
Fine-grained access-control for the Puppet configuration language

Bart Vanbrabant, Joris Peeraer, Wouter Joosen
bart.vanbrabant@cs.kuleuven.be, jorispeeraer@gmail.com, wouter.joosen@cs.kuleuven.be

DistriNet, Dept. of Computer Science,
K.U.Leuven, Belgium

Abstract

System configuration tools automate the configuration
and management of IT infrastructures. However these
tools fail to provide decent authorisation on configuration
input. In this paper we apply fine-grained authorisation
of individual changes on a complex input language of
an existing tool. We developed a prototype that extracts
meaningful changes from the language used in the Pup-
pet tool. These changes are authorised using XACML.
We applied this approach successfully on realistic access
control scenarios and provide design patterns for devel-
oping XACML policies.

1 Introduction

The management of large IT infrastructures needs to be
automated to keep it manageable and reduce the amount
of human errors [3, 11]. A system configuration tool is
software that enables a system administrator to automate
the configuration and management of large IT infrastruc-
tures. These tools address scalability, heterogeneity, and
the consistency of relations between machines [2]. All
system configuration tools have a similar reference archi-
tecture: each managed device runs an agent that manages
the configuration of that device. The agent compares
the current state of the device with the state described
in a policy that is stored in a database or repository on a
central server. This policy determines the configuration
and the state of the entire IT infrastructure. Therefore if
someone adds unauthorised changes to the central policy
this person can control the entire IT infrastructure. Thus
access control to this central policy is required.

System configuration tools can be divided into two
categories based on how the input policy is organised:
database or textual [5] based. The database based tools
often use a graphical interface or command interface to
manipulate their policies. Access control in these tools
is enforced on records in that database. The other input

Figure 1: Overview of the solution presented in this pa-
per.

type uses textual configuration files. The current state-
of-practice of these text based system configuration tools
uses path based access control to prevent unauthorised
access to the textual configuration files but the name and
the path of the file often do not have a relation with the
contents of the file. To be able to use conventional path
based access control, current tools rely on conventions
to determine in which file what configuration statement
may be included. For example network related config-
uration can only be defined in the network.cf config-
uration file. System management tools and path based

1



access control however cannot prevent a malicious user
from adding network configuration statements to the file
motd.cf.

In “Federated Access Control and Workflow Enforce-
ment in Systems Configuration” [10] we proposed a
method called ACHEL to enforce fine-grained access
control based on the semantics of a change. In other
words ACHEL calculates the operations the user wants
to authorise using the changes in a textual file. We ap-
plied this approach to a minimal configuration language
to prove its viability in a prototype. This prototype used
a custom access control language based on regular ex-
pressions. Our method is language agnostic, except for
the part to give meaning to each change. Figure 1 show
the steps in the ACHEL method.

In this paper we apply the ACHEL method on a con-
figuration language of an existing system configuration
tool. The two research objectives of this paper are:

1. Can we extract the AST from the compiler of a sys-
tem configuration tool and can we reuse this internal
AST or do we need to transform it in order to obtain
differences that are semantically meaningful?

2. How do we authorise changes? Once changes are
known they have to be authorised. We propose
an access control language and design patterns in
this paper that provide the flexibility to express the
different rules in a manageable and understandable
fashion.

In this paper we add fine-grained access control
based on meaningful changes to Puppet [1] and used
XACML [8] to authorise changes. We implemented a
prototype and integrated it with a version control system.
Afterwards we evaluated this prototype by comparing it
with traditional access control in two change scenarios.
An important subset of the Puppet language is supported
and we present design patterns to use the full expressive-
ness of the Puppet language including the unsupported
language constructs with our access control mechanism.

In the remainder of this paper we first give some back-
ground on the ACHEL authorisation mechanism in Sec-
tion 2. Then we look at related work in Section 3. Af-
terwards we discuss the methods used in the differenc-
ing process in Section 4. In this section we also discuss
the problems we encountered by using the AST Puppet
generates. The next step is the actual authorisation. Sec-
tion 5 introduces the XACML framework and proposes
a design pattern for writing policies. Finally in Section 6
we compare our method with other authorisation meth-
ods.

2 The ACHEL authorisation mechanism

The configuration model used by a system management
tool is compiled from an input in the form of textual
source code. This source input is stored on a filesys-
tem or in a repository that uses version tracking. Access
control and authorisation in the state of the art is based
on operations performed on files and directories. In state
of the art system management tools there is often no link
between the file path and the parts of the configuration
model represented in the file. Version control systems
use diff-like algorithms [9] that operate on flat files to
generate changes between two versions of a file. Diff al-
gorithms detect changed lines and produce a list of insert
and remove line operations. Applying access control on
these operations does not make much sense. The oper-
ations are highly syntax dependant and there is only a
weak link between the insert and remove operations and
the configuration model.

