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ABSTRACT 

System administrators have utilized log analysis for decades to monitor and automate their environments.  As com-

pute environments grow, and the scope and volume of the logs increase, it becomes more difficult to get timely, use-

ful data and appropriate triggers for enabling automation using traditional tools like Swatch.  Cloud computing is 

intensifying this problem as the number of systems in datacenters increases dramatically.  To address these problems 

at AMD, we developed a tool we call the Variable Temporal Event Correlator, or VTEC. 

VTEC has unique design features, such as inherent multi-threaded/multi-process design, a flexible and extensible 

programming interface, built-in job queuing, and a novel method for storing and describing temporal information 

about events, that well suit it for quickly and efficiently handling a broad range of event correlation tasks in real-

time.  These features also enable VTEC to scale to tens of gigabytes of log data processed per day.  This paper de-

scribes the architecture, use, and efficacy of this tool, which has been in production at AMD for more than four 

years.  
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1 Introduction 
Log analysis is a critical component for effective auto-

mation of large cloud computing environments.  As 

clouds grow, day-to-day operational tasks such as fail-

ing hardware become an increasing burden for datacen-

ter operational staff.  In addition, emergent behavior in 

large clouds causes unusual problems that often are 

difficult to diagnose.  These issues require more com-

plex automation techniques in system maintenance and 

service operation.  Modern solutions such as SEC [1,2] 

and Splunk [3] have done a great job at scaling to large 

log volumes and making complex correlations feasible, 

but they have drawbacks.  This paper presents an alter-

native solution we developed at AMD called the Varia-

ble Temporal Event Correlator, or VTEC. 

AMD designed VTEC with multi-core and multi-

system scalability in mind.  Virtually every component 

is multi-process and/or multi-threaded to take advan-

tage of every available CPU cycle on the system.  If 

needed, each component can be isolated on its own 

machine to distribute load. 

VTEC also introduces a novel method for representing 

temporal event data; these constructs are called tempor-

al variables.  Temporal variables are constructed to 

represent temporal data about events, such as frequency 

and rate of change, in a way that is immediately useful 

when building event-correlation rules.  These rules can 

make use of the temporal data without the need for ex-

tra processing in the rule itself.  

Finally, VTEC includes a built-in job scheduler that 

allows for categorization, scheduling, and prioritization 

of actions generated in response to events.  This gives 

the user finer control over the sequencing and priorities 

of actions generated by log analysis than available be-

fore.  

This paper is organized as follows: Section 2 describes 

the computing environment and log analysis needs that 

drove the creation of VTEC.  Section 3 describes the 

internal architecture of VTEC.  Section 4 details several 

example "rule engines" that demonstrate how VTEC 

can be used to correlate various kinds of events in a 

computing environment.  Section 5 briefly describes 



some of the useful rule engines implemented at AMD.  

Section 6 discusses designing for performance and scal-

ing as log traffic increases.  Section 7 describes the 

challenges currently faced using VTEC, and areas for 

improvement. 

2 Background 
As compute environments continue to grow in size, it 

becomes increasingly challenging to keep track of the 

various events happening in the grid.  How does a sys-

tems team note and track the failure of a hard disk or 

memory?  Or when one of thousands of compute nodes 

suffers a kernel panic?  An even more complex task is 

to deal with the inevitable emergent behavior of a mas-

sive network of computers.  Seemingly innocuous 

changes to systems (e.g., adding a simple cronjob to 

grid nodes), can have unexpected consequences (e.g., 

overloading NIS/LDAP servers). 

In this large, ever-changing, and complex computing 

environment, many organizations (including AMD) 

have turned to the practice of autonomic computing [4] 

to reduce the effort that sysadmins must exert to keep 

the environment stable.  There is a system and OS con-

figuration aspect to this, in which tools such as Cfen-

gine [5] can enable autonomic behavior.  There is still a 

gap, however, when it comes to detecting anomalous or 

interesting events, correlating them, and taking auto-

matic action to alert people or correct the problem. 

In the context of large Linux/UNIX compute grids, raw 

event data is generally available via syslog.  Standard 

syslog daemons, as well as more advanced ones such as 

syslog-ng [6], are able to send log data to a central 

server.  Thus, collecting enough raw data to analyze is 

rarely difficult.  However, the volume of this data is 

often a problem: so much data is collected that it be-

comes difficult to parse and extract useful information 

from it. 

During the past several years, a number of log parsing 

and event correlation tools have been developed.  Some 

Linux distributions, such as Fedora, ship with the Log-

watch [8] utility installed.  Logwatch parses system log 

files regularly and provides useful, human-readable 

reports via e-mail.  When using Logwatch, however, 

sysadmins are required to wade through e-mails and 

make event correlations manually, so it does not scale 

beyond a handful of servers. 

One of the first automated log analysis tools used at 

AMD was Swatch [7].  Swatch is very much a reactio-

nary log analysis system.  Events matching a particular 

regular expression can trigger events, such as an e-mail 

to an administrator.  At AMD, rudimentary flood pre-

vention routines often caused important events to be 

missed while a rule was stalled waiting for a flood timer 

to expire.  In addition, Swatch is single-threaded, and so 

was unable to scale to AMD's ever-increasing log vo-

lume (about 10GB/day at a typical site). 

