
A Cuckoo’s Egg in the Malware Nest

On-the-fly Signature-less Malware Analysis, Detection, and

Containment for Large Networks

Damiano Bolzoni1, Christiaan Schade1 and Sandro Etalle1,2

1University of Twente, The Netherlands
2Eindhoven Technical University, The Netherlands

Abstract

Avatar is a new architecture devised to perform on-
the-fly malware analysis and containment on ordi-
nary hosts; that is, on hosts with no special setup.
The idea behind Avatar is to inject the suspected
malware with a specially crafted piece of software at
the moment that it tries to download an executable.
The special software can cooperate with a remote
analysis engine to determine the main characteris-
tics of the suspected malware, and choose an appro-
priate containment strategy, which may include pro-
cess termination, in case the process under analysis
turns out to be malicious, or let it continue other-
wise. Augmented with additional detection heuris-
tics we present in the paper, Avatar can also perform
signature-less malware detection and containment.

Keywords: system security, malware detection
and containment

1 Introduction

In the last half-decade, malware has evolved from
a “hobby” for bored programmers to a business for
cyber-criminals, who infect computer systems on a
large scale to carry out illegal activities [20]. Bot-
nets are a typical example of such business, and can
be exploited to collect financial/sensitive user infor-
mation. As noticed by Kolbitsch et al. [13] “mali-

cious code, or malware, is one of the most pressing
security problems on the Internet”. Malware con-
tainment has thus become an urgent concern. Re-
cent events, such as the RSA breach back in March
2011 [17], have shown that serious attackers employ
ad hoc malware in multi-stage attacks to penetrate
corporate networks and get hold of business-critical
information.

Successful malware containment is based on two
activities: Detection and analysis.

Detection. Concerning detection, the standard
mechanisms employed against malware are based on
signatures. Antivirus software and intrusion detec-
tion systems (both host- and network-based) rely
on some sort of byte-matching techniques (either
pattern- or hash-based) to detect the presence of ma-
licious programs. To evade signature-based detec-
tion, malware writers can and do obfuscate the code
using e.g., polymorphism, packing, encryption [4].
The result of the massive application of evasion tech-
niques is that in the past few years the number of
unique malware samples, and relative signatures, has
increased dramatically. In Section 4 we discuss in
more detail some of the latest results in signature-
based malware detection.

Analysis. To understand how malware works, and
to improve the crafting of detection signatures, re-
searchers have developed several frameworks for au-
tomating dynamic malware analysis (e.g., Anubis [1],
CWSandbox [7], Malheur [14]). These tools monitor

1

the behaviour of a malware sample which is being
executed in a severely controlled environment, and
produce a detailed report of the operations it car-
ries out (e.g., access/modifications to files, network
activities, process execution, etc.).

Dynamic malware analysis is undoubtedly effec-
tive; however, it requires a specific analysis environ-
ment, which cannot be just any computer. Moreover
– as almost all security techniques – it is not infal-
lible: Among the possible evasion techniques, it is
becoming a common practice for malware to check
whether the execution takes place in a virtualized
environment, which likely indicates the executable is
being monitored [2]. Secondly, as reported by Com-
paretti et al. [6], some malicious behaviors, such as
the so called “dormant functionalities”, may remain
long unobserved, for instance when they depend on
circumstances which are hard to guess and to repli-
cate dynamically.

Summarizing, current detection and analysis ap-
proaches suffer from the following limitations:

• (Existing) dynamic malware analysis approaches
can only perform post-mortem, or offline, analy-
sis of the malware sample, once it has been col-
lected and submitted: Hence they lack the ex-
ecution context information; moreover, they re-
quire specific setups.

• Detection and containment are based on signa-
tures or behavioral models, and are therefore ef-
fective only for those samples for which an ap-
propriate signature/model has been developed.

• The most effective approaches rely on the pres-
ence of an agent on the end-host to monitor sys-
tem activities; such extra software component is
invasive, might affect system performance, and
cause additional burden because system admin-
istrators must plan carefully its development and
maintenance.

In particular, security analysts do not get the chance
to analyze and contain on-the-fly suspicious pro-
grams.

One would like to have in addition to standard
tools a first line of defense against malware that does

not require special settings for the host, nor pre-
deployed signatures. Similarly to what happens with
intrusion detection systems, and especially for large
corporations, one could think of a security operation
center (SOC), where security analysts are able to in-
spect on-going suspicious behaviours. Thus, auto-
matic analysis tool could be employed to “select” sus-
picious programs for analysis, which would be then
carried out with a mix of automatic and manual in-
spections.

Contribution In this paper, we present a novel ap-
proach to perform on-the-fly malware analysis and
containment for large networks, without having to
deploy any end-host component beforehand. Our ar-
chitecture, we call it Avatar, relies on the observa-
tion that malware distribution is usually done in at
least two phases: First the computer is infected with
a tiny “spore”, then in following phases this spore
downloads one or more additional components from,
for instance, some earlier compromised web servers.
Those components, or “eggs”, are used to extend the
malware capabilities, e.g., hooking system APIs to
grab user passwords, and usually come in the form
of executables, or dynamic libraries. By doing so,
malware writers can more easily avoid detection.

Our approach is based on the injection of “good-
ware” in the suspected malware: In the moment that
the alleged malware attempts to dowload an egg, we
substitute the egg with the goodware, we call it the
cuckoo’s egg1. This is an executable that – among
other things – can carry out preliminary malware
analysis, can terminate the malware or it can sim-
ply give the control back to the egg if the suspected
malware turns out to be a legitimate program2. The
current implementation of Avatar is meant to moni-
tor Windows-based systems.

