
An SSH-based toolkit for User-based Network Services

Joyita Sikder
Univ. of Illinois at Chicago

Manigandan Radhakrishnan
VMware

Jon A. Solworth
Univ. of Illinois at Chicago

Abstract
Network authentication, even when using libraries in-
tended to simplify the task, is inordinately difficult. Sep-
arate libraries are used for cryptography, network authen-
tication protocols, accessing stored authentication infor-
mation, and verifying the identity of remote entities. In
addition, service used must be authorized. Finally, priv-
ilege separation is needed to separate security sensitive,
highly privileged operations from the remainder of the
application.

These tasks consume thousands of lines of application
source code (not counting the security libraries on which
they rely), and require much specialized security knowl-
edge from the application programmer and system ad-
ministrator.

In this paper we present a simple toolkit called
sshUbns which encapsulates all these tasks in an easy-
to-use tool. We modified SSH to add in sshUbns
(in addition to SSH’s other modes) and implemented a
new super-server called unetd. It reduces to a neg-
ligible level the amount of application server security
code needed. This toolkit makes it easier to create se-
cure networking code, reduces security specific knowl-
edge needed by application programmers, and makes it
easier for system administrators to protect and analyze
their systems.

1 Introduction

Network service user authentication seems to be a simple
procedure: The user provides either a password or some
cryptographic proof of her identity to the remote service.
The service verifies the user’s identity, and authentication
is complete.

In practice, however the task is far more complex:

• Passwords, if used, must be of sufficient diversity
to prevent dictionary attacks. Since attackers today

have access to large botnets, password attacks con-
sisting of millions of guesses are easily possible,
even if a host is blacklisted after a few tries. On
the other hand, if cryptography is used it must be
implemented correctly to prevent side channel at-
tacks (thus exposing secret keys) and to ensure suf-
ficient randomness of keys (preventing brute force
attacks).

• Authentication must be mutual so that the user
knows that she is talking to the legitimate service.
This is typically done cryptographically, for exam-
ple with RSA [20].

• To maintain authentication after the initial authenti-
cation protocol, cryptography is used to prevent un-
detected packet modification (and prevent viewing)
in transit. Symmetric cryptography, such as AES
[12], is used to provide these protections.

• If the service is not anonymous, it is necessary to
authorize users. The user must be allowed to per-
form the service and the service’s permissions must
be tailored to those of the user.

The complexity is not limited to cryptographic algo-
rithms and network protocols. In addition, a complex
software stack is used. For example, Generic Security
Services (GSS-API) transmits authentication tokens be-
tween client and server [17]; Network Services Switch
(NSS) accesses the stored authentication information;
and Pluggable Authentication Modules (PAM) actually
authenticates the user [22]. Failures in the use and con-
figuration of this software can violate authentication and
authorization requirements. Ensuring that these tasks are
properly done in traditional schemes requires examining
each service’s code and verifying that security services
are properly used.

Finally, traditional mechanisms are implemented with
libraries which share the address space of the applica-
tion. When application logic and authentication sit in the



same address space, there is a danger that failures in ap-
plication logic (e.g., buffer overflow) can cause authenti-
cation to fail—for example, by bypassing authentication
all together. Moreover, these applications often need su-
peruser privileges to bind to restricted ports or to change
the user ID on whose behalf the service runs. Without
careful partitioning, there is substantial code which runs
with excess privileges. If this code is successfully at-
tacked, these excess privileges increase the damage that
the attacker can do.

To prevent these authentication failures, privilege sep-
aration is used [18, 7]. Privilege separation partitions
logic over multiple processes so that most code runs with
reduced privileges. Security sensitive code is isolated in
a separate process with administrative privileges; the re-
maining parts of the application can then be run without
administrative privileges. Using privilege separation, a
highly privileged isolated process performs operations as
a proxy for the application. This requires partitioning of
the application and inter-process communication.

