
LiveOps: Systems
Management as a Service

Chad Verbowski – Microsoft Research
Juhan Lee and Xiaogang Liu – Microsoft MSN

Roussi Roussev – Florida Institute of Technology
Yi-Min Wang – Microsoft Research

ABSTRACT

Existing Management Systems do not detect the most time-consuming and technically
difficult anomalies administrators encounter. Oppenheimer [25] found that 33% of outages were
caused by human error and that 76% of the time taken to resolve an outage was taken by humans
determining what change was needed. Defining anomaly detection rules is challenging and often
cannot be shared across organizations. It requires a deep combined knowledge of the software,
workload, system configuration, and tuning parameters specific to the workload and overall
distributed application topology.

We present LiveOps, a scalable systems and security management service based on auditing
the interactions between applications and the persistent state they use [33]. This approach
simplifies identifying security vulnerabilities, performs compliance auditing, enables forensic
investigations, detects patching problems, optimizes troubleshooting, and detects malware/
intrusions. The service enables knowledge sharing across organizations and administrative
boundaries and allows for seamless integration between analysis results from disparate
management products that build on it. Our configuration-free agent collects all read and write
access to registry entries, files, binaries, and process creation. The agents streaming lossless
compression creates log files of only 20 MB per day containing an average of 45 million events.
The scalable LiveOps back-end service can analyze 1000 machine days of logs in 30 minutes.
LiveOps agents have been deployed on 1149 machines from home systems to corporate desktops,
including 381 production MSN servers across 11 sites.

Introduction

MSN System administrators spend a third of
their time managing system configuration despite the
use of state-of-the-art systems management solutions.
This not only reduces the number of systems that a
single administrator can effectively manage, but is a
significant liability in overall system reliability.

Several examples of configuration errors impact-
ing system reliability are described in [33], where at
one MSN site, 70% of persistent errors were found to
be persistent state (PS) related, and 28% of support
calls at a large software company’s help desk were
configuration related. Furthermore, a lack of under-
standing about the impact configuration changes have
on critical applications can delay the deployment of
critical security patches [2, 28, 34], and has been
found to be responsible for 76% of the time taken to
resolve datacenter outages [25].

Existing systems management solutions are diffi-
cult to implement, expensive to deploy, and are largely
ineffective at addressing the most costly systems and
security management problems. Furthermore, for scal-
ability and performance reasons they do not track all
changes, or the interactions between applications, users
and PS. Administrators must manually apply their

experience and application knowledge to filter the sub-
set of PS changes recorded by these systems to identify
only the PS changes impacting their applications.

Defining anomaly detection rules based on appli-
cation generated events [31, 40] is challenging and
often cannot be shared across organizations. It requires
a deep combined knowledge of the software, work-
load, system configuration, and tuning parameters that
are specific to the workload and overall distributed
application topology.

Software developers and systems management
solution vendors are restricted to creating rules that
are based on the available application events, and that
are locally tunable or independent of workload, sys-
tem configuration, and distributed application topol-
ogy. Administrators are left with the challenge of
determining the appropriate tuning parameters for
existing rules and are required to identify and codify
the bulk of rules needed to manage their environ-
ments. Sharing rules between organizations is further
complicated by variations in tuning parameters and
rule definition languages.

We present LiveOps, a scalable systems and secu-
rity management service based on auditing the interac-
tions between applications and persistent state they use

20th Large Installation System Administration Conference (LISA ’06) 187

LiveOps: Systems Management as a Service Ve r b o w s k i , et al.

[33]. This approach simplifies identifying security vul-
nerabilities, performs compliance auditing, enables
forensic investigations, detects patching problems, opti-
mizes troubleshooting, and detects malware/intrusions.

The LiveOps architecture consists of agents run-
ning on the managed systems that report logs to a
back-end service which processes the data and pro-
vides extensible interface for generating of web
reports, alerts, or integrating with other management
products. Our configuration-free agent collects all read
and write access to registry entries, files, binary loads,
and process creation. The agent’s streaming lossless
compression creates log files of only 20 MB per day
containing an average of 45 million events. The scal-
able LiveOps back-end service can analyze 1000
machine days of logs in 30 minutes

The key contribution of LiveOps is scalable and
complete configuration monitoring, comprehensive
anomaly detection through cross machine and cross
time baseline analysis in an organization, and globally
across all machines reporting to the service, enabling
self-tuning of rules with respect to workload and topol-
ogy. Secondly LiveOps’ ability to manage 4000+ moni-
tored machines via a single back-end server enables it
to be run as a service supporting multiple organizations.

As a service, LiveOps provides immediate benefit
to all subscribers when new rules are developed. Using
a service rather than a locally installed management
system eliminates the cost of maintaining a systems
management solution, enables IT departments to draw
on the expertise of other administrators, and potentially
alerts the original developers of a problematic applica-
tion. When rare and difficult issues are encountered,
the service provides the specific management details
that enable collaboration with experts that can help
resolve the issue. Furthermore, after an issue is
resolved the relevant centralized data can be annotated
to benefit other users experiencing a similar problem.

We present our experiences and analysis of the
alerts and reports collected from running LiveOps in
MSN. LiveOps agents have been deployed on 1149
machines, from home systems to corporate desktops,
and including 381 production MSN servers across 11
sites. In the next section, we describe the motivation for
creating LiveOps and the related work comparing it
with existing management approaches. We subse-
quently describe the LiveOps architecture and present
the management scenarios that LiveOps addresses, pro-
vides sample reports, and a summary of results
obtained from analyzing the reports from MSN produc-
tion servers. We then present a data analysis of the PS
used in a production environment, and an analysis of
the feasibility of classifying them. Finally, we conclude.

Motivation and Related Work

The creation of LiveOps was motivated by the dis-
covery that infrequently occurring unique configuration

issues have a large reliability impact, require the most
administrator time, and are the most technically chal-
lenging to resolve. Traditional management products
[21] are largely ineffective at managing these problems
because they rely on the monitored applications to log
events [31, 40] when they are malfunctioning.

It is unrealistic to expect developers of the appli-
cation to have correctly anticipated all possible prob-
lems that may occur with the application internally –
from integrating with other applications, OS interac-
tions, and interacting with distributed systems such as
databases, firewalls, web servers, and network related
services. Events logged by applications are best used
for automating responses to frequently occurring prob-
lems that are well understood, but seldom provide suf-
ficient insight for administrators to enable quick reso-
lution of issues unanticipated by the original applica-
tion developers. The following example of a problem
at a large MSN site illustrates how understanding the
impact of individual PS changes on an application
enables quick problem resolution:

An administrator was assigned to resolve an inter-
mittent web page issue with a large online site.
During the course of solving the problem, a criti-
cal configuration file was inadvertently deleted.
After the intermittency issue was resolved, the site
appeared fixed and the issue was closed.

After 18 hours it was discovered that the site was
experiencing a partial outage. Investigation of the
outage involved teams of engineers, and lasted for
27 more hours, before the originally modified
configuration file was discovered as the root
cause. With a record of what PS had been
changed on each machine, the investigators could
have quickly and easily identified the configura-
tion file as a root cause candidate.

The next example illustrates how failing to verify
the complete set of files and settings modified after a
patch installation can prevent diagnosis of configura-
tion problems:

A patch was deployed on servers across a large
MSN site. Later it was found that the site was
experiencing a partial outage after the installa-
tion, where some users experienced poor perfor-
mance or received an error message after refresh-
ing their web page two out of five times.

Since the site load balances incoming requests
over a large pool of servers, it was difficult to
determine which servers were causing the prob-
lem. It took two engineering teams approxi-
mately 72 hours to determine that the root cause
was that one of the servers had only received
partial settings during the recent patch install.

