
How to Tame Your VMs:

an Automated Control System for Virtualized Services

 Akkarit Sangpetch Andrew Turner Hyong Kim

 asangpet@andrew.cmu.edu andrewtu@cmu.edu kim@ece.cmu.edu

 Department of Electrical and Computer Engineering

 Carnegie Mellon University

 Pittsburgh, PA, USA

Abstract

Modern datacenters contain a large number of virtualized applications and services with constantly changing

demands for computing resources. Today’s virtualization management tools allow administrators to monitor current

resource utilization of virtual machines. However, it is quite challenging to manually translate user-oriented service

level objectives (SLOs), such as response time or throughput, to suitable resource allocation levels. We presented

an adaptive control system which automates the task of tuning resource allocations and maintains service level

objectives. Our system focuses on maintaining the expected response time for multi-tier web applications. Our

control system is capable of adjusting resource allocation for each VM so that the applications’ response time

matches the SLOs. Our approach uses individual tier’s response time to model the end-to-end performance of the

system. The system helps stabilize applications’ response time. It can reduce the mean deviation of the response

time from specified targets by up to 80%. Our system also allows the physical servers to double the number of VMs

hosted while maintaining the target response time.

Tags: VMs, research, control, resource, allocation

1. Introduction

Modern datacenters contain a large number of

virtualized applications and services; with constantly

changing demands for computing resources. These

virtual workloads are executed on multiple virtual

machines (VMs) which can be consolidated onto a

smaller number of physical hosts. Today’s

virtualization management tools allow administrators

to monitor current resource utilization of virtual

machines. Management capabilities such as

adjustable resource allocation [9] are also provided as

a way to configure the underlying resource to meet

applications’ demands.

However, it is quite challenging to manually translate

user-oriented service level objectives (SLOs), such as

response time or throughput, to suitable resource

allocation levels. Such tasks demand experience

administrators and significant amount of time.

Moreover, virtualized applications are often

distributed and dependent on each other. It is

imperative that the administrators understand the

complex behaviors of the applications before they are

able to manually tune them effectively.

In this work, we developed an adaptive control

system which automates the task of tuning resource

allocations and maintains service level objectives.

Our system initially focuses on the expected response

time for multi-tier web applications as our primary

SLOs. Our control system is capable of adjusting

CPU share allocation for each VM so that the

applications’ response time matches the SLOs. Our

approach uses individual tier’s response time to

model the end-to-end performance of the system.

This allows our model to capture systems’ dynamics

without relying on just their resource utilization level.

Our system helps stabilize applications’ response

time. It can reduce the mean deviation of the

response time from specified targets by up to 80%.

The system also allocates only the required amount

of resource to satisfy the SLOs for each VM. Without

over-provisioning, our system can increase the

number of hosted applications by up to 100%.

mailto:asangpet@andrew.cmu.edu
mailto:andrewtu@cmu.edu
mailto:kim@ece.cmu.edu

The capabilities provided by our system are useful

for administrators. It provides a way to express levels

of services in terms of actual application

performance. Our system can be applied to a cloud-

based service provider model as well as in smaller

clusters where resources are limited and applications

may have different priorities. Our controllers can

allocate just enough resource to satisfy the level of

service required, allowing individual host to process

more workloads.

We deployed our system on Linux and Kernel Virtual

Machine environment in a local cluster. Our results

suggest that the system can maintain the service

response time for different VMs running on the host.

Our system can also adapt to the level of workload

changes and adjust system parameters in order to

match the service response time.

We will explain the overall design of our system in

section 2. The detailed specification on each

component could be found in section 3. We evaluate

our system’s performance in section 4. The related

works are reviewed in section 5. The discussion and

ongoing works are explained in section 6.

2. System Overview

Our control system consists of four components;

sensor, actuator, modeler, and controller as shown in

Figure 1. Our design resembles a closed-loop control

system. During each control interval, the sensors

collect application-related performance (such as

response time) from VMs hosting the controlled

application. The collected information is fed to the

modeler and is used to update the application’s

performance model. The modeler creates a

performance model for targeted applications by

adjusting the model parameters based on sensor

inputs. The model obtained can be later used to

predict the applications’ performance for possible

system configurations. The controller then uses the

model to find the optimized system configurations

and send the result to actuators. The actuators then

adjust the system parameters accordingly. The impact

on the applications’ performance can be measured

during subsequent intervals by the sensors, forming a

closed-loop control system.