We consider here the most demanding of these prob-
lems, User-Based Network Services (UBNS) in which
the service process operates with user-specific privileges,
thus using the Operating System (OS) to restrict service
accesses. UBNS services use OS access controls to limit
the accesses that a service is allowed to do (by run-
ning user-specific parts of that service under the user’s
ID), and thus to isolate users from one another. Ser-
vices such as mail, calendaring, distributed file systems,
ftp, and source code revision control systems can be im-
plemented as UBNS. Examples of UBNS services in-
clude dovecot for IMAP/POP3 mail delivery [1] and
zimbra for calendaring [2]. Although such services
can and have been built without UBNS, they require in-
creased application-level authorization and pose greater
dangers due to more application-level vulnerabilities [7].

UBNS is so demanding to implement, that often less
secure mechanisms are used instead. For example, using
traditional techniques dovecot requires 24,628 lines to
support IMAP. Of that, over 9,307 lines of code are used
for user authentication alone, some 37% of the total code
base. In addition, to support privilege separation 4 differ-
ent process types are used. Using new OS mechanisms,
netAuth implemented UBNS functionality with only
5 lines (vs. 9,307 in the original dovecot) of appli-
cation code [19]! In addition, the application code was
simplified using a single process type (vs. 4 in the origi-
nal), since privilege separation was provided by the im-
plementation of the authentication. However, netAuth
required OS kernel modifications and IPSec, and hence
the code produced is not widely used.

Here, we describe a toolkit, sshUbns which provides
almost the same functionality without OS kernel mod-
ifications. The sshUbns toolkit is built on top of Se-

cure Shell (SSH) [26]. Unlike library-based approaches,
sshUbns is implemented in two separate services, a
modified SSH and unetd. It uses SSH’s strong cryp-
tographic authentication and cryptographic protection of
communications over the network; it adds end-to-end
security for networked applications. It provides strong
protections needed for UBNS and yet is very simple to
use. This simplicity is in three separate forms: (a) it is
easier for system administrators to set and analyze pro-
tections; (b) there is less code for application program-
mers to write; and (c) higher level abstractions require
less security expertise from the application programmer.
Hence, the programmer and system administrator’s task
is simplified since the tool implements authentication,
encryption and authorization.

Moreover, sshUbns is implemented using privilege
separation. Like the kernel-based netAuth, sshUbns
provides strong protections with a minimalistic program-
ming interface. It allows system administrators to easily
control who can use a service and to easily launch ser-
vices, since these protections are provided in a service-
independent way by the toolkit. Because it provides a
simple toolkit for these important services, a system ad-
ministrator’s job of securing their system is vastly simpli-
fied. The sshUbns toolkit also supports the easier-to-
implement class of services that are restricted to certain
users but do not differentiate between authorized users,
and hence may run as a pseudo user. However, we’ll fo-
cus here on the support for UBNS.

The remainder of the paper is organized as follows.
Section 2 describes related work. Section 3 describes
SSH’s port forwarding mechanism, which is the starting
point for constructing sshUbns. Section 4 describes
the sshUbns architecture. Section 5 measures the ef-
fectiveness of the implementation. Section 6 describes
implementation alternatives and finally we conclude.

2 Related work

UBNS and privilege separation are two complementary
ways to partition a service into multiple processes. Priv-
ilege separation is used to split an application into root
and non-root processes. Both UBNS and privilege sepa-
ration are design strategies to maximize the value of least
privilege [21]. Retrofitting privilege separation is not dif-
ficult since root privileges are a super set of ordinary user
privileges, and there exists both libraries [15] and com-
piler techniques [9] to do it. UBNS is more invasive as
the privileges of different users overlap, and hence the
protection of files and users which own processes must
be carefully considered at the start of design.