The LiveOps approach is to manage configura-
tion from the OS perspective of interactions between
running processes and PS. This differs from asserting
correctness constraints on subsets configuration for

188 20th Large Installation System Administration Conference (LISA ’06)

Verbowski, et al. LiveOps: Systems Management as a Service

the system as a whole, as done with CFEngine [5],
because using interactions enables consideration of the
subset of PS that are used by each application. Overall
this reduces the volume of PS to consider because less
than 15% of non-temporary registry and files are typi-
cal in daily use [32].

We believe this is more effective than the tradi-
tional approach of analyzing application logs for the
following reasons:

1. It is a non-participatory model, meaning that all
changes made by applications are tracked
regardless of the APIs they use or logs they cre-
ate.

2. Only a few well-defined event types from a sin-
gle source are required for monitoring all appli-
cations, as opposed to multiple event logs con-
taining application specific events.

3. If the specific root cause of a problem is not
obvious the information provided reduces
potential root cause candidates, making prob-
lems easier to solve.

4. When the root cause of the problem is found,
future incarnations of the problem can be
avoided through knowing which process was
used by whom at which specific time to make
the breaking change.

Another approach to configuration management
is to eliminate the need to identify the root cause of
problems by following a non-traditional approach of
designing applications with the expectation that they
will fail [4], as opposed to attempting to eliminate all
possible errors. This is achieved by making them
quick to install and restart, and by creating software
probes that remotely monitor the application to detect
failures and restart the application when failures are
detected. While this approach minimizes the time
spent by operators investigating problems, the lack of
root cause understanding means that future occur-
rences of the problem cannot be avoided.

The implicit assumptions are that problems will
not simultaneously affect large numbers of machines,
and that problems affecting a machine will be rela-
tively infrequent. These may not be valid assumptions
if DDOS attacks are made on the infrastructure. Fur-
thermore, this approach requires that all failures be
detectable by the probes.

LiveOps provides a critical missing component
of the software configuration management cycle
(shown in Figure 1) by detecting all system changes,
verifying approved requests, and alerting upon
unknown modifications. Closing this loop is becoming
increasingly important in order to identify unwanted
changes, malware for example, and to fulfill auditing
requirements [27, 29].

Managing servers and desktops through a man-
agement service has several advantages over individ-
ual companies or departments maintaining a local
management infrastructure. These are:

1. Current and historic information about the man-
aged systems is available and accessible despite
local outages and system failures, and that it
provides a quick and easy method of sharing
detailed information with support professionals
and other problem domain experts without local
network or system access.

2. The service enables correlation of system activ-
ities across large numbers of managed hosts to
identify known good and known bad values.

3. The service enables application and OS devel-
opers to receive details on how their software is
being configured and used which can help iden-
tify problems, and drive future product
enhancements.

4. The service provides a centralized, globally
available, and integrated system for application
developers, administrators, and support profes-
sionals to add knowledge on specific PS,
regarding optimal values, and new analysis
rules to identify and resolve problems so future
instances will not require detailed investigation.

5. The service becomes a management platform for
new reports so problem analysis techniques can
be added to the service’s back-end servers with-
out requiring software or configuration updates
to the agents running on managed systems.

Figure 1: Typical Change Management Process
showing how LiveOps closes the loop.

Architecture

In this section, we present an overview of the
LiveOps system architecture. Figure 2 describes the
system architecture and data flow of:

1. Our low-level server or desktop agent that logs
all registry, file, binary load, and process cre-
ation interactions, compresses the trace events
into log files, and uploads them for analysis [33]

2. The LiveOps back-end service that processes
and archives the uploaded log files

3. An extensible web interface that supports retriev-
ing reports, programmatic data access, and inte-
grating with existing notification mechanisms.

20th Large Installation System Administration Conference (LISA ’06) 189

LiveOps: Systems Management as a Service Ve r b o w s k i , et al.

Our implementation does not require any
changes to the core operating system or any
applications specific changes or configuration

Figure 2: LiveOps System Architecture and data
flow.

Figure 3: LiveOps analysis framework.

Figure 4: LiveOps annotation of information.

Figure 3 describes the processing flow of the back-
end LiveOps servers, detailing the analysis performed
by the daemons on newly received logs. Anomaly
detection rules, such as checking for policy violations or
correlating an observed change with a planned change
work order, are written in standard C/C++/C# code and

compiled into a dynamically loadable Query Module
(QM). At startup the daemons load the QMs, passing
each QM a reference to the newly uploaded logs.

Internally, a QM may integrate with external IT
data sources, such as change management databases
(CMDB) or change policy definitions. The QM then
detects anomalies such as identifying patterns within
the logs, correlating log activities with CMDB work
items, or using change policy definitions to identify
policy violations. All QMs write alerts to a common
API that stores them in the Alert Database. An Alert
Notification daemon reads the alerts and sends notifi-
cations through Instant Messenger, email, and RSS
feeds. A QM may also maintain an internal database,
such as the baseline database used to store a history of
application interaction with PS. The baseline QM uses
its database to detect deviations and log them as alerts.
Once log files have been processed by all QMs they
are moved into a central archive. Administrators can
create ad-hoc queries against all archived data using
the web service that exposes the LiveOps query API.
This web service is used by the LiveOps web server to
generate HTML reports, and can also be used by other
products to integrate with LiveOps data.

In addition to providing access to the informa-
tion, LiveOps also provides contextual information
about each alert and the settings it describes. Three
stages of annotations:

190 20th Large Installation System Administration Conference (LISA ’06)

Verbowski, et al. LiveOps: Systems Management as a Service

1. Automatic
2. Pre-defined context mapping
3. Expert, as described in Figure 4, are applied to

the alerts and individual file and settings as
they are read from the web interface

For example, let’s consider the annotations added
for an alert that describes a new application installa-
tion on a monitored machine. The first level provides
statistical information such as how many other
machines have this application installed, and the most
common versions of files and values of settings asso-
ciated with it. The second level of annotation com-
pares the binary hash of the installed files with a data-
base that indexes company name, application name,
and version information based on binary hashes. The
final level of annotation adds any comments or rating
information provided by other users of the system.

If this installation was known to be spyware or
malware, the final annotations could include support
articles that describe how to deal with the installation.
The quality of this information grows as more machines
report their data to the service, and as more users pro-
vide comments and ratings on the alerts and individual
file and settings entries. It also provides valuable insight
into the application vendors about how consumers con-
figure and use their products, along with insight into the
real-world problems their products have.

LiveOps Scenarios

LiveOps was created within the management phi-
losophy that administrators understand the PS of a run-
ning system, all changes made to the PS, and the scope
of PS interactions for correctly running processes. This
is required in all administrative management scenarios
which are described in the following subsections. Each
section contains a description of the LiveOps reports,
how they are generated, and a summary of results from
running LiveOps on production servers at MSN.