This is done without any special setup in the host

1Similarly to the cuckoos that engage in brood parasitism,
our goodware is expected to circumvent the malware and take
advantage of it for performing the analysis

2In some cases it may be illegal to inject in an application
software other than the one meant to be downloaded. Avatar
is meant to be deployed in corporate networks, where system
and network administrators are (usually) allowed to monitor,
and limit, users’ actions.

2

that contains the suspected malware, which may be
just any computer running any Windows operating
system. Indeed, the cuckoo’s egg can be generated
and inoculated from the firewall, and the analysis
can be done on a remote analysis engine to which the
cuckoo’s egg communicates after it has been injected
in the host under analysis.

Our experiments show that this is all possible, and
that the cuckoo’s egg can, for instance, be designed
to inspect the process that executes it after the down-
load, or to send to Avatar’s remote analysis engine
information regarding the process, such as path on
the file system, file handlers, network/registry activ-
ities, or even the executable itself. Depending on
the current user’s permissions, the malware analysis
engine can even “order” the cuckoo’s egg code to sus-
pend or terminate the process, effectively containing
a possible larger infection.

An important side-issue is when should one start
being suspicious about a given process. In other
words, when should the system suspect that a spore
is actually trying to download an egg. For our exper-
iments we have developed a heuristic method which
works as follows: Malware is usually programmed to
use several different download servers, as servers are
often offline/discontinued. In practice, the spore of-
ten fails a number of times before succeeding in down-
loading the egg. Thus, we take into consideration
per-host failed TCP connections and failed HTTP re-
quests to identify malware attempts of downloading.
A number of failed HTTP requests is a good indi-
cation of the presence of malware. Our experiments
show that this method is surprisingly effective. How-
ever, one can devise other heuristics which may be
applicable in other contexts. It is outside of the scope
of this paper to make an inventory of such methods.

To the best of our knowledge, this is the first ap-
proach which – without the installation of any addi-
tional plug-in before hand – allows one to:

• (analysis) carry out on-the-fly remote analysis
of a suspicious program;

• (containment) suspend or terminate the suspi-
cious program directly on the infected host;

• (detection) in combination with the heuristics

for detecting suspicious downloads, it can iden-
tify suspicious malware processes which can be
immediately analyzed and contained if required.

We should remark that this is done without using
signatures of any kind. Therefore, this approach can
be used to detect, analyze and contain also zero-day
malware and malware for which there is no signature
available yet. For example, one could even think of a
“paranoid” mode, in which a cuckoo’s egg is shipped
for each download of executables regardless the rate
of failed connections.

We show that Avatar is effective as a lightweight
first line of defense against malware, also allowing
to do malware containment on hosts with no spe-
cific pre-deployed tools (agent-less). This is a crucial
requirement for system administrators of large net-
works, as it eases the burden required to install ad-
ditional software to perform an accurate monitoring.

It is important to stress that this approach can be
adapted to work with any protocol, in our embodi-
ment we choose HTTP because it is widely used by
malware writers. Of course, this approach has limi-
tations, and can be countered to some extent. These
aspects are discussed in Section 2.6.

2 Architecture

The architecture of Avatar consists of three main
parts. The download detection engine (DDE) is re-
sponsible for detecting suspicious attempts to down-
load software components. The Cuckoo’s Egg Gen-
erator (CEG) is responsible for crafting the special
analysis software that will be sent to requesting host.
Finally, the Malware Analysis Engine (MAE) is re-
sponsible for analysing the information provided by
the injected cuckoo’s egg and possibly initiate some
containment strategies. We now provide a detailed
description of each component.

2.1 Download Detection Engine

The download detection engine (DDE) detects
(failed) download attempts that might be due to mal-
ware activity. Strictly speaking, the functioning of
the DDE is orthogonal to that of the analysis and

3

Figure 1: The Avatar architecture.

containment engines of Avatar, which on the other
hand, are the core of the system. In fact, Avatar
would work just as well also in combination with
any other method one could devise to spot out suspi-
cious download attempts. Nevertheless, it is easier to
explain the whole architecture by starting from the
DDE.

Our DDE is based on the fact that often malware
fails a number of time to download eggs. This is due
to the fact that download servers are often offline
and/or taken down by security officers. In our em-
bodiment the detection engine combines a modified
version of the Threshold Random Walk (TRW) al-
gorithm [10]. The engine builds a per-host model of
normal usage, which takes into account the number
of failed connections, and failed HTTP requests. In
the case of malware, the former situation can occur
when, e.g., the remote web server has been deacti-
vated, the latter because the malicious content has
been removed. As confirmed by our tests (see Sec-
tion 3.1), these are not infrequent events. The result-
ing algorithm is simple, albeit effective, and could be
easily expanded to include additional sources of in-
formation (e.g., DNS queries).

The DDE may be located at the network “border”

with the Internet, in order to observe any outgoing
connection and the data sent back by the remote host.
As we said, while this component plays an impor-
tant role in our approach, it is not the main driver
of our idea. For instance, one could decide to inspect
any executable download from the Internet, without
the host having to failed a number of connections or
HTTP requests before being flagged as suspicious.

The TRW algorithm is devised to detect scanning
behaviours originating from a specific host in a mon-
itored network. For each host a detection model is
built. The outcome of a connection attempt is either
“success” or “failure”. After a number of observa-
tions of connection attempts for a certain host h, one
would like to know if h is a scanner. To make such
decision, a sequential hypothesis testing method is
used. The basic premise is that there exists a dis-
tinct fixed ratio of failed and successful connections,
and that this ratio is different when a host is a scan-
ner. Furthermore, for each individual host this ratio
value will eventually converge to some upper or lower
boundaries, based on whether the host is a scanner
or not.

We have adapted the TRW algorithm to take into
account also successful and failed HTTP requests:

4

We currently employ only one model for both TCP
connection and HTTP requests.