In large infrastructures updates are never applied di-
rectly to the production infrastructure. Depending on the
contents of the update or the person that produced the
update, different authorisations can be required. For ex-
ample:

1. all changes from junior administrators need to be
reviewed and approved by a senior administrator

2. the scenario in Figure 2 where a change needs to be
approved by a manager

3. all changes to the production infrastructure out-
side maintenance windows require approval by two
managers

4. in a federated infrastructure changes to the back-
bone network need to be approved by the manage-
ment of each of the administrative domains

Existing system management tools and access control so-
lutions provide no support for these complex workflows.

Our method [10] transforms the updates on the con-
figuration model by comparing the current and the new
version of the input source. It compiles the two versions
to an abstract syntax tree [7]. From the two versions an
edit script is generated that transforms the old AST to
the AST of the new version [4]. This process is repre-
sented in Figure 1. Because we are working on the AST,
we know the semantics of changes made to the nodes in
the abstract syntax tree. Therefore the edit script can be
transformed to operations on entities that exist in the con-
figuration model. Using our method, access control rules
can be expressed in terms of operations on the entities
in the configuration model. For example, instantiating a
new resource, instead of adding a line to the input file
that has a given syntax. These operations are the actions

2



Figure 2: Updating the configuration model using access control.

that needs to be authorised. Additionally this method,
opposed to other access control methods, derives the op-
erations to authorise automatically and requests permis-
sion to apply them.

For audit purposes the configuration model is often
stored in version controlled repositories. These reposito-
ries record each change to a configuration file and meta-
data such as the user that made the change and an op-
tional log message. In ACHEL changes to this repository
are digitally signed with the private key of the adminis-
trator. During generation of the edit script and the trans-
formation of the edit script, the owner of each entity and
the author of each change is tracked. The owner of an
entity is the user that added or modified the entity. This
ownership and author information is also exposed to the
access control engine.

We enforce update workflows by using distributed ver-
sion control repositories. Each system administrator that
makes changes to the configuration model has their own
repository. Distributed version control repositories as-
sign a unique identifier to each change based on the con-
tents of the change. To enforce update workflows, a
change is authorised by the owner of a key by signing
this unique identifier and including it as an update in
the repository. Access control rules can require the au-
thorisation of a third party before an update is allowed.
Because each distributed version control repository can
have its own set of access control rules, very flexible up-
date workflows can be enforced.

Figure 2 represents a possible scenario supported by
ACHEL [10]. A system administrator makes a change

that is allowed in his repository but it requires approval
by a manager to push the change into the repository for
the production infrastructure. The sysadmin requests the
manager to review his change. The manager reviews the
change and approves it by signing the identifier of the
change. The sysadmin can now push his change to the
production repository together with the signature of the
manager.

3 Related work

In “A survey of system configuration tools” [5] we eval-
uated several system configuration tools, including their
support for access control and authorisation of changes.
We identified two types of authorisation: either path
based access control or access control based on “re-
sources” in the configuration model. The tools that
support external version repositories can reuse the path
based access control of that repository or the access con-
trol models that the filesystem provides. Other tools
allow fine grained access control on “resources” in a
database using a hierarchy of resources. The system con-
figuration tools that enforce authorisation on “resources”
do this on resources in the configuration model that is
used to generate and deploy configuration files and man-
age each system. The main disadvantage of this method
is that authorisation cannot be performed on language
constructions that are determined at runtime. For exam-
ple the usage of a Collect instruction in Puppet.

“Authorisation and Delegation in the Machination
Configuration System” [6] proposes a method of organ-

3



ising and delegating access to configuration information.
The author integrated this method in the configuration
management tool Machination. One of the key require-
ments of his method is the ability to authorise access
to configuration aspects individually. He accomplishes
this requirement by authorising the primitive operations
which manipulate the configuration. The configuration
representation used in Machination, is a form of XML
with additional restrictions. These restrictions assure ev-
ery configuration element is addressable by an XPath
query. Upon this representation, a set of primitive op-
erations is defined. These operations edit the configu-
ration by adding, removing, changing and ordering the
individual elements in the configuration input. Authori-
sation is then performed upon the individual operations
needed to transform the configuration. By grouping mul-
tiple elements together such that they can be referred to
by an XPath query, multiple configuration aspects can be
authorised.

Both tools use the principle of authorisation on the in-
dividual elements. Where Machination starts from one
version and uses the operation to obtain the new version,
ACHEL derives the operations that need to be authorised
from the two versions. This paper describes a method
in which the differencing of ACHEL is used to find the
changes made to a file.