The section on ‘‘Understanding Changes’’
describes how LiveOps improves the change manage-
ment processes used by most IT organizations by
showing how it can be used to:

1. Verify that changes are correctly made and to
discover unauthorized changes

2. Identify unapproved processes
3. Discover the impact and frequency of changes

impacting critical systems and applications
4. Identify sensitive information that is being

copied to removable devices and network loca-
tions

5. Analyze and account for the PS that are often
left behind by software installation and removal
programs

The section on ‘‘Managing Abnormal System
Activity’’ shows how LiveOps can significantly
reduce troubleshooting time by:

1. Detecting known problems

2. Providing contextual information about what
PS processes and users were accessing

3. Identifying processes that have become stale
from changes to PS

‘‘Enforcing Best Practices’’ describes how
LiveOps can be used to improve the best practices fol-
lowed by administrators by identifying:

1. When users are logging in to systems, poten-
tially unnecessarily

2. Daemons running under local user or domain
user accounts instead of the system account

Scenario: Understanding Changes
The typical change management process fol-

lowed by many IT organizations is:
1. Identify change to be made and create a work

order
2. Verify correctness of change in test environ-

ment with test workloads
3. Deploy the change to subset of servers and

monitor for problems caused by real-world
workloads

4. Broadly deploy the change and close the work
order

The three main challenges with implementing this
process are:

1. Defining the specific changes expected
2. Auditing the changes as they are made to the

systems
3. Identifying the impact of the change to under-

stand the applications that must be tested and
verified

Without LiveOps ‘Change Management’ reports
defined in this section, scheduled changes are often
not understood and therefore their impact is not well
known. For example, work orders may define a
change as applying a SQL Server Service Pack 1
update, rather than listing the specific files and set-
tings being modified. Consequently, understanding if
the change has been correctly and completely applied
to all required servers is often based on unreliable and
incomplete methodologies, such as:

1. Sampling each affected server for one of the
known files in the change

2. Relying on the administrator notes about what
changes were made and when

3. By examining logs that may not fully describe
the change

Often times the software installation for patches
and applications does not maintain an accurate record
of the PS being created or changed on the system, and
consequently their uninstall programs can leave PS
behind, or even corrupt the remaining applications on
the system. In a later section, we present a case study
of software installation and removal that demonstrates
the significance of this problem.

Furthermore, current auditing techniques can
only detect changes where existing changes are
recorded by the affected applications and system logs,

20th Large Installation System Administration Conference (LISA ’06) 191

LiveOps: Systems Management as a Service Verbowski, et al.

or those which are manually reported by administra-
tors. For example, if an administrator makes multiple
configuration changes in an attempt to troubleshoot a
problem and forgets to roll back one of them, this
change will not be recorded and may cause a future
problem on the server.

In addition to auditing changes as part of the
change management process, there is a growing need
to audit all interactions on systems. Several regulatory
bodies require maintaining strict audit logs of changes
made to systems [27, 29]. Also, new consumer protec-
tion laws enforced in Japan and being drafted in other
countries, now make businesses liable for Personally
Identifiable Information (PII) that is leaked or stolen
from their companies [13, 14]. In addition, the grow-
ing trend to outsource business functions that relate to
Intellectual Property (IP), such as the source code used
to develop software, provides a need for auditing IP
and PII for when it is accessed, modified, or copied.

To improve the change management process and
facilitate regulatory auditing, LiveOps provides
reports that describe critical changes; document unau-
thorized applications and change impact analysis; and
list sensitive data copied to network and removable
devices. The remainder of this section describes these
reports in more detail and summarizes our results from
generating them in MSN datacenters.

State Grouping Process Grouping of State Changes
State Daily Daily Monthly Average Per Machine

Classification All Distinct Instances Distinct Distinct Daily Distinct
Problem 0 0 0 0 0 0
Install 104,149 16,947 810 155 69 4
Configuration 176,300 3,340 399 86 22 3
Content 16,261,721 1,593,100 9,513 50 1 3
Management Change 57,145 864 234 79 11 2
Unauthorized 4,206 634 14 9 3 2
User Activity 1,221 189 96 33 4 3
Noise 104,109 1,727 909 66 14 2
Unknown 39,715 2,613 534 60 13 3
TOTAL 16,748,566 1,619,414 12,509 538 137 22

Table 1: Critical changes for one month of production server logs across 34 machines showing individual changes
and changes grouped by process.

Report: Critical Changes
LiveOps defines critical changes as:

1. Unexpected program execution
2. Modifications made to PS, used by the operat-

ing system and line of business (LOB) applica-
tions

The remainder of this section defines the alerts used to
generate critical change reports, and describes the dis-
tribution of alerts detected for a one-month sample of
LiveOps data.

Datacenter reviewers of the report can manually
associate the processes needing approval with work
order systems. LiveOps can be used to verify configu-
ration changes, potentially in an automated way, by

correlating planned changes with the process name,
user name, and time of the changes made. LiveOps
marks alerts for processes requiring approval that run
during ‘Lockdown’ periods by integrating with the
lockdown schedule maintained externally to LiveOps
by operations managers.

Changes to PS used by the OS and LOB applica-
tions must be authorized and controlled to avoid relia-
bility and availability problems. Changes made to
management applications on these servers are also
important because they control the insight administra-
tors have into the performance, reliability, and change
management behavior of the server. Incorrect changes
to management applications may reduce or eliminate
visibility, and may expose the system to attackers.

While it is important to understand the critical
changes affecting systems, not all writes to PS are
interesting to administrators. To identify the critical
changes from all writes to PS the following nine prior-
itized classifications are used to label each entry:

• Problem: Indicates a known problem – results
from the existence or removal of this PS.

• Install: PS added as part of an installation or
upgrade.

• Setting: Changes made to configuration PS.
• Content: Web pages, images, and user data.
• Management Change: Installation, patching,

or configuration changes made to the manage-
ment applications running on the system.

• Unauthorized: Installation of prohibited appli-
cations, or configuration changes to prohibited
values.

• User Activity: PS modified as a result of users
logging in or running window applications.

• Noise: Temporary or cached PS.
• Unknown: Unclassified PS.

The classification process involves associating
each match of a substring contained in a classification
rule to the PS name contained in each change event.
Matches to classification substrings with higher prior-
ity take precedence over those with lower priority. For

192 20th Large Installation System Administration Conference (LISA ’06)

Verbowski, et al. LiveOps: Systems Management as a Service

example, a PS name matching both ‘User Activity’
and ‘Install’ classification substrings will be labeled as
‘Install.’ From examining 28 days of change activity
from 34 systems, we identified 1 to 20 substring rules
for each classification. Administrators can update the
classification rules as needed, however, Table 1 shows
that the initial rules cover all except 0.2% (39 k/16.7
M) of the PS observed.

Table 1 shows a summary of the changes ob-
served across one month of traces from 34 production
servers. It shows that 16.7 M individual changes were
made to 1.6 M distinct PS entries, meaning that on
average each PS was changed 10 times. Considering
an overall average of 300 k PS entries per machine,
this means that only 16% (1.6 M distinct state grouped
changes / (300 k PS * 34 machines)) of the PS was
modified during this period.

Although 1.6 M changes are too many for an
administrator to review we can significantly reduce
the items to review if we assume that each process
instance is updating a set of related PS. For example,
an installation program will add thousands of Registry
entries and hundreds of files during the installation of
a single application.

Table 1 shows that there is an O(102) reduction
in changes if daily change process instances are con-
sidered instead of distinct state. This can be further
reduced to O(103) by considering only changes made
by daily distinct processes, however, comparing
monthly distinct with daily distinct we reduce the
number of changes to consider by only half. For
example, in MSN it is common for the same patch
installer, KB-123.exe, to be run on all 34 systems,
which can be presented as one distinct kb-123.exe
entry, providing the administrator with the ability to
‘drill in’ to see the affected machines and individual
PS changes. If we consider the average daily distinct
changes for each machine, rather than the overall dis-
tinct changes, we find that there are only O(101).

The LiveOps lockdown reports show configura-
tion changes such as installations, patching, changes to
LOB, OS, or management applications during periods
when changes are prohibited on systems. Lockdown
reports from five properties were analyzed for nine
lockdown ranges over a seven month period. Figure 5
shows that all properties had lockdown violations dur-
ing at least one period; two properties had violations
in eight of nine lockdown periods. Violations ranged
from minor issues such as running diagnostics on sys-
tems, to more severe changes like installing service
packs and new applications. We expect identifying and
attributing lockdown violations to specific administra-
tors will be a strong deterrent.

