
Staging Package Deployment via Repository Management

Chris St. Pierre - stpierreca@ornl.gov
Matt Hermanson - mjhermanson@ornl.gov
National Center for Computational Sciences

Oak Ridge National Laboratory
Oak Ridge, TN, USA∗

Abstract

This paper describes an approach for managing package versions and updates in a homogenous manner
across a heterogenous environment by intensively managing a set of software repositories rather than by
managing the clients. This entails maintaining multiple local mirrors, each of which is aimed at a different
class of client: One is directly synchronized from the upstream repositories, while others are maintained
from that repository according to various policies that specify which packages are to be automatically
pulled from upstream (and therefore automatically installed without any local vetting) and which are to
be considered more carefully – likely installed in a testing environment, for instance – before they are
deployed widely.

Background

It is important to understand some points about our
environment, as they provide important constraints
to our solution.

We are lucky enough to run a fairly homoge-
nous set of operating systems consisting primarily of
Red Hat Enterprise Linux and CentOS servers, with
fair numbers of Fedora and SuSE outliers. In short,
we are dealing entirely with RPM-based packaging,
and with operating systems that are capable of using
yum [12]. As yum is the default package manage-
ment utility for the majority of our servers, we opted
to use yum rather than try to switch to another pack-
age management utility.

For configuration management, we chose to use
Bcfg2 [3] for reasons wholly unrelated to package and
software management. Bcfg2 is a Python and XML-
based configuration management engine that “helps
system administrators produce a consistent, repro-
ducible, and verifiable description of their environ-
ment” [3]. It is in particular the focus on repro-
ducibility and verification that forced us to consider
updating and patching anew.

In order to guarantee that a given configuration –

where a “configuration” is defined as the set of paths,
files, packages, and so forth, that describes a single
system – is fully replicable, Bcfg2 ensures that ev-
ery package specified for a system is the latest avail-
able from that system’s software repositories [8]. (As
will be noted, this can be overridden by specifying
an explicit package version.) This grants the system
administrator two important abilities: to provision
identical machines that will remain identical; and to
reprovision machines to the exact same state they
were previously in. But it also makes it unreasonable
to simply use the vendor’s software repositories (or
other upstream repositories), since all updates will be
installed immediately without any vetting. The same
problem presents itself even with a local mirror.

Bcfg2 can also use “the client’s response to the
specification ... to assess the completeness of the
specification” [3]. For this to happen, the Bcfg2
server must be able to understand what a “com-
plete” specification entails, and so the server does
not entirely delegate package installation to the Bcfg2
client. Instead, it performs package dependency res-
olution on the server rather than allowing the client
to set its own configuration. This necessitates en-
suring that the Bcfg2 Packages plugin uses the same

∗This paper has been authored by contractors of the U.S. Government under Contract No. DE-AC05-00OR22725. Ac-
cordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.

1



yum configuration as the clients; Bcfg2 has support
for making this rather simple [8], but the Packages
plugin does not support the full range of yum func-
tionality, so certain functions like the “versionlock”
plugin and even package excludes, are not available.
Due to the architecture of Bcfg2 – architecture de-
signed to guarantee replicability and verification of
server configurations – it is not feasible or, in most
cases, possible to do client-based package and repos-
itory management. This became critically important
in selecting a solution.

Other Solutions

There are a vast number of potential solutions to this
problem that would seem to be low-hanging fruit –
far simpler to implement, at least initially, than our
ultimate solution – but that would not work, for var-
ious reasons.

Yum Excludes

A core yum feature is the ability to exclude certain
packages from updates or installation [13]. At first,
this would seem to be a solution to the problem of
package versioning: simply install the package version
you want, and then exclude it from further updates.
But this has several issues that made it unsuitable
for our use (or, we believe, this use case in general):

• It does not (and cannot) guarantee a specific
version. Using excludes to set a version depends
on that version being installed (manually) prior
to adding the package to the exclude list.

• There is no guarantee that the package is still in
the repository. Many mainstream repositories1

do not retain older versions in the same repos-
itory as current packages. Consequently, when
reinstalling a machine where yum excludes have
been used to set package versions (or when at-
tempting to duplicate such a machine), there is
no guarantee that the package version expected
will even be available.

