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Formal logic?

How many of you have studied logic?
… because I am going to do something very 

“illogical”.

“Logic is a bouquet of pretty flowers, that 
smell bad.”

- Leonard Nimoy, as Spock



What is this talk about?

• How to troubleshoot systems based upon their 
architecture, 

• based upon a naïve logic of causal relationships
between architectural entities,  

• that is optimized for readability by sysadmins, 
understandability, and efficient computation. 

• that describes which relationships might be 
present as a first-order approximation, like a 
“bloom filter for logic”



Architecture and troubleshooting

• Architecture defines connections between 
entities.

• Troubleshooting requires understanding those 
connections. 

• We provide a way to: 
– recall connections relevant to a problem
– make and explain new connections
via a strange kind of logic. 



Entities and relationships

• Entity: something one manages, e.g., 
– Hosts
– Services
– Classes of hosts or services

• Relationship: some constraint between entities
– Causal: determines, influences
– Dependence: provides, requires
– Intent: promises, uses
– Class: is an instance of, is a subclass of
– Structural: is a part of, is a component of



Architectural facts

host01           provides file service
subject        verb phrase object       
entity       relationship entity 

• Notation
host01|provides|file service



Three ways to infer relationships

Implications: raise the level of abstraction
Inverses: allow a fact to be “reversed” 
Connections: document indirect relationships

Inference rules

Make new connections between entities.
Change the level of abstraction of a fact. 



Implication

If host01 provides file service, 
then host01 influences file service.

provides : a concrete relationship
influences: an abstract relationship

motive: reason abstractly, report concretely. 

Notation: 
provides->influences



Inverses

host01 provides file service
whenever
file service is provided by host01

This is just a matter of notation.
It makes other rules easier to write down.  

Notation: 
provides<>is provided by



Connections
If host03 is an instance of dns server, 
and a dns server is required by host07, 
then host03 might influence host07.

Notation: 
is an instance of^is required by^might influence

host03
is an instance of

dns server
is required by

host07

might influence



Why this is strange

• Most attempts at computer logic attempt to 
translate English into logic and then reason 
from that. 

• This method translates architectural 
information to simple English and then 
reasons from that, without translating the 
English into logic! 

• Main advantage is incredible speed!



Exterior semantics

• Usually, one defines the meaning of English 
phrases in a dictionary. 

• In our system, one defines relationship 
meanings via their interaction with other 
relationships. 



What does “influences” mean?
determines->influences 
determines^determines^determines
determines^influences^influences
influences^determines^influences
influences^influences^influences
determines^has part^determines
determines^is a part of^influences
is an instance of^determines^determines
has instance^determines^influences
provides^is required by^might influence



Two claims of this paper

• Claim 1: this logic is easy to describe and 
compute.

• Claim 2: the results of inference are human-
readable.



Demonstration: 
A really simple architecture

Server1: web

Server3: files

Server4: DHCP/LDAP

Server1: web Client1

Client1

server/client

server/server



A naïve architectural description
file server|provides|user file service 

file server|provides|web file service 

file server|requires|dns

web server|provides|web service 

web server|requires|web file service 

web server|requires|dns

network server|provides|dns

network server|provides|dhcp

workstation|requires|dns

workstation|requires|dhcp

workstation|requires|user file service 

workstation|requires|web service 

# assign roles to machines

server1|is a|web server 

server2|is a|web server 

server3|is a|file server 

server4|is a|network server 

client1|is a|workstation

client2|is a|workstation



What can cause 
problems with client1?

Architectural facts:
client1|requires|dhcp
client1|requires|dns
client1|requires|user file service
client1|requires|web service
Inferred facts: 
server1|might influence|client1
server2|might influence|client1
server3|might influence|client1
server4|might influence|client1



server1 might influence client1

provides

is required by

might influence

is an instance of

provides

is required by

has instance

server1

web server

workstation

client1

web service

http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=server1&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=web+server&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=workstation&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=client1&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=web+service&endpoints=client1�


We don’t need the details

is an instance of

provides

is required by

has instance

server1

web server

workstation

client1

web service

• We can omit the logic.
• The flow speaks for itself.
• By sticking to simple 

inference, we can 
understand it without 
explanation. 

http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=server1&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=web+server&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=workstation&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=client1&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=web+service&endpoints=client1�


A simple prototype

• A Perl CGI script
• All calculations online from text declarations. 
Configuring the prototype
• Describe architecture
• Reuse rules. 
Using the prototype
• Choose a trouble-spot; connections are listed. 
• Click on a connection to explain it. 



Critique

+: uses simple sentences
-: doesn’t handle complex sentences 
+: very fast
-: doesn’t support complex logic 
+: very quick answer
-: relatively naïve answer, the “shortest 

explanation”
But 

a naïve answer is better than no answer at all!



Lessons learned

• Causal connections are much more useful 
than unrestricted connections. 

• Readable logic is much more useful than 
highly accurate (and expensive) logic. 

• A weak logic can be a useful tool in 
troubleshooting. 



Future work

• Field testing. 
• Coding in Map/Reduce for at-scale calculations.
• Using regular logic to verify discovered 

relationships. 
• Coupling with other information sources. 
• Apply this to other domains, e.g., documentation. 
• Build this algorithm into Cfengine Constellation.



Please

• Play with the prototype:
http://www.cs.tufts.edu/~couch/topics
• Let us know 

– how it works for you
– how it could be improved
– what it should really do

Alva L. Couch, couch@cs.tufts.edu
Mark Burgess, mark@cfengine.com
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