Report: Unauthorized Applications

Only approved processes should be running on
datacenter systems. Similar to systems such as TripWire
[16], LiveOps uses a predetermined list of approved

Figure 5: A marker for each property with at least one
violation during a Lockdown period.

and unapproved applications to identify unauthorized
processes on servers. The list contains the following
details for each of the approximately 200 distinct
process names observed on production servers, and
1300 distinct process names observed across all sys-
tems including desktop and home machines:

• Approved – Marks the process as approved (or
not) for running on production systems, or
requires a work order before running it.

• Type – Indicates if this process is a command
line tool, daemon, or interactive window appli-
cation. Reports will use this classification to
determine if daemons are not running under
local system credentials, if window applications
are being remotely launched, or if local logins
are made when administrative activities could
be done remotely.

• Category – Indicates the intended use of the
process

LOB: Created specifically for a business
need, such as the infrastructure for a web
site.
OS: Processes that run as part of the OS as
required components, such as lsass.exe.
Desktop: A corporate desktop application
like an email client. Applications that are
used in server environments but designed
for home or desktop use may not meet the
stringent security requirements of a server
environment.
Dev: A developer tool such as a compiler.
Home: For home entertainment, such as a
game.
Mgmt: Management products and tools
used to manage systems like agents or
event log tools that ship with the OS.
Instances of diagnostic tool processes can
indicate server problems may exist, and
instances of configuration tools indicate
that prior authorization should be granted.

• Function – Describes what this process can
potentially do on the system. This classification
is used by reports that highlight users running

20th Large Installation System Administration Conference (LISA ’06) 193

LiveOps: Systems Management as a Service Verbowski, et al.

processes that could make changes to the sys-
tem’s PS.

Setup: Can be used to install or remove
applications.
Patch: Updates existing applications.
Config: Can be used to modify the config-
uration of the system.
Diag: Used for retrieving diagnostic infor-
mation from the system. Examples are
ping and traceroute.
Viewer: Displays read-only data, from files
or other sources. Tools like ‘winver.exe’
fall into this category.
WriteData: Indicates the process can create
data such as log files like the LiveOps
agent, or can modify existing data like
notepad.exe.
‘‘Fun’’ : have no business value, and used
only for entertainment. Examples are games
and DVD playing applications.
System: Required for operation of the sys-
tem. Some examples are lsass.exe and
csrss.exe.
Runtime: The process hosts other applica-
tions. Examples are scripting environments
such as Perl, or surrogates like dllhost.exe,
svchost.exe and java.exe.
Malware: Malicious or unwanted software
that should never be run.

• Product – Name of the product.
• Manufacturer – Details about the Manufacturer.
• Description – Description of the product

describing its key functionality.

Figure 6: LiveOps detecting a web browser (iexplorer.exe) downloading and installing two new applications.

Processes seen for the first time are by default
not approved, and therefore show up in the report for
classification by administrators. Additionally, pro-
cesses that are known to be used for diagnostics or
implementing configuration changes to the system are
alerted on, and marked as needing approval.

Analyzing a sample report from 126 production
servers over a one month period we found 37 systems
(29%) ran an overall total of 18 distinct unauthorized
processes. The breakdown of these is: three were asso-
ciated with automatic updates to a runtime environ-
ment, seven were desktop applications and data
manipulation tools, and eight could not be identified
by administrators or security experts in the organiza-
tion. 76 systems (60%) ran 17 distinct processes that
required approval because they can be used for diag-
nosis or configuration changes.
Report: Change Impact Analysis

Each time a new binary is used on a system this
alert shows the application that installed the binary file,
and the user context that installed it. LiveOps catches
binary installations regardless of whether the installing
application participates with RPM, MSI, or Pack-
ageAdd. Figure 6 shows the daily alerts generated by
iexplorer.exe (web browser) which was used twice to
download and install applications. The first time it
downloaded and installed msnsearchtoolbarsetup_en-us.
exe (MSN Search Toolbar) and the second time it
downloaded and installed winamp52_full_emusic-7plus.
exe (Winamp Media Player). It shows that Winamp
created several binaries on the system, including emu-
sic-7plus.exe (EMusic), which later installed even
more binaries.

This report is useful to administrators that may
not have expected EMusic to be installed, and might at
a later time wonder where, when, and how the EMusic
binaries got on their machine. Figure 7 presents a
‘drill in’ of the detailed process tree at the time of the
installations. It clearly shows that the web browser
launched the Winamp installation, which in turn
launched the EMusic installation.

Identifying the impact that changing a PS entry
has on a system’s running applications is useful for test
verification planning, and for troubleshooting. Know-
ing the specific PS affected by a change and the

194 20th Large Installation System Administration Conference (LISA ’06)

Ve r b o w s k i , et al. LiveOps: Systems Management as a Service

affected applications enables administrators to priori-
tize testing the specific features of the applications
controlled by the updated PS. Administrators and sup-
port professionals can also significantly reduce the
scope of potential root cause PS by knowing which
recently modified PS is used by the broken application.

Categories of Distinct Impacted Processes
Average Daily PS Change Type Desktop Developer LOB Management OS
Across all Machines: Install 2 182 56 168 25
Per Machine: Install 2 124 23 95 5
Across all Machines: Configuration 0 2 4 27 9
Per Machine: Configuration 0 2 2 10 1
Across all Machines: Content 0 8 37,063 46 9
Per Machine: Content 0 8 18,112 22 6
Across all Machines: Management 0 0 1 59 5
Per Machine: Management 0 0 1 59 6

Table 2: Impact analysis showing the average daily global and per machine changes impacting each of the six cate-
gories of processes observed running across the 34 production servers during a one month period.

Figure 7: Drill in of the process tree at the time of the
installation.

LiveOps identifies the dependencies of each
process running on a system by tracking the PS read
and modified by each observed process. This list of
dependencies, called a manifest, can then be inter-
sected with each change on the system to identify the
impacted processes [8, 30]. If the contents of patches
or applications are known before they are installed,
their impact on existing applications can be predicted
by intersecting their contents with the manifests for
each observed process. The Application Compatibility
Toolkit version 5.0 [19] contains a feature called the
Update Impact Analyzer, which uses portions of the
LiveOps technology to provide this functionality,
enabling administrators to prioritize testing and migra-
tion of applications and patches.

Table 2 presents a summary of daily changes
affecting the five categories of processes observed
across 34 production servers over a one month period.

Surprisingly we see that each day there are several
changes made that impact LOB and OS processes, and
that each machine on average only receives about half
(90 of 163) of the distinct global installations impact-
ing OS applications. This means that the 34 machines
are not all receiving the same set of installation
changes, whereas the two install changes affecting the
desktop category of processes is uniformly applied to
all systems. Overall, we see a trend of uniformly
applied PS changes to desktop, developer, and home
applications. However, less than half of the LOB,
management application configuration, and OS con-
figuration changes are consistently applied to all
machines. Although we expect systems from all five
MSN sites to run the same management processes, and
configure them the same, these results show that there
are in fact differences.

Report: Sensitive Data

Protecting a company’s intellectual property (IP)
is of paramount importance because IP is often a criti-
cal asset responsible for its competitive advantages.
Examples are source code, strategic business plans,
and product specifications. Similarly, many customers
provide personally identifiable information (PII) to
corporations as a part of transacting business. Exam-
ples include credit card and social security numbers,
contact information, and medical records. Personal
Information Protection Laws enacted in 2003 in Japan
[13, 14] make companies liable for up to 300,000 yen
or six months jail time, for each person affected by PII
leaks, which, coupled with an increase in malware and
hacking [26] means that corporations need to ensure
data is protected.

Further demonstrating the significance of this
problem, the CSI FBI report [11] asserts that 59% of
corporate security abuse is caused by employees [15].
All anonymous security experts we surveyed on this
point thought the number may in fact be closer to
80-90%. Protecting IP and PII from internal employ-
ees is challenging because many of them will have
legitimate business needs to access the data, and
administrators will have implicit access to the data by
virtue of managing and backing up information on the
server. This means network isolation, firewalls, and

20th Large Installation System Administration Conference (LISA ’06) 195

LiveOps: Systems Management as a Service Verbowski, et al.