• In order to use yum excludes to control package
versions, a very specific order of events must oc-
cur: first, the machine must be installed with-
out the target package included (as Kickstart,
the RHEL installation tool, does not support
installing a specific version of a package [1]);

next, the correct package version must be in-
stalled; and finally, the package must be added
to the exclude list. If this happens out of order,
then the wrong version of the package might be
installed, or the package might not be installed
at all.

• Supplying a permitted update to a package is
even more difficult, as it involves removing the
package exclusion, updating to the correct ver-
sion, and then restoring the exclusion. A config-
uration management system would have to have
tremendously granular control over the order in
which actions are performed to accomplish this
delicate goal.

• As discussed earlier, Bcfg2 performs depen-
dency resolution on the server side in order to
provide a guarantee that a client’s configura-
tion is fully specified. By using yum excludes –
which cannot be configured in Bcfg2’s internal
dependency resolver – the relationship between
the client and the server is broken, and Bcfg2
will in perpetuity claim that the client is out of
sync with the server, thus reducing the useful-
ness of the Bcfg2 reporting tools.

While yum excludes appear at first to be a viable
option, their use to set package versions is not repli-
cable, consistent, and cannot be trivially automated.

Specifying Versions in Bcfg2

Bcfg2 is capable of specifying specific versions of
packages in the specification, e.g.:

<BoundPackage name="glibc" type="yum">

<Instance version="2.13" release="1"

arch="i686"/>

<Instance version="2.13" release="1"

arch="x86_64"/>

</BoundPackage>

This is obviously quite verbose (more so because
the example uses a multi-arch package), and as a re-
sult of its verbosity it is also error-prone. Having
to recopy the version, release, and architecture of a
package – separately – is not always a trivial process,
and the relatively few constraints of version and re-
lease strings makes it less so. For instance, given the
package:

iomemory-vsl-2.6.35.12-88.fc14.x86_64-

2.3.0.281-1.0.fc14.x86_64.rpm

2



The package name is “iomemory-vsl-2.6.35.12-
88.fc14.x86 64” (which refers to the specific kernel for
which it was built), the version is “2.3.0.281” and the
release is “1.0.fc14”.2 This can be clarified through
use of the --queryformat option to rpm, but the fact
that more advanced RPM commands are necessary
makes it clear that this approach is untenable in gen-
eral. Even more worrisome is the package epoch, a
sort of “super-version,” which RPM cleverly hides by
default, but could cause a newer package to be in-
stalled if it was not specified properly.

Maintenance is also tedious, as it involves end-
lessly updating verbose version strings; recall that a
given version is just shorthand for what we actually
care about – that a package works.

This approach also does not abrogate the use of
yum on a system to update it beyond the appropriate
point. The only thing keeping a package at the chosen
version is Bcfg2’s own self-restraint; if an admin on
a machine lacks that same self-restraint, then he or
she could easily update a package that was not to be
updated, whereupon Bcfg2 would try to downgrade
it.

Finally, this approach presents specific difficulties
for us, as our adoption of Bcfg2 is far from com-
plete; large swaths of the center still use Cfengine 2,
and some machines – particularly compute and stor-
age platforms – operate in a diskless manner and do
not use configuration management tools in a tradi-
tional manner. They depend entirely on their images
for package versions, so specifying versions in Bcfg2
would not help.

To clarify, using Bcfg2 forced us to reconsider this
problem, and any solution must be capable of work-
ing with Bcfg2, but it cannot be assumed that the
solution may leverage Bcfg2.

Yum versionlock

Using yum’s own version locking system would ap-
pear to improve upon pegging versions in Bcfg2:
it works on all systems, regardless of whether or
not they use Bcfg2; and a shortcut command, yum

versionlock <package-name>, is provided to make
the process of maintaining versions less error-prone.3

It also solves many of the problems of yum ex-
cludes, but suffers from a critical flaw in that ap-
proach: by setting package versions on the client,
the relationship between the Bcfg2 client and server
would be broken.