4 Extracting changes

The ACHEL authorisation method starts from the con-
figuration file that has been changed. The method con-
sists of two phases. The first phase retrieves the AST
of each file from the Puppet compiler. This AST should
not contain any grammatical constructs anymore for the
differencing algorithm to work. This is not the case for
the AST Puppet produces, it still contains some syntac-
tical leftovers. Therefore a transformation step is also
included in this phase. The second phase compares the
two trees and calculates an edit script that describes the
operation to transform the first AST into the second AST.
This edit script is transformed into meaningful changes
expressed in terms of the language constructs in the Pup-
pet language.

The Puppet language is an expressive language that
also contains control flow and runtime evaluated expres-
sion such as the case statement or virtual and exported
resources. Applying access control to changes that in-
clude these language constructs is very hard with our
method because the effects of such statements are only
known when the “configuration policy” of each managed
device is calculated. In this prototype of the ACHEL au-
thorisation method for Puppet we support a limited set of
language constructs in the Puppet language on which we
can apply authorisation. This set includes creating defi-

nitions, classes, creating resources including using arrays
as identifier and relations. In Section 5.2 we will argue
why this limited set can already be used to create power-
ful access control policies.

4.1 Generating the abstract syntax tree

The ACHEL authorisation mechanism requires access to
the AST of each version of the Puppet manifests. In this
section we describe how we extract the AST from Pup-
pet. The AST from Puppet is not directly usable for our
mechanism because it contains syntactical constructions.
Therefore we need to normalise this AST.

We use the Puppet parser to create the AST of a Pup-
pet input file. This provides us the AST that Puppet rea-
sons upon. However this AST is not suited for generating
an edit script. Although it is an abstract syntax tree, the
tree still contain syntactical language constructs from the
Puppet language. This is a problem because they do not
have any meaning. This can even result in two differ-
ent AST’s that have the same semantics. Consider Fig-
ure 3a and the corresponding AST in Figure 3b. Line 1
in Figure 3a describes the declaration of two users. The
AST of the code fragment still contains the array which
is nothing more than syntactic sugar to easily create two
resources with the same attributes. For the differencing
algorithm the only difference is the addition of one string
to an array, instead of adding an entire resource. This
change is not meaningful and cannot be described cor-
rectly in a policy.

The solution is to transform and normalise this tree to
remove all syntactical structures from the abstract syntax
tree. In the example from the previous paragraph we can
remove the array as identifier for the users, and replicate
the whole definition of the user for each element of this
array. This transformation ensures that when a user gets
added or removed, the differencing will detect a user be-
ing added or removed. The transformed AST is depicted
in Figure 3c.

The solution in this example is very specific for the
given problem and there is no generic solution to remove
the syntax leftovers in the AST or even to detect them.
Moreover, we do not have a list of problematic structures
that are present in the Puppet language. The only solu-
tion to fully support a language is to test every language
concept and check the resulting AST structure. In this
implementation of our authorisation mechanism we ex-
plicitly chose to transform the AST instead of running a
preprocessor over the input source. With this approach
we reuse the existing lexer and parser of the Puppet tool.
This makes the transformation step less syntax depen-
dant. If a concept results in an ambiguous AST or one
that contains syntactical constructs, the AST needs to be
transformed or the compiler needs to be adapted.

4



1 user {["kwik","kwak"]:

2 gid => 123

3 }

(a) The Puppet manifest

1 class: ASTClass

2 - member: Resource

3 + type: Name => user

4 + title: ASTArray

5 | + child: String => kwik

6 | - child: String => kwak

7 - parameter: ResourceParam

8 + param: Name => gid

9 - value: String => 123

(b) The AST created by Puppet

1 class: ASTClass

2 + member: Resource

3 | + type: String => user

4 | + title: String => kwik

5 | - parameter: ResourceParam

6 | + param: Name => gid

7 | - value: String => 123

8 - member: Resource

9 + type: String => user

10 + title: String => kwak

11 - parameter: ResourceParam

12 + param: Name => gid

13 - value: Name => 123

(c) The normalised AST

Figure 3: Puppet configuration that defines multiple
users using one resource definition.

The differencing stage compares the two normalised
AST’s to generate an edit script. In this prototype we
use the same algorithm as our previous work [10]. This
algorithm works as follows:

1. Match the leaves of the two trees using a similarity
function.

2. Match the internal nodes using the information of
already matched leaves: nodes with a lot of leaves
in their subtrees in common are likely to match as
well.

3. Correct wrongly coupled leaves using information
of the matched internal nodes: parents of matching
leaves should match as well.