Around 2006, as AMD's compute grids were growing at 

a rapid rate, the company determined the aging Swatch 

installation was no longer effective and chartered a 

project to implement a replacement log monitoring and 

analysis system.  The parameters for the project were: 

 Scale to tens of gigabytes of log data per day 

 Take advantage of multiple processors (AMD's strat-

egy is to embrace multi-core computing)  

 Be able to correlate events across thousands of sys-

tems in real-time (no batch processing) 

 Be able to prioritize and queue system repair jobs 

and e-mail alerts 

 Prevent floods of alerts without missing important 

events 

 Correlate events on arbitrary log streams (e.g. 

FlexLM license daemon logs) 

 Ensure correlation rules are easy to read, modify, and 

create 

At the time, SEC [1] and Splunk [3] were popular 

choices as core components to achieve the goals.  AMD 

tested both thoroughly, and ultimately decided a home-

grown system would be best.  SEC was (and still is) a 

very powerful and flexible tool, but the learning curve 

for writing rules its rules is quite steep.  This was dem-

onstrated by [1], which was actually supposed to "de-

mystify" SEC.  However, even moderately complex 

SEC rules were deemed unintelligible by sysadmins 

unfamiliar with its use. 

Splunk did not have an indexing system robust enough 

to handle the volume of log traffic we expected to run 

through it.  After routing just a few hundred megabytes 

of syslog data through Splunk, the indexer would stop 

working properly despite several weeks of tuning with 

the help of Splunk's developers.  Finally, the event cor-

relation features were limited to Swatch-like functional-

ity (this was in 2006: Splunk v1.0). 



With its seven design goals in mind, AMD created 

VTEC from scratch.  In the process, we evolved a novel 

set of data types and data handling methods that have 

since greatly simplified event correlation and log analy-

sis at AMD. 

3 Architecture 

VTEC Components 

The VTEC system consists of five modules (Figure 1).  

Each module has a specific, well-defined task to per-

form, and communicates with the other modules in a 

well-defined language over TCP sockets.  Splitting the 

system into multiple components generates a number of 

benefits: 

 Bugs/errors in one rule engine generally do not affect 

the others 

 Multiple processes can leverage CPU capacity in 

multi-core systems 

 Standard interfaces between modules simplify the 

task of tuning modules to optimize performance or 

add features 

 

 
Figure 1: VTEC System Architecture 

 

Streamer - Log data enters VTEC via syslog.  The 

streamer component can tail log files or send arbitrary 

data from STDOUT of a process to VTEC.  Its most 

useful feature is the ability to insert "heartbeat" mes-

sages into the log stream so the absence of event data 

can trigger actions [10].  Use of the streamer compo-

nent is optional; most systems at AMD simply route 

their log data directly to the syslog-ng component with-

out going through a streamer. 

Syslog-ng - VTEC uses the powerful syslog-ng system 

logger [6] as the log router; it is the only non-Perl 

component.  Its purpose is to accept log streams from 

syslog, TCP/UDP sockets, and streamers.  It reformats 

messages, filters data, and routes messages to the 

appropriate rule engines and/or archival log files.  

Control of the filtering is accomplished by including 

filtering metadata within each rule engine, dictating 

what log data that rule engine wishes to receive.  The 

VTEC installer then injects this metadata into the 

syslog-ng.conf file, ensuring that each rule engine 

is tasked with parsing only the log data that is relevant 

to it.  The static parts of the syslog-ng.conf file 

allow for searchable log archives to be created.  For 

example, all log messages could go to 

/var/log/YYYY/MM/DD/hostname-msgs.log. 

Rule engines - These are composed of any executable 

code that accepts filtered and reformatted log data on 

STDIN.  In practice, these are Perl scripts, created from 



a template, that include reusable interface modules to 

both the action server and the temporal variable server 

(which communicate over a standard TCP protocol). 

The rule engines are where the event correlation tasks 

occur.  Since the rule engines are open-ended editable 

custom scripts, a rule engine can do anything your lan-

guage of choice can do.  

Temporal variable server - VTEC hosts all the tem-

poral variables in a separate server daemon.  This frees 

the rule engines from the drudgery of maintaining state 

across reboots/restarts.  It also allows rule engines to 

share data easily, since the variable server presents a 

shared namespace to the rule engines; one rule engine 

can set a temporal variable, and another rule engine can 

query for it by using the same variable name. 

The temporal variable server can also inject special 

messages into the log stream when certain threshold 

conditions are met.  Rule engines can watch for these 

threshold messages and take appropriate action without 

being burdened with having to constantly query the 

state of variables. 

A Perl object interface to the temporal variable server is 

provided for use in rule engines.  Additionally, in cases 

in which the temporal variable server's features are 

more than are required, the temporal variable data types 

are available as Perl objects, meaning that rule engines 

can instantiate them locally without having to contact 

the temporal variable server at all. 

Action server - When rule engines need to take some 

sort of action, they have the option of running that task 

locally (which is not advisable, since this can block the 

rule engine from processing incoming data) or queuing 

a job in the action server.  Jobs are implemented in a 

Perl module as subroutines; queuing a job really means 

sending the name of a subroutine, its parameters, when 

to run it, and a queue name to the action server over a 

standard TCP socket interface.  A Perl object interface 

to the action server is provided for use in rule engines. 

The action server has a number of job queues with va-

rying priorities.  Users can schedule jobs to run imme-

diately or at a specific time (e.g., alert a sysadmin about 

this event, but not until 10 a.m., when they are awake).  