Combinations of these three approaches merely
exhibit combinations of their flaws. For instance,

the promising combination of yum’s versionlock plu-
gin and specifying the version in Bcfg2 would ensure
that the Bcfg2 client and server were of a mind about
package versions, and would work on non-Bcfg2 ma-
chines; however, it would forfeit versionlock’s ease of
use and require the administrator to once again man-
ually copy package versions.

Spacewalk

Spacewalk was the first full-featured solution we
looked at that aims to replace the mirroring portion
of this relationship; all of the other potential solu-
tions listed thus far have attempted to work with a
“dumb” mirror and use yum features to work around
the problem we have described. Spacewalk is a local
mirror system that “manages software content up-
dates for Red Hat derived [sic] distributions” [10]; it
is a tremendously full-featured system, with support
for custom “channels,” collections of packages assem-
bled in an ad-hoc basis.

Unfortunately, Spacewalk was a non-starter for us
for the same reason that it has failed to gain much
traction in the community at large: of the two ver-
sions of Spacewalk, only the Oracle version actually
implements all of the features; the PostgreSQL ver-
sion is deeply underfeatured, even after several years
of work by the Spacewalk team to port all of the Or-
acle stored procedures.

As it turns out, Red Hat has a successor in
mind for Spacewalk and Satellite: CloudForms [14].
The content management portion of CloudForms –
roughly corresponding to the mirror and repository
management functionality of Spacewalk – is Pulp.

A solution: Pulp

Pulp is a tool “for managing software repositories
and their associated content, such as packages, er-
rata, and distributions” [7]. It is, as noted, the spir-
itual successor to Spacewalk, and so implements the
vast majority of Spacewalk’s repository management
features without the dependency on Oracle.

Pulp’s usage model involves syncing multiple up-
stream repositories locally; these repositories can
then be cloned, which uses hard links to sync them
locally with almost no disk space used. This allows
us to sync a repository once, then duplicate it as
many times as necessary to support multiple teams
and multiple stability levels. The sync process sup-
ports filters, which allow us to blacklist or whitelist

3



packages and thus exclude “impactful” packages from
automatic updates.

Pulp also supports manually adding packages to
and removing packages from repositories, so we can
later update a given package across all machines that
use a repository with a single command. Adding and
removing also tracks dependencies, so it’s not possi-
ble to add a package to a repository without adding
the dependencies necessary to install it.4

Workflow

Pulp provides us with the framework to implement
a solution to the problem outlined earlier, but even
as featureful as it is it remains a fairly basic tool.
Our workflow – enforced by the features Pulp pro-
vides, by segregating repositories, by policy, and by
a nascent in-house web interface – provides the bulk
of the solution. Briefly, we segregate repositories by
tier to test packages before site-wide roll-outs, and by
team to ensure operational separation. Packages are
automatically synced between tiers based on package
filters, which blacklist certain packages that must be
promoted manually. This ensures that most packages
benefit from up to two weeks of community testing
before being deployed site-wide, and packages that
we have judged to be more potentially “impactful”
from more focused local testing as well.

Tiered Repositories

We maintain different repository sets for different
“levels” of stability. We chose to maintain three tiers:

live Synced daily from upstream repositories; not
used on any machines, but maintained due to
operational requirements within Pulp5 and for
reference.

unstable Synced daily from live, with the excep-
tion of selected “impactful” packages (more
about which shortly), which can be manually
promoted from live.

stable Synced daily from unstable, with the excep-
tion of the same “impactful” packages, which
can be manually promoted from unstable.

This three-tiered approach guarantees that pack-
ages in stable are at least two days old, and “im-
pactful” packages have been in testing by machines
using the unstable branch. When a package is re-
leased from upstream and sync to public mirrors,

those packages are pulled down into local reposito-
ries. From then on the package in under the control
of Pulp. Initially, a package is considered unstable
and is only deployed to those systems that look at
the repositories in the unstable tier. After a period
of time, the package is then promoted into the stable
repositories, and thus to production machines.

