration planning for the migration
process.

Recall that in the observations obtained from our migrationexperiments in Section 4, one big obstacle and source of errors
in application migration is the installation and configuration process which is also a recurring process in system deployment
and application migration. We propose to use the template approach to reduce the complexities of the installation process
and reduce the chances of errors. An installation template is defined by an installation script with place holders for dynamic
and application specific information. Templates simplify the recurring installation practice of particular applications by

10

substituting the dynamic information with new values. For example, in an enterprise system with100 nodes, there will
be multiple applications ranging from MYSQL database nodes, Tomcat application server nodes, to Hadoop distributed
system nodes and so forth. Distributed applications may span and extend to more nodes on demand to scale out. For each
application, its installation templates are stored in the installation template repository. These templates are sorted by the
application type and an application identifier. The intuitive idea of template is that through information abstraction, the
template can be used and refined for many similar nodes through parameter substitution to simplify the installation process
for large scale systems. For example, if a Hadoop system consists of100 DataNodes, then only a single installation template
is stored in the installation template repository and each DataNode will receive the same copy of the installation template
with only parameter substitution efforts needed before running the installation scripts to set up the DataNode component in
each individual node. The configuration dependency constraints are defined in the policy repository to be described in the
next subsection. CloudMig classifies the templates into thefollowing four types:

1. Context dictionary: This is the template specifying the context information about the application installation. For
example, the installation path, the preassumed Java package version, etc. A context dictionary template can be as simple
as a collection of the key-value pairs. Users specify the concrete values before a particular application installation.
Dynamic place holders for certain key context information achieve the installation flexibility and increase the ability
to find out the relevant installation information in the presence of system failures.

2. Standard facility checklist template: This is the scripttemplate to check the prerequisites to install the application.
Usually these are some standard facilities, such as Java or OpenSSH. Typical checklists include those for verifying
the Java path setting, checking installation package existence, and so on. These checklists are common to many
applications and are prerequisites for the success of installing the applications and thus performing a template check
before the actual installation can effectively reduce the errors caused by ignorance of the checklist items. For example,
both Hadoop and Tomcat server rely on the correct Java path setting and thus the correct setting of Java path is the
prerequisite of successfully installing these two applications. In CloudMig, we collect and maintain such templates
in a template library, which is shared by multiple applications. Running the checklist validation check can effectively
speed up the installation process by reducing the amount of errors caused by carelessness on prerequisites.

3. Local resource checklist template: This is the script template to check the hidden conditions for an application to be
installed. A typical example is to perform the check of whether or not there is enough available disk space quota for a
given application. Similarly, such resource checklist templates are also organized by application type and application
identifier in the template library and utilized by the configuration management client to reduce the local installation
errors and installation delay.

4. Application installation template: This is the script template used to install a particular application. The context
dictionary is included as a component of the template. Organizing installation templates simplifies the installation
process and thus reduces the overhead in recurring installations and migration deployments.

5.2 Configuration Policy Model

In this section, we first introduce the basic concept of configuration policy, which plays the key role in capturing and
specifying configuration dependency constraints and monitoring and detecting configuration anomalies in large enterprise
application migration. Then we introduce the concept of continual query (CQ) and the design of a CQ enabled configuration
policy enforcement model.

5.2.1 Modeling Dependency Constraints with Configuration Policies

A configuration policy defines an application-specific configuration dependency constraint. Here is an example of such
constraints for RUBiS: for each Tomcat server, its relevantinformation needs to be specified explicitly in the configuration
file named “workers.properties” in Apache HTTPD server. Configuration files are usually application-specific and usually
specify the settings of the system parameters, the dependencies among the system components and thus directly impact the
way of how the system is running. As enterprise applicationsscale out, the number of components may increase rapidly and
the correlations among the system components evolve with added complexity. In term of complexity, configuration files for a
large system may cover many aspects of the system configuration, ranging from host system information, to network setting,
to security protocol and so on. Any typo or error may disable the operational behavior of the whole application system

11

as we showed and analyzed in the previous experiments. Configuration setting and management are usually a long term
practice, starting from the time when the application is setup until the time when the application is ceased its use. During
this long application life cycle, different operators may be involved in the configuration management practices and operate
on the configuration settings based on their understandings, thus it further increases the probability of errors in configuration
management. In order to fully utilize resources, enterprises may bundle multiple applications to run on top of a single physical
node, and the addition of new applications may necessitate the need to change the configurations of existing applications.
Security threats such as viruses, also pose demands to effective configuration monitoring and management.

