
A survey of system configuration tools

Thomas Delaet Wouter Joosen

Bart Vanbrabant

DistriNet, Dept. of Computer Science

K.U.Leuven, Belgium

{thomas.delaet, wouter.joosen, bart.vanbrabant}@cs.kuleuven.be

Abstract

We believe that informed choices are better choices.

When you adopt a system configuration tool, it implies

a significant investment in time and/or money. Before

making such an investment, you want to pick the right

tool for your environment. Therefore, you want to com-

pare tools with each other before making a decision. To

help you make an informed choice, we develop a com-

parison framework for system configuration tools. We

evaluate 11 existing open-source and commercial system

configuration tools with this framework. If you use our

framework, you will make a better choice in less time.

1 Introduction

When you adopt a system configuration tool, it implies

a significant investment in time and/or money. Before

making such an investment, you want to know you have

picked the right tool for you environment. Therefore, you

want to compare tools with each other before making a

decision.

Since there exist a lot of tools with different goals,

characteristics and target users, it is a difficult and time-

intensive task to make an objective comparison of sys-

tem configuration tools. Moreover, people using a tool

already made a significant investment in that tool (and

not others) and as a consequence are involved in that

tool. But they themselves have difficulty comparing their

“own” tool to other tools.

To help you make an informed choice, we developed

a comparison framework for system configuration tools.

In addition to more subjective or political decision fac-

tors, this framework can help you with the more objective

factors when selecting a system configuration tool that is

right for you. The framework consists of four categories

of properties.

1. Properties related to the input specification

2. Properties related to deploying the input specifica-

tion

3. Process-oriented properties

4. Tool support properties

We evaluated 11 existing open-source and com-

mercial system configuration tools with our frame-

work. This paper contains a summary of these evalu-

ations. The full evaluations are available on our web-

site at http://distrinet.cs.kuleuven.be/

software/sysconfigtools. You can comment

on these evaluations, provide suggestions for modifica-

tions or add your own evaluations.

The remainder of this paper is structured as follows:

We start with the description of the framework in Section

2. Next, we summarize our findings for the 11 tools we

evaluated in Section 3. Section 4 answers the questions

on how to choose a tool and how to evaluate another tool

using the framework. In Section 5, we use our framework

and the evaluations to analyze the gaps in the state of the

art. Section 6 concludes the paper.

2 The comparison framework

Every system configuration tool provides an interface to

the system administrator. Within this interface, the sys-

tem administrator expresses the configuration of the de-

vices managed by the tool. The tool uses this specifica-

tion as input and enforces it on all machines it manages.

This conceptual architecture of a system configuration

tool is illustrated in Figure 1.

In Figure 1, the system administrators inputs the de-

sired configuration of the devices managed by the tool.

This input it stored in a repository. The tool uses this in-

put to generate device-specific profiles that are enforced

on every managed device. The translation agent is the

component of the tool that translates the system admin-

istrator input to device-specific profiles. The deployment



agent is the component of the tool that runs on the man-

aged device and executes the generated profile.

Our comparison framework contains properties for

both the specification of the input and the enforcement

phase. The third type of properties that are present in

our comparison framework are meta-specification prop-

erties: how does a tool deal with managing the input

specification itself? The last type of properties deal with

tool support: How easy is it to adopt the tool?

2.1 Specification properties

2.1.1 Specification paradigm

We define the specification paradigm of a tool by answer-

ing two questions:

1. Is the input language declarative or imperative?

2. Does the tool use a GUI-based or command-line

user interface?

Tools that use a declarative input language enable to

express the desired state of the computer infrastructure.

The runtime of the tool compares this desired state with

the configuration on every managed device and derives

a plan to move to the desired state. In the system con-

figuration literature, this process is described as conver-

gence [1]. A system configuration tool that supports con-

vergence has the additional benefit that divergences from

the desired state are automatically corrected.

Tools that use an imperative input language distribute,

schedule and deploy scripts written in its imperative in-

put language on the managed devices. For an impera-

tive script to work reliable, all possible states of the man-

aged devices need to covered and checked in the script.

Moreover, the system configuration tool must also keep

track of what scripts are already executed on every de-

vice. An alternative is to make all the operations in the

script idempotent.

Let us contrast the practical differences between an

imperative and a declarative language. Suppose a system

administrator does not want file /etc/hosts deny to

be present on a device.

In a declarative language, the system administrator

must ensure that the file is not included in the model or

explicitly define that the file must not exist.

In an imperative language, the system administrator

must first write a test to verify if /etc/hosts deny

exists. If the file exists, another instruction is needed

to remove the file. If the system administrator does not

write the first test, the action fails if the file was already

removed.

Orthogonal on the choice of declarative or impera-

tive specification language is the choice of user interface:

does the tool use a command-line or graphical user inter-

face?

Command-line interfaces typically have a steeper

learning curve than graphical approaches but, once mas-

tered, can result in higher productivity. Command-line

interfaces also have the advantage that they can be in-

tegrated with other tools through scripting. In contrast,

system administrators are typically quicker up to speed

with graphical approaches [12].

2.1.2 Abstraction mechanisms

A successful configuration tool is able to make abstrac-

tion of the complexity and the heterogeneity that char-

acterises IT infrastructures where hardware and software

of several vendors and generations are used simultane-

ously [3]. Making abstraction of complexity and hetero-

geneity is very similar to what general purpose program-

ming languages have been doing for decades.

Abstraction from complexity is an important concept

in programming paradigms such as object orientation. In

object orientation, implementation details are encapsu-

lated behind a clearly defined API. Encapsulation is a

concept that is valuable for modeling configurations as

well. Responsibilities and expertise in a team of system

administrators are not defined on machine boundaries,

but based on subsystems or services within the infras-

tructure, for example: DNS or the network layer. Encap-

sulation enables experts to model an aspect of the con-

figuration and expose a well documented API to other

system administrators.

Modern IT infrastructures are very heterogeneous en-

vironments. Multiple generations of software and hard-

ware of several vendors are used in production at the

same time. These heterogeneous “items” need to be con-

figured to work together in one infrastructure.

Based on how a system configuration tool’s language

deals with complexity and heterogeneity, we define six

levels to classify the tool. These levels range from

high-level end-to-end requirements, to low-level bit-

configurations. [3] inspired us in the definition of these

levels.

1. End-to-end requirements: End-to-end require-

ments are typical non-functional requirements [23].