In order to ensure that packages in unstable re-
ceive ample testing before being promoted to stable,
we divide machines amongst those two tiers thusly:

• All internal test machines – that is, all machines
whose sole purpose is to provide test and de-
velopment platforms to customers within the
group – use the unstable branch. Many of
these machines are similar, if not identical, to
production or external test machines.

• Where multiple identical machines exist for a
single purpose, whether in an active-active or
active-passive configuration, exactly one ma-
chine will use the unstable branch and the rest
will use the stable branch.

Additionally, we maintain separate sets of repos-
itories, branched from live, for different teams or
projects that require different patching policies ap-
propriate to the needs of those teams or projects.
Pulp has strong built-in ACLs that support these di-
visions.

In order to organize multiple tiers across multi-
ple groups, we use a strict convention to specify the
repository ID, which acts as the primary key across
all repositories6, namely:

<team name>-<tier>-<os name>-<os version>-

<arch>-<repo name>

For example,
infra-unstable-centos-6-x86 64-updates would
denote the Infrastructure team’s unstable tier of the
64-bit CentOS 6 “updates” repository. This allows us
to tell at a glance the parent-child relationships be-
tween repositories.

Sync Filters

The syncs between the live and unstable and be-
tween unstable and stable tiers are mediated by
filters7. Filters are regular expression lists of pack-
ages to either blacklist from the sync, or whitelist in
the sync; in our workflow, only blacklists are used. A
package filtered from the sync may still remain in the

4



repository; that is, if we specify ^kernel(-.*)? as a
blacklist filter, that does not remove kernel packages
from the repository, but rather refuses to sync new
kernel packages from the repository’s parent. This
is critical to our version-pegging system.

Given our needs, whitelist filters are unnecessary;
our systems tend to fall into one of two types:

• Systems where we generally want updates to
be installed insofar as is reasonable, with some
prudence about installing updates to “impact-
ful” packages.

• Systems where, due to vendor requirements, we
must set all packages to a specific version. Most
often this is in the form of a requirement for a
minor release of RHEL8, in which case there are
no updates we wish to install on an automatic
basis. (We may wish to update specific pack-
ages to respond to security threats, but that
happens with manual package promotion, not
with a sync; this workflow gives us the flexibil-
ity necessary to do so.)

A package that may potentially cause issues when
updated can be blacklisted on a per-team basis9.
Since the repositories are hierarchically tiered, a
package that is blacklisted from the unstable tier
will never make it to the stable tier.

Manual Package Promotion and Removal

The lynchpin of this process is manually reviewing
packages that have been blacklisted from the syncs
and promoting them manually as necessary. For in-
stance, if a filter for a set of repositories blacklisted
^kernel(-.*)? from the sync, without manually
promoting new kernel packages no new kernel would
ever be installed.

To accomplish this, we use Pulp’s add package
functionality, exposed via the REST API as a POST
to
/repositories/<id>/add package/, via the
Python client API as
pulp.client.api.repository.RepositoryAPI.

add package(), and via the CLI as pulp-admin

repo add package. In the CLI implementation,
add package follows dependencies, so promoting a
package will promote everything that package re-
quires that is not already in the target repository.
This helps ensure that each repository stays consis-
tent even as we manipulate it to contain only a subset
of upstream packages10.

Conversely, if a package is deployed and is later
found to cause problems it can be removed from the
tier and the previous version, if such is available in
the repository, will be (re)installed. Bcfg2 will help-
fully flag machines where a newer package is installed
than is available in that machine’s repositories, and
will try to downgrade packages appropriately. Pulp
can be configured to retain old packages when it per-
forms a sync; this is helpful for repositories like EPEL
that remove old packages themselves, and guarantees
that a configurable number of older package versions
are available to fall back on.

The remove package functionality is exposed via
Pulp’s REST API as a POST to
/repositories/<id>/delete package/, via the
Python client API as
pulp.client.api.repository.RepositoryAPI.

remove package(), and via the CLI as pulp-admin

repo remove package. As with add package, the
CLI implementation follows dependencies and will
try to remove packages that require the package
being removed; this also helps ensure repository con-
sistency.