User Auto Self
Setup Script Update Update Developer

Home 7% 7% 51% 35% 0%
Desktop 5% 8% 58% 22% 7%

Lab 2% 5% 61% 32% 0%
Server 1% 17% 38% 44% 0%

Table 3: Distribution of installations by program type for all observed installations.

access control lists (ACLs) will not be effective at
solving this problem.

LiveOps addresses this issue by providing an
audit report on all files copied to remote network
shares and removable devices, for each machine run-
ning its agent. The files being copied are then catego-
rized according to their content using a set of config-
urable classification filters. An alert is then generated
for each process instance that contains the user context
of the process, the process name, and a list of the sen-
sitive files being made remote.

From examining 383 machine days of logs from
35 datacenter servers and corporate desktops we found:
36 instances of internal documents, six instances of
source code, and three instances of applications being
copied to network and removable devices. The reports
also identified 100’s of Corporate IT tools copying logs
off of these machines.

Case Study: Tracking Software Ownership

Intuitively, we may think that managing the PS
of a system should be easy because executable files
and configurations are infrequently created or are
modified by well-known software installers. We ana-
lyze below our traces to find that installations actually
occur quite frequently. Additionally, while most soft-
ware installers provide manifests, listing the PS entries
owned by the installed application to facilitate its
clean un-installation, these manifests are often incom-
plete or incorrect [12]. In the very next section we
analyze PS entries across 70 machines and find that
many entries cannot be accounted for via the
machines’ static manifests. To better understand the
origins of these orphaned PS entries, we describe point
experiments with installing and uninstalling three pop-
ular applications.

How Often Is Software Installed?

To identify a software installation we examined
our PS traces to identify the creation or modification of
files that were later loaded by a process as an exe-
cutable file. We found that on average 20% of all
machine days had at least one installation. However
this varied significantly across each environment. 15%
of Home and Lab machine days and 30% of desktop
machine days had at least one install. Server environ-
ments had a wide variance in the frequency of software
installations, ranging from 7%-80% of machine days
having at least one install. This reflects the variation in
change management policy for each Internet service.

While we might have thought that centralized
administration of corporate desktops, or Windows
auto-update service might cause synchronized updates,
this does not appear to be the case. Overall, we
observed that most software installations, even in the
server environment, occur in an unpredictable manner.

Table 3 describes the distribution of observed
installations across install types. We see that processes
which update themselves (Self Update), predomi-
nantly anti-virus applications, account for a significant
portion of installs. Also, enterprise software distribu-
tion applications and Windows auto-update account
for the majority of software installs in most environ-
ments. As we expect, servers have a large portion of
scripted installs from administrators manually rolling
out upgrades and in-house applications. Installations
caused by users running install programs are infre-
quent. It is interesting to see that our analysis was able
to distinguish binary files created and used on devel-
oper machines as ‘installed’ by the developer tools by
tracking the processes that created each binary.
Static Software Ownership Manifests

Unfortunately, a statically declared manifest is not
always complete. Today’s manifests are not always cor-
rectly specified, nor do they account for PS created
post-installation, such as user preference settings, log
files, etc. This means that during software upgrades or
removal, entries can become orphaned on the machine.
Furthermore, installation or removal of software can
fail, or be interrupted which often leaves registry entries
and files in an inconsistent PS. Over time the orphaned
files and registry entries accumulate on a machine caus-
ing a buildup of unused entries that can lead to system
problems.1 Because of this phenomenon, common
advice is to reinstall your OS and all applications occa-
sionally to return the system to a known state.

To quantify the significance of this problem, we
wrote a tool to extract PS ownership manifests from
within the Windows OS. The tool identifies the com-
ponents installed on the system by analyzing the OS
installation configuration files, enumerating the list of
programs that have registered with the Windows
‘Add/Remove programs’ component, the Windows
Installer database (WI), the OS configuration for
launching applications when a file of a given exten-
sion is run, and manifests of patch contents as
described in the Microsoft Security Baseline Analyzer

1Examples can be found at http://support.microsoft.com/ via
the article IDs: 898582, 816598, 239291, 810932, 181008.

196 20th Large Installation System Administration Conference (LISA ’06)

Verbowski, et al. LiveOps: Systems Management as a Service

Manifest Implicit Data Temp Unknown
Desktop 18.5% 21.0% 20.6% 8.3% 31.6%

Server 4.7% 52.6% 2.4% 3.4% 36.9%
Lab 13.2% 5.8% 9.5% 1.4% 70.1%

File

Desktop 28.2% 32.2% N/A N/A 39.6%
Server 10.5% 36.4% N/A N/A 53.1%

Lab 30.3% 31.7% N/A N/A 38.0%
Registry

Table 4: Average file and registry entries that are specified in manifests, implicitly in manifests, user data, or temp
entries. We do not have heuristics to recognize data and temporary registry entries.

tool [20]. We then enumerate all files and registry
entries on a machine and compare them with these
manifests to identify unaccounted for entries. We asso-
ciate entries that are descendents of entries that are
referenced in the manifests as implicitly associated
with the manifest as well. Finally, we filter the remain-
ing list to exclude well known user data files by their
extension, and remove entries from well known tem-
porary folders. We define the remaining subset as
leaked entries on the system. Table 4 contains the
results of running this tool across eight desktops, 20
Server, and 42 lab machines. It shows that 31-70% of
files and 38-53% of registry entries could not be
accounted for.

To further understand the prevalence of software
leaks, we measured the leakage of three popular com-
mercial applications. By running our data collector
while installing the application, using it for a short
period, and then uninstalling the application; we were
able to measure the net increase of file and registry
entries on the machine.

The first application was the game ‘Doom3,’
which left nine files and 418 registry entries. The sec-
ond was the common corporate desktop application
suite Microsoft Office, which left no files, but 1490
registry entries. Additionally, it left 129 registry
entries for each user that logged into the system and
used the program while it was installed. The third
example was the enterprise database application
Microsoft SQL Server Yukon edition, which leaked 57
files and six registry entries.

Scenario: Managing Abnormal System Activity
Administrators are often required to reactively

manage systems that do not operate as expected
because of:

1. Hardware problems
2. PS problems such as incorrect configuration or

mismatched binary versions
3. Programming logic related issues such as mem-

ory corruptions and crashes.
The process for debugging hardware and program-
ming logic related problems is relatively straightfor-
ward because there are many tools to aid in the analy-
sis and the correct behavior is known.

For example, solutions often exist for hardware
diagnostics such as correctness tests performed in soft-
ware [41], and often devices like hard-drives are

capable of reporting when they are about to fail [1,
17]. Similarly many tools exist for software debugging
such as code analysis tools that are run during the soft-
ware development process [22], specialized software
debuggers [10, 18] and crash analysis software pro-
grams for diagnosing application problems when they
happen [3, 39].

Configuration related problems on the other
hand, are very difficult to debug because tools do not
typically exist to analyze the 200,000 settings [36],
and 100,000 files [7, 32] that exist on a typical system.
Furthermore, the knowledge of which files and set-
tings the application under investigation depends on is
typically manually learned by operators as they gain
experience with applications. The task of debugging
application configuration is further complicated by the
complexity caused by frequent updates to configura-
tion, and the customization of system environmental
variables and settings.

Several strategies have been proposed for mini-
mizing the potential for configuration problems at the
expense of either application functionality or avail-
ability. One approach is to statically link libraries with
executables to reduce the overall number of executa-
bles on the system and thereby minimize the potential
for mismatched binary versions. However, doing this
makes it more difficult to patch libraries when security
vulnerabilities are discovered because all applications
using the library need to be rebuilt and reinstalled.