They describe service characteristics that the com-

puting infrastructure must achieve. Figure 2 shows

an example of a performance characteristic for a

mail service. Other types of end-to-end require-

ments deal with security, availability, reliability, us-

ability, . . . One example of an approach that deals

with end-to-end requirements is given in [17]. [17]

uses first-order logic for expressing end-to-end re-

quirements.

2



Repository

sysadmin input Translation agent

Managed device

Deployment agent

Managed device

Deployment agent

Managed device

Deployment agent

profile profile profile

operator

Figure 1: A conceptual architecture of system configuration tool.

2. Instance distribution rules: Instance distribution

rules specify the distribution of instances in the net-

work. We define an instance as a unit of configura-

tion specification that can be decomposed in a set of

parameters. Examples of instances are mail servers,

DNS clients, firewalls and web servers. A web

server, for example, has parameters for expressing

its port, virtual hosts and supported scripting lan-

guages. In Figure 2, the instance distribution rule

prescribes the number of mail servers that need to

be activated in an infrastructure. The need for such

a language is explicited in [3] and [2].

3. Instance configurations: At the level of instance

configurations, each instance is an implementation

independent representation of a configuration. An

example of a tool at this level is Firmato [6]. Fir-

mato allows modeling firewall configurations inde-

pendent from the implementation software used.

4. Implementation dependent instances The level of

implementation dependent instances specifies the

required configuration in more detail. It describes

the configuration specification in terms of the con-

tents of software configuration files. In the example

in Figure 2 a sendmail.cf file is used to describe the

configuration of mail server instances.

5. Configuration files: At the level of configuration

files, complete configuration files are mapped on a

device or set of devices. In contrast with the pre-

vious level, this level has no knowledge of the con-

tents of a configuration file.

6. Bit-configurations: At the level of Bit-

configurations, disk images or diffs between

disk images are mapped to a device or set of

devices. This is the lowest level of configuration

specification. Bit-level specifications have no

knowledge of the contents of configuration files or

the files itself. Examples of tools that operate on

this level are imaging systems like Partimage [21],

g4u [9] and Norton Ghost [24].

Figure 2 shows the six abstraction levels for system

configuration, illustrated with an email setup. The illus-

tration in Figure 2 is derived from an example discussed

in [3]. The different abstraction levels are tied to the con-

text of system configuration. In the context of policy lan-

guages, the classification of policy languages at different

levels of abstraction is often done by distinguishing be-

tween high-level and low-level policies [16,25]. The dis-

tinction of what exactly is a high-level and low-level pol-

icy language is rather vague. In many cases, high-level

policies are associated with the level that we call end-to-

end requirements, while low-level policies are associated

with the implementation dependent instances level. We

believe that a classification tied to the context of system

configuration gives a better insight in the different ab-

straction levels used by system configuration tools.

In conclusion, a system configuration tool automates

the deployment of configuration specifications. At the

level of bit-configurations, deployment is simply copying

bit-sequences to disks, while deploying configurations

specified as end-to-end requirements is a much more

complex process.

2.1.3 Modularization mechanisms

One of the main reason system administrators want to

automate the configuration of their devices is to avoid

repetitive tasks. Repetitive tasks are not cost efficient.

Moreover, they raise the chances of introducing errors.

Repetitive tasks exist in a computer infrastructure be-

cause there are large parts of the configuration that are

shared between a subset (or multiple overlapping sub-

sets) of devices ( [3]). For example, devices need the

same DNS client configuration, authentication mecha-

nism, shared file systems, . . . A system configuration tool

3



1. End-to-end requirements

Configure enough mail servers to guarantee an SMTP response time of X seconds

⇓
2. Instance distribution rules

Configure N suitable machines as a mail server for this cluster

⇓
3. Instance configurations

Configure machines X, Y, Z as a mail server

⇓
4. Implementation dependent instances

Put these lines in sendmail.cf on machines X, Y, Z

⇓
5. Configuration files

Put configuration files on machines

⇓
6. Bit-configurations

Copy disk images onto machines

Figure 2: An example of different abstraction levels of configuration specification for an email setup.

that supports the modularization of configuration chunks

reduces repetition in the configuration specification.

In its most basic form, modularization is achieved

through a grouping mechanism: a device A is declared

to be a member of group X and as a consequence inherits

all system configuration chunks associated with X. More

advanced mechanisms include query based groups, auto-

matic definition of groups based on environmental data

of the target device and hierarchical groups.

An additional property of a modularization mecha-

nism is whether it enables third parties to contribute

partial configuration specifications. Third parties can

be hardware and software vendors or consultancy firms.

System administrators can then model their infrastruc-

ture in function of the abstractions provided by the third-

party modules and reuse the expertise or rely on support

that a third party provides on their configuration mod-

ules.

2.1.4 Modeling of relations

One of the largest contributors to errors and downtime in

infrastructures are wrong configurations [19, 20, 22] due

to human error. An error in a configuration is commonly

caused by an inconsistent configuration. For example, a

DNS service that has been moved to an other server or

moving an entire infrastructure to a new IP range. Ex-

plicitly modeling relations that exist in the network helps

keeping a configuration model consistent.

Modeling relations is, like the modularization prop-

erty of Section 2.1.3, a mechanism for minimizing re-

dundancy in the configuration specification. When rela-

tions are made explicit, a tool can automatically change

configurations that depend on each other. For example,

when the location of a DNS server changes and the re-

lation between the DNS server and clients is modeled

in the configuration specification, a system configuration

tool can automatically adapt the client configurations to

use the new server. Again, modeling relations reduces

the possibility of introducing errors in the configuration

specification.

To evaluate how well a tool supports modeling of rela-

tions, we describe two orthogonal properties of relations:

their granularity and their arity.

1. granularity: In Section 2.1.2, we defined an in-

stance as a unit of configuration specification that

can be decomposed in a set of parameters. Exam-

ples of instances are mail servers, DNS clients, fire-

walls and web servers. A web server, for example,

has parameters for expressing its port, virtual hosts

and supported scripting languages. Based on this

definition, we can classify relations in three cate-

gories: (1) relations between instances, (2) relations

between parameters and (3) relations between a pa-

rameter and an instance.

(a) Instance relations represent a coarse grained

dependency between instances. Instance de-

pendencies can exist between instances on the

same device, or between instances on different

devices. An example of the former is the de-

pendency between a DNS server instance and

the startup system instance on a device: if a

startup system instance is not present on a de-

vice (for example: /etc/init.d), the DNS server

instance will not work. An example of depen-

dencies between instances on different devices

4



is the dependency between DNS servers and

their clients.

(b) Parameter relations represent a dependency

between parameters of instances. An example

of this is a CNAME record in the DNS system:

every CNAME record also needs an A record.