The action server processes queues with higher priority 

first, allowing an emergency page to go out immediate-

ly despite a backlog of less urgent repair jobs in lower-

priority queues. 

The actions that can be queued on the action server are 

defined in a Perl module as functions.  This allows ac-

tions to be developed that can be shared by rule en-

gines.  Since the actions are implemented in Perl, they 

can do virtually anything to the environment.  They can 

also communicate with the variable server if needed to 

get information about how to execute.  Some basic ac-

tions implemented on AMD's action server are: 

 run_cmd - executes a command on a remote 

machine 

 send_mail - sends an e-mail 

 hopenclose - instructs AMD's batch scheduling 

system to open or close a host to jobs 

 inject_log - injects a syslog message into the log 

stream (for signaling rule engines about job status) 

In addition to the actions themselves, an arbitrary 

number of queues that can be defined in the action 

server, with varying levels of priority.  The queues are 

defined in a configuration file.  In practice, only three 

queues are needed: 

 crisis - when any jobs are placed in this queue, all 

other queues are halted until this queue is empty 

(good for hotpage events or status checks that are 

time-sensitive) 

 normal - normal jobs, such as rebooting or 

reinstalling a server, or running a script 

 email - most e-mail jobs get queued here, so that 

they get processed in parallel with other jobs (e.g. a 

run_cmd job in the normal queue won't have to 

wait for a flood of 500 e-mails to get sent before 

executing) 

Temporal Variable Data Types  

The most interesting and novel aspect of VTEC is the 

temporal variable server and the temporal variables it 

hosts.  There are three data types in the temporal varia-

ble server: 

Scalar - A scalar consists of two pieces of information: 

a piece of scalar data (such as a string or a number) and 

a timeout.  The timeout is set when the scalar is created, 

and defines the length of time the data is valid.  When 

the scalar is queried, the timeout is checked.  If the cur-

rent time has not exceeded the timeout, the data value is 

returned.  Otherwise, a zero is returned.  Scalars are 

useful for setting alarms, preventing e-mail floods, and 

storing temporary data. 



Incrementer - The incrementer data type builds on the 

scalar.  It is an organized collection of scalars, each 

with a data value of 1.  When an incrementer is instan-

tiated, it is given a timeout value.  Every time the in-

crementer is set (called a hit in VTEC), a new scalar is 

added to the collection with the predetermined timeout 

and a data value of 1.  When queried, the incrementer 

returns the sum of the values of its constituent scalars. 

Incrementers are useful for calculating and observing 

the rate of events over time.  Figure 2 demonstrates 

how the value of an incrementer changes over time as it 

is repeatedly hit by a rule engine.  When read at time=4 

sec, the reported value of "4" indicates that the current 

rate of hits is 4 per 7 seconds, or 34.29 per minute. 

 

 
Figure 2: Value of an Incrementer over Time 

 

List - A list is a collection of incrementers that are each 

referenced by a key - in short, a Perl hash of incremen-

ter objects.  Lists have the unique property that they can 

be queried in three different ways: 

1. The value of a particular key (the current value of 

that incrementer); 

2. The sum of the current values of all keys; or, 

3. The number of non-zero keys. 

Lists are useful because they can aggregate event rate 

data and organize it (e.g., by hostname), then present 

immediately useful data about that collection of rate 

data (e.g., the current number of hosts reporting an 

event, or the total number of those events across the 

entire environment). 

4 Examples 
In all of the following code examples, a substantial part 

of the actual Perl script has been removed for clarity.  

All Perl-based VTEC rule engines have three major 

sections: 

1. syslog-ng metadata.  This information is stored in 

comments at the top of the rule engine.  The VTEC 

installer parses this metadata and builds syslog-ng 

filter rules to ensure the desired log messages are 

passed into the rule engine. 

2. Initialization code.  This is boilerplate Perl code that 

includes the appropriate VTEC support modules, in-

stantiates the $variable_server and $ac-

tion_server objects, and sets up any thresholds 

needed by the rule engine in the variable server.  

This code is not shown in the examples in this paper, 

for brevity. 

3. Log processing.  This takes place in the 

while(<STDIN>) {} loop, and is generally the on-

ly part of the code that the sysadmin has to actually 

modify from the template. 

While most of a rule engine's code is boilerplate, it was 

decided to leave it available for modification to ensure 

that the rule engines would never be limited by any sort 

of hard-coded framework.  Plenty of comments are 

provided in the template to guide the rule engine author.  

While most event correlation cases can be covered with 

a few slight modifications of the template, more com-

plex cases might occasionally require inclusion of extra 

Perl modules or other initialization code that might be 

complicated by unnecessary abstraction of the code. 

In Code Example 1, the most basic type of rule engine 

is demonstrated; compare it to "Repeat Elimination and 

Compression" in [1].  The syslog-ng metadata ensures 

the only log data being passed into the rule engine on 



STDIN are messages from host amdftp, where the mes-

sage portion matches the regular expression disk 

full error.  By performing initial filtering in syslog-

ng before the messages even reach the rule engine, the 

filtering process is only done once, rather than all rule 

engines having to parse through all the messages look-

ing for matches. 