4. Generate an edit script with the basic changes: add,
modify and delete.

5. Correct changes: e.g. remove changes that cancel
each other.

4.2 Generating meaningful changes
Authorisation is enforced based on operations derived
from the meaning of a change and not on the operations
the operations in an edit script, therefore the edit script
is transformed in meaningful changes. For instance, the
mode parameters of the of the /etc/motd changed from
0600 to 0644 instead of the 0600 node in the AST was re-
moved and replaced by the 0644 node. These meaningful
changes express changes as operations on the concepts
that exist in the Puppet configuration language, instead
of operations on a tree. This step is language dependant.
The edit script expresses operations on the nodes in the
AST. These nodes in the AST are linked to specific con-
cepts in the Puppet language. In this step a transforma-
tion between the operations and the AST nodes and pos-
sible operations on language constructs is required. In
our method this is a manually coded step.

5 Authorising changes

The second component in our solution is the autho-
risation of individual configuration changes. For this
authorisation two elements are needed: a set of poli-
cies describing which changes are allowed or denied
and a framework that executes the actual authorisation.
XACML provides both features and is widely used au-
thorisation standard in industry. Therefore we used it for
implementing the authorisation step. In this section we
will discuss the use of XACML to describe the access
control policies.

5.1 The XACML standard
XACML is a international standard for access control
and authorisation. The standard defines a language for
policies and a language for authorisation requests. Both
are XML based. The standard also describes the compo-
nents and the architecture of an authorisation engine and
allows an XACML authorisation engine to be extended.

XACML defines the components and the dataflow be-
tween them in the authorisation engine. The following
components are required to handle an authorisation re-
quest:

• Policy Enforcement Point (PEP) This component
receives the authorisation requests and creates a
XACML request from it that is sent to the PDP.

• Policy Decision Point (PDP) The PDP loads all re-
quired policies and validates the request from the
PEP against these policies. The results of these
checks are combined and sent back to the PEP.

• Policy Access Point (PAP) The PAP makes the
policies available to the PDP.

5



• Policy Information Point (PIP) The PIP provides
the PDP with attributes related to subject, resource
or environment. These attributes can be retrieved
from several sources such as files or databases.

XACML is a generic solution for domain specific au-
thorisation. The domain specific entities involved in the
authorisation process can be mapped to subject, resource
and action from the XACML standard. The subject sub-
mits a request to perform an action on a resource. Each of
these entities can have multiple attributes. A policy deci-
sion is based on these attributes and additional attributes
provided by the PIP.

The policy contains the rules that define what is al-
lowed. Policies can be grouped in policy sets and each
policy set can consist of policies and other policy sets.
A policy is built from targets, rules, a rule combination
algorithm and a number of obligations.

• The target of a policy defines when a policy needs
to be used. This is expressed using a matching ex-
pression over the attributes of subject, action and
resource.

• Rules have a target that defines when a rule is appli-
cable, a condition and an effect that defines Permit
or Deny based on the condition.

• The combining algorithm determines what the final
result of a policy is if multiple rules returned an ef-
fect.

• The obligation is an action that needs to be executed
when a policy is applicable. The PEP is responsible
for executing these obligations.

The authorisation process works by exchanging re-
quest and response messages between the PDP and the
outside world. The request message contains the subject,
resource, action and environment and the associated at-
tributes. If the content of the resource is XML it can be
embedded in the request message. When the PDP has
calculated the result of the authorisation a response mes-
sage is sent back. This response message contains a re-
sult code and an optional message or information.

5.2 XACML policies for Puppet

Our authorisation method provides the configuration
changes to the XACML engine that enforces authorisa-
tion. This section explains how a policy can reference
Puppet language constructions in a configuration change.
This section also provides a design pattern to encapsu-
late unsupported language constructions to enforce au-
thorisation on them. The XACML standard describes

an XML-based policy language. This language pro-
vides methods to access and compare attributes of the re-
source, subject and action involved in the authorisation-
request. Complex functions can be used to process these
attributes and to calculate the outcome of the policies.
An example policy is shown in Figure 4.

XACML policies need a method for referring to the
operations an update consists of and to the Puppet lan-
guage constructs the operations act upon. Because
XACML is based on XML and the configuration input
is already available in the form of a abstract syntax tree.
Additionally a resource can be embedded in a XACML
authorisation request if the resource is represented in
XML. Therefore we developed an XML serialisation of
the Puppet manifests. We based this serialisation on the
approach of Machination [6] to refer to constructs in the
input using XPath. The AST is transformed into an XML
tree that can be referenced uniquely by means of XPath
expressions. Figures 5a, 5b and 5c show a Puppet state-
ment and the two representations of the AST.

XPath queries can refer to the individual elements in
the XML serialisation of the AST. When the node-id of
a node is known, this attribute can be used to refer di-
rectly to this node using an XPath query like //*[@id

="3"]. When referring to the node in function of its at-
tributes and location the following XPath query can be
used: //class[@name="apache"]/*[@type="package"]

Puppet classes and definitions can be used to create
abstractions on which access control can be enforced.
These abstractions can encapsulate the language con-
cepts our prototype currently does not support or that are
very hard or impossible to support because of their dy-
namic nature. We used this design pattern in our evalua-
tion the create access control policies. Superusers are al-
lowed to make all changes, including the statements that
are not supported. These superusers encapsulate these
statements in definitions and classes that can be used by
other users. This design pattern matches closely to the
configuration module approach used by Puppet. These
modules encapsulate the domain expert knowledge in
easy to use interfaces and classes.