(c) Parameter - instance relations are used to

express a relation between an individual pa-

rameter and an instance. For example a mail

server depends on the existence of an MX

record in the DNS server.

Note that it depends on the abstraction level of a tool

which dependencies it can support. The two low-

est abstraction layers in Figure 2, configuration files

and bit-configurations, have no knowledge of pa-

rameters and as a consequence, they can only model

instance dependencies.

2. arity: Relations can range from one-to-one to

many-to-many relationships. A simple one-to-one

relationship is a middleware platform depending on

a language runtime. A many-to-many relationship

is for example the relation between all DNS clients

and DNS servers in a network. A system configura-

tion tool can also provide support facilities to query

and navigate relations in the system configuration

specification. An example that motivates such facil-

ities for navigating and querying relations involves

an Internet service. For example, a webservice runs

on a machine in the DMZ. This DMZ has a dedi-

cated firewall that connects to the Internet through

an edge router in the network. The webservice con-

figuration has a relation to the host it is running on

and a relation to the “Internet”. The model also con-

tains relations that represent all physical network

connections. Using these relations, a firewall spec-

ification should be able to derive firewall rules for

the webservice host, the DMZ router and the edge

router [6].

An extra feature is the tool’s ability to support the

modeling of constraints on relations. We distinguish two

types of constraints: validation constraints and genera-

tive constraints.

1. validation constraints are expressions that need to

hold true for your configuration. Because of policy

or technical factors, the set of allowable values for a

relation can be limited. Constraints allow to express

these limitations. Examples of such limitations are:

• A server can only serve 100 clients.

• Clients can only use the DNS server that is

available in their own subnet.

• Every server needs to be configured redun-

dantly with a master and a slave server.

2. generative constraints are expressions that leave

a degree of freedom between a chunk of config-

uration specification and the device on which this

chunk needs to be applied. Languages without sup-

port for generative constraints need a 1-1 link be-

tween a chunk of configuration specification and the

device on which is needs to be applied. Languages

with support for generative constraints leave more

degrees of freedom for the tool. An example of a

generative constraint is: “One of the machines in

this set of machines needs to be a mail server”.

2.2 Deployment properties

2.2.1 Scalability

Large infrastructures are subject to constant change in

their configuration. System configuration tools must deal

with these changes and be able to quickly enforce the

configuration specification, even for large infrastructures

with thousands of nodes, ten thousands of relations and

millions of parameters.

Large infrastructures typically get more benefit of us-

ing a higher level specification (see Figure 2). How-

ever, the higher-level the specification, the more process-

ing power is needed to translate this high level specifi-

cation to enforceable specifications on all managed de-

vices. System configuration tools must find efficient al-

gorithms to deal with this problem or restrict the expres-

siveness of the system configuration tool.

2.2.2 Workflow

Workflow management deals with planning and execu-

tion of (composite) changes in a configuration specifica-

tion. Changes can affect services distributed over mul-

tiple machines and with dependencies on other services

[3, 18].

One aspect of workflow management is state transfer.

The behavior of a service is not only driven by its config-

uration specification, but also by the data it uses. In the

case of a mail server, the data are the mail spool and mail-

boxes, while web pages serve as data for a web server.

When upgrading a service or transferring a service to an-

other device, one has to take care that the state (collection

of data) remains consistent in the face of changes.

Another aspect of workflow management is the coor-

dination of distributed changes. This has to be done very

carefully as not to disrupt operations of the computing in-

frastructure. A change affecting multiple machines and

services has to be executed as a single transaction. For

example, when moving a DNS server from one device to

5



another, one has to first activate the new server and make

sure that all clients use the new server before deactivat-

ing the old server. For some services, characteristics of

the managed protocol can be taken into account to make

this process easier. For example, the SMTP protocol re-

tries for a finite span of time to deliver a mail when the

first attempt fails. A workflow management protocol can

take advantage of this characteristic by allowing the mail

server to be unreachable during the change.

A last aspect of workflow management is non-

technical: if the organizational policy is to use mainte-

nance windows for critical devices, the tool must under-

stand that changes to these critical devices can influence

the planning and execution of changes on other devices.

2.2.3 Deployment architecture

The typical setup of a system configuration tool is illus-

trated in Figure 1. A system configuration tool starts

from a central specification for all managed devices.

Next, it (optionally) processes this specification to device

profiles and distributes these profiles (or the full spec-

ification) to every managed device. An agent running

on the device then enforces the device’s profile. For the

rest of this section, we define the processing step from a

central specification to device profiles as the translation

agent. The agent running on every device is defined as

the deployment agent.

System configuration tools differentiate their deploy-

ment architecture along two axises: 1. the architecture of

the translation agent and 2. whether they use pull or push

technology to distribute specifications .

1. architecture of translation agent: Possible ap-

proaches for the architecture of the translation agent

can be classified in three categories, based on the

number of translation agents compared to the num-

ber of managed devices: centralized management,

weakly distributed management and strongly dis-

tributed management [15].

(a) centralized management is the central server

approach with only one translation agent.

When dealing with huge networks, the central

server quickly becomes a bottleneck. This is

certainly the case when a system configuration

tool uses a high-level abstraction, as the algo-

rithm for computing a device’s configuration

will become complex.

(b) weakly distributed management is an ap-

proach where multiple translation agents are

present in the network. This approach can

be realized for many centralized management

tools by replicating the server and providing a

shared policy repository for all servers. An-

other possible realization of this approach is

organizing translation agents hierarchically.

(c) strongly distributed management systems

use a separate translation agent for each man-

aged device. The difficulty with this ap-

proach is enforcing inter-device relations be-

cause each device is responsible for translat-

ing its own configuration specification. As a

consequence, devices need to cooperate with

each other to ensure consistency.

2. push or pull: In all approaches, each managed de-

vice contains a deployment agent that can be push

or pull based. In the case of a pull based mech-

anism, the deployment agent needs to contact the

translation agent to fetch the translated configura-

tions. In a push based mechanism, the translation

agent contacts the deployment agent. Deployment

agents also have to be authenticated and their capa-

bilities for fetching policies or configurations have

to be limited. Configurations often contain sensi-

tive information like passwords or keys and expos-

ing this information to all deployment agents intro-

duces a security risk.

2.2.4 Platform support

Modern infrastructures contain a variety of computing

platforms: Windows/Unix/Mac OS X servers, but also

desktop machines, laptops, handhelds, smartphones and

network equipment. Even in relatively homogeneous

environments, we can not assume that all devices run

the same operating system: operating systems running

on network equipment are fundamentally different than

those running on servers/desktops and smartphones are

yet another category of operating systems.