When these messages arrive, the variable server is que-

ried to see if a scalar by the name of ftp_disk_full 

is set.  If not, an outgoing e-mail is queued on the action 

server, and the ftp_disk_full scalar is set, with a 

one-hour timeout, to prevent a flood of e-mail from 

being sent. 

Notice that the job submission hash includes a start 

parameter.  This parameter can be set to a delay (e.g. 

+600 means "10 minutes from now") or to an absolute 

time by using localtime() to generate an epoch time.  

Thus with very little added effort, a non-critical alert 

could be queued and delivered during business hours. 

 

In Code Example 2, a more complex event correlation 

is demonstrated.  Following [1], this code example de-

monstrates the functionality in both "Report on Analy-

sis of Event Contents" and "Detect Identical Events 

Occurring Across Multiple Hosts".  In this example, 

VTEC is configured to watch for "NFS server not res-

ponding" messages from all hosts, and will alert if the 

number of unique systems reporting this message for a 

particular file server exceeds 50 in a given five-minute 

period. 

First, notice the syslog-ng metadata is a bit more in-

volved this time.  We are filtering three types of mes-

sages into the rule engine: server XXX not res-

ponding, server XXX OK, and threshold messages.  

The threshold messages are important: when the rule 

engine runs the set_list_threshold method when 

it starts up, the variable server sets up a watch for that 

particular list.  In this case, we're telling it to watch two 

lists, filer_down and filer_up, and to send an alert 

if the value of a single key in either of them exceeds 50.  

The rule engine can then capture that alert and take 

action.  

Following the code, as log messages flow in from 

STDIN, they are checked to see if they are one of the 

three types we are filtering for.  In the basic filer 

down/up case, the variable server is told to update the 

appropriate list variable, using the affected file server's 

name as the key.  The timeout for each hit is set to five 

minutes.  Conceptually, this means we'll have two 

groups of incrementers, indexed by the name of the file 

server.  The value of each incrementer tells us roughly 

how many hosts are simultaneously reporting the given 

state for that server (we assume each host only reports 

the "not responding" or "OK" message once every five 

or more minutes).  If the message is a threshold mes-

sage, all we need to do is take action - in this case, send 

an e-mail about the affected filer. 

The important thing to grasp with this example is the 

relative simplicity with which this correlation was 

achieved, especially compared to the same example in 

Figure 9 of [1].  While the overall functionality is effec-

Code Example 1: Simple Event Alert with Repeat Elimination/Compression 

# syslog-ng metadata 

# filter: host("amdftp") and match("disk full error"); 

 

while(<STDIN>) { 

    if($variable_server->get_scalar("ftp_disk_full") == 0) { 

        my %job = ( 

            start      => time(), 

            queue      => "email", 

            action     => send_mail, 

            parameters => [ $address, $subject, $msg, $name ] 

        ); 

        if($action_server->add(%job)) { 

            # scalars can be set to arbitrary values (second parameter), but 

            # always return 0 when they have timed out. 

            $variable_server->set_scalar("ftp_disk_full", 1, "+3600"); 

        } 

    } 

} 



tively the same, any sysadmin able to read basic Perl 

should be able to interpret, modify, and use the VTEC 

rule engine; the same functionality in SEC is much 

more difficult to grasp, even for a seasoned program-

mer. 

 

Code Example 2: Correlating Events Across Hosts 

# syslog-ng metadata 

# filter: match(".*server.*not responding.*") or \ 

#         match(".*server.*OK.*") or \ 

#         filter(f_thresholds); 

 

# Set up a threshold when we start up.  Thresholds are purged after 48 hours of inactivity. 

# VTEC restarts all rule engines nightly (during log rotation) to ensure needed thresholds 

# are kept fresh, and retired ones are purged from the variable server. 

$variable_server->set_list_threshold("ONE", "filer_down", ">", "50"); 

$variable_server->set_list_threshold("ONE", "filer_up", ">", "50"); 

 

my $window_secs = 300;  # sliding window of 5 minutes 

my $email_flood = 1800; # seconds between e-mails about a filer up/down 

 

while(<STDIN>) { 

    my %message = parse($_); 

 

    # Filer down messages 

    if($message{message} =~ /server (\w+)( is)? not responding/) { 

        $variable_server->set_list("filer_down", $1, "+$window_secs"); 

        next; 

    } 

 

    # Filer up messages 

    if($message{message} =~ /server (\w+) OK/) { 

        $variable_server->set_list("filer_up", $1, "+$window_secs"); 

        next; 

    } 

 

    # Filer up/down threshold exceeded messages 

    if($message{message} =~ /THRESHOLD EXCEEDED.*filer_(up|down).*\[(\w+)\].*\((\d+)\)/) { 

        my ($type, $filer, $num_messages) = ($1, $2, $3); 

        # Create a scalar that we'll use to prevent e-mail flooding for this filer 

        my $scalar_name = "email_filer_$type" . "_$filer"; 

        unless($variable_server->get_scalar($scalar_name)) { 

            my %job = ( 

                start      => time(), 

                queue      => "email", 

                action     => "send_mail", 

                parameters => [ $to_address, "Filer $filer being reported $type!", 

    "Filer $filer has been reported $type $num_messages times in the last $window minutes." ] 

            ); 

            Queue(\%job); 

            $variable_server->set_scalar($scalar_name, 1, "+$email_flood") 

        } 

    } 

} 



With a few minor modifications, the code in Example 2 

could be updated to assist in security monitoring.  If 

you wanted to check for usernames that are making 

repeated unsuccessful attempts to login to a machine 

(brute-force attack), a number of list variables could be 

created and monitored with thresholds:  

 A list using usernames as the key, hit each time a 

message about an unsuccessful login attempt is seen 

for that username.  Using a LIST ONE threshold 

would alert when any given username has repeated 

failed logins (whether on a single host or distributed 

among many hosts). 