To improve the troubleshooting and forensic
investigation of problems, LiveOps provides reports
that describe stale PS which identifies applications
that are using stale versions of PS compared to the
version that exists on disk, the ability to generate ad-
hoc forensic reports for specific time ranges that can
be filtered by processes, users, and files and setting
interactions, and instances of known problems. The
remainder of this section describes these reports in
more detail and summarizes our results from generat-
ing them in MSN datacenters.
Report: Stale Processes

When applications read PS into memory there is
the potential for the persisted version of the PS to be
updated by another process, causing it to use an old
‘stale’ copy of the PS. An example of this is applying a
security patch to a critical file such as the tcpip.sys net-
work driver in Windows, which updates the file on disk.

20th Large Installation System Administration Conference (LISA ’06) 197

LiveOps: Systems Management as a Service Ve r b o w s k i , et al.

If the system is not rebooted after the patch has been
applied, the old copy of the file is used in memory and
therefore the system is still vulnerable to the security
exploit. Similarly if an application reads its configura-
tion settings at startup and does not monitor for changes
that happen while it is running, any new changes made
while the application is running will not take effect.
During installations and upgrades it may be expected
that some PS will becomes stale while upgrades are
made, however, the length of time applications are stale
should be small. We define any process that has not re-
read updated PS within five minutes as a stale process.

LiveOps has the unique ability to detect when
binary, file, or registry PS read by a process has
become stale due to external changes. A report on
stale processes is created by correlating all writes to
PS with the PS loaded by currently running processes.
The LiveOps report contains an entry for each stale
process, and enables the administrator to ‘drill in’ to
each entry to examine the individual stale PS, showing
the time it was modified and the process and user con-
text that made the change.

Figure 8 presents a section of a LiveOps stale
report that shows a specific user running Windows
Update (update.exe) at 2/28/2006 on three production
servers. It shows the exact time that the tcpip.sys
driver was modified on each of the machines, and the
time when the new version of the driver was reloaded
into memory. We can see that the systems were
updated between 4:35 am and 5:05 am, but only the
first one reloaded the driver six hours later at 10:49
am. This means that the other two machines were still
exposed to the security vulnerability caused by the old
tcpip.sys binary more than 24 hours later when this
report was viewed. Without this LiveOps report the
server could have been vulnerable for several days
because reboots of servers happen infrequently.

Figure 8: LiveOps detected that the updated tcpip.sys
binary was not reloaded on the bottom two
machines, therefore they are still vulnerable.

We examined several examples of stale processes
found from a sample set of 34 machines over a one
month period. Several stale OS, Management, and LOB
processes were stale for more than 20 hours from soft-
ware binary updates and management configuration
changes. In cases where administrators are trouble-
shooting problems with these applications, knowing

that they are stale could significantly reduce trou-
bleshooting time, because examination of the newly
changed state could mislead administrators to believe
that the new values were being used.

The observed stale state ranged from:
1. Cached domain server information which could

affect the performance of authentication opera-
tions

2. Management configuration which could affect
the availability of monitoring information or
the ability of administrators to connect and
diagnose the system

3. Updated environment variables that could
affect LOB applications that required specific
path settings to locate needed binaries and data
files

4. Web site content and configuration which may
be expected to have an immediate affect once
modified on the system, or could break other
websites due to partially available new content

Query Interface: Forensics and Troubleshooting
The Forensic query interface is useful when

administrators want to know who, when or how
changes are being made [23, 37, 38]. For example, if
malware is detected on the system by anti-malware
tools, the forensics interface can be used to identify
when it arrived and which user context and process
was used to create the malicious files to identify the
root cause of the issue and prevent future occurrences.

LiveOps has successfully identified performance
problems in several applications that were unnecessar-
ily reading registry entries hundreds of times per sec-
ond. One instance was found in an LOB application
running on a web server where the registry entry
\HKLM\SOFTWARE\Microsoft\Cryptography\Defaults\Provider\
Microsoft Strong Cryptographic Provider, and all of its val-
ues were read 240 times per second. Another case was
found in a commercial management product agent that
was deployed on a production server, where it was
continuously reading all registry entries and values
under the \HKLM\System\CurrentControlSet \Services\ key
to detect changes in the parameters of daemons
installed on the system. The developers of both prod-
ucts were notified and told that they could make their
applications vastly more efficient by using the RegNo-
tifyChangeKeyValue function to register for registry
changes rather than polling for them.

LiveOps can also be used in an ad-hoc manner
when troubleshooting to identify if access violations
reading files or registry entries are causing applica-
tions to fail, or even for investigating intrusions from
hackers where the investigator wants to know which
processes were used during the attack, and potentially
which sensitive data files were compromised.
Report: Detecting Known Problems

The root cause of configuration problems identi-
fied by administrators, support professionals or techni-
cally adept end-users, can be used to define assertions

198 20th Large Installation System Administration Conference (LISA ’06)

Verbowski, et al. LiveOps: Systems Management as a Service

about the correctness of configuration on any system.
The LiveOps known problem report is generated by
applying codified configuration assertions, called
rules, to the registry entry names and values collected
from each managed system. The report contains a row
for each machine and configuration entry that matches
a rule. Administrators can review the rule description
that indicates why the entry is suspicious, and view
the data contained in the problematic entry.

While several registry scanning products exist,
LiveOps is different in that it does not need to run on
each managed system to scan the entries because it
can instead scan the logs that are centrally uploaded.
LiveOps results are also more relevant because the
logs contain the registry entries and values that are
currently being used by the applications so there are
less false positives from entries that are not actually
used. Also, user perceived application problems can
be correlated with PS usage because the logs contain
the times an application used the problematic registry
entry. The logs will also contain the exact time,
process, and user context that changed the registry
entry to the problematic value.

The LiveOps known problem rule set contains
approximately 100 assertions created from reviewing
the Strider troubleshooter cases [36], PC fragility
cases [9], and from critical registry entries identified
by MSN administrators such as the setting that con-
trols the operating system paging file. This system can
be further enhanced to take advantage of PeerPressure
[35] comparisons to identify problematic configura-
tions based on the configuration of similar machines.

Reviewing the known problem report for a sam-
ple one month period from 350 desktop, home, and
server machines revealed several issues. Most interest-
ing were the 35 servers that had their page file setting
configured to null, which caused the system to crash
when physical memory was exhausted. Reviewing the
problem incidents from the time when these changes
were made revealed that several of these servers had
in fact crashed from this incident. The reports showed
that it was the svchost.exe process configured to sup-
port remote registry calls that was used to make the
problematic changes, probably from an incorrectly
written management script.

Another interesting problem was found on a lap-
top where the rule for the GSM audio codec configu-
ration detected a missing value. This codec is part of
the default Windows installation for playing .wav
files. Attempting to play a .wav file on the machine
confirmed that it was an actual problem. Resetting the
value resolved the issue.

Several of the remaining detected problems
related to rules regarding user preference changes that
end users may unintentionally make and not know how
to undo. For these entries, LiveOps marks the alerts as
warnings rather than errors, and if a user from a

managed system complains about an application prob-
lem these entries helps quickly resolve related issues.

Scenario: Enforcing Best Practices

Datacenter managers typically define best prac-
tices for managing systems to reduce the potential for
security vulnerabilities, and to minimize the potential
for introducing reliability and availability issues. How-
ever, it is a never-ending challenge to audit whether
these practices are being followed. As an organization
grows the number of its datacenters around the world,
it becomes more difficult to educate the administrators
on the best practices. This also means that an
increased number of administrators will be interacting
with the systems, thereby increasing the potential for
best practice violations. With more people interacting
with systems it is hard to identify which administrators
may have inadvertently introduced a problem, and
therefore makes it difficult to re-educate them on the
best practices to avoid problem reoccurrences.