Good platform support or interaction with other tools

is essential for reducing duplication in the configuration

specification. Indeed, many relations exist between de-

vices running different operating systems. For example:

a server running Unix and a router/firewall running Cisco

IOS. If different tools are used to manage the server and

router, relations between the router and server need to

be duplicated in both tools which in turn introduces con-

sistency problems if one of the relations changes. An

example of such a relation is the the firewall rule on a

Cisco router that opens port 25 and the SMTP service on

a Unix server.

6



2.3 Specification management properties

2.3.1 Usability

We identify three features concerning usability of a sys-

tem configuration tool: 1. ease of use of the language,

2. support for testing specifications and, 3. monitoring

the infrastructure.

1. ease of use of the language: The target audience

of a system configuration tool are system adminis-

trators. The language of the system configuration

tool should be powerful enough to replace their ex-

isting tools, which are mostly custom tools. But it

should also be easy enough to use, so the average

system administrator is able to use it. Good system

administrators with a good education [13] are al-

ready scarce, so a system configuration tool should

not require even higher education.

2. support for testing specifications: To understand

the impact of a change in the specification, the sys-

tem configuration tool can provide support for test-

ing specifications through something as trivial as a

dry-run mode or more complex mechanisms like the

possibility to replicate parts of the production in-

frastructure in a (virtualized) testing infrastructure

and testing the changes in that testing infrastructure

first [5].

3. monitoring the infrastructure: A system config-

uration tool can provide an integrated (graphical)

monitoring system and/or define a (language-based)

interface for other tools to check the state of an

infrastructure. A language-based interface has the

advantage that multiple monitoring systems can be

connected with the system configuration tool. A

monitoring system enables the user to check the cur-

rent state of the infrastructure and the delta with the

configuration specification.

2.3.2 Versioning support

Some system configuration tools store their specification

in text files. For those tools, a system configuration spec-

ification is essentially code. As a consequence, the same

reasoning to use a version control system for source code

applies. It enables developers and system administrators

to document their changes and track them through his-

tory. In a configuration model this configuration history

can also be used to rollback configuration changes and it

makes sure an audit trail of changes exists.

The system configuration tool can opt to implement

versioning of configuration specification using a custom

mechanism or, when the specification is in text files,

reuse an external version control system and make use

of the hooks most generic version control systems pro-

vide.

2.3.3 Specification documentation

Usability studies [4, 12] show that a lot of time of a sys-

tem administrator is spent on communication with other

system administrators. These studies also show that a

lot of time is lost because of miscommunication, where

discussions and solutions are based on wrong assump-

tions. A system configuration tool that supports struc-

tured documentation can generate documentation from

the system configuration specification itself and thus re-

move the need to keep the documentation in sync with

the real specification.

2.3.4 Integration with environment

The infrastructure that is managed by the system con-

figuration tool is not an island: it is connected to other

networks, is in constant use and requires data from

other sources than the system configuration specifica-

tion to operate correctly. As a consequence, a sys-

tem administrator may need information from external

databases in its configuration specification (think LDAP

for users/groups) or information about the run-time char-

acteristics of the managed nodes. A system configuration

tool that leverages on these existing sources of informa-

tion integrates better with the environment in which it is

operating because it does not require all existing infor-

mation to be duplicated in the tool.

2.3.5 Conflict management

A configuration specification can contain conflicting def-

initions, so a system configuration tool should have a

mechanism to deal with conflicts. Despite the presence

of modularization mechanisms and relations modeling,

a configuration specification can still contain errors, be-

cause it is written by a human. In case of such an error,

a conflict is generated. We distinguish two types of con-

flicts: application specific conflicts and contradictions in

the configuration specification, also called modality con-

flicts [14].

1. application specific conflicts: An example of an

application specific conflict is the specification of

two Internet services that use the same TCP port. In

general, application specific conflicts can not be de-

tected in the configuration specification. Examples

of research on application specific protocols can be

found in [10] and [7], where conflict management

for IPSec and QoS policies is described.

2. modality conflicts: An example of a modality con-

flict is the prohibition and obligation to enable an

7



instance (for example a mail server) on a device. In

general, modality conflicts can be detected in the

configuration specifications.

When a configuration specification contains rules that

cause a conflict, this conflict should be detected and acted

upon.

2.3.6 Workflow enforcement

In most infrastructures a change to the configuration will

never be deployed directly on the infrastructure. A pol-

icy describes which steps each update need to go through

before it can be deployed on the production infrastruc-

ture. These steps can include testing on a development

infrastructure, going through Q&A, review by a security

specialist, testing on a exact copy of the infrastructure

and so on. Exceptions on such policies can exist because

not every update can go through all stages, updates can

be so urgent that they need to be allowed immediately,

but only with approval of two senior managers. A sys-

tem configuration tool that provides support for model-

ing these existing workflows can adapt itself to the habits

and processes of the system administrators and will thus

be easier to use than system configuration tools without

this support.

2.3.7 Access control

If an infrastructure is configured and managed based on

a system configuration specification, control of this spec-

ification implies control of the full infrastructure. So

it might be necessary to restrict access to the configu-

ration specification. This is a challenge, especially in

large infrastructures where a lot of system administrators

with different responsibilities need to make changes to

this specification. A lot of these large infrastructures are

also federated infrastructures, so one specification can be

managed from different administrative domains.

Authenticating and authorizing system administrators

before they are making changes to the system configu-

ration can prevent a junior system administrator who is

only responsible for the logging infrastructure to make

changes to other critical software running on the man-

aged devices.

Many version control systems can enforce access con-

trol but the level on which the authorisation rules are

expressed differs from the abstraction level of the spec-

ification itself. In most systems, this is based on the

path of the file that contains the code or specification.

But in most programming languages and system config-

uration tools, the relation between the name of the file

and the contents of the file is very limited or even non-

existing. For example an authorisation rule could express

that users of the logging group should only set parame-

ters of object from types in the logging namespace. With

path-based access control this becomes: users of group

logging should only access files in the /config/logging

directory. The latter assumes that every system admin-

istrator uses the correct files to store configuration speci-

fications.

2.4 Support

2.4.1 Available documentation

To quickly gain users, tools have to make their barriers

to entry as low as possible. A “ten minutes” tutorial is

often invaluable to achieve this. When users get more

comfortable with the tool, they need extensive reference

documentation that describes all aspects of the tool in

detail alongside documentation that uses a more process-

oriented approach covering the most frequent use cases.