Figure 7. CloudMig Architecture Design

In CloudMig, we propose to use policy
as an effective means of ensuring the con-
straints of configurations to be captured cor-
rectly and enforced consistently. A policy
can be viewed as a specialized tool to spec-
ify the constraints on the configuration of
a specific application. It specifies the con-
straints to which the application configura-
tion must conform in order to assure that
the whole application is migrated correctly
to run in the new environment. For exam-
ple, in the Hadoop system, the configuration
constraint that “the replication degree can-
not exceed the number of DataNodes” can
be represented as a Hadoop specific config-
uration policy. The basic idea of introduc-
ing the policy-based configuration manage-
ment model is that if operators are equipped
with a migration configuration tool to define
the constraints that configuration must fol-
low in the form of policies, then running the
policy enforcement checks at a certain fre-
quency will help to detect and eliminate cer-
tain types of errors, even although errors are
unavoidable. Here are a few configuration
policy examples that operators may have in
migrating a Hadoop system.

1. The replication degree can not be larger than the number ofDataNodes

2. There is only one master node

3. The master node of Hadoop cluster should be named “dummy1”

4. The task tracker node should be named “dummy2”

As the system evolves and the configuration repository grows, performing such checking manually will become a heavy
and error-prone process. For example, in enterprise Internet service systems, there may be hundreds of nodes, and the
configuration of each node needs to follow certain constraints. For load balancing purpose, different Apache HTTPD servers
correspond to different sets of Tomcat servers. Incorrect setting of relevant configuration entries will directly leadto an
unbalanced system and even cause the system to crash when workload burst happens. With thousands of configuration entries,
hundreds of nodes, and many applications, it is impracticalif not impossible to perform manual configuration correctness
checking and error correction. We argue that a semi-automated configuration constraint checking framework can greatly
simplify the migration configuration and validation management of large scale enterprise systems. In CloudMig, we advocate
the use of continual query as the basic mechanism for automating the configuration validation process of operator-defined
configuration policies. In the next section we will describehow CQ-enabled configuration policy management engine can
improve the error detection and debugging efficiency, thus reducing the complexity of migrating applications from a local
data center to Cloud.

12

5.2.2 Continual Query Based Policy Model

In CloudMig, we propose a continual query based policy specification and enforcement model. A continual query (CQ) [6]
is defined as a triple in the form of (Query, Trigger, Stop). A continual query (CQ) can be seen as a standing query, in which
the trigger component specifies the monitoring condition and is being evaluated periodically upon the installation of the CQ
and whenever the trigger condition is true, the query component will be executed. The Stop component defines the condition
to terminate the execution of the CQ. Trigger condition can be either time-based or content-based, such as “checking thefree
disk space every hour or trigger a configuration action when the free disk space is less than1GB”.

In CloudMig, we define a policy in the format of continual query and refer to the configuration policy as the Contiual
Query Policy (CQP), denoted by : CQP(policyID, appName, query, trigger, action, stopCondition). Each element of the CQP
is defined as follows:

1. policyID is the unique numeric identifier of the policy.

2. appNameis the name of the application that is installed or migrated to the host machine.

3. query refers to the search of matching policies and the execution of policy checking. The query can be a Boolean
expression over a simple key-value repository or SQL-like query or XQuery on a relational database of policies.

4. trigger is the condition upon which the policy query will be executed. Triggers can be classified into time-based or
content-based.

5. action indicates the action to be taken upon the query results. It can be a warning flag in the configuration table or an
warning message sent by email or displayed on the command line of an operator’s terminal.

6. stopConditionis the condition upon which the CQP will stop to execute.

An example CQ-based policy is to check whether the replication degree is larger than the number of DataNodes in Hadoop
prior to migration or changing the replica factor (replication degree) or reducing the number of DataNodes. Whenever
the check returns a true value, send an alert to re-configure the system. Clearly, the query component is responsible for
checking if the replication degree is larger than the numberof DataNodes in Hadoop. The trigger condition is Hadoop
migration or changing the replica factor (replication degree) or reducing the number of DataNodes. The action is definedas
re-configuration of the Hadoop system upon the true value of the policy checking. In CloudMig, we introduce default stop
condition of one month for all CQ-enabled configuration policies.