SSH is a widely used UBNS service [26, 18], but is ill-
suited to implement UBNS-based network services be-
cause of the way network services are built. In the net-



work case, the listening process exists before the con-
nection is made and must know at connect time which
user is associated with the service. SSH’s port forward-
ing performs user authentication at the service host—but
not at the service—and hence, to the service, the users of
a host are undifferentiated. As a result, traditional UBNS
services use authentication mechanisms such as SSL or
passwords and OS mechanisms such as setuid which
are awkward to program and may not be secure.

Alternatively, SSH allows a remote executable to be
invoked, but that remote executable is not connected to a
network service. Similarly, hg-login [3], as used in Mer-
curial, performs remote authentication using SSH, but
execs a new program rather than connect to a running
network service.

In contrast, sshUbns both authenticates and autho-
rizes the user, so that the service runs only with the
permission of the user. Unlike SSH, sshUbns pro-
vides end-to-end security from client to service. The
stunnel tool could have been used as an alternative to
an SSH-based implementation—it provides similar pro-
tections to SSH port forwarding; the primary reason we
chose SSH is because it uses a fixed port which is already
allowed by our firewall rules.

The OKWS web server [16], built on top of the As-
bestos OS [11] does a per-user demultiplex, so that each
web server process is owned by a single user—it is an-
other example of a UBNS. However, this facility is pro-
vided at the HTTP level via cookies, while the technique
presented here is application (and application protocol)
independent.

Kerberos [23] performs encryption using private key
cryptography. Microsoft Windows’ primary authentica-
tion mechanism is Kerberos. Kerberos works well in
the enterprise, when the user it authenticates is part of
the enterprise, but works less well in widely distributed
systems. The problem in this setting is that the clients
must be “kerberized versions”. Kerberos does not di-
rectly support UBNS. Moreover, implementing Kerberos
for an application is more complex, and less modular
than sshUbns. Kerberos does have an advantage over
our scheme in that it has a key distribution mechanism
while SSH does not.

Distributed authentication consist of two components:
a mechanism to authenticate the remote user and a means
to change the ownership of a process. Traditionally,
UNIX performs user authentication in a (user space)
process and then sets the User ID by calling setuid.
The process doing setuid needs to run as the supe-
ruser (administrative mode in Windows) [24]. To reduce
the dangers of exploits using such highly privileged pro-
cesses, Compartmented Mode Workstations divided root
privileges into about 30 separate capabilities [6], includ-
ing a SETUID capability. These capabilities were also

adopted by the POSIX 1e draft standard [5], which was
widely implemented, including in Linux.

Plan9’s OS kernel uses a fine grained one-time-use ca-
pability [10], which allows a process owned by user U to
change its owner to U ′. It works with factotum, a user
space process which actually performs the cryptography
for the application. The sshUbns toolkit unlike Plan9
uses only generic POSIX mechanisms, and thus does not
require kernel modifications.

Distributed Firewalls [14] (based on Keynote [8]) in
contrast to SSH, implements per user authorization for
services by adding it to the OS kernel implementation of
connect and accept APIs. While Distributed Fire-
walls sit in front of the service, and thus are not inte-
grated with the service, Virtual Private Services are in-
tegrated and thus can provide UBNS services [13], but
unlike sshUbns, this relies upon kernel modifications.

3 SSH port forwarding

The closest service to sshUbns is SSH port forward-
ing. Using SSH, a command, executed by the user on the
client

ssh -L 3000:localhost:25 example.com

results in the local port (3000) being tunneled to host
example.com at port 25. The command is success-
ful if sshd is running on example.com; the user has
an account there; and port 25 is bound.

Now a process on the client can reach the service
at port 25 at example.com by accessing port 3000
on the client. The connection between hosts is authen-
ticated and cryptographically protected. The protec-
tion is coarse grained, since any user on the client may
connect to port 3000—even those without accounts on
example.com. Moreover, the service at port 25 (smtp)
does not know which user is sending to it, although fire-
wall rules can ensure that the port is only reachable from
within example.com.

The above example assumes that the user name on the
client is the same as on the server. If instead, the user’s
name at example.com is say, dave, then the SSH
command would be:

ssh -L 3000:localhost:25 \
dave@example.com

Although we shall assume the names match in the fol-
lowing text neither SSH nor sshUbns require this.