Thus, documentation is an important factor in the

adoption process of a tool.

2.4.2 Commercial support

Studies [13] show that the need for commercial support

varies amongst users. Unix users don’t call support lines

as often as their Window-colleagues. The same holds

true for training opportunities. In all cases, the fact that

there is a company actively developing and supporting

a tool helps to gain trust amongst system administrators

and thus increases adoption.

2.4.3 Community

In our online society, community building is integral part

of every product or service. Forums, wiki’s and social

networks can provide an invaluable source of informa-

tion that complements the official documentation of a

tool and introduces system administrators to other users

of their preferred tool.

2.4.4 Maturity

Some organizations prefer new features above stability,

and others value stability higher than new features There-

fore, it is important to know what the maturity of the

tool is: Is it a new tool with some cutting edge features

and frequent syntax changes in its language or a well-

established tool with infrequent updates?

3 System configuration tools comparison

In this section we provide a summary of our evaluation

of eleven tools. These tools consist of commercial and

open-source tools. The set of commercial tools is based

8



Tool Version

BCFG2 1.0.1

Cfengine 3 3.0.4

Opscode Chef 0.8.8

Puppet 0.25

LCFG 20100503

BMC Bladelogic Server Automation

Suite

8

CA Network and Systems Manage-

ment (NSM)

R11.x

IBM Tivoli System Automation for

Multiplatforms

4.3.1

Microsoft Server Center Configuration

Manager (SCCM)

2007 R2

HP Server Automation System 2010/08/12

Netomata Config Generator 0.9.1

Table 1: Version numbers of the set of evaluated tools.

on market research reports [8, 11] and consists of BMC

Bladelogic Server Automation Suite, Computer Asso-

ciates Network and Systems Management, IBM Tivoli

System Automation for Multiplatforms, Microsoft Sys-

tem Center Configuration Manager and HP Server Au-

tomation System. For the open-source tools we selected

a set of tools that were most prominently present in dis-

cussions at the previous LISA edition and referenced

in publications. This set of tools consists of BCFG2,

Cfengine3, Chef, Netomata, Puppet and LCFG.

Due to space constraints we limit the results of our

evaluation to a summary of our findings for each prop-

erty. The full evaluation of each tool is available on our

website at http://distrinet.cs.kuleuven.

be/software/sysconfigtools. We intend to

keep the evaluations on this website in sync with ma-

jor updates of each tool. For this paper we based our

evaluation on the versions of each tool listed in Table 1.

3.1 Specification properties

3.1.1 Specification paradigm

Language type Cfengine, Puppet, Tivoli, Netomata

and Bladelogic use a declarative DSL for their input

specification. BCFG2 uses a declarative XML specifi-

cation. Chef on the other hand uses an imperative ruby

DSL. LCFG uses a DSL that instantiates components and

set parameters on them. CA NSM, HP Server Automa-

tion and MS SCCM are like LCFG limited to setting pa-

rameters on their primitives.

User interface As with the language type, the tools

can be grouped in open-source and commercial tools.

The open-source tools focus on command-line interface

while the commercial tools also provide a graphical in-

terfaces. Tools such as Cfengine, Chef and Puppet pro-

vide a web-interface that allows to manage some aspects

with a graphical interface. In the commercial tools all

management is done through coommand-line and graph-

ical interfaces.

3.1.2 Abstraction mechanisms

3.1.3 Modularization mechanisms

Type of grouping All tools provide a grouping mech-

anism for managed devices or resources. HP Server Au-

tomation, Tivoli and Netomata only provide static group-

ing. CA NSM and BCFG allow static grouping and

hierarchies of groups. LCFG supports limited static,

hierarchical and query based grouping through the C-

preprocessor. Bladelogic supports static, hierarchical

and query based groups. Cfengine and Puppet use the

concept of classes to group configuration. Classes can

include other classes to create hierarchies. Cfengine can

assign classes statically or conditionally using expres-

sions. Puppet can assign classes dynamically using ex-

ternal tools. Chef and MS SCCM can define static groups

and groups based on queries.

Configuration modules BCFG, HP Server Automa-

tion, MS SCCM and Netomata have no support for

configuration modules. Bladelogic can parametrise re-

sources based on node characteristics to enable reuse.

Tivoli includes sets of predefined policies that can be

used to manage IBM products and SAP. LCFG can use

third party components that offer a key-value interface

to other policies, CA NSM provides a similar approach

for third party agents that manage a device or subsystem.

Cfengine uses bundles, Chef uses cookbooks and Puppet

uses modules to distribute a reusable configuration spec-

ification for managing certain subsystems or devices.

3.1.4 Modeling of relations

BCFG, CA NSM, HP Server Automation and MS SCCM

have no support for modeling relations in a configura-

tion specification. Bladelogic can model one-to-one de-

pendencies between scripts that need to be executed as a

prerequisite, these are instance relations. Cfengine sup-

ports one-to-one, one-to-many and many-to-many rela-

tions between instances, parameters and between param-

eters and instances. On these relations generative con-

straints can be expressed. Chef can express many-to-

many dependency relations between instances. Tivoli

can also express relations of all arities between instances

and parameters and just like Cfengine express generative

9



constraints. LCFG can express one-to-one and many-to-

many relations using spanning maps and references be-

tween instances and parameters. Netomata can model

one-to-one network links and relations between devices.

Finally Puppet can define one-to-many dependency rela-

tions between instances. The virtual resource functional-

ity can also be used to define one-to-many relations be-

tween all instances.

3.2 Deployment properties

3.2.1 Scalability

The only method to evaluate how well a tool scales is to

test each tool in a deployment and scale the number of

managed nodes. In this evaluation we did not do this.

To have an indication of the scalability we searched for

cases of real-life deployments and divided the tools in

three groups based on the number of managed devices

and a group of tools for which no deployment informa-

tion was available.

less than 1000 BCFG2

between 1000 and 10k LCFG and Puppet

more than 10k Bladelogic and Cfengine,

unknown CA NSM, Chef, HP Server Automation,

Tivoli, MS SCCM and Netomata,

3.2.2 Workflow

BMC Bladelogic and HP Server Automation integrate

with an orchestration tool to support coordination of dis-

tributed changes. Cfengine and Tivoli can coordinate

distributed changes as well. MS SCCM and CA NSM

support maintenance windows. Distributed changes in

Puppet can be sequenced by exporting and collecting re-

sources between managed devices. BCFG2, LCFG, Chef

and Netomata have no support for workflow.