5.3 Using external information sources

XACML can use external sources for information
through a PIP. In our prototype we extended the XACML
engine to retrieve external information from directory
services such as LDAP or active directory. These di-
rectories contained the roles of each user that can make
changes. Storing this information in an external source
and making it available in the XACML engine, makes
it possible for the XACML policies to be more generic.
Puppet also supports external sources for retrieving the
classes that it should assign to hosts. One of such exter-

6



1 <Policy PolicyId="nodes:apache">

2 <Target ><Resources ><Resource >

3 <ResourceMatch MatchId="xacml:function:xpath -node -match">

4 <AttributeValue DataType="xacml2:data -type:xpath -expression">

5 //class[@name="apache"]

6 </AttributeValue >

7 <ResourceAttributeDesignator AttributeId="xacml:resource:resource -id"

8 DataType="xacml2:data -type:xpath -expression" />

9 </ResourceMatch >

10 </Resource ></Resources ></Target >

11 <Rule Effect="Permit" RuleId="nodes:apache:webadmin">

12 <Target />

13 <Condition >

14 <Apply FunctionId="xacml:function:string -greater -than">

15 <AttributeValue DataType="xs:string">xyz</AttributeValue >

16 <Apply FunctionId="xacml:function:string -one -and -only">

17 <SubjectAttributeDesignator DataType="xs:string"

18 AttributeId="xacml:subject:subject -id"/>

19 </Apply >

20 </Apply>

21 </Condition >

22 </Rule>

23 </Policy >

Figure 4: A sample XACML policy file for configuration changes.

1 # Apache -class

2 class apache inherits webserver {

3 package {"apache": ensure => installed }

4 }

(a) Sample Puppet configuration

1 Root

2 + hostclasses: ResourceType ()

3 | - class: ASTClass (name:apache)

4 | + parent: Name () => webserver

5 | - member: Resource (title:apache ,type:package)

6 | + parameter: ResourceParam (param:ensure)

7 | - value: Name () => installed

8 - nodes: ResourceType ()

(b) The abstract syntax tree

1 <Root id=’1’ nodetype=’ASTRoot ’ xmlns=’pupa ’>

2 <hostclasses id=’2’ nodetype=’ResourceType ’ >

3 <class id=’3’ nodetype=’ASTClass ’ name=’apache ’>

4 <parent id=’4’ nodetype=’Name ’ >webserver </parent >

5 <member id=’5’ nodetype=’Resource ’ title=’apache ’ type=’package ’>

6 <parameter id=’7’ nodetype=’ResourceParam ’ param=’ensure ’>

7 <value id=’8’ nodetype=’Name ’ >installed </value >

8 </parameter >

9 </member >

10 </class >

11 </hostclasses >

12 <nodes id=’9’ nodetype=’ResourceType ’ >

13 </nodes >

14 </Root >

(c) The XML representation of the AST

Figure 5: Puppet configuration file and the resulting AST and its XML representation

7



nal sources is an LDAP directory. This information can
also be exposed in the XACML engine through a PIP.

6 Evaluation

We evaluated our prototype based on two access con-
trol scenarios. These scenarios each describe a policy
that has to be enforced. In the evaluation we construct a
policy-file that tries to accomplish this task and explain
the reasons behind its structure. We compare the results
of our policy with a policy based on path based access
control available in version control systems. The goal of
these evaluations is to show the possibilities and limita-
tions of our tool.

For this evaluation we integrated our prototype into a
version control system (VCS). The VCS is used as stor-
age for the configuration files and also acts as the au-
thorising agent. Additionally a Policy Information Point
(PIP) provides additional attributes to the XACML en-
gine. The PIP manages information and is contacted dur-
ing the authorisation process when specific attributes are
needed. The PIP in our implementation connects to an
LDAP server and provides attributes belonging to the ad-
ministrator issuing the change.

In the evaluation, two scenarios are investigated:

1. Only system administrators that are members of the
webadmin group can configure a machine as an
apache webserver.

2. Only system administrators that are members of the
webadmin group can create a virtual host on an
apache webserver. Moreover, the documentroot of
the virtual host can only exist inside the homedirec-
tory of the user issuing the change.