Figure 1 shows the traditional SSH port forwarding.
(For simplicity, we leave out the server-based root-owned
SSH processes which are used to establish the SSH con-
nection). SSH authenticates and encrypts the traffic be-
tween client and server hosts. SSH ensures that the end-
points of the SSH tunnel are owned by the same user (U2



client

U1

ssh

U2

sshd

U2

service

U3

tunnel

CLIENT SERVER

Figure 1: Client host to Service path using traditional SSH tunneling. Processes are indicated by circles or rounded
edge rectangles. Above the interior line is the name of the executable, below the line is the user who owns the process.

in the Figure). However, because it is based on network
ports—which don’t perform any authentication—neither
client to ssh network connection nor the sshd to
server connection is authenticated. Thus traditional
SSH is coarse grained, it is insufficient for UBNS such
as mail, calendaring, etc. Moreover, since the ultimate
user is unknown, logging effectiveness is very limited.
Thus we turn to the architecture of sshUbns.

4 Architecture

In contrast to traditional SSH port forwarding, shown in
Figure 1, sshUbns maintains the same user from client
application to service, as shown in Figure 2. (Although
the user is the same, the user name and user ID may be
different on client and server, as per the previous sec-
tion). It is this end-to-end property which ensures that
the user is the same along the entire path which distin-
guishes sshUbns from SSH port forwarding.

The architecture we have implemented consists of
three components:

SSH modifications which adds a UBNS mode to client
and server sides,

unetd is a simple super-server which supports UBNS,
and

server modifications which provide UBNS code to ap-
plications.

Of these, by design the server modifications are by far the
smallest, since it minimizes the cost of porting servers to
sshUbns. All the other code is independent of specific
services.

4.1 SSH modifications
We have modified SSH to create a UBNS tunnel. This
was done by modifying the port forwarding mode of

SSH. The first step is to invoke SSH in UBNS mode from
the client:

ssh -u -L 3000:localhost:25 \
example.com

It is the “-u” which invokes sshUbns. (Alternatively,
autossh—which automatically restarts SSH if there is
a connection failure—can be used to make the connec-
tion robust even when the IP address changes).

We modified both the client side (ssh) and the server
side (sshd) of SSH. On the client side, the ssh pro-
cess which connects to the local port must be running
and must be owned by the same user as the client pro-
cess. This prevents other users on the client system (who
don’t have accounts on the server) from piggybacking on
a legitimate user’s port forwarding to the server system.
Thus sshUbns is significantly safer than vanilla SSH
port forwarding.

On the server side, we have written a sshUbns mode
for sshd (based on its port forwarding mode) which in-
terfaces with the service and runs on behalf of the remote
user. It gets the port number of the user service process
using a per service directory which is part of unetd (de-
tails are given in the next section).

For simplicity, we describe sshd as a process which
runs on behalf of a user. Actually, to provide privilege
separation sshd consists of two types of processes; one
type which runs as root and the other as the user. How-
ever, only the user-owned process communicates with
unetd and the UBNS.

TCP/IP are used everywhere except for a Unix domain
socket between sshUbns components on the server
side. Since the Unix domain socket is created in the
file system, permissions can be (and in sshUbns are)
set to ensure that the same user who creates the socket
opens the existing socket. Unix domain sockets are not
available on Windows computers, and in such a case it
is possible to use TCP/IP sockets. However, where Unix
domain sockets are available they are preferred.



client

U
ssh

U
sshd

U
service

U

tunnel

CLIENT SERVER

Figure 2: Client to host service path using sshUbns. The client, ssh, sshd, and service all run under the
same user.

root

unetd/FTP

unetd/POP3

unetd/tenet

root

root

root

forkunetd

Figure 3: unetd and the service processes it spawns

For TCP/IP connections there is no standard method
for user authentication and hence application-level pro-
tocols such as SSL are often used. However, when both
ends of a TCP/IP connection are on the same host, it
is possible to use OS calls to authenticate unmodified
TCP/IP traffic. Although the method is non-standard
across OSs, each of the major operating systems (Win-
dows, Linux, Mac OSX) can determine the process and
owner of the process which is at the other end of a
local TCP/IP connection. For example, this informa-
tion is available using lsof in UNIX-based systems or
openports in Windows-based systems.