3.2.3 Deployment architecture

Translation agent Cfengine uses a strongly distributed

architecture where the emphasis is on the agents that run

on each managed device. The central server is only used

for coordination and for policy distribution. Bladelogic,

CA NSM and MS SCCM use one or more central servers.

BCFG2, Chef, HP Server Automation, Tivoli, Netomata

and Puppet use a central server. Chef and Puppet can

also work in a standalone mode without central server to

deploy a local specification.

Tool Platform support

BCFG2 *BSD, AIX, Linux, Mac OS

X and Solaris

Cfengine 3 *BSD, AIX, HP-UX, Linux,

Mac OS X, Solaris and Win-

dows

Opscode Chef *BSD, Linux, Mac OS X, So-

laris and Windows

Puppet *BSD, AIX, Linux, Mac OS

X, Solaris

LCFG Linux (Scientific Linux)

BMC Bladelogic

Server Automation

Suite

AIX, HP-UX, Linux, Net-

work equipment, Solaris and

Windows

CA Network and

Systems Manage-

ment (NSM)

AIX, HP-UX, Linux, Mac

OS X, Network equipment,

Solaris and Windows

IBM Tivoli System

Automation for Mul-

tiplatforms

AIX, Linux, Solaris and Win-

dows

Microsoft Server

Center Configuration

Manager (SCCM)

Windows

HP Server Automa-

tion System

AIX, HP-UX, Linux, Net-

work equipment, Solaris and

Windows

Netomata Config

Generator

Network equipment

Table 2: Version information for the set of evaluated

tools.

Distribution mechanism The deployment agent of

BCFG2, Cfengine, Chef, LCFG, MS SCCM and Puppet

pull their specification from the central server. Bladel-

ogic, CA NSM, HP Server Automation and Tivoli push

the specification to the deployment agents. The central

servers of Chef, MS SCCM and Puppet can notify the de-

ployment agents that a new specification can be pulled.

Netomata relies on external tools for distribution.

3.2.4 Platform support

The platforms that each tool supports is listed in Table 2.

3.3 Specification management properties

3.3.1 Usability

Usability Usability is a very hard property to quantify.

We categorised the tools in easy, medium and hard. We

determined this be assessing how easy a new user would

be able to use and learn a tool. We tried to be as ob-

jective as possible to determine this but this part of the

10



evaluation is subjective. We found Bladelogic, CA NSM,

HP Server Automation, Tivoli and MSCCM easy to start

using. The usability of Cfengine, LCFG and Puppet is

medium, partially because of the custom syntax. Pup-

pet also has a lot of confusing terminology but tools such

as puppetdoc and puppetca make up for it so we did not

classify it as hard to use. We found BCFG2 hard to use

because of the XML input and the specification is dis-

tributed in a lot of different directories because of their

plugin system. Chef is also hard to use because of its syn-

tax and the use of a lot of custom terminology. Netomata

is also hard to use because of its very concise syntax but

powerful language.

Support for testing specifications BCFG2, Cfengine,

LCFG and Puppet have a dry run mode. Netomata is in-

herently dry-run because it has no deployment part. Chef

and Puppet support multiple environments such as test-

ing, staging and production.

Monitoring the infrastructure BCFG2, Bladelogic,

HP Server Automation, CA NSM, Tivoli, LCFG, Pup-

pet and MS SCCM have various degrees of support for

reporting about the deployment and collecting metrics

from the managed devices. The commercial tools have

more extensive support for this. Chef, LCFG, Puppet

and Netomata can automatically generate the configura-

tion for monitoring systems such as Nagios.

3.3.2 Versioning support

BCFG2, Bladelogic, Cfengine, Chef, Tivoli, LCFG, Ne-

tomata and Puppet use a textual input to create their con-

figuration specification. This textual input can be man-

aged in an external repository such as subversion or git.

CA NSM and MS SCCM have internal support for policy

versions. The central Chef server also maintains cook-

book version information. For HP Server Automation it

is unclear what is supported.

3.3.3 Specification documentation

BCFG2, Bladelogic, Chef, HP Server Automation,

Tivoli, LCFG, Netomata and Puppet specifications can

include free form comments. Cfengine can include struc-

tured comments that are used to generate documentation.

Because Chef uses a Ruby DSL, Rdoc can also be used

to generated documentation from structured comments.

Puppet can generate reference documentation for built-

in types from the comments included in the source code.

No documentation support is available in CA NSM and

MS SCCM.

3.3.4 Integration with environment

BCFG2, Cfengine, Chef, Tivoli, LCFG, MS SCCM and

Puppet can discover runtime characteristics of managed

devices which can be used when the profiles of each de-

vice are generated. Bladelogic can interact with external

data sources like Active Directory.

3.3.5 Conflict management

BCFG and Puppet can detect modality conflict such as

a file managed twice in a specification. Cfengine3 also

detects modality conflicts such as an instable configura-

tion that does not converge. Bladelogic and CA NSM

have no conflict management support. Puppet also sup-

ports modality conflicts by allowing certain parameters

of resources to be unique within a device, for example

the filename of file resources.

3.3.6 Workflow enforcement

None of the evaluated tools have integrated support for

enforcing workflows on specification updates. Bladel-

ogic can tie in a change management system that defines

workflows.

3.3.7 Access control

The tool that support external version repositories can

reuse the path based access control of that repository.

BMC, CA NSM, HP Server Automation, Tivoli, MS

SCCM and the commercial version of Chef allow fine

grained access control on “resources” in the specifica-

tion.

3.4 Support

3.4.1 Available documentation

Bladelogic, CA NSM and HP Server Automation pro-

vide no public documentation. IBM Tivoli provides

extensive documentation in their evaluation download.

BCFG2, Cfengine, Chef, LCFG, MS SCCM and Puppet

all provide extensive reference documentation, tutorials

and examples on their websites. Netomata provides lim-

ited examples and documentation on their website and

Wiki.

3.4.2 Commercial support

Not very surprising the commercial tools all provide

commercial support. But most open-source tools also

have a company behind them that develops the tool and

provides commercial support. LCFG and BCFG2 have

both been developed in academic institutes and have no

commercial support.

11



3.4.3 Community

Cfengine, Chef, Tivoli, MS SCCM and Puppet have large

and active communities. BCFG2 has a small but active

community. CA NSM has a community but it is very

scattered. BMC, Netomata and LCFG have small and

not very active communities. For HP Server Automation

we were unable to determine if a community exists.

3.4.4 Maturity

Some of the evaluated tools such as Tivoli and CA NSM

are based on tools that exist for more than ten years,

while other tools such as Chef and Netomata are as

young as two years. However no relation between the

feature set of a tool and their maturity seems to exist.