Optimally, security patches are applied 10 or 30
days after the initial patch release [2]; this workflow
allows us to follow these recommendations to some
degree, promoting new packages to the unstable tier
on an approximately weekly basis. Packages that
have been in the unstable tier for at least a week
are also promoted to the stable tier every week; in
this we deviate from Beattie et al.’s recommendations
somewhat, but we do so because the updates being
promoted to stable have been vetted and tested by
the machines using the unstable tier.

This workflow also gives us something very impor-
tant: the ability to install updates across all machines
much sooner than the optimal 10- or 30-day period.
High profile vulnerabilities require immediate action
– even to the point of imperiling uptime – and by pro-
moting a new package immediately to both stable

and unstable tiers we can ensure that it is installed
across all machines in our environment in a timely
fashion.

Selecting “impactful” packages

Throughout this paper, we have referred to “impact-
ful” packages – those to which automatic updates
we determined to be particularly dangerous – as a
driving factor. Were it not for our reticence to au-
tomatically update all packages, we could have sim-
ply used an automatic update facility – yum-cron or

5



yum-updatesd are both popular – and been done with
it.

We didn’t feel that was appropriate, though. For
instance, installing a new kernel can be problematic
– particularly in an environment with a wide variety
of third-party kernel modules and other kernel-space
modifications – and we wanted much closer control
over that process. We flagged packages as “impact-
ful” according to a simple set of criteria:

• The kernel, and packages otherwise directly tied
to kernel space (e.g., kernel modules and Dy-
namic Kernel Module Support (DKMS) pack-
ages);

• Packages that provide significant, customer-
facing services. On the Infrastructure team,
this included packages like bind, httpd (and
related modules), mysql, and so on.

• Packages related to InfiniBand and Lustre [9];
as one of the world’s largest unclassified Lustre
installations, it’s very important that the Lus-
tre versions on our systems stay in lockstep with
all other systems in the center. Parts of Lus-
tre reside directly in kernel space, an additional
consideration.

The first two criteria provided around 20 packages
to be excluded – a tiny fraction of the total packages
installed across all of our machines. The vast major-
ity of supporting packages continue to be automati-
cally updated, albeit with a slight time delay for the
multiple syncs that must occur.

Results

Our approach produces results in a number of ar-
eas that are difficult to quantify: improved au-
tomation reduces the amount of time we spend in-
stalling patches; not installing patches immediately
improves patch quality and reduces the likelihood of
flawed patches [2]; and increased compartmentaliza-
tion makes it easier for our diverse teams to work
to different purposes without stepping on toes. But
it also provides testable, quantifiable improvements:
since replacing a manual update process with Pulp
and Bcfg2’s automated update process, we can see
that the number of available updates has decreased
and remained low on the machines using Pulp.

 0

 2

 4

 6

 8

 10

 12

 14

 16

08/05 08/12 08/19 08/26 09/02 09/09

U
p
d
a
te

d
 p

a
c
k
a
g
e
s
 a

v
a
ila

b
le

Date

Total updates available

Servers using Pulp
Servers not using Pulp

The practice of staging package deployment
makes is difficult to quantify just how out of date
a client is, as yum on the client will only report the
number of updates available from the repositories in
yum.conf. To find the number of updates available
from upstream, we collect an aggregate of all the
package differences starting at the client and going
up the heirarchy to the upstream repository. E.g.,
for a machine using the unstable tier, we calculate
the number of updates available on the machine it-
self, and then the number of updates available to the
unstable tier from the live tier.

The caveat to this approach is when, for instance,
a package splits into two new packages. This results
in two new packages, and one missing package, total-
ing three “updates” according to yum check-update,
or zero “updates” when comparing repositories them-
selves, when in reality it is a single package update.
For example, if package foo recieves an update that
results in packages foo-client and foo-server, this
could result in a margin of error of -1 or +2. This
gives a slight potential benefit to machines using Pulp
in our metrics, as updates of this sort are underesti-
mated when calculating the difference between repos-
itories, but overestimated when using yum to report
on updates available to a machine. In practice, this is
extremely rare, though, and should not significantly
affect the results.