4.2 Unetd

We have written a daemon, unetd (for user-based
network daemon) that launches UBNSs and authorizes
users. Unetd is modeled after other super-servers such as
inetd and tcpd. The configuration for unetd stored
in /etc/unetd/unetd.conf contains lines of the
form:

port group * args

The port (or service) specifies the desired service; the
group specifies those users who are authorized for that
service. The “*” is optional and means concurrent server,
in which one process is spawned for each user connec-
tion. Without the “*” the server process for each user is
sequential, meaning at any time there is at most one pro-
cess per user. The args are the arguments with which
unetd/service starts up (that is, execs) the service.
Thus, our mechanism is sufficiently expressive to imple-
ment the primary different server types. We could also
implement preforked servers, but believe unetd is suf-
ficiently flexible without it.

Unetd runs as root, and creates a process per service.
As a running example, we’ll use POP3 as a service. For
POP3, the created per-service unetd process is called
unetd/POP3 which listens to the port specified on its
service configuration line. The service unetd/POP3
does not contain any POP3-specific code, its purpose is
to authenticate the user and direct the connection to the
appropriate user-owned POP3 server.

It also checks that the user is authorized to use the ser-
vice. When a POP3 sshUbns request arrives, sshd
connects to the unetd/POP3 and requests the port
number of the POP3 process which is specific to that
user. Finally, the POP3 process performs the user spe-
cific request, relying on the OS’s access controls to en-
sure the accesses are appropriately authorized.

Figure 3 shows a unetd process which creates three
different service processes, including unetd/POP3.
All of the processes here are generic; the actual service
(and the vast bulk of the code) is performed by user-
based services that do not run with administrative per-
missions. Each service process is created to listen to a
single inquiry port from sshd and launch the appropri-
ate user based service.

Figure 4 shows the complete tree of processes cre-
ated by unetd, including the service specific compo-
nent. Each arrow indicates a process was forked. As can
be clearly seen unetd is a UBNS and all server specific



unetd
root

POP3

U1

POP3
U2

POP3

U2

POP3

Un

unetd/FTP unetd/POP3 unetd/telnet

rootrootroot

Figure 4: Three levels of processes created by unetd.
For each process, a process identifier is shown on top,
and the user ID on behalf of which the process runs (ei-
ther root or ordinary users U1, U2, or Un are shown).

fork()
exec(...)

root
U

U

sshd unetd/POP3

POP3

Figure 5: Creating the user-based service

code runs without root privileges.

4.3 Service support

It is trivial to modify a service for UBNS support. The
port is opened by the parent process, so the only thing
for the service to do is to check that the user of the user-
based network service is the same as that of the process
at the other end of the TCP/IP or Unix domain socket
connection.

This checking is done by replacing the accept call
with the acceptUBNS library call which does both ac-
cept and user ID checking. We note that this is the
only security-specific call done by the service, the ser-
vice has no need to deal with cryptography, authentica-
tion, user authorization, or privilege separation which are
all generic services provided by sshUBNS.

The flow of service invocation on the server is shown
in Figure 5. The sshd process sends to unetd/POP3
its TCP port (having previously done a bind) and re-
quests it to send it the port for user U ’s POP3 service. If
none exists, or if POP3 is set up as a concurrent service,
then a user-based service is created. Then unetd/POP3
returns the port number. The sshd process then di-
rectly connects with POP3 server for U ; U ’s POP3 server

then does an acceptUBNS which ensures that sshd is
owned by U thus completing the authentication.