4 Putting the framework to use

4.1 How do I choose a tool for my environ-

ment?

Our framework and tool evaluations can help you to

quickly trim down the list of tools to the tools that match

your requirements. You list your required features, see

which tools support these features and you have a lim-

ited list of tools to continue evaluating. In fact, our

website at http://distrinet.cs.kuleuven.

be/software/sysconfigtools provides a handy

wizard to help you with this process.

The limitation of our framework is that it can not cap-

ture all factors that influence the process for choosing

a system configuration tool: 1. We limit our evaluation

to system configuration and do not include adjacent pro-

cesses like provisioning, 2. Politics often play an impor-

tant role when deciding on a tool, 3. your ideal solution

might be too pricey, or 4. other, more subjective, factors

come into play.

For all these reasons, we see our framework more as an

aid that can quickly give you a high-level overview of the

features of the most popular tools. Based on our frame-

work, you can decide which tools deserve more time in-

vestment in your selection process.

4.2 How do I evaluate another tool using

this framework?

We welcome clarifications to our existing evaluations

and are happy to add other tool evaluations on the web-

site. Internally, the website defines our framework as

a taxonomy and every property is a term in this taxon-

omy. We associated a description with every term which

should allow you to asses whether the property is sup-

ported by the tool you want to evaluate. Feel free to con-

tact us for an account on the website so that you can add

your evaluated tool.

5 Areas for improvement

Based on our evaluations in Section 3, we identify six

areas for improvement in the current generation of tools.

We believe that tools who address these areas will have

a significant competitive advantage over other tools. The

areas are:

1. Create better abstractions: Very few tools support

creating higher-level abstractions like those men-

tioned in Figure 2 on page 4. If they do, those

capabilities are hidden deep in the tool’s documen-

tation and not used often. We believe this is a

missed opportunity. Creating higher-level abstrac-

tions would enable reuse of configuration specifica-

tions and lower the TCO of a computer infrastruc-

ture. To realize this, the language needs to (a) sup-

port primitives that promote reuse of configuration

specifications like parametrization and modulariza-

tion primitives, (b) support constraints modeling

and enforcement, (c) deal with conflicts in the con-

figuration specification and (d) model and enforce

relations.

2. Adapt to the target audience’s processes: A tool

that adapts to the processes for system administra-

tion that exist in an organization is much more intu-

itive to work with than a tool that imposes its own

processes on a system administrators. A few ex-

amples of how tools could support the existing pro-

cesses better:

• structured documentation and knowledge

management: Cfengine3 is the only tool in our

study that supports structured documentation

in the input specification and has a knowledge

management system that uses this structured

documentation. Yet, almost all system admin-

istrators document their configurations. Some

do it in comments in the configuration specifi-

cation, some do it in separate files or in a fully-

fledged content management system. In all

cases, documentation needs to be kept in sync

with the specification. If you add structured

documentation to the configuration specifica-

tion, the tool can generate the documentation

automatically.

• integrate with version control systems: A lot

of system administrator teams use a version

control system to manage their input specifica-

tion. It allows them to quickly rollback a con-

figuration and to see who made what changes.

12



Yet, very few tools provide real integration

with those version control systems. A tool

could quickly set up a virtualized test infras-

tructure for a branch that I created in my con-

figuration. I would be able to test my config-

uration changes before I merge them with the

main branch in the version control system that

gets deployed on my real infrastructure.

• semantic access controls: In a team of system

administrators, every admin has his own ex-

pertise: some are expert in managing network-

ing equipment, other know everything from

the desktop environment the company sup-

ports, others from the web application plat-

form, . . . . As a consequence, responsibilities

are assigned based on expertise and this ex-

pertise does not always aligns with machine

boundaries. The ability to specify and en-

force these domains of responsibility will pre-

vent that for example a system administrator

responsible for the web application platform

modifies the mail infrastructure setup.

• flexible workflow support: Web content man-

agement systems like Drupal have support for

customized workflows: If a junior editor sub-

mits an article, it needs to be reviewed by two

senior editors, all articles need to be reviewed

by one of the senior editors, . . . . The same

type of workflows exist in computer infras-

tructures: junior system administrators need

the approval from a senior to roll out a change,

all changes in the DMZ needs to be approved

by one of the managers and a senior system

administrator, . . . . Enforcing such workflows

would lower the number of accidental errors

that are introduced in the configuration and

aligns the tool’s operation with the existing

processes in the organization.

3. Support true integrated management: We would

like to see a tool that provides a uniform interface

to manage all types of devices that are present in a

computer infrastructure: desktops, laptops, servers,

smartphones and network equipment. Why would

this be useful? When you have one tool, with one

language that can specify the configuration of all de-

vices, every system administrator speaks the same

language and thinks in the same primitives: whether

they are responsible for the network equipment, the

data center or your desktops. The tool can then also

support the specification and enforcement of rela-

tionships that cross platform boundaries: the de-

pendencies between your web server farm and your

Cisco load balancer, dependencies between desk-

tops and servers, dependencies between your fire-

wall and your DMZ servers, . . . . The current gen-

eration of tools either focuses on a single platform

(Windows or Unix), focuses on one type of devices

(servers) or needs different products with different

interfaces for your devices (one product for network

equipment, one for servers and one for desktops).

4. Become more declarative: The commercial tools

in our study all start from scripting functional-

ity: the system administrator can create or reuse

a set of scripts and the tool provides a script-

management layer. Research and experience with

many open-source tools has shown that declarative

specifications are far more robust than the tradi-

tional paradigm of imperative scripting. Imperative

scripts have to deal with all possible states to be-

come robust which results in a lot of if-else state-

ments and spaghetti-code.

5. Take the CIO’s agenda into account: Most open-

source tools in our study have their origin in

academia. As a result, they lag behind on the fea-

tures that are on the CIO’s checklists when decid-

ing on a system configuration tool: (a) easy to use

(graphical) user interface, reporting, (b) auditing,

compliance, reporting capabilities in nice graphs

and (c) access control support.

6. Know that a system is software + configuration +

data: No tool has support for the data that is on the

managed machines. Take a web server as example:

the web server is software, that needs configuration

files and serves data. System configuration tools can

manage the software and configuration but have no

support for state transfer: if my tool moves the web

server to another node, I need to move the data man-

ually.

