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Abstract 

 

Modern datacenters contain a large number of virtualized applications and services with constantly changing 

demands for computing resources. Today’s virtualization management tools allow administrators to monitor current 

resource utilization of virtual machines. However, it is quite challenging to manually translate user-oriented service 

level objectives (SLOs), such as response time or throughput, to suitable resource allocation levels.  We presented 

an adaptive control system which automates the task of tuning resource allocations and maintains service level 

objectives. Our system focuses on maintaining the expected response time for multi-tier web applications. Our 

control system is capable of adjusting resource allocation for each VM so that the applications’ response time 

matches the SLOs. Our approach uses individual tier’s response time to model the end-to-end performance of the 

system. The system helps stabilize applications’ response time. It can reduce the mean deviation of the response 

time from specified targets by up to 80%. Our system also allows the physical servers to double the number of VMs 

hosted while maintaining the target response time.  

Tags: VMs, research, control, resource, allocation 

1. Introduction 

 

Modern datacenters contain a large number of 

virtualized applications and services; with constantly 

changing demands for computing resources. These 

virtual workloads are executed on multiple virtual 

machines (VMs) which can be consolidated onto a 

smaller number of physical hosts. Today’s 

virtualization management tools allow administrators 

to monitor current resource utilization of virtual 

machines. Management capabilities such as 

adjustable resource allocation [9] are also provided as 

a way to configure the underlying resource to meet 

applications’ demands. 

However, it is quite challenging to manually translate 

user-oriented service level objectives (SLOs), such as 

response time or throughput, to suitable resource 

allocation levels.  Such tasks demand experience 

administrators and significant amount of time. 

Moreover, virtualized applications are often 

distributed and dependent on each other. It is 

imperative that the administrators understand the 

complex behaviors of the applications before they are 

able to manually tune them effectively. 

In this work, we developed an adaptive control 

system which automates the task of tuning resource 

allocations and maintains service level objectives. 

Our system initially focuses on the expected response 

time for multi-tier web applications as our primary 

SLOs. Our control system is capable of adjusting 

CPU share allocation for each VM so that the 

applications’ response time matches the SLOs. Our 

approach uses individual tier’s response time to 

model the end-to-end performance of the system. 

This allows our model to capture systems’ dynamics 

without relying on just their resource utilization level. 

Our system helps stabilize applications’ response 

time. It can reduce the mean deviation of the 

response time from specified targets by up to 80%. 

The system also allocates only the required amount 

of resource to satisfy the SLOs for each VM. Without 

over-provisioning, our system can increase the 

number of hosted applications by up to 100%.  
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The capabilities provided by our system are useful 

for administrators. It provides a way to express levels 

of services in terms of actual application 

performance. Our system can be applied to a cloud-

based service provider model as well as in smaller 

clusters where resources are limited and applications 

may have different priorities. Our controllers can 

allocate just enough resource to satisfy the level of 

service required, allowing individual host to process 

more workloads. 

We deployed our system on Linux and Kernel Virtual 

Machine environment in a local cluster. Our results 

suggest that the system can maintain the service 

response time for different VMs running on the host. 

Our system can also adapt to the level of workload 

changes and adjust system parameters in order to 

match the service response time. 

We will explain the overall design of our system in 

section 2. The detailed specification on each 

component could be found in section 3. We evaluate 

our system’s performance in section 4. The related 

works are reviewed in section 5. The discussion and 

ongoing works are explained in section 6. 

2. System Overview 

 

Our control system consists of four components; 

sensor, actuator, modeler, and controller as shown in 

Figure 1. Our design resembles a closed-loop control 

system. During each control interval, the sensors 

collect application-related performance (such as 

response time) from VMs hosting the controlled 

application. The collected information is fed to the 

modeler and is used to update the application’s 

performance model. The modeler creates a 

performance model for targeted applications by 

adjusting the model parameters based on sensor 

inputs. The model obtained can be later used to 

predict the applications’ performance for possible 

system configurations.  The controller then uses the 

model to find the optimized system configurations 

and send the result to actuators. The actuators then 

adjust the system parameters accordingly. The impact 

on the applications’ performance can be measured 

during subsequent intervals by the sensors, forming a 

closed-loop control system. 

We currently use Linux and KVM as our hypervisor. 

However, the system can be extended to support 

other environments. 

 

Figure 1: Control System Overview 

Our initial system design primarily focuses on the 

response time as our controlled objective. The system 

tries to control the CPU share allocation for each VM 

in order to match the specified response time 

objectives. The system can automate the task of 

finding suitable CPU allocation for each VM tier. By 

controlling the number of shares allowed for each 

VM, we are able to increase the number of VMs 

running on a host without impacting the response 

time of the controlled applications. This allows the 

overall cluster to be more efficient and able to accept 

more workloads while maintaining existing SLOs. 