5.3 CloudMig Server side Template Management and Policy Management

CloudMig aims at managing the installation templates and configuration policies to simplify the migration for large scale
enterprise systems which may be comprised of thousands of nodes with multi-tier applications. Each application has itsown
configuration policy set and installation template set and the whole system needs to manage a large collection of configuration
policies and installation templates. The CloudMig server side configuration management system helps to manage the large
collection of templates and configuration policies effectively by providing system administrators (operators) with convenient
tools to operate on the templates and policies. Typical operations include policy or template search, indexing, application
specific packaging and shipping, to name a few. Detaching thetemplate and policy management from individual application
and utilizing a centralized server also improves the reliability of CloudMig in the presence of individual node failures.

In CloudMig, the configuration management server operates at the unit of a single application. Each application corre-
sponds to an installation template set and a configuration validation policy set. The central management server is responsible
for managing the large collection of configurations on a per application basis and providing migration planning to speedup
the migration process and increase the assurance of application migration. Concretely, the configuration management server
mainly coordinate the tasks of the installation template management engine and the configuration policy management engine.
Installation Template Management Engine.

As shown in Figure 7, the installation template management engine is the system component which is responsible for
creating template, update template, advise the template for installation. It consists of a central template repository and a
template advisor. The template repository stores and maintains the template collections of all the applications. The template
advisor provides the operators with the template manipulation capabilities such as creating, updating, deleting, searching and

13

Table 1. Migration Error Detection Rate
Migration Type Error Detection Rate
Hadoop migration 83%
RUBiS migration 55%
all migrations 70%

indexing templates over the template repository. On a per application basis, operators may create an application template
set, add new templates to the set, update templates from thisset or delete templates. The template advisor assumes the job
to search and dispatch templates for new installations and propagate template updates to corresponding application hosting
nodes. For example, during the process of RUBiS installation, for a specific node, the template advisor dispatches the
appropriate template depending on the server type (web server, application server or database server) and transmits (ships)
the new installation set to the particular node.

Concretely, for each application, the central installation template management engine builds the context library which
stores all the source information in the key-value pairs, and selects a collection of standard facility checklist templates which
apply to the particular application, and pick a set of local resource checklist templates as the checklist collection for the
application, and finally builds the specific application installation template. The central management engine then bundles the
collections of templates and policies for the particular application and transmits the bundle to the client installation template
manager to start the installation instance.

Configuration Policy Management Engine.
As the central management unit for the policies, the policy engine consists of four components: policy repository, config-
uration repository, policy advisor, and action manager. Together they cooperate to provide the service to create, maintain,
dispatch and monitor policies and execute the corresponding actions based on the policy execution results. Concretely, we
below describe the different components of the policy engine:

1. The policy repository is the central store where all the policies for all the applications are maintained. It is also
organized on a per application basis. Each application corresponds to a specific policy set. This policy set is open to
addition, update, or delete operations. Each policy corresponds to a constraint set on the application.

2. The policy advisor works on the policies in the policy repository directly and provides the functionalities for application
operators to express the constraints in the form of CQ-basedpolicy. Application operators creates policies through this
interface.

3. The configuration repository stores all the configurationfiles on a per application basis. It ships the configurations from
the CloudMig configuration server to the local configurationrepository on the individual node (cient) of the system.

4. The action manager handles the validation results from the policy validator running on client and triggers the corre-
sponding action based on certain policy query result, in theform of an alert through message posting or email or other
notification methods.

5.4 CloudMig Configuration Management Client

The CloudMig configuration management client is running at each node of a distributed or multi-tier system, which is
responsible for managing the configuration policies related to the node locally. Corresponding to the CloudMig configuration
management engine at the server side, CloudMig client worksas a thin local manager for the templates and policies which
only apply to a particular node. A client engine mainly consists of two components: client template manager and client policy
manager.
Client Template Manager.
Client template manager manages the templates for all the applications installed in the host node on per application basis. It
consists of three components: template receiver, templateoperator and local template repository. The template receiver re-
ceives the templates from the remote CloudMig configurationmanagement server and delivers the templates to local template
manager. The local template manager installs the application based on the template with necessary substitution operations.
The local template manager is also responsible for managingthe local template repository which stores all the templates for
the applications that reside at this node.