We currently use Linux and KVM as our hypervisor.

However, the system can be extended to support

other environments.

Figure 1: Control System Overview

Our initial system design primarily focuses on the

response time as our controlled objective. The system

tries to control the CPU share allocation for each VM

in order to match the specified response time

objectives. The system can automate the task of

finding suitable CPU allocation for each VM tier. By

controlling the number of shares allowed for each

VM, we are able to increase the number of VMs

running on a host without impacting the response

time of the controlled applications. This allows the

overall cluster to be more efficient and able to accept

more workloads while maintaining existing SLOs.

The detailed description of our system is discussed in

the next section.

3. System components

The components of our system could be described as

followed.

3.1 Sensors

Sensors utilize packet filtering and capturing tools to

analyze packets intended for the controlled VM. Our

sensors can extract response time from the target

applications’ components. The response time is the

time from the moment the last packet of the request is

sent to the moment the last packet of the response

arrives.

We collect the application performance metrics from

different application tiers. For our initial system

design, our sensor try to determine the application

performance based on network packets going through

the VMs. We are currently using the response time

collected from each application tier. However, the

sensor can also be used to collect other performance-

oriented metrics such as the application’s throughput,

or number of concurrent requests.

Figure 2: Sensor implementation

Our current implementation of the sensor is a

combination of packet filtering and capturing tools

which capture packets intended for the concerned

server (as shown in Figure 2). The sensor is a guest

VM running on the controlled hosts. This allows us

to deploy and modify the sensor without too much

modification on the physical host. The sensor utilizes

tshark (packet analyzer) and pcap (packet capture

driver) to extract the response time of the controlled

applications.

The applications’ response time is determined by

recording the timestamp of packets (belonging to the

same connection) with matching request parameters

on the specified port number. Currently, the

administrators have to supply URIs’ pattern for

HTTP requests/responses, or MySQL command for

database queries as the request parameters.

Since all VMs in the host share a single virtual

network bridge, we can filter only packets destined to

controlled VMs (with iptables) and forward copies of

the packets (with xtables-TEE target) to the sensor

VM. This reduces the overall number of packets that

our sensor has to process and analyze. We also avoid

placing pcap driver directly on the host because it can

only capture packets that actually pass through the

machine’s network interface. By placing pcap driver

in the guest VM, we can intercept packets from

dependent VMs communicating within the same host.

Our sensors periodically generate a response time

summary for each VM. The summary consists of the

name of service being monitored, its application tier,

VM server, and its response time.

As the sensor is located on the host, the response time

is measured starting at the moment when a packet has

arrived on the host and stopping when a response

packet has been observed by the sensor. In our test

environment, the network propagation time is

negligible since all hosts are located on the same

local area network.

3.2 Actuators

Actuators are small agents installed on the host. They

adjust the hypervisor parameter as specified by the

controller. Currently our actuators can control the

number of CPU shares allocated for VMs on physical

hosts. It is possible to extend the actuator to control

other system parameters.

In our test environment we adjust the scheduler level

of CPU share for each VM using Linux Control

Groups subsystem (cgroups.) Cgroups allows us to

set the CPU share for each process running on the

host. By default, KVM utilizes the Linux kernel’s

Completely Fair Scheduler (CFS.) The scheduler’s

behavior is configurable via cgroups cpu share

(cpu.shares).

Cgroups allows us to set the CPU share for each

process running on the host. We use the default

Linux Completely Fair Scheduler (CFS) configurable

via cgroups CPU share (cpu.shares). In the CFS

scheduler, each process (or a virtual CPU) is given

1024 shares, unless configured otherwise. The

portion of time scheduled for the process is

calculated as a ratio between the number of the shares

given to the process and the sum of all shares given

to every runnable process (on the same physical

CPU).

Moreover, the CFS scheduler exhibits work-

conserving behavior. This means that if a process

happens to be the only one running on a CPU, it gets

all available CPU time regardless of the number of

shares allocated. Such behavior also indicates that the

share configured for CFS does not constitute CPU

limits for the process.

In a system with multiple CPUs, the scheduler also

utilizes a load-balancer which tries to balance the

amount of workload equally amongst each CPU.

