
Troubleshooting with human-
readable automated reasoning

Alva L. Couch, Tufts University,
couch@cs.tufts.edu

Mark Burgess, Oslo University College
and CFengine AS, mark@cfengine.com

Formal logic?

How many of you have studied logic?
… because I am going to do something very

“illogical”.

“Logic is a bouquet of pretty flowers, that
smell bad.”

- Leonard Nimoy, as Spock

What is this talk about?

• How to troubleshoot systems based upon their
architecture,

• based upon a naïve logic of causal relationships
between architectural entities,

• that is optimized for readability by sysadmins,
understandability, and efficient computation.

• that describes which relationships might be
present as a first-order approximation, like a
“bloom filter for logic”

Architecture and troubleshooting

• Architecture defines connections between
entities.

• Troubleshooting requires understanding those
connections.

• We provide a way to:
– recall connections relevant to a problem
– make and explain new connections
via a strange kind of logic.

Entities and relationships

• Entity: something one manages, e.g.,
– Hosts
– Services
– Classes of hosts or services

• Relationship: some constraint between entities
– Causal: determines, influences
– Dependence: provides, requires
– Intent: promises, uses
– Class: is an instance of, is a subclass of
– Structural: is a part of, is a component of

Architectural facts

host01 provides file service
subject verb phrase object
entity relationship entity

• Notation
host01|provides|file service

Three ways to infer relationships

Implications: raise the level of abstraction
Inverses: allow a fact to be “reversed”
Connections: document indirect relationships

Inference rules

Make new connections between entities.
Change the level of abstraction of a fact.

Implication

If host01 provides file service,
then host01 influences file service.

provides : a concrete relationship
influences: an abstract relationship

motive: reason abstractly, report concretely.

Notation:
provides->influences

Inverses

host01 provides file service
whenever
file service is provided by host01

This is just a matter of notation.
It makes other rules easier to write down.

Notation:
provides<>is provided by

Connections
If host03 is an instance of dns server,
and a dns server is required by host07,
then host03 might influence host07.

Notation:
is an instance of^is required by^might influence

host03
is an instance of

dns server
is required by

host07

might influence

Why this is strange

• Most attempts at computer logic attempt to
translate English into logic and then reason
from that.

• This method translates architectural
information to simple English and then
reasons from that, without translating the
English into logic!

• Main advantage is incredible speed!

Exterior semantics

• Usually, one defines the meaning of English
phrases in a dictionary.

• In our system, one defines relationship
meanings via their interaction with other
relationships.

What does “influences” mean?
determines->influences
determines^determines^determines
determines^influences^influences
influences^determines^influences
influences^influences^influences
determines^has part^determines
determines^is a part of^influences
is an instance of^determines^determines
has instance^determines^influences
provides^is required by^might influence

Two claims of this paper

• Claim 1: this logic is easy to describe and
compute.

• Claim 2: the results of inference are human-
readable.

Demonstration:
A really simple architecture

Server1: web

Server3: files

Server4: DHCP/LDAP

Server1: web Client1

Client1

server/client

server/server

A naïve architectural description
file server|provides|user file service

file server|provides|web file service

file server|requires|dns

web server|provides|web service

web server|requires|web file service

web server|requires|dns

network server|provides|dns

network server|provides|dhcp

workstation|requires|dns

workstation|requires|dhcp

workstation|requires|user file service

workstation|requires|web service

assign roles to machines

server1|is a|web server

server2|is a|web server

server3|is a|file server

server4|is a|network server

client1|is a|workstation

client2|is a|workstation

What can cause
problems with client1?

Architectural facts:
client1|requires|dhcp
client1|requires|dns
client1|requires|user file service
client1|requires|web service
Inferred facts:
server1|might influence|client1
server2|might influence|client1
server3|might influence|client1
server4|might influence|client1

server1 might influence client1

provides

is required by

might influence

is an instance of

provides

is required by

has instance

server1

web server

workstation

client1

web service

http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=server1&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=web+server&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=workstation&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=client1&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=web+service&endpoints=client1�

We don’t need the details

is an instance of

provides

is required by

has instance

server1

web server

workstation

client1

web service

• We can omit the logic.
• The flow speaks for itself.
• By sticking to simple

inference, we can
understand it without
explanation.

http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=server1&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=web+server&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=workstation&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=client1&endpoints=client1�
http://www.cs.tufts.edu/~couch/topics/map15.cgi?start=web+service&endpoints=client1�

A simple prototype

• A Perl CGI script
• All calculations online from text declarations.
Configuring the prototype
• Describe architecture
• Reuse rules.
Using the prototype
• Choose a trouble-spot; connections are listed.
• Click on a connection to explain it.

Critique

+: uses simple sentences
-: doesn’t handle complex sentences
+: very fast
-: doesn’t support complex logic
+: very quick answer
-: relatively naïve answer, the “shortest

explanation”
But

a naïve answer is better than no answer at all!

Lessons learned

• Causal connections are much more useful
than unrestricted connections.

• Readable logic is much more useful than
highly accurate (and expensive) logic.

• A weak logic can be a useful tool in
troubleshooting.

Future work

• Field testing.
• Coding in Map/Reduce for at-scale calculations.
• Using regular logic to verify discovered

relationships.
• Coupling with other information sources.
• Apply this to other domains, e.g., documentation.
• Build this algorithm into Cfengine Constellation.

Please

• Play with the prototype:
http://www.cs.tufts.edu/~couch/topics
• Let us know

– how it works for you
– how it could be improved
– what it should really do

Alva L. Couch, couch@cs.tufts.edu
Mark Burgess, mark@cfengine.com

http://www.cs.tufts.edu/~couch/topics�
mailto:couch@cs.tufts.edu�
mailto:mark@cfengine.com�

	Troubleshooting with human-readable automated reasoning
	Formal logic?
	What is this talk about?
	Architecture and troubleshooting
	Entities and relationships
	Architectural facts
	Three ways to infer relationships
	Implication
	Inverses
	Connections
	Why this is strange
	Exterior semantics
	What does “influences” mean?
	Two claims of this paper
	Demonstration: �A really simple architecture
	A naïve architectural description
	What can cause �problems with client1?
	server1 might influence client1
	We don’t need the details
	A simple prototype
	Critique	
	Lessons learned
	Future work
	Please