 A list using source IPs as the key, hit each time a 

message about an unsuccessful login attempt is seen 

for that IP.  Using a LIST KEYS threshold would 

alert when the number of source IPs attempting to 

connect in a short period of time increases beyond a 

threshold (e.g. a denial of service attack, or possibly 

a distributed brute force attack).  Using a LIST ONE 

threshold would alert when a given source IP is mak-

ing repeated login attempts (e.g. brute force attack). 

In Code Example 3, the ability to check for the ab-

sence of a log message is demonstrated.  This functio-

nality is achieved by using an alarm, which is a func-

tion provided by the temporal variable server and is 

implemented using what amounts to an anonymous 

scalar variable with a threshold attached. 

Much like the previous example, the code flows in a 

way that an average sysadmin with some Perl expe-

rience would be able to comprehend.  We filter for 

three types of messages: the job start message, the job 

finished message, and messages generated by the varia-

ble server when thresholds/alarms are generated. 

If the message is a job start, the job number is fetched 

from the message, an alarm is set, and a pair of Perl 

hashes is used to create a mapping between the job 

number and the alarm name.  If the job finished mes-

sage arrives before the alarm goes off, the alarm is 

cleared and no further action is taken.  If the alarm mes-

sage arrives, we use the mapping to see which job is 

late, and send an appropriate alert.  Further, if the late 

job actually ends up finishing, we can detect that too by 

noticing there is no alarm set for that particular job.  

In Code Example 3, the alert portion has been shortened 

into a pseudo-function called queue_alert().  In a 

real VTEC rule engine, the rule engine author would 

write a function that makes a call to the action server 

and have it queue an e-mail (or some sort of corrective 

action). 

With a few modifications, this code could have the rule 

engine comprehend multi-line log messages.  For ex-

ample, ECC errors on Linux systems often appear on 

multiple lines: 

kernel: CPU 3: Silent Northbridge MCE 

kernel: Northbridge status 940c4002:85080813 

kernel:     Error chipkill ecc error 

kernel:     ECC error syndrome 8518 

kernel:     bus error local node origin, \ 

       request didn't time out 

kernel:     generic read 

kernel:     memory access, level generic 

kernel:     link number 0 

kernel:     err cpu0 

kernel:     corrected ecc error 

kernel:     previous error lost 

kernel:     NB error address \ 

       0000001a230571d0 

By utilizing short alarms and a rudimentary state ma-

chine in the rule engine, a robust method for capturing 

multi-line messages like this can be built, which will 

function even if the log message is incomplete or miss-

ing lines.  In fact, at AMD we have implemented just 

such a rule engine that aggregates machine check errors 

like these and injects new single-line messages into the 

log stream so yet another rule engine can look for sys-

tems with unusually high rates of ECC errors, and close 

them for repair.  In some cases it can even detect which 

DIMM has failed (by analyzing the syndrome codes) 

and add that information to the system log in the asset 

database. 



Code Example 4 demonstrates the ability to "chain" 

rule engines.  In this example, we have two low-level 

rule engines, each checking for a different kind of 

hardware problem on systems.  These rule engines use 

list variables and thresholds to take action when the rate 

of each type of hardware error exceeds an acceptable 

threshold.  The action taken in these cases is to inject a 

log message into the log stream that a third, "master" 

rule engine intercepts.  This third rule engine utilizes 

the key-counting functionality of lists to determine 

quickly how many kinds of hardware problems a given 

system has.  In the example, a pseudo-action "A" is 

taken if a system has only one type of hardware prob-

lem, while pseudo-action "B" is taken if a system has 

both. 

The net result is that a fairly daunting correlation task is 

reduced into its three core correlations.  These correla-

tions are easily made individually by utilizing temporal 

variable constructs in the temporal variable server, 

making the rule engines easy to write and maintain. 

Note the example has been distilled to its core functio-

nality, so is rather simplistic; the same functionality 

could be achieved in a single rule engine that simply 

parses more data.  However, consider the question of 

ongoing support and updates.  By separating the com-

plex correlation into multiple rule engines, the whole 

system becomes far easier to maintain over time than 

with a single, monolithic rule engine.  What if you want 

to start checking for a new class of hardware failure?  

Rather than modify (and potentially break) a single rule 

engine, a new (simple) rule engine is created that looks 

for this new type of failure that injects information 

about its findings into the log stream.  The master rule 

engine then only needs a minor modification (or, per-

haps, none at all) to take advantage of the new data.