6 Conclusion

We believe that this paper and our website can help

system administrators make a more informed, and as

a consequence better, choice for a system configura-

tion tool. Our framework is not a mechanical tool:

you can not check off the things you need and it will

give you the perfect tool for you. We see it more as

one of the decision factors that will save you a lot of

time in the process of researching different tools: it

quickly gives you a high-level overview of the features

of each tool and enables you to trim down the list of

possibilities for your use case. We will keep the web-

site at http://distrinet.cs.kuleuven.be/

software/sysconfigtools up to date when new

13



versions of tools are released and are open for adding

new tool evaluations to our website.

7 Acknowledgements

We would like to thank our shepherd, Eser Kandogan

for his comments on the draft versions of the paper and

Mark Burgess for sharing his insights in the constraints-

part of our framework. We would also like thank our

anonymous reviewers and all people who commented on

the tool evaluations on the website.

This research is partially funded by the Agency for In-

novation by Science and Technology in Flanders (IWT),

by the Interuniversity Attraction Poles Programme Bel-

gian State, Belgian Science Policy, and by the Research

Fund K.U.Leuven.

References

[1] ALVA COUCH, JOHN HART, E. G. I., AND KALLAS, D. Seek-

ing closure in an open world: A behavioral agent approach to

configuration management. In Proceedings of the 17th Large In-

stallations Systems Administration (LISA) conference (Baltimore,

MD, USA, 10/2003 2003), Usenix Association, Usenix Associa-

tion, p. 125–148.

[2] ANDERSON, P., AND COUCH, A. What is this thing called “sys-

tem configuration”? LISA Invited Talk, November 2004.

[3] ANDERSON, P., AND SMITH, E. Configuration tools: Working

together. In Proceedings of the Large Installations Systems Ad-

ministration (LISA) Conference (Berkeley, CA, December 2005),

Usenix Association, pp. 31–38.

[4] BARRETT, R., KANDOGAN, E., MAGLIO, P. P., HABER, E. M.,

TAKAYAMA, L. A., AND PRABAKER, M. Field studies of

computer system administrators: analysis of system management

tools and practices. In Proceedings of the 2004 ACM conference

on Computer supported cooperative work (New York, NY, USA,

2004), ACM, ACM, pp. 388–395.

[5] BARRETT, R., MAGLIO, P. P., KANDOGAN, E., AND BAILEY,

J. Usable autonomic computing systems: The system admin-

istrators’ perspective. Advanced Engineering Informatics 19, 3

(2005), 213 – 221. Autonomic Computing.

[6] BARTAL, Y., MAYER, A., NISSIM, K., AND WOOL, A. Fir-

mato: A novel firewall management toolkit. ACM Trans. Comput.

Syst. 22, 4 (2004), 381–420.

[7] CHARALAMBIDES, M., FLEGKAS, P., PAVLOU, G., BAN-

DARA, A. K., LUPU, E. C., RUSSO, A., DULAY, N., SLO-

MAN, M., AND RUBIO-LOYOLA, J. Policy conflict analysis for

quality of service management. In POLICY ’05: Proceedings

of the Sixth IEEE International Workshop on Policies for Dis-

tributed Systems and Networks (POLICY’05) (Washington, DC,

USA, 2005), IEEE Computer Society, pp. 99–108.

[8] COLVILLE, R. J., AND SCOTT, D. Vendor Landscape: Server

Provisioning and Configuration Management. Gartner Research,

May 2008.

[9] FEYRER, H. g4u homepage. http://www.feyrer.de/g4u/.

[10] FU, Z. J., AND WU, S. F. Automatic generation of ipsec/vpn

security policies in an intra-domain environment, 2001.

[11] GARBANI, J.-P., AND O’NEILL, P. The IT Management Soft-

ware Megavendors. Forrester, August 2009.

[12] HABER, E. M., AND BAILEY, J. Design guidelines for system

administration tools developed through ethnographic field stud-

ies. In CHIMIT ’07: Proceedings of the 2007 symposium on

Computer human interaction for the management of information

technology (New York, NY, USA, 2007), ACM, ACM, p. 1.

[13] HREBEC, D. G., AND STIBER, M. A survey of system admin-

istrator mental models and situation awareness. In SIGCPR ’01:

Proceedings of the 2001 ACM SIGCPR conference on Computer

personnel research (New York, NY, USA, 2001), ACM, ACM,

pp. 166–172.

[14] LUPU, E., AND SLOMAN, M. Conflict analysis for management

policies. In Proceedings of the Vth International Symposium on

Integrated Network Management IM’97 (May 1997), Chapman

& Hall, pp. 1–14.

[15] MARTIN-FLATIN, J.-P., ZNATY, S., AND HUBAUX, J.-P. A

survey of distributed enterprise network andsystems management

paradigms. J. Netw. Syst. Manage. 7, 1 (1999), 9–26.

[16] MOFFETT, J. D. Requirements and policies. In Proceedings of

the Policy Workshop (November 1999).

[17] NARAIN, S. Towards a foundation for

building distributed systems via configuration.

http://www.argreenhouse.com/papers/narain/Service-Grammar-

Web-Version.pdf, 2004.

[18] OPPENHEIMER, D. The importance of understanding distributed

system configuration. In Proceedings of the 2003 Conference on

Human Factors in Computer Systems workshop (April 2003).

[19] OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. A.

Why do internet services fail, and what can be done about it? In

USITS’03: Proceedings of the 4th conference on USENIX Sympo-

sium on Internet Technologies and Systems (Berkeley, CA, USA,

2003), USENIX Association, USENIX Association, p. 1–1.

[20] OPPENHEIMER, D., AND PATTERSON, D. A. Studying and us-

ing failure data from large-scale internet services. In EW10: Pro-

ceedings of the 10th workshop on ACM SIGOPS European work-

shop (New York, NY, USA, 2002), ACM, ACM, p. 255–258.

[21] Partimage homepage. http://www.partimage.org.

[22] PATTERSON, D. A. A simple way to estimate the cost of down-

time. In Proceedings of the 16th USENIX conference on System

administration (Berkeley, CA, USA, 11/2002 2002), USENIX

Association, USENIX Association, p. 185–188.

[23] RAYMER, D., STRASSNER, J., LEHTIHET, E., AND VAN DER

MEER, S. End-to-end model driven policy based network man-

agement. In Policies for Distributed Systems and Networks, 2006.

Policy 2006. Seventh IEEE International Workshop (2006), p. 4.

[24] SYMANTEC. Norton Ghost Homepage.

http://www.symantec.com/ghost.

[25] VERMA, D. Simplifying network administration using policy-

based management. IEEE Network 16, 2 (Mar/Apr 2002), 20–26.

14