6.1 Scenario 1: configure a machine as
webserver

In the first scenario we have a simple Puppet configura-
tion that configures nodes as a webserver. In the Pup-
pet module path an apache module is added with a class
named apache. The site.pp file contains a list of nodes
that each have a list of include statements that add func-
tionality to that server. Figure 6 shows the initial site.pp
file for this scenario. The change in this scenario config-
ures the spare server san-jose as webserver by including
the apache class from the apache module. The security
policy says that all administrators can add roles to servers
by including classes, but only users from the group we-
badmin may configure a server as webserver.

A SVN repository can be used to limit access to the file
in the repository. Figure 7 shows a file with access con-
trol rules for this repository. The puppet user has read-
only access to the site.pp file in the site directory and

has access to the files in the apache module. Only we-
badmin users can edit the files in the apache module, but
this does not prevent them from including for example a
statement that installs a dns server in that module. The
site.pp file can be edited by all administrators. The ac-
cess control mechanism from SVN cannot prevent non-
webadmin users to create new webservers either.

Figure 8 shows the XACML policy for the ACHEL au-
thorisation mechanism. This policy allows users from the
webadmin group to include apache classes in the config-
uration of a node. This XACML policy provides a very
fine-grained access control to the statements in the Pup-
pet manifests.

1 node baltimore {

2 # include the apache module

3 include apache

4 }

5

6 node san -jose {

7 # spare machine to configure as

webserver

8 }

Figure 6: The site.pp file for Puppet for the first scenario.
One server is already configured as webserver. The other
server is kept as spare server.

1 [/ modules/apache]

2 puppet = r

3 @webadmin = rw

4

5 [/site]

6 puppet = r

7 @admins = rw

Figure 7: An authorisation file for SVN to restrict access
to the Puppet manifests in the repository.

6.2 Scenario 2: add virtual hosts

The second scenario uses the same apache webserver
setup and allows users from the webuser group to add
virtual hosts to the apache configuration. Webusers can
only add virtual hosts to the configuration from which
the document root is located in their own home direc-
tory. The document root parameter controls the direc-
tory that contains the files that a webserver should serve
to visitors of a particular domain. The home directory
path of users is always built as follows: /home/ and their
username concatenated to that. The Puppet manifest in

8



1 <Policy PolicyId="nodes:apache">

2 <Target ><Resources ><Resource >

3 <ResourceMatch MatchId="xacml:function:xpath -node -match">

4 <AttributeValue DataType="xacml2:data -type:xpath -expression">

5 // p:node/p:include[@class="apache"]

6 </AttributeValue >

7 <ResourceAttributeDesignator

8 AttributeId="xacml:resource:resource -id"

9 DataType="xacml2:data -type:xpath -expression" />

10 </ResourceMatch >

11 </Resource ></Resources ></Target >

12 <Rule Effect="Permit" RuleId="nodes:apache:webadmin">

13 <Target ><Subjects ><Subject >

14 <SubjectMatch MatchId="xacml:function:anyURI -equal">

15 <AttributeValue DataType="xs:anyURI">webadmin </AttributeValue >

16 <SubjectAttributeDesignator AttributeId="xacml2:subject:role" DataType="xs:anyURI

" />

17 </SubjectMatch >

18 </Subject ></Subjects ></Target >

19 </Rule>

20 </Policy >

Figure 8: The XACML policy to allow users from the webadmin group to add the apache class to a node.

Figure 9 shows a manifest from the apache module that
configures the virtual hosts in the system.

The access control configuration for a SVN repository
for this scenario is similar to the previous scenario. Fig-
ure 11 shows an updated authorisation file for the SVN
repository that contains the Puppet manifests for this sce-
nario. This file limits access to the vhosts.pp file to users
from the webuser group. It cannot prevent users from
adding virtual hosts that have a document root in the
home directory of another user. It also does not prevent
users from adding virtual host resources to other mani-
fest files.

The XACML policy in Figure 10 enforces access con-
trol based on the contents of the change and not based on
the file location. It enforces access control on all occur-
rences of virtual host resources in any Puppet manifest
file that is included in the repository. The policy builds
the home directory of the user by concatenating /home/
with the username. The value of the documentroot pa-
rameters of the virtual host resource should always start
with the home directory string the policy created.

This policy can be circumvented by using a path that
starts with the users home directory but then uses .. to
traverse back to the /home directory. For example, /home
/lisa/../foo/www. This is not a flaw of the approach but
a limitation of the expressiveness of the XACML func-
tions. To close this policy a function that normalises the
path first before it does the compare is required. In the
conclusion we will discuss how to counter this attack.

1 class apache {

2 apache ::vhost {"www.example.com":

3 docroot => "/home/lisa/www"

4 }

5

6 apache ::vhost {"photo.example.com":

7 docroot => "/home/lisa/photo"

8 }

9 }

Figure 9: The vhosts.pp file for Puppet for the second
scenario that is located in the /vhosts directory.