14

Figure 8. Hadoop error detection

The concrete process of tem-
plate based installation works
as follows: after the client
template manager receives
the collection of installation
templates from the server side
installation template man-
agement engine, it will run
the local resource checklist
templates first to detect if there
are any prerequisite checklist
items which are not met. For
example, it checks if the avail-
able disk space is less than the
amount needed to install the
application, or if the user has
the access permissions to the
installation path, etc. Next,
the standard facility checklist
template will run to detect
if all the standard facilities
are installed or not. Finally,
the dynamic information in
application specific templates
are substituted and the context dictionary is integrated torun this normal installation process.

Client Policy Manager.

Figure 9. RUBiS error detection

There is a client policy man-
ager residing together with the
host node to manage the poli-
cies for the local node. It
mainly consists of policy re-
ceiver, policy validator, lo-
cal policy repository and lo-
cal config repository. The pol-
icy receiver receives the poli-
cies transmitted from the pol-
icy advisor in the central policy
server, and stores the policies
in the local policy repository.
The local config repository re-
ceives the configuration data di-
rectly from the central config
repository. The local policy
validator runs each policy. It
retrieves the policy from local
policy repository and searches
the related configuration data to
run the policy upon the config-
uration data. The policy valida-
tor transmits the validation re-
sults to the action manager in

15

the central server to take the alert actions.

6 Case Studies with CloudMig

Figure 10. Overall migration error detection

We run CloudMig with the
same set of operators on the
same set of case studies af-
ter the manual migration pro-
cess is done (recall Section 4).
We count the number of er-
rors that are detected by Cloud-
Mig configuration management
and installation automation sys-
tem. We show through a set of
experimental results below that
CloudMig overall achieves high
error detection rate.

Figure 8 shows the error de-
tection results for Hadoop mi-
gration case study. As one can
see, the configuration checking
system can detect all the depen-
dency preservation errors, net-
work connectivity errors, shut-
down restart errors, and all the
access control errors. This con-
firms the effectiveness of the
proposed system, in that it can
detect the majority of the con-
figuration errors. The two types of error that can not be fullydetected are platform difference error and software/hardware
compatibility errors. For platform difference errors, this is because the special property of the platform differenceerror
requires the operators to fully understand the uniqueness of the particular Cloud platform first. As long as the operator
understands the platform sufficiently, for example, by lessons learned from others or policies shared by others, we believe
that such errors can be reduced significantly as well. The reason that current implementation of CloudMig cannot de-
tect software/hardware compatibility errors notably is due to the quality of the default configuration data which lacksof
application-specific software/hardware compatibility information. Although in the first phase of implementation, wemainly
focus on the configuration checking triggered by the original configuration data, we believe that as operators weave more
compatibility policies into CloudMig policy engine, such type of errors can also be reduced significantly. As Table 1 shows,
totally CloudMig could detect83% of the errors in Hadoop migration.

Figure 9 shows the error detection result for RUBiS migration case study. In this study, we can see that CloudMig can
detect all the dependency preservation errors and reliability errors.

However, because multi-tiered Internet service system involves a higher number of different applications, it leads tomore
complicated software/hardware compatibility issues compared to the case of Hadoop migration. In the experiments reported
in this paper we are focusing on the configuration driven by the default configuration policies, which lacks of adequate
software/hardware compatibility policies for RUBiS, thusCloudMig system did not detect the software/hardware errors. On
the other hand, this result also indicates that in the RUBiS migration process, the operators are suggested to pay special
attention to the software/hardware compatibility issues because such errors are difficult to detect with automated tools. It
is interesting to note that the CloudMig was able to detect only half of the access control errors in RUBiS. This is because
these errors include MYSQL privilege grant operations which are embedded in the application itself and the CloudMig
configuration validation tool cannot intervene with the internal operations of MYSQL. Overall, CloudMig detected55% of
the errors in RUBiS migration as shown in Table 1.

16

Figure 11. Overall migration error detection ratio

Figure 12. Overall migration error detection percentage. The legend
lists the error types in the decreasing percentage order.