2.2 Cuckoo’s Egg Generator (CEG)

Once the DDE identifies a suspicious download at-
tempt, the CEG generates a specific executable/DLL
to be fed back to the suspicious host. We now de-
scribe in details the purpose of the cuckoo’s egg and
its “internals”.

2.2.1 The cuckoo’s egg

The main goals of the cuckoo’s egg are I) to gain
as much knowledge as possible about the executing
process, that, in case of malware, is usually the pro-
cess that tried to download the “egg” and received
the cuckoo’s egg instead of it, and II) to take control
over the parent process if necessary. The cuckoo’s
egg operates in two stages.

First, the cuckoo’s egg “inspects” the execution en-
vironment. The reason for this is that different oper-
ating systems allow processes to execute certain op-
erations with or without high privileges. Therefore,
the cuckoo’s egg may be allowed to perform only a
restricted set of operations. For instance, beginning
with Windows Vista, Microsoft includes a User Ac-
cess Control (UAC) mechanism. The system can be
set to notify the user when a process is about to mod-
ify some important system settings or execute poten-
tially dangerous operations, so that the user can give
explicit authorization. Because we want the cuckoo’s
egg to be as transparent as possible (for usability
reasons), on Vista and later OSes, we cannot use a
number of features, such as debugging mode, as these
could (possibly) trigger the UAC.

The cuckoo’s egg attempts to inject a specifically
crafted DLL into its parent process with different ac-
cess rights: The parent process can restrict the op-
eration set the child process is allowed to perform.
The different combinations of access right masks
the cuckoo’s egg uses are: PROCESS ALL ACCESS
(highest privileges), TERMINATE PROCESS |
QUERY INFO | READ, QUERY INFO | READ and
TERMINATE PROCESS (lowest privileges).

Secondly, the injected DLL extracts, if allowed to,
some information from the parent process (depend-
ing on the operational mode, see Section 2.4). This
information includes: Full path, executable size on
disk, DLLs that have been loaded, and information
related to the current window attached to the pro-
cess (if any), such as handle, size and caption text.
At this stage, the cuckoo’s egg’s DLL attempts to
determine quickly whether the parent process is ma-
licious or not, and employs initially some heuristics
based on the data above. Our experiments show
that in most cases, one could tell straight after these
heuristic checks whether the parent process is likely
to be malware. For instance, a large executable size
(more than 5 MB) is a sign of a non-malicious pro-
cess: Malware writers tend to reduce the size of the
“spore” to by-pass more easily anti-malware coun-
termeasures. Similarly to [13], we also whitelist ap-
plications that could perform a licit download and
later execute the downloaded file (e.g., Internet Ex-
plorer, Windows Update). Some limitations apply
to these heuristics, and we discuss them in details in
Section 2.6. An additional heuristic one might think
to apply is the approach presented in [18], based on
PE header analysis of suspicious programs.

If the heuristics do not indicate that the process
is legitimate, then the information is passed to the
MAE (discussed below) for remote analysis. Then –
depending on the operational mode set and the user
access rights – the cuckoo’s egg can I) debug the par-
ent process, II) let it run normally, III) “freeze” it,
and, as a very last countermeasure, IV) terminate it.

In the first case, the cuckoo’s egg can send back to
the highly-instrumented malware analysis engine the
debugged instructions. By doing so, we can “reply”
on the remote analysis engine any operation and set
whether we are debugging a malware process. How-
ever, our experiments show that this approach col-
lects very little useful information on the parent pro-
cess, as the malign process usually executes the egg(s)
as the very last step of its run.

In the second and third cases, the cuckoo’s egg
sends back to Avatar the parent executable, and this
is also the reason why we need to collect the parent’s
full path. By sending the whole executable, we can
restart from scratch the process execution within our

5

monitored environment and off-load a more accurate
analysis.

2.2.2 Packaging the cuckoo’s egg

Once the DDE notifies the CEG, the latter has to
generate a suitable cuckoo’s egg for the target and,
depending on the operational mode, “attach” the
original executable to the cuckoo’s egg. We distin-
guish two cases, depending on whether the original
executable is available, because it could be down-
loaded, or not.

As we mentioned earlier, the original executable
requested by the host may not be available. In this
case, only the cuckoo’s egg is sent back to the tar-
get without any further processing. If, on the other
hand, the originally requested executable is available,
and the operational mode allows to do so, the CEG
“forces” first the execution of the cuckoo’s egg, and
then of the “real” executable. Hence, the main con-
cern when shipping the cuckoo’s egg is to preserve
the egg’s functionalities as much as possible. There
are several ways to achieve this, two of which are
discussed here, each preserving the functionality in a
different way:

• injecting a DLL loader stub through Portable
Executable injection;

• shipping a replacement-executable that fetches
and executes the egg after the parent process
has been analyzed.

In the first case, the Portable Executable (PE) file
header of the downloaded egg is altered. The PE for-
mat [15] is a file format for executables, object code,
and DLLs, used by Windows since early NT versions.
When an executable is launched, the system process
loader uses the information included in the PE header
to carry out operations such as: Filling in-memory
data structures, loading required DLLs, and jumping
to the entry point of the executable. In this case,
the CEG appends the cuckoo’s egg to the egg’s ex-
ecutable file, next the egg’s Entry Point is modified
to point to a loader stub that will unpack the engine
and write it to a file after which it will be loaded

like any regular DLL. This method is rather com-
plex, it presents the disadvantage that it might trig-
ger the antivirus (unless some packing techniques are
used) and requires the LoadLibrary and GetProcAd-
dress offsets to be available in the egg’s PE header,
which is usually the case, though.