LiveOps reports have been created to analyze
best practices for minimizing exposure to potential
security vulnerabilities, and for minimizing potential
system instabilities. The initial best practices reports
are: Login report which details the users that have
been logging in to each server; and Daemons running
with local or domain credentials.

Report: Logins

Avoiding unnecessary logins to production
servers reduces the potential for hackers to obtain cre-
dentials that can be used to connect to other systems in
a network. Logging in to a server causes a primary
user context to be created, which can be used to con-
nect to remote systems one hop away. If, instead tools
are run remotely on the system, a secondary security
context that is only valid on the remote machine is
used. Furthermore, a best practice for avoiding the
potential for problems is to minimize the amount of
changes and interactions on managed systems.

A sample of LiveOps login reports for 34 pro-
duction systems over a one month period shows sev-
eral examples of logins. Most notably, nine systems
were found to be running screen savers 28 times, by
detecting instances of the scrnsave.src process. This
implies that primary credentials were left on the sys-
tems for extended periods of time. It also showed that
each system was logged into at least twice, with one
system having 11 logins.

Report: Non-System Daemons

Windows systems joined to an active directory
have machine accounts associated with them, which
can be used as the user context for running daemons.
Machine accounts have the same properties as user
accounts and can be added to access control lists
(ACLs) if needed. It is best practice to run all daemons
using the machine account [6] because this will typi-
cally not have permissions on remote machines, and

20th Large Installation System Administration Conference (LISA ’06) 199

LiveOps: Systems Management as a Service Verbowski, et al.

will not require storing user credentials (login names
and passwords) locally to run the daemons. Locally
stored credentials can potentially be obtained by hack-
ers that infiltrate the system and be used to connect to
other systems.

The LiveOps non-system daemon report for 34
machines over a one month period identified several
daemons that were not running with the machine
account security context. Six distinct processes were
identified across all systems, five were management
product agents, and one was an LOB process. Each of
the 34 systems had violations for at least one daemon
running, and a few machines had up to 4. The majority
of these daemons were management agents.

Feasibility of Labeling All Changes

The ability to understand all changes made
across large numbers of systems is possible only if the
rate of new PS is small enough for humans to reason-
ably comprehend. To evaluate this we determined the
first time LiveOps observed process names, PS entries
across all managed systems. Using this information
we determined:

1. The steady state daily rate of new items
observed over an extended period

2. The learning period, which is the number of
days taken to observe the majority of items

The learning period determines how long
LiveOps must be run before it will reliably generate
reports without false positives caused by observing PS
for the first time. The steady-state determines how
many new PS items must be classified on an ongoing
basis for LiveOps to accurately label and understand
all observable PS. If labeling is not periodically main-
tained LiveOps will still accurately and correctly gen-
erate all reports, however over time there may be
some unknown entries for some reports.

To help prevent this LiveOps provides contextual
information that makes it easy to label new PS, and
can integrate with other sources descriptive PS infor-
mation as described earlier. This includes contextual
information about the processes using the PS, integra-
tion with existing software libraries [24] and work
order systems, as well as correlation with previously
labeled LiveOps PS. Additionally, automatic inheri-
tance based labeling strategies can be employed such
as labeling binaries used by only one process with the
process’s label.

Figure 9 shows the distribution of newly seen pro-
cesses from all monitored systems over 39 days since
the start of LiveOps data collection. We can see that the
learning period is one day, at which time 1000 distinct
processes were observed. The steady-state for new pro-
cesses is typically 0, unless software updates or instal-
lations occur. During software updates many processes
are created from files created with random temporary
file names that do the installation work. There are two
solutions to automatically labeling these processes:

1. Using the checksum and size of the process
.exe will effectively canonicalize the names of
the temporary files into distinct entries across
all machines

2. Substring rules can be created to eliminate
process names created within known temporary
folders.

Figure 10 presents the distribution of newly seen
binaries, that is any .dll, .exe, or other executable file
that is loaded by any of the monitored machines. Dis-
tinct entries are determined by using the checksum
stored in the executable header and the size of the
binary file. These are the same properties used by ker-
nel debuggers to identify the correct version of sym-
bols to load when debugging a process. We can see
that the learning period lasts for one day, when 1400
binaries are first observed, then reaches steady-state
where new binaries are only observed if new installa-
tions or patches are applied.

The growth of new files and registry entries files
since the start of LiveOps data collection is shown in
Figure 11, and Figure 12 respectively. For files and
registry entries, each day there are a large number of
newly generated temporary and cached files with ran-
dom names. These entries are filtered out in daily
counts using simple substring rules that look for
known temporary paths in the names. We can see from
both graphs that the daily newly observed entries are

Figure 9: Growth of new processes since the start of
LiveOps data collection.

Figure 10: Growth of new binaries since the start of
LiveOps data collection.

200 20th Large Installation System Administration Conference (LISA ’06)

Verbowski, et al. LiveOps: Systems Management as a Service

Figure 11: Growth of new files since the start of
LiveOps data collection, filtering temp entries.

O(101) across all systems, unless new installations or
configurations are made, such as those that happened
on the 14th and 23rd day. This is a reasonable amount
for humans to manually evaluate.

Conclusion

We built LiveOps, a scalable systems manage-
ment service and comprehensive low-overhead agents,
that identify security vulnerabilities, perform compli-
ance auditing, enable forensic investigations, detect
patching problems, optimize troubleshooting, and
detect malware/intrusions. The service provides a plat-
form for knowledge sharing across organizations and
administrative boundaries and allows for seamless
integration between analysis results from disparate
management products that build on it.

Our analysis of reports from deploying LiveOps in
MSN demonstrates how it fulfills a critical need in the
configuration management cycle by detecting all system
changes, enabling verification of approved requests, and
alerting upon unknown modifications. Closing this loop
is becoming increasingly important for all datacenters for
identifying unwanted changes, and to fulfill auditing
requirements. These results illustrate the benefits and fea-
sibility of managing configuration from the OS perspec-
tive of interactions between running processes and PS.

LiveOps empowers administrators with new visi-
bility into the relationships between applications and
the PS they use. This enables them to more knowl-
edgably, efficiently, and accurately manage their sys-
tems and the applications that run on them.

Author Biographies

Chad Verbowski is an Architect in Microsoft
Research. His early academic research on network
management translated into a job designing network
and systems management infrastructure for MFS
Datanet. After surviving the WorldCOM takeover
Chad worked at Cisco before joining a management
focused software startup company as employee num-
ber 5. He eventually arrived at Microsoft where he
worked on headless support in Windows 2000, then

Figure 12: Growth of new registry entries since the
start of LiveOps data collection, filtering temp
entries.

ran the core development team for the first release of
Microsoft Operations Manager before finding his
niche at Microsoft Research. At MSR Chad cofounded
the Cybersecurity and Systems Management research
group, where he focuses on his area of interest: reduc-
ing complexity in software.

Juhan Lee is an MSN Architect focused on
improving reliability, scalability, and improving opera-
tion of MSN’s Internet Service Platforms by innovat-
ing next generation MS products and research technol-
ogy into MSN data centers. Juhan joined Microsoft in
February 1996 to lead Windows 2000 Datacenter
development, Systems core components of Manage-
ment Server (SMS), and Microsoft Operations Man-
ager 2000. Prior to Microsoft Juhan worked on IBM’s
CICS/DB2 and OS/2 product lines in Research Trian-
gle Park, and directed distributed middleware and
Lotus workflow engine R&D at UNUM Corporation
that was ultimately licensed by large software corpora-
tions. Juhan enjoys all things electronics and works on
home electronics on his free time. He studied Electri-
cal Engineering at North Carolina State University,
interned at Nortel and IBM as both Power Engineer
and Software Developer where he chose software
career by joining IBM in 1988.