However, the load-balancer can move a virtual CPU

of a VM after it is assigned a preferred number of

shares. Such behavior can lead to inaccurate measure

between the number of share allocated and the

observed applications’ performance. In order to

effectively control the scheduling parameter, we also

have to pin CPUs of all controlled VMs on the same

physical core. This makes the relationship between

the number of share allocated and the measured

response time to be more stable. Our actuators then

only have to set the share to match a number

specified by the controller. It is the controller’s task

to find the best possible share for the current

workload.

3.3 Modeler

The modeler creates a performance model for

controlled applications by resolving its internal

parameters based on sensor inputs. The obtained

model can later be used to predict the application’s

performance for specified system configurations.

Our modeler updates a prediction model for the

application performance based on the sensor inputs.

The model is based on observations between the

measured response times from different application

tiers. The model uses control signals (CPU share) and

measured input (individual tier response time from

the sensors.) Although building an accurate model

may be a time-consuming process and could be

applied only to a specific application, we found that

an intuitive model based on application tier

relationship could be used to derive a practical

performance prediction model.

Figure 3: Two-tier web application model

Consider a generic two-tier web application shown in

Figure 3; we could build an empirical model for the

end-to-end system response time as a linear

combination of the time spent in the database and

web tier. When a client requests a (dynamic) web

page, the web server will make additional requests to

the database. The web server then processes the

responses before returning the value to the client.

Assuming that our concerned requests exhibits

similar behavior, the relationship between the web

response time (𝑇𝑤𝑒𝑏) and the database response time

(𝑇𝑤𝑒𝑏) could be represented by

 𝑇 𝑇 .

For example, in Figure 4, the response time used to

access a Wordpress home page (a popular blogging

web application) exhibits a linear relationship with its

database server response time. When the time takes

to process database requests increases (due to

additional load from another VMs residing on the

same host with the database server), the overall web

response time also increases.

Figure 4: Linear relationship between web and

database server response time

We can use this linear model to predict possible

performance values for the next sensor interval.

Given previous measurement values for the web

 𝑇 and database response time 𝑇 , we can

represent the current measurement from our sensor as

𝑇 𝑇 𝑇 𝑇 . By performing an

ordinary least-square regression on multiple data

points (obtained from the sensors), we can estimate

the common coefficient and use the same equation

to predict the web response time for the next sensor

interval.

0

200

400

600

800

1000

1200

0 20 40

W
e

b
 R

e
sp

o
n

se
 t

im
e

 (
m

s)

Database Response (ms)

If we want to be able to adjust the number of shares

for the database VM, we also have to find a

relationship between the database server CPU share

allocation 𝑆𝐶𝑃𝑈 and the database response

time 𝑇𝐷 . On a physical host with very high CPU

utilization, which represents a worst-case scenario for

consolidation, we found that the relationship between

the database response time and its CPU share could

be represented by a power law curve (𝑇 𝑎

𝑆𝐶𝑃𝑈
). Figure 5 shows the observed relationship

between the response time of the database server and

the number of CPU shares allocated for the database

VM. We can also obtain the relationship coefficient

by fitting a least square on the log-scale of 𝑇 and

𝑆𝐶𝑃𝑈 , i.e. 𝑇 𝑎 𝑏 𝑆𝐶𝑃𝑈

Figure 5: Power law relationship between the

database server's response time and its allocated

shares

Note that the model given in this section might

initially seem to be very specific to our scenario.

However, such scenarios are quite common in actual

deployments. For example, the linear relationship can

be directly applied to many existing web

applications. The relationship between allocated CPU

shares and the database server response time can also

be used to approximate other scenarios where a

controlled VM is placed on a very busy host.

Additionally, our model parameter can be obtained

on-line by periodically updating the regression

parameters with recent measurements. This also

allows our system to dynamically adapt its model

based on the current level of workloads. However,

since our current model relies on many past sensor

readings, its ability to adjust the models for sudden

change of workload levels will be limited.

3.4 Controller

The controller is the final component which glues all

the pieces of our system together. Our controller

takes the updated model obtained by the modeler and

sensor inputs from the current interval. It then tries to

find the minimal virtual CPU allocation that yields

the response time closest to the one defined in the

SLOs.

Our controller also utilizes both long-term and short-

term prediction. The long-term prediction uses the

moving average value generated from previous

sensor readings as the input for the model. The short-

term prediction uses the most recent sensor reading

as the model input. The controller primarily

determines the number of shares based on the long-

term prediction to maintain system stability.

However, the short-term prediction is utilized when

the sensors’ reading shows SLO violations. This

allows the system to avoid immediate SLO violations

while still maintaining stability.

