
Firewall Analysis with Policy-
Based Host Classification

Robert Marmorstein and Phil Kearns – The College of William and Mary

ABSTRACT

For administrators of large systems, testing and debugging a firewall policy is a difficult
process. The size and complexity of many firewall policies make manual inspection of the rule set
tedious and error-prone. The complex interaction of conflicting rules can conceal serious errors
that compromise the security of the network or interrupt the delivery of important services. Most
existing tools for verifying the policy require the user to provide a detailed set of test cases or
queries, which can sometimes be as difficult as verifying the policy by hand. Deriving a
sufficiently comprehensive set of tests requires a detailed knowledge of potential vulnerabilities
and a familiarity with the mechanics of the firewall. It also requires a significant investment of
time and other resources. In this work, we present a fully automatic technique for identifying
significant anomalies in a firewall policy. Our technique employs a novel system for classifying
the hosts of a network into classes based on an equivalence structure, which is calculated from the
firewall policy. This ‘‘policy-based classification of network hosts’’ substantially reduces the
difficulty of identifying potential errors in the configuration of a firewall or group of connected
firewalls and can be combined with existing firewall verification techniques to improve their
effectiveness in detecting errors.

Introduction

A comprehensive firewall policy can protect a
network against many serious internal and external
threats. For installations with many hosts, however,
the process of maintaining a restrictive policy can be
prohibitively difficult. Firewall rules often interact in
confusing ways. As the topology of the network
evolves and users request new services, rules must be
added and removed from the policy. These modifica-
tions make the policy increasingly complex and
increase the likelihood of introducing serious errors
into the firewall policy. For this reason, many system
administrators avoid restrictive firewall policies and
rely other security measures to keep the network
secure [17]. This is unfortunate, since a properly con-
figured firewall can play a major role in defense-in-
depth and in protecting legacy or unpatched systems.

One reason firewalls are so difficult to manage is
that slight differences in the rule set can cause dra-
matic changes in the behavior of the firewall. For
instance, on iptables firewalls [5], the filtering policy
is specified using ordered chains of rules. In each
chain, the first rule that matches a packet is used to
determine the fate of the packet. Reversing two rules
can introduce an error that is difficult to detect, but
significantly modifies the behavior of the firewall.
Other firewall systems have similarly deceptive
semantics. For instance, ipfilters firewalls use a ‘‘last-
match’’ policy to determine the fate of the packet [16].
Features such as network address translation and state-
ful filtering can also create opportunities for introduc-
ing difficult-to-detect errors.

While the techniques we describe in this work
can be applied to any packet filtering system, we use
iptables rules in our examples. An iptables firewall
has three built in chains. The INPUT chain is used to
process packets that are destined for the firewall host
itself. The OUTPUT chain is used for packets gener-
ated by the firewall host. The FORWA R D chain man-
ages packets that pass through the host to other
machines. The policy language also provides the abil-
ity to define new chains which can called from exist-
ing chains by making them the target of a firewall rule.

Each of the built-in chains consists of a default
policy and an ordered list of rules. When deciding
whether to accept or drop a packet, the firewall con-
siders the rules of the appropriate chain in order until a
matching rule is found.

Each firewall rule consists of a set of matches and
a target. The matches specify criteria that determine
which packets should be processed by the rule. The tar-
get tells the firewall what to do with a packet that
matches. The target ACCEPT means to allow the packet
through the firewall. The targets DROP and REJECT
mean to discard the packet. The user can also instruct
the firewall to pass the packet on to a user-defined chain
for more processing or LOG the packet to a file.

Figure 1 gives an example of a simple iptables
policy. The INPUT chain of the firewall allows SSH
traffic to reach the firewall host itself. The default pol-
icy of DROP ensures that all other traffic to the host
will be discarded. Outgoing traffic from the firewall,
however, is allowed to pass. Although the OUTPUT
chain contains no rules, the default policy of ACCEPT
allows the firewall host to send any packet to any host.

20th Large Installation System Administration Conference (LISA ’06) 41

Firewall Analysis with Policy-Based Host Classification Marmorstein & Kearns

The FORWARD chain of the firewall protects an
internal network 192.168.1.0/24 against threats from
the outside world. Only SSH and HTTP connections
to internal machines are allowed. All other traffic is
blocked. HTTP traffic will only be accepted if it is
bound for the web server (host 192.168.1.3).