Ensuring, with a high degree of confidence, that
updates are installed is wonderful, but even more
important is ensuring that vulnerabilities are being
mitigated. Using the data from monthly Nessus [11]
vulnerability scans, we can see that machines using
Pulp do indeed reap the benefits of being patched
with more frequency:11

6



 0

 5

 10

 15

 20

 25

Servers using Pulp Servers not using Pulp

V
u
ln

e
ra

b
ili

ti
e
s

Low
Medium

High

This graph is artificially skewed against Pulp due
to the sorts of things Nessus scans for; for instance,
web servers are more likely to be using Pulp at this
time simply due to our implementation plan, and
they also have disproportionately more vulnerabili-
ties in Nessus because they have more services ex-
posed.

Future Development

Sponge

At this time, Pulp is very early code; it has been in
use in another Red Hat product for a while, so certain
paths are well-tested, but other paths are pre-alpha.
Consequently, its command line interface lacks pol-
ish, and many tasks within Pulp require extraordi-
nary verbosity to accomplish. It is also not clear if
Pulp is intended for standalone use, although such is
possible.

To ease management of Pulp, we have written a
web frontend for management of Pulp and its objects,
called “Sponge.” Sponge, powered by the Django [4]
web framework, provides views into the state of Pulp
repositories along with the ablity to manage its con-
tents. Sponge leverages Pulp’s Python client API to
provide convience functions that ease our workflow.

By presenting the information visually, Sponge
makes repository management much more intuitive.
Sponge extends the functionality of Pulp by display-
ing the differences between a repository and its parent
in the form of a diff. These diffs give greater insight
into exactly how stable, unstable, and live tiers
differ. They also provide insight into the implications
of a package promotion or removal.

This is particularly important with package re-
moval, since, as noted, removing a package will also

remove anything that requires that specific package.
Without Sponge’s diff feature and a confirmation
step, that is potentially very dangerous; Pulp itself
only gives you confirmation of the packages removed
without an opportunity to confirm or reject a re-
moval. The contrapositive situation – promoting a
package pulling in unintended dependencies – is also
potentially dangerous, albeit less so. Sponge helps
avert both dangers.

Guaranteeing a minimum package age

As Beattie at al. observe [2], the optimal time to ap-
ply security patches is either 10 or 30 days after the
patches have been released. Our workflow currently
doesn’t provide any way to guarantee this; our weekly
manual promotion of new packages merely suggests
that a patch be somewhere between 0 and 6 days old
before it is promoted to unstable, and 7 and 13 days
old before being promoted to stable. We plan to add
a feature – either to Sponge or to Pulp – to promote
packages only once they have aged properly.

Other packaging formats

In this paper we have dealt with systems using yum
and RPM, but the approach can, at least in theory, be
expanded to other packaging systems. Pulp intends
eventually to support not only Debian packages, but
actually any sort of generic content at all [6], mak-
ing it useful for any packaging system. Bcfg2, for
its part, already has package drivers for a wide array
of packaging systems, including APT, Solaris pack-
ages (Blastwave- or SystemV-style), Encap, FreeBSD
packages, IPS, Mac Ports, Pacman, and Portage.
This gives a hint of the future potential for this ap-
proach.

Availability

Most of the software involved in the approach dis-
cussed in this paper is free and open source. The
various elements of our solution can be found at:

Pulp http://pulpproject.org

Bcfg2 http://trac.mcs.anl.gov/projects/

bcfg2

Yum http://yum.baseurl.org/

7



Sponge, the web UI to Pulp listed in the Future
Development section, is currently incomplete and un-
released. We have already worked closely with the
Pulp developers to incorporate features into the Pulp
core itself, and we will continue to do so. We hope
that Sponge will become unnecessary as Pulp ma-
tures.

Author Information

Chris St. Pierre leads the Infrastructure team of the
HPC Operations group at the National Center for
Computational Sciences at Oak Ridge National Lab-
oratory in Oak Ridge, Tennessee. He is deeply in-
volved with the development of Bcfg2, contributing
in particular to the specification validation tool and
Packages plugin for the upcoming 1.2.0 release. He
has taught widely on internal documentation, LDAP,
and spam. Chris serves on the LOPSA Board of Di-
rectors.