The detailed description of our system is discussed in 

the next section. 

3. System components 

 

The components of our system could be described as 

followed. 

3.1 Sensors 

Sensors utilize packet filtering and capturing tools to 

analyze packets intended for the controlled VM. Our 

sensors can extract response time from the target 

applications’ components. The response time is the 

time from the moment the last packet of the request is 

sent to the moment the last packet of the response 

arrives. 

We collect the application performance metrics from 

different application tiers. For our initial system 

design, our sensor try to determine the application 



performance based on network packets going through 

the VMs. We are currently using the response time 

collected from each application tier. However, the 

sensor can also be used to collect other performance-

oriented metrics such as the application’s throughput, 

or number of concurrent requests. 

 

Figure 2: Sensor implementation 

Our current implementation of the sensor is a 

combination of packet filtering and capturing tools 

which capture packets intended for the concerned 

server (as shown in Figure 2). The sensor is a guest 

VM running on the controlled hosts. This allows us 

to deploy and modify the sensor without too much 

modification on the physical host.  The sensor utilizes 

tshark (packet analyzer) and pcap (packet capture 

driver) to extract the response time of the controlled 

applications. 

The applications’ response time is determined by 

recording the timestamp of packets (belonging to the 

same connection) with matching request parameters 

on the specified port number. Currently, the 

administrators have to supply URIs’ pattern for 

HTTP requests/responses, or MySQL command for 

database queries as the request parameters. 

Since all VMs in the host share a single virtual 

network bridge, we can filter only packets destined to 

controlled VMs (with iptables) and forward copies of 

the packets (with xtables-TEE target) to the sensor 

VM. This reduces the overall number of packets that 

our sensor has to process and analyze. We also avoid 

placing pcap driver directly on the host because it can 

only capture packets that actually pass through the 

machine’s network interface. By placing pcap driver 

in the guest VM, we can intercept packets from 

dependent VMs communicating within the same host.  

Our sensors periodically generate a response time 

summary for each VM. The summary consists of the 

name of service being monitored, its application tier, 

VM server, and its response time. 

As the sensor is located on the host, the response time 

is measured starting at the moment when a packet has 

arrived on the host and stopping when a response 

packet has been observed by the sensor. In our test 

environment, the network propagation time is 

negligible since all hosts are located on the same 

local area network. 

3.2 Actuators 

Actuators are small agents installed on the host. They 

adjust the hypervisor parameter as specified by the 

controller. Currently our actuators can control the 

number of CPU shares allocated for VMs on physical 

hosts. It is possible to extend the actuator to control 

other system parameters. 

In our test environment we adjust the scheduler level 

of CPU share for each VM using Linux Control 

Groups subsystem (cgroups.) Cgroups allows us to 

set the CPU share for each process running on the 

host. By default, KVM utilizes the Linux kernel’s 

Completely Fair Scheduler (CFS.) The scheduler’s 

behavior is configurable via cgroups cpu share 

(cpu.shares).  

Cgroups allows us to set the CPU share for each 

process running on the host. We use the default 

Linux Completely Fair Scheduler (CFS) configurable 

via cgroups CPU share (cpu.shares). In the CFS 

scheduler, each process (or a virtual CPU) is given 

1024 shares, unless configured otherwise. The 

portion of time scheduled for the process is 

calculated as a ratio between the number of the shares 

given to the process and the sum of all shares given 

to every runnable process (on the same physical 

CPU).  

Moreover, the CFS scheduler exhibits work-

conserving behavior. This means that if a process 

happens to be the only one running on a CPU, it gets 

all available CPU time regardless of the number of 

shares allocated. Such behavior also indicates that the 



share configured for CFS does not constitute CPU 

limits for the process. 

In a system with multiple CPUs, the scheduler also 

utilizes a load-balancer which tries to balance the 

amount of workload equally amongst each CPU. 

However, the load-balancer can move a virtual CPU 

of a VM after it is assigned a preferred number of 

shares. Such behavior can lead to inaccurate measure 

between the number of share allocated and the 

observed applications’ performance. In order to 

effectively control the scheduling parameter, we also 

have to pin CPUs of all controlled VMs on the same 

physical core. This makes the relationship between 

the number of share allocated and the measured 

response time to be more stable. Our actuators then 

only have to set the share to match a number 

specified by the controller. It is the controller’s task 

to find the best possible share for the current 

workload. 