Code Example 3: Checking for Missing Events 

# syslog-ng metadata 

# filter: match("Job.*started") or match("Job.*complete") or \ 

#         filter(f_thresholds); 

 

my %alarms_by_job; 

my %jobs_by_alarm; 

while(<STDIN>) { 

    my %message = parse($_); 

    # If job started, set an alarm so we can alert if it does not finish in 10 minutes 

    if($message{message} =~ /Job ([0-9]+) started/) { 

        # set_alarm returns the name of the scalar it created 

        $alarms_by_job{$1} = $variable_server->set_alarm("+600"); 

        $jobs_by_alarm{$alarms_by_job{$1}} = $1; 

    } 

    if($message{message} =~ /Job ([0-9]+) completed/) { 

        my $job = $1; 

        if($variable_server->get_scalar($alarms_by_job{$job}) { 

            # if the alarm is still active, clear it; we're OK 

            $variable_server->clear_alarm($alarms_by_job{$job}); 

            delete $jobs_by_alarm{$alarms_by_job{$job}}; 

            delete $alarms_by_job{$job}; 

        } 

        else { 

            # the alarm isn't active: the job has finished, but finished late. 

            delete $jobs_by_alarm{$alarms_by_job{$job}}; 

            delete $alarms_by_job{$job}; 

            queue_alert("Job $job finished late!"); 

        } 

    } 

    if($message{message} =~ /TIMEOUT: (\S+) (\S+)/) { 

        my ($type, $name) = ($1, $2); 

        # One of the jobs didn't finish within 10 minutes, so see which 

        # job it was and send an alert. 

        queue_alert("Job $jobs_by_alarm{$name} has been running for > 10 minutes!"); 

    } 

} 



 

Code Example 4: Chaining Rule Engines 

#### Rule engine 1: Watches for hosts with bad RAM #### 

# filter: match("ECC Error") or filter(f_thresholds); 

# list threshold will alert when the value of a key exceeds 100. 

$variable_server->set_list_threshold("ONE", "ecc_errors", ">=", 100); 

while(<STDIN>) { 

    my %message = parse($_); 

    # an ECC error, hit the appropriate incrementer in the ecc_errors list 

    if($message{message} =~ /ECC Error/) { 

        # We use a 60-second timeout on the hit, which makes the list threshold 

        # above alert at an ECC error rate of >= 100 per minute. 

        $variable_server->set_list("ecc_errors", $message{from_host}, "+60"); 

    } 

    if($message{message} =~ /THRESHOLD EXCEEDED.*ecc_errors.*\[(\w+)\].*\((\d+)\)/) { 

        # We have found a bad host.  Generate a log message that Rule engine 3 will 

        # pick up that indicates just how bad things are. 

        my ($bad_host, $count) = ($1, $2); 

        # pseudo-function for brevity; in reality this would queue an inject_msg action 

        # that injects a message into the log stream at the given facility and priority. 

        queue_alert("daemon", "info", "ALERT: $bad_host with $count ECC errors per minute"); 

    } 

} 

 

#### Rule engine 2: Watches for hosts with bad DISKS #### 

# filter: match("EXT3 Error") or filter(f_thresholds); 

# list threshold will alert when the value of a key exceeds 20. 

$variable_server->set_list_threshold("ONE", "ext3_errors", ">=", 20); 

while(<STDIN>) { 

    my %message = parse($_); 

    # an EXT3 error, hit the appropriate incrementer in the ext3_errors list 

    if($message{message} =~ /EXT3 Error/) { 

        # We use a 3600-second timeout on the hit, which makes the list threshold 

        # above alert at an EXT3 error rate of >= 20 per hour. 

        $variable_server->set_list("ext3_errors", $message{from_host}, "+3600"); 

    } 

    if($message{message} =~ /THRESHOLD EXCEEDED.*ext3_errors.*\[(\w+)\].*\((\d+)\)/) { 

        # We have found a bad host.  Generate a log message that Rule engine 3 will 

        # pick up that indicates just how bad things are. 

        my ($bad_host, $count) = ($1, $2); 

        # pseudo-function for brevity; in reality this would queue an inject_msg action 

        # that injects a message into the log stream at the given facility and priority. 

        queue_alert("daemon", "info", "ALERT: $bad_host with $count EXT3 errors per hour"); 

    } 

} 

 

#### Rule engine 3: Watches for hosts with bad hardware #### 

# filter: facility(daemon) and priority(info) and match("ALERT:"); 

while(<STDIN>) { 

    my %message = parse($_); 

    if($message{message} =~ /ALERT: (\w+) with (\d+) (EXT3|ECC) errors per (minute|hour)/) { 

        my ($bad_host, $count, $type, $base) = ($1, $2, $3, $4); 

        # Use a list variable to keep track of the various types of problems a system has. 

        $variable_server->set_list("multi_problem_$bad_host", $type, "+3600"); 

 

        # If the system has only one thing wrong with it, we take action A, but if there are 

        # two things wrong with it we take action B. 

        if($variable_server->get_list_keys("multi_problem_$bad_host") >= 2) { 

            queue_action("B"); } 

        elsif($variable_server->get_list_keys("multi_problem_$bad_host") >= 1) { 

            queue_action("A"); } 

    } 

} 



This ability to chain rule engines means that extraordi-

narily complex correlations can be achieved by reduc-

ing them to their constituent parts, then chaining rule 

engines together to track progress through the correla-

tion.  Combine this functionality with the fact that rule 

engines can share temporal variable information 

through the variable server, and you have an extremely 

flexible and powerful system for correlating events and 

taking appropriate actions that is much easier to create, 

modify, and troubleshoot than other event correlation 

tools. 

5 Useful Rule Engines at AMD 
Since VTEC has been in production at AMD for more 

than four years, we have amassed a significant number 

of rule engines that perform useful event correlation 

and self-healing tasks in our computing environment. 