Matt Hermanson is a member of the Infrastruc-
ture team of the HPC Operations group at the Na-
tional Center for Computational Sciences at Oak
Ridge National Laboratory in Oak Ridge, Tennessee.
He holds a B.A. in Computer Science from Tennessee
Technological University.

References
[1] Anaconda/Kickstart. http://fedoraproject.org/wiki/

Anaconda/Kickstart#Chapter_3._Package_Selection.

[2] Beattie, S., Arnold, S., Cowan, C., Wagle, P.,
Wright, C., and Shostack, A. Timing the Application
of Security Patches for Optimal Uptime. Proceedings of
LISA ’02: Sixteenth Systems Administration Conference,
USENIX, pp. 233–42.

[3] Desai, N. Bcfg2. http://trac.mcs.anl.gov/projects/

bcfg2.

[4] Django Software Foundation. Django — The Web
framework for perfectionists with deadlines. https://

www.djangoproject.com/.

[5] Dobies, J. GCRepoApis. https://fedorahosted.org/

pulp/wiki/GCRepoApis.

[6] Dobies, J. Generic Content Support.
http://blog.pulpproject.org/2011/08/08/

generic-content-support/.

[7] Dobies, J. Pulp - Juicy software repository management.
http://pulproject.org.

[8] Jerome, S., Laszlo, T., and St. Pierre, C.
Packages. http://docs.bcfg2.org/server/plugins/

generators/packages.html.

[9] Oracle Corporation. Lustre. http://wiki.lustre.

org/index.php/Main_Page.

[10] Red Hat, Inc. Spacewalk: Free & Open Source Linux
Systems Management. http://spacewalk.redhat.com/.

[11] Tenable Network Security. Tenable Nessus. http:

//www.tenable.com/products/nessus.

[12] Vidal, S. yum. http://yum.baseurl.org/.

[13] Vidal, S. yum.conf - configuration file for yum(8). man

5 yum.conf.

[14] Warner, T., and Sanders, T. The Future of RHN Satel-
lite: A New Architecture Enabling the Traditional Data
Center and the Cloud. Red Hat Summit, Red Hat, Inc.

Notes
1For instance, Extra Packages for Enterprise Linux (EPEL)

and the CentOS repositories themselves.
2Admittedly, this is a non-standard naming scheme, but

no solution can be predicated on the idea that all RPMs are
well-built.

3The command in question merely maintains a local file on
a machine, so that file would still have to be copied into the
Bcfg2 specification, but we believe this would be less error-
prone than copying package version details.

4This is actually only true if the package is being added
from another repository; it is possible to add a package di-
rectly from the filesystem, in which case dependency checking
is not performed. This is not a use case for us, though.

5In Pulp, filters can only be applied to repositories with
local feeds.

6This may change in future versions of Pulp, as multiple
users, ourselves included, have asked for stronger grouping
functionality [5].

7As noted earlier, in Pulp, filters can only be applied to
repositories with local feeds, so no filter mediates the sync be-
tween upstream and live.

8It is lost on many vendors that it is unreasonable and fool-
ish to require a specific RHEL minor release. As much work
as has gone into this solution, it is still less than would be
required to convince most vendors of this fact, though.

9Technically, filters can be applied on a per-repository basis,
so black- and whitelists can be applied to individual reposito-
ries. This is very rare in our workflow, though.

10It is true that our approach does not guarantee consistency.
A repository sync might result in an inconsistency if a package
that was not listed on that sync’s blacklist required a package
that was listed on the blacklist. In practice this can be limited
by using regular expressions to filter families of packages (e.g.,
^mysql.* or ^(.*-)?mysql.* to blacklist all MySQL-related
packages rather than just blacklisting the mysql-server pack-
age itself

11Unfortunately long-term data was not available for vul-
nerabilities for a number of reasons: CentOS 5 stopped ship-
ping updates in their mainline repositories between July 21st
and September 14th; the August security scan was partially
skipped; and Pulp hasn’t been in production long enough to
get meaningful numbers prior to that. Still, the snapshot of
data is compelling.

8