Xiaogang Liu is a Software Development Engi-
neer who joined Microsoft in 2005 and has been work-
ing on automatic diagnosis and discovery of system
anomalies since then. Before that, he was the dev lead
of an automatic computer test and configuration
project, which has been deployed to two of the top
three PC vendors in China and increased the output
vastly. His first project in software industry was a Chi-
nese-English dictionary on the Windows platform,
where he’s responsible for word/phrase lookup under
mouse pointer initially and later the main UI. He likes
reading books and playing badminton in his spare time.

Yi-Min Wang is a Principal Researcher at Micro-
soft Research, Redmond, where he manages the
Cybersecurity and Systems Management Group and
leads the Strider project. Yi-Min received his B.S.

20th Large Installation System Administration Conference (LISA ’06) 201

LiveOps: Systems Management as a Service Ve r b o w s k i , et al.

degree from National Taiwan University in 1986. He
received his Ph.D. in Electrical and Computer Engi-
neering from University of Illinois at Urbana-Cham-
paign in 1993, worked at AT&T Bell Labs from 1993 to
1997, and joined Microsoft in 1998. His research inter-
ests include security, systems management, dependabil-
ity, home networking, and distributed systems.

Roussi Roussev is finishing his Ph.D. as a stu-
dent at Florida Institute of Technology. His research
interests include distributed systems, security, depend-
ability and program verification.

Bibliography

[1] Allen, B., ‘‘Monitoring Hard Disks with
SMART,’’ LINUX Journal, 2004, http://www.
linuxjournal.com/article/6983 .

[2] Arbaugh, W., et al., ‘‘Windows of Vulnerability:
A Case Study Analysis,’’ IEEE Computer, Vol.
33, Num. 12.

[3] Brodie, M., et al., ‘‘Quickly Finding Known
Software Problems via Automated Symptom
Matching,’’ ICAC, Seattle, WA, 2005.

[4] Brown, A., et al., ‘‘Accepting Failure: A Case for
Recovery-Oriented Computing (ROC),’’ HPTPS,
Asilomar, CA, 2001.

[5] Burgess, M., et al., ‘‘Cfengine: a site configura-
tion engine,’’ USENIX Computing Systems, Vol.
8, Num. 3, 1995.

[6] Chen, S., et al., ‘‘A Black-Box Tracing Tech-
nique to Identify Causes of Least-Privilege
Incompatibilities,’’ NDSS, San Diego, CA, 2005.

[7] Doceur, J., et al., ‘‘A Large-Scale Study of File-
System Contents,’’ SIGMETRICS, Atlanta, GA,
1999.

[8] Dunagan, J., et al., ‘‘Towards a Self-Managing
Software Patching Process Using Black-box Per-
sistent-state Manifests,’’ ICAC, New York, NY,
2004.

[9] Ganapathi, A., et al., ‘‘Why PCs Are Fragile and
What We Can Do About It: A Study of Windows
Registry Problems,’’ ICAC, Florence, Italy, 2004.

[10] The GNU Project Debugger, http://www.gnu.org/
software/gdb/gdb.html .

[11] Gordon, L., et al., CSI/FBI Computer Crime and
Security Survey, 2004, go.sci.com .

[12] Hart, J. and J. D’Amelia, ‘‘An Analysis of RPM
Validation Drift,’’ Proceedings of the 16th
USENIX Conference on Systems Admininistra-
tion, Berkeley, CA, 2002.

[13] Japan’s Personal Information Protection Act,
2003 Law Num. 57, Japan, 2003.

[14] Japan’s Personal Information Protection Act, http://
www.privacyinternational.org/survey/phr2003/
countries/japan.htm .

[15] Jaques, R., Internal Hackers Pose The Greatest
Threat, 23 Jun 2005, http://vunet.com .

[16] Kim, G. H., ‘‘The Design and Implementation of
Tripwire: A File System Integrity Checker,’’
ACM Conference on Computer and Communica-
tions Security, Fairfax, VA, 1994.

[17] McLean, P., Information Technology – AT
Attachment-3 Interface (ATA-3), X3T13 2008D
Revision 7b, 1997.

[18] Microsoft Debugging Tools, http://www.microsoft.
com/whdc/devtools/debugging .

[19] Microsoft Application Compatibility, Toolkit, http://
www.microsoft.com/technet/prodtechnol/windows/
appcompatibility .

[20] Microsoft Baseline Security Analyzer, http://www.
microsoft.com/technet/security/tools/mbsahome.
mspx .

[21] Microsoft Management Products, http://www.
microsoft.com/management .

[22] Microsoft Program Analysis Projects, http://www.
microsoft.com/windows/cse/pa .

[23] Moshchuk, A., et al., ‘‘Crawler-based Study of Spy-
ware in the Web,’’ NDSS, San Diego, CA, 2006.

[24] National Software Reference Library, http://www.
nsrl.nist.gov .

[25] Oppenheimer, D., et al., ‘‘Why do Internet ser-
vices fail, and what can be done about it?’’
USITS, Seattle, WA, 2003.

[26] Oswald, E., ‘‘Study: Adware Increasing Expo-
nentially,’’ BetaNews, September 11, 2006.

[27] Payment Card Industry (PCI) Data Security
Standard, v1.1, Sep., 2006, https://www.pcisecurity
standards.org/pdfs/pci_dss_v1-1.pdf .

[28] Rescorla, E., ‘‘Security Holes . . . Who Cares?’’
USENIX Security, Washington, DC, 2003.

[29] Sarbanes-Oxley Act of 2002, http://fl1.findlaw.com/
news.findlaw.com/hdocs/docs/gwbush/sarbanes
oxley072302.pdf .

[30] Sun, Y., et al, ‘‘Global analysis of dynamic
library dependencies,’’ LISA, San Diego, CA,
2001.

[31] Syslog, http://en.wikipedia.org/wiki/Syslog .
[32] Verbowski, C., et al., ‘‘Analyzing Persistent State

Interactions to Improve State Management,’’
SIGMETRICS, Saint Malo, France, 2006.

[33] Verbowski, C., et al., ‘‘Flight Data Recorder:
Monitoring Persistent-State Interactions to
Improve Systems Management,’’ OSDI, Seattle,
WA, 2006.

[34] Wang, H., et al., ‘‘Shield: Vulnerability-Driven
Network Filters for Preventing Known Vulnera-
bility Exploits,’’ ACM SIGCOMM, Portland, OR,
2004.

[35] Wang, H., et al., ‘‘Automatic Misconfiguration
Troubleshooting with PeerPressure,’’ OSDI, San
Francisco, CA, 2004.

[36] Wang, Y.-M., et al., ‘‘STRIDER: A Black-box,
State-based Approach to Change and Configuration

202 20th Large Installation System Administration Conference (LISA ’06)

Ve r b o w s k i , et al. LiveOps: Systems Management as a Service

Management and Support,’’ LISA, San Diego, CA,
2003.

[37] Wang, Y.-M., et al., ‘‘Gatekeeper: Monitoring
Auto-Start Extensibility Points (ASEPs) for Spy-
ware Management,’’ LISA, Atlanta, GA, 2004.

[38] Wang, Y.-M., et al., ‘‘Automated Web Patrol
with Strider HoneyMonkeys: Finding Web Sites
that Exploit Browser Vulnerabilities,’’ NDSS,
San Diego, CA, 2006.

[39] Wi n d o w s Error Reporting, http://www.microsoft.
com/whdcmaintain/WERHelp.mspx .

[40] Wi n d o w s Event Log, http://windowssdk.msdn.
microsoft.com/en-us/library/ms732118.aspx .

[41] Wi n d o w s Memory Diagnostic, http://oca.microsoft.
com/en/windiag.asp .

20th Large Installation System Administration Conference (LISA ’06) 203