1 [/ modules/apache]

2 puppet = r

3 @webadmin = rw

4

5 [/ vhosts]

6 puppet = r

7 @webuser = rw

8

9 [/site]

10 puppet = r

11 @admins = rw

Figure 11: An update authorisation file for SVN for the
second scenario.

6.3 Conclusion
The conclusions from this evaluation are twofold. First,
there is a strong need for content-aware authorisation.

9



1 <Policy PolicyId="apache:webuser">

2 <Target ><Subjects ><Subject >

3 <SubjectMatch MatchId="xacml:function:anyURI -equal">

4 <AttributeValue DataType="xs:anyURI">webuser </AttributeValue >

5 <SubjectAttributeDesignator

6 AttributeId="xacml2:subject:role" DataType="xs:anyURI" />

7 </SubjectMatch >

8 </Subject ></Subjects ></Target >

9 <Rule Effect="Permit" RuleId="apache:webuser:vhost">

10 <Description >Add or remove a vhost</Description >

11 <Target ><Resources ><Resource >

12 <ResourceMatch MatchId="xacml:function:xpath -node -equal">

13 <AttributeValue DataType="xacml2:data -type:xpath -expression">

14 //pup:*[@type="apache::vhost"]

15 </AttributeValue >

16 <ResourceAttributeDesignator AttributeId="xacml:resource:resource -id"

17 DataType="xacml2:data -type:xpath -expression" />

18 </ResourceMatch >

19 </Resource ></Resources ></Target >

20 </Rule>

21 <Rule Effect="Permit" RuleId="apache:webuser:vhost -docroot">

22 <Target ><Resources ><Resource >

23 <ResourceMatch MatchId="xacml:function:xpath -node -match">

24 <AttributeValue DataType="xacml2:data -type:xpath -expression">

25 //p:*[@type="apache::vhost"]/ p:parameter[@param="docroot"]

26 </AttributeValue >

27 <ResourceAttributeDesignator AttirbuteId="xacml:resource:resource -id"

28 DataType="xacml2:data -type:xpath -expression" />

29 </ResourceMatch >

30 </Resource ></Resources ></Target >

31 <Condition ><Apply FunctionId="thesis:function:string -starts -with">

32 <Apply FunctionId="xacml:function:string -one -and -only">

33 <AttributeSelector DataType="xs:string"

34 RequestContextPath="// p:param[@param=’docroot ’]/ p:value/text()" />

35 </Apply>

36 <Apply FunctionId="xacml2:function:string -concatenate">

37 <AttributeValue DataType="xs:string">/home/</AttributeValue >

38 <Apply FunctionId="xacml:function:string -one -and -only">

39 <SubjectAttributeDesignator DataType="xs:string"

40 AttributeId="xacml:subject:subject -id" />

41 </Apply >

42 </Apply>

43 </Apply></Condition >

44 </Rule>

45 </Policy >

Figure 10: The XACML policy that only allows users from the webuser group to add vhosts with a document root in
their homedirectory.

Our prototype is able to provide this by analysing the
changes made to a configuration file and deriving the ac-
tions from it that need to be authorised. The prototype is
flexible enough to do this in a very fine-grained manner.
Using the ACHEL method changes to Puppet manifests
are authorised at the level of instantiating resources and
authorising them based on the parameters and the scope
they are declared in.

Second, our prototype is not yet fully finished. It is
possible to circumvent the authorisation using simple at-
tacks. This is not a limitation of our approach but of
the XACML language expressiveness which results in a

policy that is not fully closed. A possible solution for
this type of attacks is extending the standard XACML
function-space to include domain-specific helper func-
tions to create a fully closed access control policies. In
our prototype we used the enterprise-java-xacml [12]
XACML engine. Adding functions to this engine is easy
as adding an annotation to a Java class and the method
that implements the XACML function.

10



7 Future work

We added basic support for our authorisation mechanism
to Puppet. Future work in this direction should focus on
extending support for the Puppet language and on inte-
grating update workflows in the authorisation phase.

Extending Puppet support Currently Puppet support
is limited to a subset of the Puppet language. This subset
provides a usable implementation, especially using the
design patterns we described. Our prototype can be ex-
tended to support additional language constructs such as
calling functions or exporting resources.

Integrating workflow In our original paper [10] we
also integrated workflow support. This support is orthog-
onal to extracting meaningful changes from changes in
Puppet manifests. Therefore we did not implement this
in this prototype. This workflow support is based on digi-
tal signatures on revisions in the version repository. This
information can be made available to the XACML en-
gine through a PIP. This should be sufficient to add the
workflow support to this prototype.

Ownership information Our ACHEL method can
also track ownership information based on the changes
made to the configuration files. With this ownership in-
formation a policy could also include that person A can-
not change any parameters or resources that are owned
by person B. To derive ownership information we need
to start from the first revision and determine for each
change what the impact is on the ownership of a state-
ment. For Puppet one of these questions is who is the
owner of a resource? Is this the user that gave the name
to the resource? If parameters are changed, how does the
ownership of the resource and the parameter change?