The second method is much simpler, requires no
modifications to the egg’s executable file, is usually
not flagged as malicious by the antivirus and does
not make any assumptions on the egg’s PE header.
A stand-alone cuckoo’s egg is sent back and, once
the analysis is over, it downloads and executes the
“original” egg. The downside to this approach is
that any relation that the egg may want to set up
with its parent is lost. Moreover, this could signif-
icantly slow down the execution, by introducing an
additional download latency.

2.3 Malware Analysis Engine

The MAE is the core component of the Avatar archi-
tecture. It is responsible for analysing the informa-
tion sent by the cuckoo’s egg. If necessary, it should
run the suspected executable in a protected environ-
ment. From a functional point of view, it does not
differ from other malware analysis tools. Once the
sample to analyse is received, it is executed and any
operation performed is recorded and logged. The ex-
ecution report can be then dispatched to a security
analyst, who can set a final verdict about the ma-
liciousness of the sample, in case the executed pro-
gram’s nature remains unclear.

The MAE is also used to store information about
whitelisted programs, which the cuckoo’s egg will
consider as non-suspicious. By doing so, we can basi-
cally centralize our architecture, making it possible to
“update” crucial information about malware in one
step.

2.4 Operational modes

As networks, and hosts, require different confidential-
ity and availability levels, users need to control the
way the cuckoo’s egg could affect the execution of
processes. As in the case of all detection and preven-
tion systems, false positives are always possible, so

6

one has to find an appropriate compromise between
rigorous containment, at the risk of terminating a le-
gitimate process, and less drastic measures. In our
embodiment, we have implemented three basic oper-
ational modes.

Transparent mode When in this mode, the DDE
notifies the CEG about the failed attempts to pull
down some files from an external server. The CEG
then waits for the file to be actually downloaded, and
verifies it is an executable. If so, the CEG crafts a
cuckoo’s egg with the original file appended. Once
the execution of the cuckoo’s egg is over, the origi-
nal file is automatically executed. The cuckoo’s egg
sends back to the MAE a copy of the parent execut-
ing it for analysis. No further action is possible on
the suspicious host, as the cuckoo’s egg releases the
parent process’ executable. This mode does not in-
terfere with regular operations of the suspicious host,
as the original requested file is executed.

Semi-transparent mode This mode differs from
the transparent mode as follows. The original file is
downloaded and attached to the cuckoo’s egg. How-
ever, when the cuckoo’s egg is executed, it freezes
the parent process. Then, the cuckoo’s egg runs the
heuristics checks and might decides to “release” its
parent process immediately. If the heuristics checks
cannot clearly determine the nature of the parent
process, the cuckoo’s egg ships a copy of the par-
ent process’ executable to the MAE. Then, it waits
for further commands from the MAE. Further com-
mands may include the termination or release of the
process. This mode might interfere with the regu-
lar operations of the suspicious host, as the parent
process is frozen while the analysis is in progress.

Non-transparent mode When in this mode, the
CEG is notified about the failed downloads, but, pro-
vided the requested filename points to an executable,
does not wait for the original file to be successfully
downloaded. Instead, it immediately ships a cuckoo’s
egg. Based on the heuristic checks, the cuckoo’s egg
might send back to the MAE a copy of parent exe-
cutable, and waits for further commands. This mode

heavily interfere with the regular host operations, as
the requested file is not executed.

2.5 Implementation

To carry out our experiments we have implemented
a proof of concept version of Avatar. The three main
components of Avatar can be placed at different lo-
cations on the network. However, in our experiments
we have coupled the DDE and the CEG together into
a single host. The reason for this is that the DDE
and CEG must exchange information about failed
downloads, and the CEG must craft and supply the
cuckoo’s egg in a timely manner. The deployment
of these two components on physically separated sys-
tems might introduce delays that could impact the
analysis.

In practice, to allow a transparent deployment that
does not require any reconfiguration at host side, we
employed a single Linux box with built-in firewall
and web proxy. The firewall transparently redirects
the outgoing traffic directed to common HTTP ports
(TCP ports 80 and 8080) through the web proxy,
which can inspect both request and reply. Thus, no
re-configuration of client hosts is required. As fire-
wall, we use Netfilter, the Linux sub-component in
charge of managing network communications. Netfil-
ter offers the possibility to insert specific “hooks” in
its packet process workflow, so that it is possible to
inspect, and even modify, on-the-fly any packet pass-
ing by. To inspect of HTTP traffic, we set up a web
proxy based on Apache. Apache supports modules
for adding new functionalities, and we have developed
a new module to inspect requests and their content.
Internally, the module maintains a table that con-
tains statistics about internal hosts and their connec-
tion/request failure rates. The module also inspects
the replies sent back by the remote (web) server.

When the same host performs several failed con-
nections in a given timeframe, or requests to pull
down some file(s) do not end successfully, the Apache
module marks that host as suspicious. Depending on
the operational mode, the module will either wait un-
til a request is successful, and then ship back a crafted
cuckoo’s egg together with the original file, or it will
immediately ship back a cuckoo’s egg (provided the

7

request points to an executable filename).

If the requested file is eventually downloaded, the
module proceeds with some sanity checks and verifies
that the downloaded file is actually an executable.
In case of a positive match, the executable is stored
and the cuckoo’s egg crafted. To craft the cuckoo’s
egg and append the requested file, we implement the
first method presented in Section 2.2.2 (PE header
injection), to avoid download latency.

The analysis engine is implemented as a Windows
kernel driver. In order to monitor malware activities,
the driver hooks some APIs functions, and exploits
the capabilities offered by the latest Windows OSes,
which provide built-in sub-systems for third-parties
antivirus and firewall software. These interfaces allow
one to detect changes in the file system, the system
registry, monitor network connections, etc.

