
LISA ’09
Federated access control and workflow
enforcement in systems configuration

Bart Vanbrabant, Thomas Delaet and Wouter Joosen

DistriNet, Dept. of Computer Science,
K.U.Leuven, Belgium

November 6, 2009

1 / 40

Outline

Systems configuration
Context
Problems

Our solution: ACHEL
Access control and workflow
Generating meaningful changes

Prototype

Evaluation
Case 1
Case 2

Conclusion

2 / 40

Outline

Systems configuration
Context
Problems

Our solution: ACHEL
Access control and workflow
Generating meaningful changes

Prototype

Evaluation
Case 1
Case 2

Conclusion

3 / 40

System configuration tools

4 / 40

System configuration tools

5 / 40

System configuration tools

6 / 40

System configuration tools

7 / 40

System configuration tools

Malicious configuration

8 / 40

System configuration tools

9 / 40

State of practice in access control

lib/
 net/
 dhcp.cf
 routing.cf
 web/
 cluster.cf
 ...
 mail/
 ...
 file/
 ...
hosts/
 verdana.cs.kuleuven.be.cf
 clio.cs.kuleuven.be.cf
 ...

Access control rules

[@netadmins]
lib = r
hosts = r
lib/net = rw

[@senior]
 = rw

[@mail]
lib/mail = rw
lib/file = rw

[userA]
hosts/verdana.cs.kuleuven.be.cf = rw

10 / 40

State of practice in access control

UserA can not be trusted

hosts/verdana.cs.kuleuven.be.cf

Some global network
configuration!

11 / 40

Workflow

Dev repository

Q&A repository

Production repository

Updates approved
by security officer

12 / 40

Federated infrastructures

Central Repository

Site 1
Repository

Site 2
Repository

Site 3
Repository

Site 4
Repository

13 / 40

Outline

Systems configuration
Context
Problems

Our solution: ACHEL
Access control and workflow
Generating meaningful changes

Prototype

Evaluation
Case 1
Case 2

Conclusion

14 / 40

What is ACHEL?

ACHEL manages access to repositories of configuration
specification by implementing access control and enforcing
workflows

• fine-grained acccess control interpreting the semantics of
changes

• access control is applied at the abstraction level of the
configuration specification

• support for workflow in federated infrastructures
• a (configuration) language agnostic solution

15 / 40

Update 1: an allowed change

16 / 40

Update 1: an allowed change

Current specification for managing the motd file written by Bart:

motd_file = File()
motd_file.name = "/etc/motd"
motd_file.content = "Welcome to $hostname"
motd_file.owner = "root"
motd_file.group = "root"
motd_file.perm = "0644"

17 / 40

Update 1: an allowed change

Thomas changes the content of the motd file:

motd_file = File()
motd_file.name = "/etc/motd"
motd_file.content = template("motd.tmpl")
motd_file.owner = "root"
motd_file.group = "root"
motd_file.perm = "0644"

18 / 40

Update 1: an allowed change

Access control policy

list of admins

define admins as

 bart.vanbrabant@cs.kuleuven.be,

 wouter.joosen@cs.kuleuven.be

allow admins to create the motd

allow admins to:

 * assign File() to motd_file

 * assign "/etc/motd" to motd_file.name

allow everyone to manage the motd

allow to:

 * assign * to motd_file.content

demand approval by an admin to change

the permissions (all other attributes)

allow to:

 /(add|modify)/ assign * to motd_file.*

 authorised by 1 admins

update {

 action => modify

 operation => assign

 lhs => motd_file.content

 rhs => template("motd.tmpl")

 old_rhs => "Welcome to $hostname"

 owner => bart.vanbrabant@cs.kuleuven.be

 author => thomas.delaet@cs.kuleuven.be

}

19 / 40

Update 1: an allowed change

Output from our prototype for the motd example:

Rev 1 has 6 changes and 0 signatures
 allowed bart.vanbrabant@cs.kuleuven.be to add assign "/etc/motd" to motd_file.name

 allowed bart.vanbrabant@cs.kuleuven.be to add assign "Welcome at $hostname"

 to motd_file.content

 allowed bart.vanbrabant@cs.kuleuven.be to add assign "root" to motd_file.group

 allowed bart.vanbrabant@cs.kuleuven.be to add assign File() to motd_file

 allowed bart.vanbrabant@cs.kuleuven.be to add assign "root" to motd_file.owner

 allowed bart.vanbrabant@cs.kuleuven.be to add assign "0644" to motd_file.perm

Rev 2 has 1 changes and 0 signatures
 allowed thomas.delaet@cs.kuleuven.be to modify assign template("motd.tmpl")

 to motd_file.content

20 / 40

Update 1: an allowed change

21 / 40

Update 2: a change requiring authorisation

22 / 40

Update 2: a change requiring authorisation

Thomas changes the permissions of the motd file:

motd_file = File()
motd_file.name = "/etc/motd"
motd_file.content = template("motd.tmpl")
motd_file.owner = "root"
motd_file.group = "wheel"
motd_file.perm = "0644"

23 / 40

Update 2: a change requiring authorisation

Access control policy

list of admins

define admins as

 bart.vanbrabant@cs.kuleuven.be,

 wouter.joosen@cs.kuleuven.be

allow admins to create the motd

allow admins to:

 * assign File() to motd_file

 * assign "/etc/motd" to motd_file.name

allow everyone to manage the motd

allow to:

 * assign * to motd_file.content

demand approval by an admin to change

the permissions (all other attributes)

allow to:

 /(add|modify)/ assign * to motd_file.*

 authorised by 1 admins

update {

 action => modify

 operation => assign

 lhs => motd_file.group

 rhs => "wheel"

 old_rhs => "root"

 owner => bart.vanbrabant@cs.kuleuven.be

 author => thomas.delaet@cs.kuleuven.be

}

24 / 40

Update 2: a change requiring authorisation

Output from our prototype for the motd example:

Rev 1 has 6 changes and 0 signatures

 allowed bart.vanbrabant@cs.kuleuven.be to add assign "/etc/motd" to motd_file.name

 allowed bart.vanbrabant@cs.kuleuven.be to add assign "Welcome at $hostname"

 to motd_file.content

 allowed bart.vanbrabant@cs.kuleuven.be to add assign "root" to motd_file.group

 allowed bart.vanbrabant@cs.kuleuven.be to add assign File() to motd_file

 allowed bart.vanbrabant@cs.kuleuven.be to add assign "root" to motd_file.owner

 allowed bart.vanbrabant@cs.kuleuven.be to add assign "0644" to motd_file.perm

Rev 2 has 1 changes and 0 signatures

 allowed thomas.delaet@cs.kuleuven.be to modify assign template("motd.tmpl")

 to motd_file.content

Rev 3 has 1 changes and 0 signatures

 authorisation (1) required for thomas.delaet@cs.kuleuven.be to modify assign

 "wheel" to motd_file.group owned by bart.vanbrabant@cs.kuleuven.be

25 / 40

Update 2: a change requiring authorisation

26 / 40

Generating meaningful changes

27 / 40

Generating meaningful changes

added = { 24 }
modified = { 13 -> 22 }
deleted = { 12, 15 }

21

22

23 24

11

13

1514

12

Version repository

new Config
file revision

Abstract
syntax tree

Abstract
syntax tree

Config file

Com
pila
tion

Tre
e
ma
tch
ing

Edit script generation

Algorithm based on:

• Meaningful change detection in structured data. CHAWATHE AND GARCIA-MOLINE. 1997
• Change Distilling: Tree Differencing for Fine-Grained Source Code Change Extraction. FLURI, WUERSCH,

PINZGER AND GALL. 2007

28 / 40

Outline

Systems configuration
Context
Problems

Our solution: ACHEL
Access control and workflow
Generating meaningful changes

Prototype

Evaluation
Case 1
Case 2

Conclusion

29 / 40

Prototype

Prototype in Python
• built on Mercurial
• simple configuration language and BCFG2 for deployment
• PGP for signatures and authentication
• access control language using regular expressions for pattern
matching