3.3 Modeler 

The modeler creates a performance model for 

controlled applications by resolving its internal 

parameters based on sensor inputs. The obtained 

model can later be used to predict the application’s 

performance for specified system configurations. 

Our modeler updates a prediction model for the 

application performance based on the sensor inputs. 

The model is based on observations between the 

measured response times from different application 

tiers. The model uses control signals (CPU share) and 

measured input (individual tier response time from 

the sensors.) Although building an accurate model 

may be a time-consuming process and could be 

applied only to a specific application, we found that 

an intuitive model based on application tier 

relationship could be used to derive a practical 

performance prediction model.  

 

Figure 3: Two-tier web application model 

Consider a generic two-tier web application shown in 

Figure 3; we could build an empirical model for the 

end-to-end system response time as a linear 

combination of the time spent in the database and 

web tier. When a client requests a (dynamic) web 

page, the web server will make additional requests to 

the database. The web server then processes the 

responses before returning the value to the client. 

Assuming that our concerned requests exhibits 

similar behavior, the relationship between the web 

response time (𝑇𝑤𝑒𝑏) and the database response time 

(𝑇𝑤𝑒𝑏) could be represented by 

 𝑇      𝑇    . 

For example, in Figure 4, the response time used to 

access a Wordpress home page (a popular blogging 

web application) exhibits a linear relationship with its 

database server response time. When the time takes 

to process database requests increases (due to 

additional load from another VMs residing on the 

same host with the database server), the overall web 

response time also increases. 

 

Figure 4: Linear relationship between web and 

database server response time 

We can use this linear model to predict possible 

performance values for the next sensor interval. 

Given previous measurement values for the web 

 𝑇      and database response time 𝑇    , we can 

represent the current measurement from our sensor as 

𝑇    𝑇        𝑇   𝑇    . By performing an 

ordinary least-square regression on multiple data 

points (obtained from the sensors), we can estimate 

the common coefficient   and use the same equation 

to predict the web response time for the next sensor 

interval. 
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If we want to be able to adjust the number of shares 

for the database VM, we also have to find a 

relationship between the database server CPU share 

allocation  𝑆𝐶𝑃𝑈  and the database response 

time 𝑇𝐷  . On a physical host with very high CPU 

utilization, which represents a worst-case scenario for 

consolidation, we found that the relationship between 

the database response time and its CPU share could 

be represented by a power law curve (𝑇   𝑎  

𝑆𝐶𝑃𝑈
 ). Figure 5 shows the observed relationship 

between the response time of the database server and 

the number of CPU shares allocated for the database 

VM. We can also obtain the relationship coefficient 

by fitting a least square on the log-scale of 𝑇   and 

𝑆𝐶𝑃𝑈 , i.e.   𝑇   𝑎  𝑏   𝑆𝐶𝑃𝑈 

 

Figure 5: Power law relationship between the 

database server's response time and its allocated 

shares 

Note that the model given in this section might 

initially seem to be very specific to our scenario. 

However, such scenarios are quite common in actual 

deployments. For example, the linear relationship can 

be directly applied to many existing web 

applications. The relationship between allocated CPU 

shares and the database server response time can also 

be used to approximate other scenarios where a 

controlled VM is placed on a very busy host.  

Additionally, our model parameter can be obtained 

on-line by periodically updating the regression 

parameters with recent measurements. This also 

allows our system to dynamically adapt its model 

based on the current level of workloads. However, 

since our current model relies on many past sensor 

readings, its ability to adjust the models for sudden 

change of workload levels will be limited. 

3.4 Controller 

The controller is the final component which glues all 

the pieces of our system together. Our controller 

takes the updated model obtained by the modeler and 

sensor inputs from the current interval. It then tries to 

find the minimal virtual CPU allocation that yields 

the response time closest to the one defined in the 

SLOs. 

Our controller also utilizes both long-term and short-

term prediction. The long-term prediction uses the 

moving average value generated from previous 

sensor readings as the input for the model. The short-

term prediction uses the most recent sensor reading 

as the model input. The controller primarily 

determines the number of shares based on the long-

term prediction to maintain system stability. 

However, the short-term prediction is utilized when 

the sensors’ reading shows SLO violations. This 

allows the system to avoid immediate SLO violations 

while still maintaining stability. 

Once the control decision has been made, the 

controller forwards the result to the actuator which 

actually adjusts the system based on the control 

signal. 

In more complex scenarios, we may have to optimize 

for a large number of potential parameters. We could 

view such scenario as a state-space search problem 

and additional heuristic will be needed. Alternatively, 

we are currently exploring methods used in classical 

control theory which could be applied to our linear 

models. 

