Splunk implementation

Our experiences throughout the 3 year journey
About us

• Harvard University – *University Network Services Group*
 – Serving over 2500 faculty and more than 18,000 students

• Jim Donn – Management Systems
 – Architect and implement Management solutions
 – Deliver fault notifications
 – Previously with HSBC
 – 13 years in IT from NOC -> Sr. Engineer

• Tim Hartmann – Systems Administrator
 – Architect and implement Authentication solutions
 – Troubleshoot various server related issues
 – Previously with another division within the University
 – 11 Years in IT from Help Desk -> Sr. Engineer
Our Interests

• Share our experiences with others
• Collaborating with like minded people
• Discuss strategies to tackle common issues
• Share solutions / code
• Endorse community activity!
Day 0

• Network and Systems team have very similar needs – centralized logging.
• Teams belong to the same department, but historically act independently.
• 2 independent Syslog-NG implementations.

• Jim and Tim break the mold and talk to each other!
Network Management Systems Drivers

• New tools must scale with the rebuild of Enterprise Network Management Systems

• Syslog needs:
 – Syslog aggregation
 – Reliable event forwarding
 – Easy to use web interface
 – Centralized log viewer
 – Correlation and alerting engine*
Systems Team Drivers

- Need to track down and resolve issues faster
- Syslog needs:
 - Centralized logging
 - Web based search viewer
 - Role based access to logs
 - Alerting
 - Reporting
 - Trend Analysis
Evaluation

• Tim leads Splunk evaluation, sets up server
 – Simple installation
• Tim and Jim point Syslog-NG envs at Splunk
• Develop User Roles strategies
 – Net Eng, NOC, Security, and Server teams
• Develop data separation strategies (KISS)
 – Host names
 – Sourcetypes
 – Indexes
Installation stats

• 400 Linux, Solaris, and Windows servers
• 700 Switches and Routers
• 2300 Wireless Access Points
• TACACS+ authentication logs
• VPN access logs
• DNS and DHCP logs
• 50 registered Splunk users, half are regular users
Phase 1 Hardware and Strategies

What it runs on
- RHEL 5 – 64 bit
- Commodity HW
- 15k local disk
 - RAID 5 1.6T
- 2 x 4 Core Processors (3.00 GHz)
- 16 GB RAM
- Custom Yum Repo for software Deployment

Strategies
- Two of everything
- Fast disk
- Wherever possible we made our configurations independent of other services (SAN/NAS)
- Simplicity keeps it maintainable
Phase 1 – Basic syslog, “just get it in”

- Very few agents
- All UDP
- Sourcetype based roles
- Dual role servers (search & index)
- Hot / Hot HA architecture
- 1.6 Terabytes of useable disk each
- Splunk v 3.x
Closer look at Syslog-NG
Phase 2 – More logs!

- Merge Syslog-NG servers
- Start to introduce more Splunk agents to grab difficult logs
- Add more departments
- Splunk integrated with event notification path
 - Replaces syslog adapter in EMC Smarts
- Splunk v 3.x
Phase 3 – Agents and Indexes

• More and more Splunk agents
 – Windows servers migrated
• TCP forwarding of syslogs
• Multiple indexes
 – Index based roles
 – Faster searches
• Replace Smarts DB with Splunk
 – Hardware is now available for Splunk expansion
• Splunk begins to fill monitoring gaps, acts as “glue”
• Splunk v 4.x
 – Apps now available
 – Free Unix & Windows Apps
 – First round of developing our own
Snapshot after implementing more indexes
Splunk growth around the same time

- Organic growth with other departments
- Steady growth of indexed data
 - Introduction of new indexes
- Security mandate to have Splunk on all servers
Phase 4 Hardware and Strategies

What new Indexers runs on

- RHEL 5 – 64 bit
- Commodity HW
- 15k Direct Attached Array
 - RAID 5 1 TB
 - Room for more drives
- 2 x 4 Core Processors (3.00 GHz)
- 12 GB RAM
- Custom Yum Repo for software Deployment

Strategies

- Horizontal expansion
 - Search Heads
- Two of everything
 - Keep the hardware specs close as possible
- Fast disk
 - Use of Linux LVM to grow additional disk
- Wherever possible we made our configurations independent of other services (SAN/NAS)
- Simplicity keeps it maintainable
Phase 4 – Apps and Security

- Migrate unified alerting
- Remove UDP everywhere possible
- New Splunk Architecture!
 - Horizontal expansion (map reduce)
 - Search Heads
 - Scheduled search server
 - Automated sync
 - More disk!
 - Load balanced VIP?
- Agents, agents, agents
 - Support for apps
 - Custom inputs
 - Scripted output
- Splunk Agent on Syslog-NG
- Deployment Server
Phase 4, v. 2 - Apps

• Same as v. 1 but...
• Collapse Apps into Splunk infrastructure:
 – MRTG?
 – Syslog-NG?
 – Splunk-data-gatherer hybrid?
• Deployment Server:
 – Use Puppet
 – Use SVN
From a users perspective

Search heads have access to all indexers:

Two of everything for automatic redundancy
Home Brewed Splunk Apps / Usage

- Xen server status
- Replace legacy monitoring scripts
- Transaction based alerts for Linux and Windows
- Scripted inputs provide visibility into Network device port status (CLI only data)
Future Apps

• Security App?

• Manager of Managers
 – Add Net-SNMP trap receiver
 – Migrate most MRTG graphs (Non-RRD)
 – Replace Cacti (RRD)
 – Trend all EMC Smarts / snmpoll data
Additional info

Contact info

james_donn@harvard.edu

tim_hartman@harvard.edu

Community

http://answers.splunk.com

https://listserv.uconn.edu/cgi-bin/wa?A0=SPLUNK-L