4.4 End-to-end invocation of a user-based
service

There is no change to client application code. The
client configuration must specify the local port and
local host to connect to ssh rather than directly to the
service.

We consider the overall flow of a connection. Be-
fore this flow begins, we assume that (a) ssh in UBNS
mode has been invoked on the client (and sshd has
been started on the server) and (b) the server has in-
voked unetd which has started each UBNS, such as
unetd/POP3. The overall flow from beginning to end
of connection establishment is diagrammed in Figure 6.
The trace of a connection is as follows:

1. the client application connects to ssh on the client,

2. ssh on the client connects to sshd on the server,

3. sshd

(a) binds to a TCP/IP port p

(b) sends p to unetd/POP3 and asks for U ’s
port address for POP3,

4. If the user is not in the group of users who are autho-
rized to use that service, then unetd/POP3 sends
a failure message to sshd. Otherwise

5. If “*” has been specified in the configuration
file or if there is no service for that user, then
unetd/POP3 does the following

(a) a TCP/IP listening socket is created for the
process to be forked,

(b) a service process is forked and execed,

(c) the UID of the resulting process is changed,
and

(d) the service executable is execed.

6. The unetd/POP3 process replies back to sshd
with the port number of the user’s service process,
and

7. sshd connects to the user’s service process. which
tests that it is coming from port p. Since sshd has
been bound to port p, the connection must be from
the specified user.



Client
U

ssh
U

sshd
U

unetd/FTP
root

FTP
U

tunnel

1 7

2

3

4,6

5

CLIENT SERVER

Figure 6: Overall flow

measure time
real 0.004
user 0.000
sys 0.003

Figure 7: Time for a client response in seconds

5 Experimental results

We have performed some initial testing of the perfor-
mance of sshUbns. The testing was done on an
AMID 4600+ 64x2 Dual Core in 64-bit mode. The
software base is OpenSSH 5.1 (patch 1) and we ported
dovecot’s POP3 server. Testing was done on a gigabit
LAN. We used RSA keys.

In Figure 7 the client response time is shown for a
remote use of POP3. The client side is much easier to
measure than the server side, since we can simply mea-
sure the time for a trivial POP3 session, in which the only
command is “bye”. Total CPU elapse time is .004 sec-
onds on the client side; we expect the server time to be
slightly longer as it has an extra connection (to find the
port of the UBNS). The first time sshUbns runs for a
user it must also do a fork-exec of the user-owned ser-
vice.

We have done some primitive tests to measure band-
width using 10 users each doing 100 connections, the
numbers are shown in Figure 8. The results show 295
connections per second on a dual core, or 147.5 connec-
tions per core per second. We have not had yet an oppor-
tunity to do any tuning which we expect will significantly
increase performance.

We intend to do a number of ports to sshUbns, for
example of web servers and calendaring systems.

measure 10 users
real time 3.390
user time 1.636
sys time 3.488

connections/second 295

Figure 8: Bandwidth measure (connections/second) and
time for 10 users to each performed 100 POP3 connec-
tions

6 Alternatives and future work

We would have liked to use UNIX Sockets through-
out. This would have removed the need to do an
acceptUBNS instead of an accept and authorization
to connect to the UNIX socket could be done by the
UNIX socket mechanism. Unix domain sockets are also
considerably faster than using lsof. This performance
advantage is far more important on the server side, and
hence we have assumed it for our server experiments.

Using UNIX Sockets is considerably less attractive on
the client side, since (1) client software many not be un-
der the control of the server organization, (2) client soft-
ware may be proprietary and hence not easily modified,
and (3) there may be many different implementations of
client software (e.g., many different mail user agents)
thus increasing the difficulty of modifying them. The
performance issues for the client are small, since each
client is expected to use only a relatively small number
of sshUbns connections.

SSH can be set up to be based on public key only, or
to allow a combination of public key and password. Pub-
lic key authentication is more secure, but requires some
method for installing the public keys on the servers.