4. Evaluation 

4.1 Experimental Setup 

Although the framework of our system design is 

generic, we deployed a proof-of-concept system on 

an example system as shown below. The targeted 

application is a blogging web application 

(Wordpress) which consists of a web server (Apache 

and PHP) and a database server (MySQL). 
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Figure 6: Test setup for evaluation 

Our test system setup is shown in Figure 6. We run 

two instances of the described web application. Each 

instance may have different service level 

requirement. This represents differentiate levels of 

service demanded in actual infrastructure deployment 

and will be described in the evaluation. 

We use Linux KVM as our hypervisor in the 

experiment. The deployed operating system on all 

systems is Fedora 12 with Linux 2.6.33 kernel.  The 

host systems contain Intel Quad Core Q6600 with 

4GB of memory. Each VM is allocated 1 GB 

memory with one virtual CPU. The VM image is 

storing on a dedicate NFS server on the local 

network. As our test workload fits in the system 

memory, the storage system does not cause a 

bottleneck in our test scenario. The web server is 

more CPU-intensive, compared to the database. 

Client loads are generated from other machines 

located on the same local area network. Each client is 

associated with a single web server VM. Every 

1,000ms, the client generates a request to the home 

page on its associated web server. 

We placed sensor on all participating hosts. For the 

purpose of evaluation, we only concern with the 

actuator on Host 2 where potential contention could 

occur. The actuator needs to arbitrate the amount of 

CPU shares allocated between the web and the 

database server for two different services with 

different service response time objectives. Both 

sensor and control interval are set to 5,000ms. 

4.2 Evaluation Result 

Our evaluations suggest that our control system can 

be used to maintain the service level objectives for 

the hosted applications. It could also react to change 

in workload level. 

4.2.1 Multiple SLOs 

Our control system allows multiple service level 

objectives to be achieved. In this experiment, we set 

the demand so that the expected end-to-end response 

time for the blogging web application instance 1 

should be 800ms while the response time for instance 

2 should be 4,000ms. Note that this represents 

differentiate level of services, and the objective is 

described in term of the end-user experience. We 

expect that our control system will try to adjust the 

CPU allocation on host 2 so that both SLOs could be 

met. As for the driving workload, instance 1 was 

serving 2 concurrent clients. Instance 2 was serving 

15 concurrent clients. 

The system response time and its target for each 

instances is shown in Figure 7 and 8. Figure 7 shows 

the result when we do not use our control system and 

each VM is allocated the default number of CPU 

shares. Figure 8 shows the result when we enable our 

control system. The absolute mean deviation from the 

target response time for each instance is shown in 

Table 1.  

 

Figure 7: Response time without the control 

system (static workload) 
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Figure 8: Response time with the control system 

 (static workload) 

Without the control system, the default number of 

shares allocated for the database VM instance 1 is too 

high. Therefore, its response time is much lower than 

the expected value. However, the response time for 

instance 2 is also much higher than the SLO specifies 

as too many resources are given to instance 1. Such 

system fails to meet the given service demands for 

instance 2. 

With our control system, both instances can be 

satisfied as the controller adjusts the share to track 

the expected response time. As a result, both 

instances can operate within the demanded response 

time. The share allocated for the database VM for 

instance 1 is shown in Figure 9. Initially, the adjusted 

allocation will have high variance as it attempts to 

find the stable operating points.  

Once the operating points have been found, it is also 

possible that the controller will react to unanticipated 

system event (such as disk paging, or periodic system 

maintenance tasks.) These events are indicated by 

occasional spikes in the response time and the share 

graph. However, the control system will finally try to 

revert back to its normal operating points in order to 

maintain the SLO. The current controller takes about 

one minute to readjust after such event occurs. 

Our current implementation of the controller only 

attempts to match the actual and the expected 

response time. As a result, some of the requests may 

go over the given requested time. In actual 

deployment, it is possible to specify a lower expected 

response time than the wanted limits to account for 

the variances. 

 

Figure 9: Number of CPU shares allocated by the 

controller for instance 1’s database server 

Note that it is also possible for system administrators 

to manually analyze the workload characteristics and 

preset the allocation accordingly. However, such task 

is time-consuming and the administrator may not be 

able to react as quickly to changes in workload or 

other system events. 