Failed Hardware 

One of the earliest uses for VTEC at AMD was to look 

for systems with bad hardware.  We found most healthy 

systems would occasionally report ECC and EXT3 er-

rors, but systems with truly bad hardware would send 

these errors at a noticeably higher rate.  We imple-

mented a rule engine that checks for these messages 

(the ECC error check uses a chained rule engine that 

aggregates the multi-line machine check errors that the 

Linux kernel reports) and then closes bad machines to 

new compute jobs.  Systems in such bad shape that they 

are streaming error messages into the logs exceed an 

"emergency" threshold and a signal is sent to imme-

diately power down the affected machine. 

NFS File Server Checks 

As summarized and simplified in Code Example 2, we 

have a rule engine that monitors client systems for 

"NFS server not responding" messages and alerts the 

storage and networking teams when the rate of messag-

es exceeds a certain threshold. 

Reboot Loops 

We have all of our servers at AMD configured to send a 

syslog message when they have finished booting up.  A 

VTEC rule engine watches for these messages and 

alerts operational staff if a machine is rebooting more 

than five times in a 90-minute period.  These reboot 

loops can indicate a multi-bit ECC error, kernel panic, 

or other system configuration problem that requires the 

attention of a sysadmin. 

Interactive Load Monitor Collator 

At AMD we have several interactive login servers that 

are used by our design engineers as gateways into re-

mote datacenters.  Some engineers, instead of using our 

batch scheduling system, will run their jobs directly on 

the interactive login server, causing performance prob-

lems and occasionally even crashing the systems.  We 

have implemented a cronjob that checks for processes 

that violate our interactive server usage policy, that 

sends out syslog messages when it detects a process 

that violates policy.  A VTEC rule engine collects these 

messages, collates them, and generates a daily report 

for each engineer that is violating the policy with a 

summary of all of their processes at each site that are in 

violation of the policy.  Additionally, the whole list of 

users and processes is sent in a daily digest to our inter-

active server support team, which can determine if it is 

appropriate to forcibly kill ill-behaved processes. 

Out of Memory Tracking 

A common problem in AMD's compute grids is out-of-

memory conditions.  Leaky jobs, or jobs that simply 

need more memory than is installed on the machine, 

will cause the system to run out of memory; the kernel 

then invokes the out-of-memory killer (OOM killer).  

The syslog message that the OOM killer generates has 

very little useful data: just a PID and a process name.  

To identify the owner of the job that caused the OOM 

condition, we run a cron job every five minutes on our 

systems that caches the contents of 

/proc/<pid>/stat into a directory under 

/var/spool.  When a rule engine sees the OOM killer 

event, it queues a job ten minutes into the future (to 

give the server time to recover from the OOM condi-

tion) that logs into the machine and fetches the 

/var/spool/proc/<pid>/stat file that was refe-

renced by the OOM killer message.  This file tells us 

not only who was running the errant job, but also how 

large it was when it was killed.  This information is 

used to craft an e-mail alert to the user asking them to 

check the status of their batch job submissions to pre-

vent more problems on other compute nodes. 

Automatic System Stress Testing 

When bringing new systems online in our compute 

grid, it is important to stress-test them before allowing 

engineer's jobs on them.  We accomplish this at AMD 

by using a rule engine that watches for syslog messages 

indicating that a system has completed its automated 

installation sequence.  It then closes the machine to the 



batch submission system, kicks off the stress test, and 

sets an alarm for 12 hours in the future.  If the alarm 

goes off, the stress test must have locked up the system; 

an operational staff member is alerted to check the sys-

tem.  If the stress test completes (notifying of its status 

via syslog, of course) the system is either opened for 

jobs (test was successful) or is left closed (test failed). 

Ignoring Flood-Generating Hosts 

Sometimes a machine will be so thoroughly broken that 

it is impossible to shut down the machine, and it just 

sits there spewing error messages into the syslog 

stream.  This can hamper the VTEC server not only 

because it can cause it to run out of disk space, but also 

because it forces syslog-ng to process a flood of 

irrelevant data.  We have implemented a rule engine 

that watches for hosts sending an excessive volume of 

log data to the system, and automatically updates the 

syslog-ng.conf file with a filter that drops all of the 

messages from that host for 24 hours.  Once the 24-

hour alarm expires, the filter is removed; if the system 

is still spewing messages, it will be re-ignored within a 

few minutes, preventing the log flood from adversely 

affecting performance or data space on the VTEC 

server. 

6 Designing for Performance 
The performance characteristics of VTEC can be best 

described by analyzing the potential bottlenecks of each 

component, since the slowest single component will 

likely represent the limiting factor for the overall sys-

tem.  However, due to the multi-core design of VTEC, 

even if one of the components (usually the variable 

server) maxes out a CPU, the other components can 

continue functioning without any degradation on other 

CPUs. 

Syslog-ng 

Methods for tuning the performance of syslog-ng are 

fairly sparsely documented in the reference manual [9].  

In the context of VTEC, we are most concerned with 

the performance of the filtering functions, especially 

since syslog-ng is a single-threaded process.  If syslog-

ng spends too much time on the CPU trying to parse 

through log filters, it could begin dropping log messag-

es. 