Technically speaking, the MAE resides on a real
system behind a firewall, in order to prevent any out-
going connection that could be initiated by the mal-
ware once it is activated. The MAE does not run on
any virtualized environment, to avoid possible built-
in anti-analysis capabilities inside the malware. This
choice has the disadvantage of requiring a roll back to
the original status after each analysis. We do not see
this as a serious limitation because our current goal
is not to speed up malware analysis, which would re-
quire several concurrent systems. Nevertheless, the
kernel driver can be deployed in a virtualized envi-
ronment too.

The cuckoo’s egg communicates with the analysis
engine through encrypted network sockets. Encryp-
tion is used to avoid leaks of any possible sensible
information, e.g., a memory dump, over the network,
and to prevent the spore from tapping our communi-
cations.

2.6 Limitations and evasion of Avatar

In this section we discuss the limitations of our ap-
proach.

Limitations of the CEG When crafting the
cuckoo’s egg, the original requested file can be at-
tached to it. This process could break self-extracting

archives, which verify the file integrity before inflat-
ing the content.

Evading the DDE Our approach works by first
detecting (failed) attempts to download additional
components. If malware evades this detection phase,
then Avatar cannot ship the cuckoo’s egg. To avoid
detection, malware could initiate connections at a
very low rate, as part of our detection relies on high
rate of failed connections. Encrypting connections
could be also a countermeasure against inspection.

Evading the CEG Another possible way of evad-
ing Avatar is by using some sort of verification mech-
anism of the downloaded components. Encryption
and hashing could be employed to detect a mismatch
with the expected file. For instance, by compress-
ing the executable and protecting the archive with
a password. Because the sanity check performed on
the downloaded file can be solely based on the magic
numbers only, a malware writer could hide the exe-
cutable within a different file type and change the file
header at run-time, once downloaded.

Evading the cuckoo’s egg Because the cuckoo’s
egg employs heuristics to decide whether to continue
the analysis or to send back to the instrumented host
the parent executable for analysis, malware could
take some countermeasures to evade the heuristics
checks. For instance, since Windows 2000, a process
can execute instructions within the context of an-
other process by using the CreateRemoteThread API
function (a similar function allows the injection of
DLLs). Thus, malware could inject arbitrary ma-
licious instructions in the context of an accessible
whitelisted process, e.g., Internet Explorer, which is
usually executed with the same access rights the mal-
ware has, to evade some checks performed by the
cuckoo’s egg3.

3It is worth noting that the very same technique could be
used to evade approaches like the one presented in [13], which
relies on the fact that some processes can be whitelisted before
hand to avoid false alerts.

8

Possible Solutions Although we acknowledge
that it is possible to devise malware with anti-
analysis features tailored for our approach, we did not
observe any of those during our experiments. More-
over, the use of encryption of hashing for file verifi-
cation would likely slow down the malware spread,
as either “updated” versions would fail the check or
researchers could reverse engineer some malware sam-
ples and identify the encryption key/password of the
mechanism.

By the way, we think that malware writers might
be reluctant in adding a verification step to the mal-
ware, as it might simplify the work of signature-based
detection system. In the moment that the malware
is analyzed the key used for encryption would cer-
tainly be identified, and this could be used to craft
an effective signature for detecting it.

A possible solution to the evasion of the cuckoo’s
egg would be to add a comparison of the exe-
cutable on the disk with the memory image, and
pinpoint possible later-added instructions. However,
this would require also to inspect DLLs, and the task
could easily become infeasible (let alone not being
bullet-proof). We plan to address in future work this
issue.

3 Benchmarks

To validate the effectiveness of our approach, we use
two different datasets. The first data set, referred to
as DSA is available on request from the team that
built Malheur. It contains a large collection of mal-
ware samples that could be used for malicious pur-
poses. In practice, the data set is a collection of sam-
ples submitted in a period of eight consecutive days
in 2009. Each sample has been analyzed by CWSand-
box and the related report is included together with
the original sample. This data set is used to test the
basic idea of our approach, that malware will execute
an arbitrary generated “egg”.

Our second dataset, DSB , is a collection of mal-
ware samples found in the wild. For some samples,
no report was available beforehand (meaning they
were brand new or modification of known malware
samples). Hence, we had to submit the sample to

either Anubis or CWSandbox to learn whether the
sample was actually malware and downloaded some
extra components. With this data set we want to test
in particular the effectiveness of the devised heuristics
for triggering instrumented analysis of the suspicious
process.

3.1 Tests with DSA

This dataset is an extensive collection of malware
samples. They belong to different malware families
and are all unique, meaning that some sort of poly-
morphism/code reordering has been applied.

However, not every sample downloads extra com-
ponents, and among those which perform download
activities, a large part cannot work properly these
days. This is due to the fact that, before downloading
the extra executables, the malware sample attempts
to download some configuration files, which are not
longer available. We select only working samples that
download additional components, and up to 10 max-
imum samples per family (in total 75 samples).

To perform the experiment, we set up a client host
running Windows XP SP3, as some malware sam-
ples suddenly crash when executed under more recent
OSes4, like Windows 7. No extra user activity is sim-
ulated. For the DDE, we use the following settings: 5
failed connection/download attempts in 1 minute in-
dicate a possible malicious program. The operational
mode for this dataset is set to transparent mode. Ta-
ble 1 summarizes our findings.

Discussion Tests on DSA show the effectiveness
of our approach. However, we have observed that
for few samples and for a certain malware family
in particular, the cuckoo’s egg is not actually exe-
cuted. There are two distinct reasons for it. In the
case of random samples, once the cuckoo’s egg in-
jects its crafted DLL the parent process crashes. In
the case of the “Killav” malware family, the mal-
ware sample relies on the user to actually execute
the download file(s). In all the other cases, there
is no check run by the malware whether the down-
loaded file is actually a “legitimate” malicious com-
ponent. This enforce our assumption that malware

4We investigated this issue and found some incompatibles
among installed and expected system libraries.