Once the control decision has been made, the

controller forwards the result to the actuator which

actually adjusts the system based on the control

signal.

In more complex scenarios, we may have to optimize

for a large number of potential parameters. We could

view such scenario as a state-space search problem

and additional heuristic will be needed. Alternatively,

we are currently exploring methods used in classical

control theory which could be applied to our linear

models.

4. Evaluation

4.1 Experimental Setup

Although the framework of our system design is

generic, we deployed a proof-of-concept system on

an example system as shown below. The targeted

application is a blogging web application

(Wordpress) which consists of a web server (Apache

and PHP) and a database server (MySQL).

0

5

10

15

20

25

30

0 500 1000

D
at

ab
as

e
 R

e
sp

o
n

se
 T

im
e

 (
m

s)

CPU Share allocated to SQL server VM
(out of 1000)

Figure 6: Test setup for evaluation

Our test system setup is shown in Figure 6. We run

two instances of the described web application. Each

instance may have different service level

requirement. This represents differentiate levels of

service demanded in actual infrastructure deployment

and will be described in the evaluation.

We use Linux KVM as our hypervisor in the

experiment. The deployed operating system on all

systems is Fedora 12 with Linux 2.6.33 kernel. The

host systems contain Intel Quad Core Q6600 with

4GB of memory. Each VM is allocated 1 GB

memory with one virtual CPU. The VM image is

storing on a dedicate NFS server on the local

network. As our test workload fits in the system

memory, the storage system does not cause a

bottleneck in our test scenario. The web server is

more CPU-intensive, compared to the database.

Client loads are generated from other machines

located on the same local area network. Each client is

associated with a single web server VM. Every

1,000ms, the client generates a request to the home

page on its associated web server.

We placed sensor on all participating hosts. For the

purpose of evaluation, we only concern with the

actuator on Host 2 where potential contention could

occur. The actuator needs to arbitrate the amount of

CPU shares allocated between the web and the

database server for two different services with

different service response time objectives. Both

sensor and control interval are set to 5,000ms.

4.2 Evaluation Result

Our evaluations suggest that our control system can

be used to maintain the service level objectives for

the hosted applications. It could also react to change

in workload level.

4.2.1 Multiple SLOs

Our control system allows multiple service level

objectives to be achieved. In this experiment, we set

the demand so that the expected end-to-end response

time for the blogging web application instance 1

should be 800ms while the response time for instance

2 should be 4,000ms. Note that this represents

differentiate level of services, and the objective is

described in term of the end-user experience. We

expect that our control system will try to adjust the

CPU allocation on host 2 so that both SLOs could be

met. As for the driving workload, instance 1 was

serving 2 concurrent clients. Instance 2 was serving

15 concurrent clients.

The system response time and its target for each

instances is shown in Figure 7 and 8. Figure 7 shows

the result when we do not use our control system and

each VM is allocated the default number of CPU

shares. Figure 8 shows the result when we enable our

control system. The absolute mean deviation from the

target response time for each instance is shown in

Table 1.

Figure 7: Response time without the control

system (static workload)

0

2000

4000

6000

8000

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1R
e

sp
o

n
se

 T
im

e
 (

m
s)

Control Step (5 seconds)

actual target

actual target

Web1:

Web2:

Figure 8: Response time with the control system

 (static workload)

Without the control system, the default number of

shares allocated for the database VM instance 1 is too

high. Therefore, its response time is much lower than

the expected value. However, the response time for

instance 2 is also much higher than the SLO specifies

as too many resources are given to instance 1. Such

system fails to meet the given service demands for

instance 2.

With our control system, both instances can be

satisfied as the controller adjusts the share to track

the expected response time. As a result, both

instances can operate within the demanded response

time. The share allocated for the database VM for

instance 1 is shown in Figure 9. Initially, the adjusted

allocation will have high variance as it attempts to

find the stable operating points.

Once the operating points have been found, it is also

possible that the controller will react to unanticipated

system event (such as disk paging, or periodic system

maintenance tasks.) These events are indicated by

occasional spikes in the response time and the share

graph. However, the control system will finally try to

revert back to its normal operating points in order to

maintain the SLO. The current controller takes about

one minute to readjust after such event occurs.

Our current implementation of the controller only

attempts to match the actual and the expected

response time. As a result, some of the requests may

go over the given requested time. In actual

deployment, it is possible to specify a lower expected

response time than the wanted limits to account for

the variances.