Figure 10 and Figure 11
show the number of detected er-
rors and the error detection ra-
tio of each error type summa-
rized across the Hadoop migra-
tion case study and RUBiS mi-
gration case study respectively.
Overall, CloudMig can detect
all the dependency preservation
and reliability errors and80%

of the network errors and60%

of the access control and se-
curity errors. In total, these
four types of errors accounted
for 74% of the total error oc-
currences. For shutdown/restart
errors, CloudMig detected50%

of such errors and did not detect
the software/hardware compat-
ibility errors. This is be-
cause the application config-
uration data usually contains
less information related with
shutdown/restart operations or
software/hardware compatibil-
ity constraints and this fact
makes the configuration checking on these types of errors difficult without adding additional configuration policies. Fig-
ure 12 shows the percentage of error types in the total numberof detected errors. One can see that51% of the detected errors
are dependency preservation errors, and17% of the detected errors are network errors. Table 1 shows thattotally across all
the migrations, the error detection rate of CloudMig systemis 70%.

Overall these experimental results show the efficacy of CloudMig in reducing the migration configuration errors, simpli-

17

fying the migration process and increasing the level of assurance of migration correctness.

7 Conclusion

We have discussed the system migration challenge faced by enterprises in migrating local data center applications to the
Cloud platform. We analyze why such migration is a complicated and error-prone process and pointed out the limitations of
the existing approaches to address this problem. Then we introduce the operator-based experimental study conducted over
two representative systems (Hadoop and RUBiS) to investigate the error sources. From these experiments, we build the error
classification model and analyze the demands for an semi-automated configuration management and migration validation
system. Based on the operator study, we design the CloudMig system with two unique characteristics. First, we develop
a continual query based configuration policy checking system, which facilitate operators to weave important configuration
constraints into continual query policies and periodically run these policies to monitor the configuration changes anddetect
and alert the possible configuration constraints violations. In addition, CloudMig combines the continual query basedpolicy
checking system with the template based installation automation system, offering effective ways to help operators reduce the
installation errors and increase the correctness assurance of application migration. Our experiments show that CloudMig can
effectively detect a majority of the configuration errors inthe migration process.

8 Aknowlegement

This work is partly sponsored by grants from NSF CISE NetSE program, CyberTrust program, Cross-cutting program and
an IBM faculty award, an IBM SUR grant and a grant from Intel Research Council.

References

[1] Hadoop project. http://hadoop.apache.org/.
[2] RUBiS benchmark. http://rubis.ow2.org/.
[3] Amazon EC2. http://aws.amazon.com/ec2/, April 2011.
[4] Cloud Migration. http://www.opencrowd.com/services/migration.php, April 2011.
[5] Office Cloud. http://www.officetocloud.com, April 2011.
[6] L. Liu, C. Pu, and W. Tang. Continual queries for internetscale event-driven information delivery.Knowledge and Data

Engineering, IEEE Transactions on, 11(4):610 –628, jul/aug 1999.
[7] R. A. Maxion and R. W. Reeder. Improving user-interface dependability through mitigation of human error.Int. J.

Hum.-Comput. Stud., 63:25–50, July 2005.
[8] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, andT. D. Nguyen. Understanding and dealing with operator mistakes

in internet services. InIn Proceedings of the USENIX Symposium on Operating SystemsDesign and Implementation
(OSDI 04, 2004.

[9] M. Vieira and H. Madeira. Recovery and performance balance of a cots dbms in the presence of operator faults. In
Proceedings of the 2002 International Conference on Dependable Systems and Networks, DSN ’02, pages 615–626,
Washington, DC, USA, 2002. IEEE Computer Society.

18

	Introduction
	Why Migration to Cloud is Complicated and Error-prone
	Related Work
	 Migration Operations and Error Model
	Experiment Setup
	Hadoop Migration Study
	RUBiS Migration Study
	 Installation Errors
	Migration Error Distribution Analysis

	Migration Validation with CloudMig
	 Configuration Template Model
	 Configuration Policy Model
	Modeling Dependency Constraints with Configuration Policies
	 Continual Query Based Policy Model

	 CloudMig Server side Template Management and Policy Management
	 CloudMig Configuration Management Client

	Case Studies with CloudMig
	Conclusion
	Aknowlegement