9

Malware family # of samples # of samples
marked as ma-
licious by the
DDE

samples that
executed the
cuckoo’s egg

Agent 9 9 9

Adload 8 6 6

Banload 3 2 2

Chifrax 2 2 2

FraudLoad 8 5 4

Genome 4 4 4

Geral 9 8 8

Killav 6 5 0*

Krap 6 4 4

NothingFound 10 10 3

Xorer 7 6 4

Table 1: Actual samples used in our tests with dataset DSA, samples flagged as malicious by the DDE
and that executed the shipped cuckoo’s egg. The * marks a family of malware that actually downloads the
cuckoo’s egg, but does not automatically execute it (and leaves this to the user). In most cases, the DDE
detects failed download attempts, and the cuckoo’s egg is executed right away by the malicious sample,
without any integrity check.

writers do not currently protect their programs with
encryption/hashing mechanisms.

For the “NothingFound” family, whose name might
refer to the fact that the submitted sample has not
beed identified as malicious by CWSandbox, we have
to report that the cuckoo’s egg has been actually ex-
ecuted most times.

3.2 Test with DSB

This dataset is used to tests how our approach per-
forms with (supposedly) brand new malware. Sam-
ples have been collected in March 2011, and most of
them would have not been detected by several an-
tivirus software at the time of collection (we pro-
cessed each sample through the VirusTotal [23] web
site). We have a total of 30 malware samples from
this dataset, which downloads extra malware compo-
nents. For this set of tests, we also simulate regu-
lar user activities such as browsing and downloading,
with 30 different software, ranging from web browser
to crawlers. Because the downloading program might
not execute the cuckoo’s egg, we automate its execu-
tion and set the parent process to be the downloading

program. For the DDE, we use the following stricter
settings: 3 failed connection/download attempts in 1
minute will indicate a possible malicious program.

To perform the experiment, similarly to the tests
with DSA, we set up a client host running Windows
XP SP3. The operational mode for this dataset is
set to semi-transparent mode. By doing so, we test
at the same time how efficient heuristics are in detect-
ing malware programs. Because some goodware pro-
grams that the heuristics might send to the MAE for
analysis could rely on the presence of certain system
libraries, for this experiment the MAE is running on
a mirror copy of the attacked system. When samples
are sent to the MAE, we set a maximum amount of
waiting time without operation performed of 3 min-
utes: By doing so we avoid false positives in case of
goodware, but might introduce false negatives in case
of malware. Table 2 summarizes our findings.

Discussion This second round of tests confirms
that even the latest malware code is still “vulnera-
ble” to the injection of our cuckoo’s egg. Most sam-
ples have been correctly identified by the DDE, and
only 2 samples have been missed. These samples
have stopped their download attempts just after a

10

of samples

Malware

Correctly identified by the DDE 28/30
That executed the cuckoo’s egg 27/30 (27/28)
Correctly identified as malware by heuristics 13/30 (13/27)
Erroneously identified as goodware by heuristics 2/30 (2/27)
Sent to the MAE for analysis 12/30 (12/27)

Goodware

Erroneously identified by the DDE 10/30
Correctly identified as goodware by heuristics 6/30 (6/10)
Erroneously identified as malware by heuristics 2/30 (2/10)
Sent to the MAE for analysis 2/30 (2/10)

Table 2: Results for tests with dataset DSB (in the third column we report partial results in brackets).
Almost any malicious download attempt has been detected by the DDE, which shipped the cuckoo’s egg.
The heuristics identified malware samples in almost half cases, and mistakenly flagged as goodware malicious
samples only in a couple of cases. The false positive rate for the DDE is around 30%, and around 20% for
the heuristics (when considering the cases in which the cuckoo’s egg was shipped).

few tries. The DDE also mistakenly detects as mal-
ware some regular programs. Actually this was an
expected behaviour, as we set strict values for the
DDE. Only one program did not execute the shipped
cuckoo’s egg, due to a crash at the moment of in-
jection. We experienced the same problem for sev-
eral samples from DSA, and our investigations show
that the malware was not fully compatible with the
installed set of libraries, and therefore would have
crashed anyway.

The heuristics prove to be an effective way to re-
duce the workload of the analysis engine (and thus
the manual workload for security analysts), when
working in combination with the DDE. Less than
50% of analysed malware samples have been sent to
the MAE for analysis, and more than 50% of sam-
ples have been immediately identified as malware. In
the case of non-malware samples, 20% of analysed
samples had to be sent to the MAE for further anal-
ysis while 60% has been identified as non-malware
without further analysis. For each successful execu-
tion, the cuckoo’s egg would have been allowed to
terminate the parent process, effectively containing a
possible infection.

3.3 System overhead

Because the Avatar architecture performs an on-the-
fly analysis, and eventually detection, the program

execution is slowed down by a certain overhead. De-
pending on the operational mode, this overhead can
range between milliseconds and minutes. A typi-
cal example of the former case is transparent mode,
when the heuristics flag the downloading program as
actual goodware. In non-transparent mode, if the
heuristics fail to determine the actual nature of the
analysed program, the MAE is activated for further
inspection (thus, slowing down the overall analysis
time). All our benchmarks have been performed on a
1.8Ghz Dual Core machine (target) and 3.0Ghz Quad
Core machine (MAE). Table 3 reports overhead val-
ues for different scenarios we observed during our
benchmarks (overhead refers to the execution time
of the cuckoo’s egg and, possibly, of the MAE).

4 Related work

In this section we discuss related works. As malware
has become a serious security threat, a good deal of
work exists that discusses techniques to analyse and
detect malicious code.