8 Conclusion

In this paper we developed a prototype that authorises
changes to the Puppet input language based on their
meaning. It derives the operations that need to be au-
thorised from the changes to the input. This prototype
extends our previous work by applying it to a real sys-
tem configuration tool with a complex input language.
These changes are authorised using XACML which is a
widely adopted industry standard for access control and
authorisation, instead of using regular expressions.

In our previous work we applied our approach to a
simple configuration language. The results from this
work show that although the configuration language is
more complex, it is possible to extract the individual

meaningful configuration changes. The complete lan-
guage is not yet fully supported, and the prototype needs
more work to analyze the difficult language constructs
before it can be used in production. Our claim from
our previous paper that the method is language agnos-
tic holds, on the condition that the method can start from
a clean AST. The usage of the XACML standard for au-
thorisation provides a lot of flexibility for writing poli-
cies, as well as extensibility and integration of other in-
formation sources. This prototype does not include the
workflow enforcement of our Achel [10] prototype but
can be easily added to the XACML engine by including
a PIP that provides the signature information required to
enforce workflows.

This implementation uses XACML as authorisation
language. In our first prototype we used a regular ex-
pression based language we developed. XACML pro-
vides an authorisation engine that is the de facto industry
standard in contrast to our own authorisation language.
The usability of our regular expression based language
was also very poor. Unfortunately it appears to be hard
to write policies in XACML as well. Luckily tooling
support exists for writing XACML policies to improve
usability.

To conclude the main contributions of this paper are:
First of all the identification of the difficulties and pos-
sibilities to extract meaningful changes from a complex
configuration language such as Puppet. Second the de-
velopment of a set of rules that describe how to write a
policy and refer to the configuration elements in these
policies.

9 Acknowledgements

This research is partially funded by the Agency for Inno-
vation by Science and Technology in Flanders (IWT), by
the Interuniversity Attraction Poles Programme Belgian
State, Belgian Science Policy, and by the Research Fund
K.U.Leuven.

References
[1] Puppet Website. http://www.puppetlabs.com, 2010.

[2] ANDERSON, P. Short Topics in System Administration 14: Sys-
tem Configuration. Berkeley, CA, 2006.

[3] BARRETT, R., MAGLIO, P. P., KANDOGAN, E., AND BAILEY,
J. Usable autonomic computing systems: The system admin-
istrators’ perspective. Advanced Engineering Informatics 19, 3
(2005), 213 – 221. Autonomic Computing.

[4] CHAWATHE, S. S., AND GARCIA-MOLINA, H. Meaning-
ful change detection in structured data. In Proceedings of the
1997 ACM SIGMOD International Conference on Management
of Data - SIGMOD 97 SIGMOD 97 (New York, NY, USA, 1997),
ACM, pp. 26–37.

11



[5] DELAET, T., JOOSEN, W., AND VANBRABANT, B. A survey of
system configuration tools. In Proceedings of the 24th Large In-
stallations Systems Administration (LISA) conference (San Jose,
CA, USA, 11/2010 2010), Usenix Association, Usenix Associa-
tion.

[6] HIGGS, C. Authorisation and Delegation in the Machination
Configuration System. In Proceedings of the 22nd Large Instal-
lation System Administration (LISA) Conference (Berkeley, CA,
USA, 2008), USENIX Association, pp. 191–199.

[7] MCCARTHY, J. Towards a mathematical science of computation.
Information Processing 62 (1962), 21–28.

[8] MOSES, T. eXtensible Access Control Markup Language
(XACML) Version 2.0, februari 2005. http://docs.

oasis-open.org/xacml/2.0/access_control-xacml-2.

0-core-spec-os.pdf.

[9] MYERS, E. W. An O(ND) difference algorithm and its variations.
Algorithmica 1, 1 (1986), 251–266.

[10] VANBRABANT, B., DELAET, T., AND JOOSEN, W. Federated
access control and workflow enforcement in systems configura-
tion. In Proceedings of the 23rd Large Installations Systems Ad-
ministration (LISA) conference (Baltimore, MD, USA, 11/2009
2009), Usenix Association, Usenix Association, p. 129–143.

[11] VELASQUEZ, N. F., AND WEISBAND, S. P. Work practices of
system administrators: implications for tool design. In CHiMiT
’08: Proceedings of the 2nd ACM Symposium on Computer
Human Interaction for Management of Information Technology
(New York, NY, USA, 2008), ACM, ACM, pp. 1–10.

[12] WANG, Z. Enterprise Java XACML Implementation. http://

code.google.com/p/enterprise-java-xacml/, december
2010.

12