30 / 40

Outline

Systems configuration
Context
Problems

Our solution: ACHEL
Access control and workflow
Generating meaningful changes

Prototype

Evaluation
Case 1
Case 2

Conclusion

31 / 40

Case 1: access control and simple workflow

• Small infrastructure
• Team with junior and senior sysadmins
• Enforce responsibilities
• Enforce coding guidelines
• Manage network configuration

32 / 40

Case 1: access rules

enforce some conventions on everyone

deny to:

 * assign File() to /^[^_]+_(?!file_)[\S]+$/

 * assign Package() to /^[^_]+_(?!pkg_)[\S]+$/

 * assign Service() to /^[^_]+_(?!service_)[\S]+$/

 * assign Directory() to /^[^_]+_(?!dir_)[\S]+$/

 * assign Symlink() to /^[^_]+_(?!ln_)[\S]+$/

 * assign Permissions() to /^[^_]+_(?!perm_)[\S]+$/

senior admins can do anything else

allow senioradmin to:

 * * *

allow admins to do everything if a senior admins approves

allow to:

 * * *

 authorised by 1 senioradmin

network related configuration

deny netadmins to:

 # deny files other then those in /etc/network

 * assign /^(?!\/etc\/network\/)\S+/ to /^net_file_\w+\.name$/

 # deny services other then dhcpd and network

 * assign /^(?!(dhcpd$|network$))\w+$/ to /^net_service_\w+\.name$/

allow netadmins to:

 * import /^dhcp/

 # allow adding a list of values to the net_dhcp_clients list

 * add /^\[[^\]]$/ to /^net_dhcp_clients$/

 # allow only variables prefixed with net (ignore rhs)

 * assign * to /^(?!net_)\S+$/

33 / 40

Case 1: configuration

configure network interfaces

net_file_interfaces = File()

net_file_interfaces.name =

 "/etc/network/interfaces"

net_file_interfaces.owner = "root"

net_file_interfaces.group = "root"

net_file_interfaces.perms = "0644"

net_file_interfaces.content = source("net/interfaces.$hostname")

network service needs to be enabled

net_service_network = Service()

net_service_network.name = "network"

net_service_network.status = "on"

use template for /etc/hosts

net_file_hosts = File()

net_file_hosts.name = "/etc/hosts"

net_file_hosts.owner = "root"

net_file_hosts.group = "root"

net_file_hosts.perms = "0644"

net_file_hosts.content = template("net/hosts.tmpl")

34 / 40

Case 2: complex workflow in federated infrastructures

• Large federated grid infrastructure
• Several administrative domains
• Shared and site specific configuration
• Based on the description of BeGrid in Devolved Management
of Distributed Infrastructures With Quattor, LISA ’08

35 / 40

Case 2: complex workflow in federated infrastructures

Central Repository
at Belnet

KULeuven
Repository

UGent
Repository

UA
Repository

UCL
Repository

36 / 40

Outline

Systems configuration
Context
Problems

Our solution: ACHEL
Access control and workflow
Generating meaningful changes

Prototype

Evaluation
Case 1
Case 2

Conclusion

37 / 40

Future work

Validate ACHEL on a complex real-life configuration language.
Key challenges:

• develop an access control language that integrates with the
configuration language

• provide integration with the tools used with the configuration
language

38 / 40

Conclusion

ACHEL’s contributions
• fine-grained acccess control interpreting the semantics of
changes

• access control is applied at the abstraction level of the
configuration specification

• support for workflow in federated infrastructures
• a language agnostic approach

39 / 40

Questions?

40 / 40

	Systems configuration
	Context
	Problems

	Our solution: ACHEL
	Access control and workflow
	Generating meaningful changes

	Prototype
	Evaluation
	Case 1
	Case 2

	Conclusion