4.1 Malware Analysis

Sidiroglou and Keromytis [19] present an architecture
to detect and capture potential malware infection
vectors by using a collection of heterogenous detec-

11

Dataset Min overhead Avg overhead Max overhead

DSA 17ms 21ms 30ms

DSB (malware samples) 19ms 61s 181s

DSB (goodware samples) 16ms 29s 181s

Table 3: Overhead time values for DSA and DSB . When heuristics successfully identify the analysed sample,
the overhead can be as low as 16ms. The maximum overhead value depends on the MAE analysis.

tion engines. Engines range from host-based sensors
monitoring the behaviour of applications and OSes to
honeypots that simulate possible target applications.
Each time a potential malware vector, e.g., a byte
stream, is detected, it is copied and forwarded to a
sandboxed environment, which runs some instances
of the applications one wants to protect (e.g., the
Apache web server) and a number of tools to verify
the potential maliciousness of the input. The authors
provide several strategies for fixing, among others,
buffer overflow vulnerabilities “on-the-fly”. Despite
the fact that authors do not provide any implemen-
tation of their architecture, there are several simi-
larities with our approach. Once the cuckoo’s egg
is being executed, the suspicious program is copied
and forwarded to a sandboxed environment for dy-
namic analysis. The main difference lies in the way
we inspect the suspicious program, by crafting the
cuckoo’s egg and sending it together with the origi-
nal requested file.

Anubis [3] and CWSandbox [24] are two prominent
architectures for dynamic malware analysis. In par-
ticular, Anubis can aggregate malware samples that
present a similar behaviour into “clusters”. That is,
although samples’ diversity is high (Anubis has ana-
lyzed more than 1 million of unique malware samples
so far), there are nearly 100.000 malware “families”.

4.2 Malware Detection

A number of heterogeneous techniques have been pre-
sented to detect malware.

Host-based Techniques Host-based techniques
were the first to be used to detect and stop mal-
ware (think of antivirus software). Their main ad-
vantage is that they can detect malware even before

it is actually executed. Approaches range from simple
byte-pattern matching, which scans a file for known
malicious strings or instructions [21], to model check-
ing [12] and compiler verification [5]. Unfortunately,
such (static) techniques can be evaded using packers
and polymorphism.

In an effort to overcome typical limitations of
matching-based approaches, Kolbitsch et al. [13] in-
troduced a new concept of signature based on fine-
grained models. Fine-grained models are graphs rep-
resenting system calls invocation order (and other ad-
ditional information) to match the characteristic be-
havior of a given malware program. The model gen-
eration is off-loaded onto a dynamic malware analysis
tool (i.e., Anubis). This approach allows the detec-
tion of unknown malware samples too, provided the
“family” has been analyzed before.

Network-based Techniques Regarding specific
network-based techniques, several approaches lever-
age information extracted by analyzing network traf-
fic [8, 9, 11, 16].

BotMiner [8] combines a number of different traf-
fic monitoring tools to extracts network communica-
tion patterns and their content. Typical information
that BotMiner takes into consideration are vertical
and horizontal scans, exploit attempts, DNS queries,
downloads of binaries. Then, BotMiner clusters hosts
with a similar behavior and attempts to detect botnet
nodes. Although network-based approaches could al-
low, in theory, to perform on-the-fly detection, this
is hard to realize because they miss the activity per-
formed by malware on the host.

Techniques based on Data Mining Several re-
searchers address the detection of malware by using
data mining techniques, in a effort to detect a higher

12

number of malware samples that are simply a variant
of already known samples.

Tabish et al. [22] notice that most of current mal-
ware samples that are daily submitted for analysis
are not brand new. Commonly, malware writers em-
ploy techniques such as repacking to “obfuscate” mal-
ware content and thus defeating approaches based
on content matching, e.g., antivirus software. The
authors devise an approach based on extracting sta-
tistical and information-theoretic features from file
blocks. A block is a fixed-sized chunk of byte-level
contents of a given file. More than 50 distinct fea-
tures are extracted, and then analyzed using math-
ematical distance functions that are common in the
data mining field (e.g., the Manhattan and Cheby-
shev distances). The approach gives in general good
results, but requires the analysis of several “good”
file samples, e.g., executables, PDF documents, etc.,
to detect malicious files.

5 Conclusion

In this paper we present Avatar, a new lightweight ar-
chitecture for on-the-fly, signature-less malware anal-
ysis, containment and detection for large networks.

Avatar does not require any special setup or soft-
ware on the infected hosts. This is because the anal-
ysis is not done on the allegedly infected host, but it
is carried out on a remote system, which communi-
cates with the (allegedly) infected host through the
cuckoo’s egg. The cuckoo’s egg provides also contain-
ment functionalities. In fact, Avatar’s architecture is
completely centralized. This allows one to deploy it in
any environment (like a corporate network) where the
firewall can be modified to provide the needed facili-
ties for the interception of suspicious downloads and
the injection of the cuckoo’s egg. Basically, Avatar
can be deployed in most work environments with very
little effort. An additional advantage of a centralized
architecture is that the updates in the analysis engine
affect only one machine, as opposed to what happens
e.g., with antivirus software, where all hosts have to
be updated.

An interesting aspect of Avatar’s architecture is
that it can avoid some evasion techniques used by

malware; as we mentioned before, modern malware
can check whether it is running in a sandboxed envi-
ronment. Since our architecture does not deploy any
extra tool, not even at kernel level, before hand, the
malware has little way of detecting that it is under
analysis.

The detection in Avatar is necessarily based on
heuristics, and is thus fallible. This however allows
the detection of malware for which there is no sig-
nature available yet. On the other hand, since the
heuristics-based detection phase is always followed by
an analysis phase before proceeding to the contain-
ment, the risk of having false positives in the detec-
tion phase is heavily mitigated by the fact that if the
analysis phases determines that the suspected mal-
ware is actually a legitimate program, the cuckoo’s
egg can simply “release” it and allow it to continue.