Figure 9: Number of CPU shares allocated by the

controller for instance 1’s database server

Note that it is also possible for system administrators

to manually analyze the workload characteristics and

preset the allocation accordingly. However, such task

is time-consuming and the administrator may not be

able to react as quickly to changes in workload or

other system events.

4.2.2 Dynamic Workload

Another benefit of having the control system is it can

adapt the allocation for dynamically changing

workload. The result in this section shows the

effectiveness of the control system while workload

level changes for instance 1. The workload level for

the instance is shown in Figure 12. The system setup

is the same as in previous section. The differences are

the number of concurrent clients for instance 1. Also,

due to higher overall load, we set the response time

required by instance 1 to 1,000ms. For non-controlled

system, the number of CPU shares for DB server 1

has been set to satisfy the average load over the

evaluation period.

0

2000

4000

6000

8000

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1R
e

sp
o

n
se

 T
im

e
 (

m
s)

Control Step (5 seconds)

actual target

actual target

0

50

100

150

200

250

300

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1N
u

m
b

e
r

o
f

C
P

U
 S

h
ar

e
s

(o
u

t
o

f
1

0
0

0
)

Control Step (5 seconds)

Application

Instances

Mean Deviation from

SLOs

Without

Control

With

Control

Instance 1 540 ms 109 ms

Instance 2 1043 ms 282 ms

Table 1: Mean deviations for static workloads

Web1:

Web2:

Figure 10: Response time without the control

system (dynamic workload)

Figure 11: Response time with the control system

(dynamic workload)

Figure 12: Number of concurrent clients over the

test period

Figure 10 shows the response time of the web server

when the control system is not enabled. Figure 11

shows the response time of the web server when the

control system is enabled. The absolute mean

deviation from the target response time for instance 1

is also shown in Table 2.

Without the control system, it is possible that, for

particular level of workload, the SLO could be easily

met because the workload level is well below the

average. However, when the level of work load is

higher than the average, the instance also fails to

meet the SLOs provided.

With the control system, the response time tracks

more closely to the expected response. However, the

controller may not react as quickly as in the static

workload cases. This behavior happens because our

model relies on past sensor readings to build up the

system models. After the workload level has been

changed, the system has to readjust itself and settle to

a new model. However, the system can still maintain

the target workload level, although it shows higher

degree of variances.

5. Related works

Existing commercial solutions remain focused on the

resource utilization aspect of VMs, not the

applications’ performance. Current management tools

are capable of reacting to high levels of resource

utilization by performing live migrations [7] to

reduce the hardware usage.

Existing tools could assist in capacity planning by

profiling the hardware utilization level and

forecasting future resource demands in datacenters

[8]. However, such tools do not directly address the

problem of managing the applications’ performance.

Previous works have been done to investigate the

behavioral model of multi-tier application using

profiling-based methods [2] [6]. Such model only

0

1000

2000

3000

4000

1

2
0

1

4
0

1

6
0

1

8
0

1

1
0

0
1

1
2

0
1

1
4

0
1R
e

sp
o

n
se

 T
im

e
 (

m
s)

Control Step (5 seconds)

web1 web1-target

0

1000

2000

3000

4000

1

2
0

1

4
0

1

6
0

1

8
0

1

1
0

0
1

1
2

0
1

1
4

0
1R
e

sp
o

n
se

 T
im

e
 (

m
s)

Control Step (5 seconds)

web1 web1-target

0
1
2
3
4
5
6

1

2
0

1

4
0

1

6
0

1

8
0

1

1
0

0
1

1
2

0
1

1
4

0
1

C

o
n

cu
rr

e
n

t
C

lie
n

ts

Control Step (5 seconds)

Application

Instances

Mean Deviation from SLOs

Without

Control

With Control

Instance 1 276 ms 182 ms

Table 2: Mean deviations for dynamic workloads

predicts long-term statistical behavior and is

applicable for static workloads.

Control systems have been used in tuning computer

applications’ parameters [4] [5]. Researchers have

applied control-theoretical approach to address VMs’

resource allocation [1] [3]. Such system adjusts its

model by observing only the clients’ response time

whereas our system also responds to performance

changes in related application tiers. Feedback-

controlled systems have also been investigated in

order to improve the system utilization for CPU

throughput-based applications [11]. Our work could

compliment such method as we are focusing on

achieving target response time for delay-based

applications.