4.2.2 Dynamic Workload 

Another benefit of having the control system is it can 

adapt the allocation for dynamically changing 

workload. The result in this section shows the 

effectiveness of the control system while workload 

level changes for instance 1. The workload level for 

the instance is shown in Figure 12. The system setup 

is the same as in previous section. The differences are 

the number of concurrent clients for instance 1. Also, 

due to higher overall load, we set the response time 

required by instance 1 to 1,000ms. For non-controlled 

system, the number of CPU shares for DB server 1 

has been set to satisfy the average load over the 

evaluation period. 
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Figure 10: Response time without the control 

system (dynamic workload)  

 

 

Figure 11: Response time with the control system 

(dynamic workload)  

 

 

Figure 12: Number of concurrent clients over the 

test period 

 

Figure 10 shows the response time of the web server 

when the control system is not enabled. Figure 11 

shows the response time of the web server when the 

control system is enabled. The absolute mean 

deviation from the target response time for instance 1 

is also shown in Table 2. 

Without the control system, it is possible that, for 

particular level of workload, the SLO could be easily 

met because the workload level is well below the 

average. However, when the level of work load is 

higher than the average, the instance also fails to 

meet the SLOs provided. 

With the control system, the response time tracks 

more closely to the expected response. However, the 

controller may not react as quickly as in the static 

workload cases. This behavior happens because our 

model relies on past sensor readings to build up the 

system models. After the workload level has been 

changed, the system has to readjust itself and settle to 

a new model. However, the system can still maintain 

the target workload level, although it shows higher 

degree of variances. 

5. Related works 

 

Existing commercial solutions remain focused on the 

resource utilization aspect of VMs, not the 

applications’ performance. Current management tools 

are capable of reacting to high levels of resource 

utilization by performing live migrations [7] to 

reduce the hardware usage.  

Existing tools could assist in capacity planning by 

profiling the hardware utilization level and 

forecasting future resource demands in datacenters 

[8]. However, such tools do not directly address the 

problem of managing the applications’ performance. 

Previous works have been done to investigate the 

behavioral model of multi-tier application using 

profiling-based methods [2] [6]. Such model only 
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predicts long-term statistical behavior and is 

applicable for static workloads. 

Control systems have been used in tuning computer 

applications’ parameters [4] [5]. Researchers have 

applied control-theoretical approach to address VMs’ 

resource allocation [1] [3]. Such system adjusts its 

model by observing only the clients’ response time 

whereas our system also responds to performance 

changes in related application tiers. Feedback-

controlled systems have also been investigated in 

order to improve the system utilization for CPU 

throughput-based applications [11]. Our work could 

compliment such method as we are focusing on 

achieving target response time for delay-based 

applications. 

6. Discussions & Future Works 

 

Our results suggest that it is possible to use a control 

system to maintain target SLOs on virtualized system 

and also able to react to changes in workload levels. 

With the control system, administrators will be able 

to deploy virtualized workload without concerning 

about low level system-configuration such as CPU 

shares. 

6.1 Workload modeling 

Actual enterprise applications could be much more 

complicated than the current model given in this 

paper. The linearity assumptions may not be held for 

complex chain of dependent VMs. We are interesting 

to explore possible composition models (such as 

Markov Chains) that can be used to approximate the 

response time performance of such distributed 

applications. It should be possible to derive a more 

accurate performance model for complex application 

based on a composition of simpler models such as 

those described in this paper. 

Our initial model only captures direct dependency 

between application tier (e.g. a web server directly 

makes request to a database server.) We also 

investigate the performance behavior and its relation 

between particular types of behaviors. These include 

partitioned requests, load-balance, or aggregate 

behavior of the application tiers. Such model could 

give us more insight into the relationship between the 

performance and application’s composition which 

allows us to generate a model for complex 

applications. 

6.2 Control Parameters 

In this paper, we have been only experimented with 

controlling the CPU share allocation. In actual 

system, more control parameters could be used to 

change the behavior of the VMs. For example, it is 

possible to associate traffic for different VMs with 

multiple network traffic classes. This allows the 

system to have more control over the queuing and 

priority for behavior of the VMs’ network traffic. 

Similarly, for local storage control, it is possible to 

use I/O-controller [10] to control the share for disk 

I/O access. 

7. Conclusions 

 

We presented an automated control system for 

virtualized services. Our system suggests that it is 

possible to use intuitive models based on observable 

response time incurred by multiple application tiers 

as a model for the overall performance. The models 

are also used in conjunction with a control system to 

determine the optimal share allocation for the 

controlled VMs. Our system helps maintain the 

expected level of service response time while 

adjusting the allocation to meets the demand for 

different level of workloads. Such behavior allows 

administrator to simply specify the required end-to-

end service-level response time for each application, 

without the need of constant monitoring or 

understanding complex behavior of the applications. 

Our system helps simplifying the task of managing 

the performance of many VMs already exists in 

today’s datacenter. 
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