We could have used the ability to transfer a file de-
scriptor over a UNIX socket to make unetd/POP3 send
the connection transparently to POP3 service for that
user. This would allow local (i.e., non-networked) clients



to connect transparently to a UBNS. We will implement
this in the next version of our software.

The current implementation requires patching sshd
and possibly to the application (if we choose to use
UNIX sockets for communication). A less invasive ap-
proach would be to make these changes as part of some
library or wrappers (like TCP Wrapper [25]) that are
linked with the program. This imposes difficulties for
two reasons: (1) the communication between sshd and
unetd/POP3 and between POP3 and unetd/POP3
has to be done in the library or wrapper and as part of
accept or connect and (2) both sshd and the ap-
plication (POP3) may be required to perform security
critical operations before and/or the establishment of a
connection that may not be securely performed without
patching the application.

It would be interesting to extend this mechanism to
applications which don’t easily support port redirection
(e.g., some web servers). Since the ports are not known
in advance, some mechanism would be needed to exam-
ine packets without redirection; we are considering us-
ing TUN/TAP for this interface [4]. The TUN interface
would also make invoking sshUbns transparent on the
client.

The design of sshUbns is intended to be able to run
on Windows as well as Unix-based hosts. We have used
Unix domain sockets in only one single place, on the
server side. To port this code to a Window’s server,
it would be necessary to use some other form of IPC,
for example TCP/IP and to use openports for authen-
tication between sshd and unetd/POP3. Similarly,
openports could be used on the client side for con-
nection between the application and ssh.

We have not made any attempt to make sshUbns fast.
For large configurations, the cost of doing these opera-
tions may be significant, and performance optimization
important. This is left for future work.

7 Conclusion

Often, it is assumed that security must be traded off
against other properties such as usability or code com-
plexity. Sometimes, however, we pay a far higher price
for security than is necessary, largely because of the his-
tory of incrementally adding security. Comprehensive
toolkits—which manage a set of related security issues—
can have significantly lower overall complexity than a
piecemeal approach while attaining strong security.

We built this tool because we wanted a better way
of using and constructing authenticated services. The
toolkit, sshUbns, is painless to use as it requires only
a single line of code in an application to provide au-
thentication, authorization, encryption. It is privilege
separated, thus isolating security sensitive operations

from the application. Issues of key size, authentication
method, and many other issues become irrelevant for the
application programmer. However, porting code is more
involved because of the large number of lines of code
which must be removed from legacy code. We plan to do
several more ports.

The sshUbns toolkit is particularly attractive for
system administrators. First, system administrators are
adept at configuring solutions from tools. Second,
sshUbns is general purpose and thus applicable to a
whole range of networked applications. Third, it builds
on well known tools and concepts, notably SSH and
super-servers. Fourth, it avoids much of the need to indi-
vidually examine application code and configurations to
determine setting, a time consuming and unfortunately
error prone process. Fifth, it is consistent across applica-
tions, reducing user education and system documentation
issues.

Acknowledgements The program committee review-
ers provided detailed, extensive, and useful comments.
Two of the reviewers served as shepherds for the paper.
David Plonka did an amazing and energetic job of pro-
viding many notes, giving us suggestions, and keeping
us on schedule. William LeFebvre provided useful com-
ments and kept us centered on the most important issues.
Thanks to Wenyuan Fei, Prasad Patil, and Michelle Zhou
for proofreading.

References
[1] http://www.dovecot.org/.

[2] http://www.zimbra.com/.

[3] http://www.selenic.com/mercurial/wiki/index.cgi/SharedSSH.

[4] vtun.sourceforge.net/tun/.

[5] IEEE/ANSI Draft Std. 1003.1e. Draft Standard for Information
Technology–POSIX Part 1: System API: Protection, Audit and
Control Interface, 1997.