6. Discussions & Future Works

Our results suggest that it is possible to use a control

system to maintain target SLOs on virtualized system

and also able to react to changes in workload levels.

With the control system, administrators will be able

to deploy virtualized workload without concerning

about low level system-configuration such as CPU

shares.

6.1 Workload modeling

Actual enterprise applications could be much more

complicated than the current model given in this

paper. The linearity assumptions may not be held for

complex chain of dependent VMs. We are interesting

to explore possible composition models (such as

Markov Chains) that can be used to approximate the

response time performance of such distributed

applications. It should be possible to derive a more

accurate performance model for complex application

based on a composition of simpler models such as

those described in this paper.

Our initial model only captures direct dependency

between application tier (e.g. a web server directly

makes request to a database server.) We also

investigate the performance behavior and its relation

between particular types of behaviors. These include

partitioned requests, load-balance, or aggregate

behavior of the application tiers. Such model could

give us more insight into the relationship between the

performance and application’s composition which

allows us to generate a model for complex

applications.

6.2 Control Parameters

In this paper, we have been only experimented with

controlling the CPU share allocation. In actual

system, more control parameters could be used to

change the behavior of the VMs. For example, it is

possible to associate traffic for different VMs with

multiple network traffic classes. This allows the

system to have more control over the queuing and

priority for behavior of the VMs’ network traffic.

Similarly, for local storage control, it is possible to

use I/O-controller [10] to control the share for disk

I/O access.

7. Conclusions

We presented an automated control system for

virtualized services. Our system suggests that it is

possible to use intuitive models based on observable

response time incurred by multiple application tiers

as a model for the overall performance. The models

are also used in conjunction with a control system to

determine the optimal share allocation for the

controlled VMs. Our system helps maintain the

expected level of service response time while

adjusting the allocation to meets the demand for

different level of workloads. Such behavior allows

administrator to simply specify the required end-to-

end service-level response time for each application,

without the need of constant monitoring or

understanding complex behavior of the applications.

Our system helps simplifying the task of managing

the performance of many VMs already exists in

today’s datacenter.

8. References

[1] P. Padala, K.Hou, K. Shin, X. Zhu, M. Uysal, Z.

Wang, S. Singhal, and A. Merchant. Automated

control of multiple virtualized resources. EuroSys

2009.

[2] T. Wood, L. Cherkasova, K. Ozonat, and P.

Shenoy. Profiling and Modeling Resource Usage of

Virtualized Applications. Middleware 2008.

[3] X. Liu, X. Zhu, P. Padala, Z. Wang, and S.

Singhal. Optimal Multivariate Control for

Differentiated Services on a Shared Hosting

Platform. IEEE CDC 2007.

[4] Y. Diao, J. Hellerstein, S. Parekh, R. Griffith, G.

Kaiser, and D. Phung, A control theory foundation

for self-managing computing systems, IEEE journal

on selected areas in communications, Dec. 2005

[5] Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and

D. Tilbury. Using MIMO feedback control to enforce

policies for interrelated metrics with application to

the Apache Web server. Network Operations and

Management Symposium, 2002.

[6] B. Urgaonkar, P. Shenoy, and T. Roscoe.

Resource overbooking and application profiling in

shared hosting platforms. OSDI 2002.

[7] VMware,Inc. VMware Infrastructure: Resource

Management with VMware DRS.

http://www.vmware.com/pdf/vmware_drs_wp.pdf

[8] VMware Inc. VMware vCenter CapacityIQ.

http://www.vmware.com/products/vcenter-

capacityiq/

[9] VMware, Inc. vSphere Resource Management

Guide. http://www.vmware.com/pdf/vsphere4/r40

/vsp_40_resource_mgmt.pdf

[10] A. Gulati, I. Ahmad, and C. A. Waldspurger.

Parda: Proportional allocation of resources for

distributed storage access. FAST, February 2009.

[11] Nathuji, R., Kansal, A., and Ghaffarkhah, A.

2010. Q-clouds: managing performance interference

effects for QoS-aware clouds. EuroSys, April 2010.

http://www.vmware.com/pdf/vmware_drs_wp.pdf
http://www.vmware.com/products/vcenter-capacityiq/
http://www.vmware.com/products/vcenter-capacityiq/
http://www.vmware.com/pdf/vsphere4/r40%20/vsp_40_resource_mgmt.pdf
http://www.vmware.com/pdf/vsphere4/r40%20/vsp_40_resource_mgmt.pdf