INPUT (Default DROP)

Target Source Address Destination Address Options
1 ACCEPT Anywhere Anywhere TCP dpt:22

OUTPUT (Default ACCEPT)

Target Source Address Destination Address Options

FORWARD (Default DROP)

Target Source Address Destination Address Options
1 ACCEPT Anywhere 192.168.1.0/24 TCP dpt:22
2 ACCEPT Anywhere 192.168.1.3 TCP dpt:80

Figure 1: A simple iptables firewall.

FORWARD (Default DROP)
Target Source Address Destination Address Options

1 ACCEPT Anywhere 192.168.1.0/24 TCP dpt:22
2 ACCEPT Anywhere 192.168.1.3 TCP dpt:80
3 DROP 192.168.2.0/24 192.168.1.0/24 TCP dpt:22

Figure 2: Adding a rule to the chain.

FORWARD (Default DROP)
Target Source Address Destination Address Options

1 DROP 192.168.2.0/24 192.168.1.0/24 TCP dpt:22
2 ACCEPT Anywhere 192.168.1.0/24 TCP dpt:22
3 ACCEPT Anywhere 192.168.1.3 TCP dpt:80

Figure 3: A correct policy.

FORWARD (Default DROP)
Target Source Address Destination Address Options

1 ACCEPT 192.168.1.* Anywhere TCP dpt:80
2 ACCEPT Anywhere Anywhere state ESTABLISHED

Figure 4: Forwarding chain of a stateful firewall.

Even a simple policy such as this one can be dif-
ficult to maintain. Suppose, for instance, that a new
wireless network is brought online as subnet
192.168.2.0/24. To better protect the existing internal
network, the system administrator may add a rule to
the firewall policy that blocks SSH traffic from the
new network. Figure 2 shows one way the system
administrator might modify the policy.

Rule 3 of the new FORWARD chain is intended
to prevent hosts on the wireless network from con-
necting to protected machines. Unfortunately, the
order of Rules 1 and 3 creates a hole through which
SSH traffic can enter the protected network. As
described above, the firewall processes the rules from

top to bottom and applies the first rule that matches.
When an untrusted machine from 192.168.2.0/24 tries
to access a protected machine on the 192.168.1.0/24
subnet, Rule 1 will grant access and Rule 3 will never
even come into play. A correct policy, in which the
rules are ordered properly is given in Figure 3.

In a simple three rule policy, errors like this can
be easily detected and corrected. Many firewalls, how-
ever, have dozens or even hundreds of rules. Debug-
ging these larger policies can be extremely difficult.

Existing Tools

The difficulty of testing the firewall can be
reduced by using firewall analysis tools. Existing tools
fall into three general categories: active testing tools,
passive testing tools, and structure analysis tools.
Active testing tools check for specific vulnerabilities
by transmitting packets over the wire. Passive testing
tools perform an off-line analysis to answer user
queries about the policy. Structure analysis tools

42 20th Large Installation System Administration Conference (LISA ’06)

Marmorstein & Kearns Firewall Analysis with Policy-Based Host Classification

identify poor practices such as duplicate rules in the
specification of the firewall policy.

FORWARD (Default DROP)
Target Source Address Destination Address Options

1 ACCEPT 10.239.202.38 Anywhere dpt tcp:25
2 ACCEPT 10.239.202.0/24 10.239.202.38 dpt tcp:25

Figure 6: Controlling mail with a packet filter.

Active Testing Tools

Port scanners such as nmap [7] and hping [3] can
be used to simultaneously test the firewall and impor-
tant servers. Vulnerability testing tools [6, 10, 9, 2]
also allow the system administrator to detect common
firewall errors. These tools are ‘‘active tools’’ in the
sense that they test the security of the network by
transmitting packets through the firewall. Although
this has the advantage of testing both firewall and
host, it has the disadvantage of only detecting errors
when the host is available. If a host is down for main-
tenance or powered off by a user, these tests cannot be
used to verify the firewall policy. Furthermore,
because active tools consume a significant amount of
bandwidth and CPU time, they can only examine a
small subset of the possible packets a firewall might
encounter. To thoroughly test every possible combina-
tion of source address, destination address, and net-
work port is infeasible.