[6] Jeffrey L. Berger, Jeffrey Picciotto, John P. L. Woodward, and
Paul T. Cummings. Compartmented mode workstation: Proto-
type highlights. IEEE Transactions on Software Engineering,
16(6):608–618, 1990. Special Section on Security and Privacy.

[7] Daniel J. Bernstein. Some thoughts on security after ten years
of qmail 1.0. In First Computer Security Architecture Workshop,
page 1. ACM, 2007. Invited paper.

[8] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
RFC 2704: The KeyNote Trust-Management System Version 2,
September 1999.

[9] David Brumley and Dawn Xiaodong Song. Privtrans: Automat-
ically partitioning programs for privilege separation. In USENIX
Security Symposium, pages 57–72, 2004.

[10] Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean Quin-
lan. Security in Plan 9. In Proc. of the USENIX Security Sympo-
sium, pages 3–16, 2002.



[11] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart,
Cliff Frey, David Ziegler, Eddie Kohler, David Mazières, Frans
Kaashoek, and Robert Morris. Labels and event processes in the
asbestos operating system. SIGOPS Oper. Syst. Rev., 39(5):17–
30, 2005.

[12] FIPS. Advanced Encryption Standard (AES). National Institute
for Standards and Technology, pub-NIST:adr, November 2001.

[13] Sotiris Ioannidis, Steven M. Bellovin, John Ioannidis, Angelos D.
Keromytis, and Jonathan M. Smith. Virtual private services: Co-
ordinated policy enforcement for distributed applications. IJNS,
4(1), January 2007. http://www1.cs.columbia.edu/

˜angelos/Papers/2006/ijns.pdf.

[14] Sotiris Ioannidis, Angelos D. Keromytis, Steve M. Bellovin, and
Jonathan M. Smith. Implementing a distributed firewall. In Pro-
ceedings of the 7th ACM conference on Computer and Commu-
nications Security, pages 190–199. ACM Press, 2000.

[15] Douglas Kilpatrick. Privman: A library for partitioning appli-
cations. In USENIX Annual Technical Conference, FREENIX
Track, pages 273–284. USENIX, 2003.

[16] Maxwell N. Krohn. Building secure high-performance web ser-
vices with OKWS. In USENIX Annual Technical Conference,
General Track, pages 185–198, 2004.

[17] John Linn. Generic interface to security services. Computer Com-
munications, 17(7):476–482, July 1994.

[18] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing
privilege escalation. In Proceedings of the 12th USENIX Security
Symposium, pages 231–242. USENIX, August 2003.

[19] Manigandan Radhakrishnan and Jon A. Solworth. NetAuth: Sup-
porting user-based network services. In Usenix Security, pages
227–242, 2008.

[20] Ronald Rivest, Adi Shamir, and L. Adleman. On digital signa-
tures and public key cryptosystems. Communications of the ACM
(CACM), 21:120–126, 1978.

[21] J. H. Saltzer and M. D. Schroeder. The protection of information
in computer system. Proceedings of the IEEE, 63(9):1278–1308,
1975.

[22] Vipin Samar. Unified login with Pluggable Authentication Mod-
ules (PAM). In Clifford Neuman, editor, Proc. ACM Conference
on Computer and Communications Security (CCS), pages 1–10.
ACM Press, 1996.

[23] Jennifer G. Steiner, B. Clifford Neuman, and J. I. Schiller. Ker-
beros: An authentication service for open network systems. In
Winter 1988 USENIX Conference, pages 191–201, Dallas, TX,
1988.

[24] W. Richard Stevens. Advanced Programming in the UNIX Envi-
ronment. Addison-Wesley, 1992.

[25] Wietse Venema. TCP WRAPPER: Network monitoring, access
control and booby traps. In Proceedings of the UNIX Security
III Symposium, pages 85–92, Baltimore, MY, USA, September
1992. USENIX Association.

[26] Tatu Ylonen. SSH—secure login connections over the Internet.
In Proc. of the USENIX Security Symposium, pages 37–42, San
Jose, California, 1996.