We have found after much experimentation that syslog-

ng's match() filter function is much slower than the 

other message filtering functions.  When rule engines 

are configured with nothing but a match() rule, the 

syslog-ng process spends all of its time on the CPU, 

even with a fairly modest (1-2GB/day) rate of traffic.  

Simply adding one of the "fast" functions in addition to 

the match() function returns performance to accepta-

ble levels, presumably by short-circuiting the match() 

function in many irrelevant cases. 

In general, this means that a filter rule like this: 

match(".*some message.*") 

can be written better as: 

facility("daemon") and priority("info") 

and match(".*some message.*") 

to get acceptable performance from syslog-ng. 

A typical VTEC server at AMD runs on a four-vCPU 

virtual machine with 2.9GHz AMD Opteron
TM

 proces-

sors under the hypervisor.  The syslog-ng instance fil-

ters data into 21 rule engines and four local disk logs.  

The incoming data rate is about 1,000 messages/sec and 

10GB/day.  With that level of load, the syslog-ng 

process consumes about 30% of one CPU core, with 

occasional spikes to above 50% of one CPU core. 

Temporal Variable Server 

As demonstrated in the examples, the temporal variable 

server is a critical part of the speed path as log messag-

es route their way through the system.  Since virtually 

every log message that makes its way to a rule engine 

results in at least one (and many times multiple) re-

quests to the variable server, it is important that it be 

able to respond quickly. 

The variable server is implemented using Perl threads.  

This allows for simple sharing of the internal database 

of temporal variables (a hash for 



 

Figure 3: Variable Server Performance Querying a Growing Incrementer 

 

each data type).  Six threads run in parallel, using a 

collection of locks to ensure atomic write access to the 

internal data structures: 

 A server thread that listens for connections (and 

spawns threads that handle those connections) 

 A backup thread that wakes up every ten seconds and 

backs up the internal state to disk 

 Three monitoring threads that wake up every 60 

seconds to purge stale data from the internal data 

structures 

 A thresholds thread that wakes up every 60 seconds 

to scan for variables that have exceeded thresholds. 

The persistent threads do not pose any real performance 

issues; they wake up infrequently, and spend only a few 

milliseconds to complete their duties before going back 

to sleep. 

The threads that get spawned to service incoming re-

quests are the potential bottleneck.  Testing has re-

vealed that for basic requests (e.g. fetch the value of a 

scalar), performance scales very well.  However, as the 

data structures being queried get more complex (e.g. 

fetch the value of an incrementer that has 1,000 active 

scalars in it), performance begins to degrade.  Figure 3 

shows the transactional performance of the variable 

server as the size of an incrementer being queried 

grows in size. 

The routine that calculates the value of an incrementer 

is O(n) with the number of active scalars it contains.  

An updated routine that is O(log n) is being tested 

and shows promising results, but requires significant 

code changes and so has not been deployed into pro-

duction yet. 

Rule Engines 

Obviously the rule engines, since they can have arbi-

trary code in them, can be a bottleneck.  But the idea 

behind VTEC is for the rule engines to take advantage 

of the action server, precisely so they don't have to 

block for long-running tasks.  If the rule engines are 

coded such that they do not block, they do not represent 

a bottleneck. 

7 Challenges 
As flexible and effective as VTEC currently is, there is 

always room for improvement.  We currently face two 

issues with VTEC. 

Variable Server Performance 

As described in Section 6, the variable server is the 

major bottleneck.  Since virtually all rule engines de-

pend on incrementers and lists (which are collections of 

incrementers), the fact that the incrementer data type 

scales so poorly is a significant hindrance.  However, 

there is new code in the works for the incrementer that 

should greatly improve its scalability and performance. 

Feedback from Actions 

The action server is currently a "fire and forget" system.  

When jobs are queued, the rule engine can get a job ID 

for tracking, but there is currently nothing useful that 
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can be done with it.  There is no way to query the status 

of job, or to collect the output of a job, from within a 

rule engine.  Jobs have the option to use logger or 

some other means to inject syslog messages and "phone 

home" to their parent rule engine, but this process is 

awkward and is not used in practice. 

A major improvement in this area would be to have the 

action server cache job status information and output 

for some period of time after the job completes, so rule 

engines can query for it.  Having the action server au-

tomatically inject messages into the log stream when 

jobs complete would also help, because it would give 

rule engines a trigger to work with to keep up with the 

jobs they've queued. 

8 Conclusion 
AMD has used VTEC since 2006 to monitor and auto-

mate maintenance activities on its large compute grids.  

Log volumes range up to 10 GB/day with VTEC run-

ning smoothly on modest two- to four-core virtual and 

physical machines.  VTEC tracks hardware problems 

such as disk, CPU, and RAM failures and takes appro-

priate actions (e.g., shut down/close the broken system 

and create a ticket).  VTEC can monitor the environ-

ment for trends that indicate events (e.g., n systems are 

unable to contact m NFS filers, so there must be a net-

work problem).  Most importantly, VTEC enables au-

tonomic computing by allowing intelligent dispatch of 

repair jobs in response to detected problems.  If these 

repair jobs fail to work, VTEC can notify humans to 

take over. 

In summary, VTEC is a powerful tool for automating 

log analysis and event correlation.  While there are 

many other tools that perform similar tasks, VTEC's 

approach to the problem presents a complete, scalable, 

and intuitive solution that is able to grow and adjust to 

virtually any workload. 
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