Our experiments show that our approach is effec-
tive in detecting and containing malware, even un-
known malicious code. We believe that Avatar can
be the basis of an effective lightweight first line of
defense against malware.

References

[1] Anubis: Analyzing Unknown Binaries. http:

//anubis.iseclab.org.

[2] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda,
C. Kruegel, and G. Vigna. Efficient Detection of
Split Personalities in Malware. In NDSS ’10:
Proc. 17th Network and Distributed System Se-
curity Symposium, 2010.

[3] U. Bayer, A. Moser, C. Krugel, and E. Kirda.
Dynamic Analysis of Malicious Code. Journal
in Computer Virology, 2(1):67–77, 2006.

[4] M. Christodorescu and S. Jha. Testing mal-
ware detectors. In ISSTA ’04: Proc. ACM
SIGSOFT international symposium on Software
testing and analysis, pages 34–44. ACM Press,
2004.

[5] M. Christodorescu, S. Jha, S.A. Seshia, D. Song,
and R.E. Bryant. Semantics-Aware Malware De-
tection. In S&P ’05: Proc. 25th IEEE Sym-

13

posium on Security and Privacy, pages 32–46.
IEEE Computer Society, 2005.

[6] P. Milani Comparetti, G. Salvaneschi, E. Kirda,
C. Kolbitsch, C. Kruegel, and S. Zanero. Iden-
tifying Dormant Functionality in Malware Pro-
grams. In S&P ’10: Proc. 31th IEEE Symposium
on Security and Privacy, page TO APPEAR.
IEEE Computer Society Press, 2010.

[7] CWSandbox. http://www.cwsandbox.org.

[8] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Bot-
Miner: Clustering Analysis of Network Traffic
for Protocol- and Structure-Independent Botnet
Detection. In USENIX Security ’08: Proc. 17th
Usenix Security Symposium. USENIX Associa-
tion, 2008.

[9] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and
W. Lee. BotHunter: detecting malware infec-
tion through IDS-driven dialog correlation. In
USENIX Security ’07: Proc. 16th USENIX Se-
curity Symposium on USENIX Security Sympo-
sium, pages 1–16. USENIX Association, 2007.

[10] J. Jung, V. Paxson, A.W. Berger, and H. Bal-
akrishnan. Fast Portscan Detection Using Se-
quential Hypothesis Testing. In S&P ’04: Proc.
25th IEEE Symposium on Security and Privacy,
pages 211–225. IEEE Computer Society Press,
2004.

[11] H. Kim and B. Karp. Autograph: Toward
Automated, Distributed Worm Signature De-
tection. In Proc. 13th USENIX Security Sym-
posium, pages 271–286. USENIX Association,
2004.

[12] J. Kinder, S. Katzenbeisser, C. Schallhart, and
H. Veith. Detecting Malicious Code by Model
Checking. In DIMVA ’05: Proc. 2nd Interna-
tional Conference on Detection of Intrusions and
Malware and Vulnerability Assessment, volume
3548 of LNCS, pages 174–187. Springer-Verlag,
2005.

[13] C. Kolbitsch, P. Milani Comparetti, C. Kruegel,
E. Kirda, X. Zhou, and X. Wang. Effective and

efficient malware detection at the end host. In
USENIX ’09: Proc. 18th Usenix Security Sym-
posium, 2009.

[14] Malheur: Automatic Analysis of Malware Be-
havior. http://www.mlsec.org/malheur.

[15] Microsoft. Portable Executable and Com-
mon Object File Format Specification, 2008.
http://www.microsoft.com/whdc/system/

platform/firmware/PECOFF.mspx.

[16] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically Generating Signatures for Poly-
morphic Worms. In S&P ’05: Proc. 25th IEEE
Symposium on Security and Privacy, pages 226–
241. IEEE Computer Society, 2005.

[17] Open Letter to RSA Customers. http://www.

rsa.com/node.aspx?id=3872.

[18] M. Zubair Shafiq, S. Momina Tabish, F. Mirza,
and M. Farooq. PE-Miner: Mining Structural
Information to Detect Malicious Executables in
Realtime. In RAID ’09: Proc. 12th International
Symposium on Recent Advances in Intrusion De-
tection, pages 121–141. Springer-Verlag, 2009.

[19] S. Sidiroglou and A.D. Keromytis. A Network
Worm Vaccine Architecture. In WETICE ’03:
Proc. 12th International Workshop on Enabling
Technologies, pages 220–225. IEEE Computer
Society, 2003.

[20] B. Stone-Gross, M. Cova, L. Cavallaro, B.
Gilbert, M. Szydlowski, R. Kemmerer, C.
Kruegel, and G. Vigna. Your botnet is my bot-
net: analysis of a botnet takeover. In CCS ’09:
Proc. 16th ACM conference on Computer and
Communications Security, pages 635–647. ACM
Press, 2009.

[21] P. Szor. The Art of Computer Virus Re-
search and Defense. Addison-Wesley Profes-
sional, 2005.

[22] S. Momina Tabish, M. Zubair Shafiq, and M. Fa-
rooq. Malware detection using statistical anal-
ysis of byte-level file content. In CSI-KDD ’09:

14

Proc. ACM SIGKDD Workshop on CyberSecu-
rity and Intelligence Informatics, pages 23–31.
ACM Press, 2009.

[23] VirusTotal: Online Virus, Malware and URL
Scanner. http://www.virustotal.com.

[24] C. Willems, T. Holz, and F. Freiling. To-
ward Automated Dynamic Malware Analysis
Using CWSandbox. IEEE Security and Privacy,
5(2):32–39, 2007.

15