Active tools require the user to decide which
behaviors to test. For instance, a port scanner requires
a list of hosts to scan. Scanning all ports on a few
important servers will often catch the most critical
vulnerabilities, but it is often helpful to also scan indi-
vidual workstations for less obvious errors. To check
for as many vulnerabilities as possible, the user must
carefully craft a testing pattern that balances running
time against the number of hosts to scan, the number
of ports to check, and the number of spoofed source
addresses to employ. Vulnerability scanners such as
Nessus [10] also require a significant amount of user
input. These tools make use of a database of pre-
designed tests. While well-known vulnerabilities can
usually be caught using the scripts provided with the
scanner, creating new tests requires learning a sophis-
ticated scripting language.

Passive Testing Tools

One alternative to active testing is off-line analy-
sis of the firewall policy using a query engine. Passive
tools [15, 18, 11, 4] use efficient data structures to
analyze a representation of the firewall policy without
transmitting any packets over the network.

Passive tools can be much faster than active tools
and do not interfere with other network activities. In
theory, passive tools can test every possible behavior
of the firewall. In practice, however, such a test pro-
duces too much unstructured output to be useful. Since
the decision of which behaviors are desirable and

which are undesirable must be made by the user, test-
ing all eventualities would produce output for every
possible packet seen by the network. Since there are
2554 possible source addresses and the same number
of destination addresses, there are billions of packets
to consider – an overwhelming amount of output.

To avoid this problem, the user must carefully
construct a set of queries that test for specific vulnera-
bilities. While it is often easier to construct these tests
than to inspect the rule set manually, it can be difficult
to create queries that test enough interesting behaviors
and produce useful output. As with active testing
tools, there is no way to guarantee that all important
behaviors have been tested. If the system administra-
tor fails to provide a test for an important threat, the
testing software cannot detect that the firewall is vul-
nerable. Errors that are difficult to catch by manually
inspecting the rule set are also likely to be overlooked
by the user when creating queries for a passive tool
and escape detection.

Subtleties in the syntax of the query language
can also cause the query engine to generate unex-
pected results. In previous work, we introduced ITVal
[12, 14, 13], a passive analysis tool for iptables fire-
walls. Our tool uses decision diagrams to store a rep-
resentation of the rule set and allows the user to per-
form queries such as ‘‘From which hosts is SMTP
allowed to the mail server?’’

QUERY DADDY FOR TCP 80 AND
NOT FROM 192.168.1.*;

Addresses: *.*.*.*

Figure 5: An example ITVal query.

The ITVal query given Figure 5 might be used to
discover which servers provide web access to hosts
outside the network. The ‘‘DADDY’’ subject tells
ITVal to list the destination addresses of these
machines. The query condition ‘‘FOR TCP 80’’ speci-
fies a match against all HTTP packets while the condi-
tion ‘‘NOT FROM 192.168.1.*’’ excludes internal
hosts from consideration. (For a more detailed treat-
ment of the syntax of ITVal queries, we refer the user to
[14].) For many firewalls, the query in Figure 5 will
work as expected. However, for a stateful firewall,
such as the iptables rule set of Figure 4, it is likely that
this query will generate many false positives.

When ITVal processes the query against the state-
ful firewall, it will report that any host can send web
traffic through the firewall. This surprising result is
technically true. The rule on line 2 of Figure 4 allows

20th Large Installation System Administration Conference (LISA ’06) 43

Firewall Analysis with Policy-Based Host Classification Marmorstein & Kearns

arbitrary access on established connections. A more
careful examination of the rule set, however, reveals
that only machines on the internal network can initiate
new connections to the web server. A more precise
query that examines only new connections is given in
Figure 7. The new query correctly reports that only
internal hosts can initiate HTTP connections.

QUERY DADDY FOR TCP 80 AND
NOT FROM 192.168.1.*
AND IN NEW;
Addresses: 192.168.1.*

Figure 7: A better query for stateful firewalls.

FORWARD (Default DROP)
Target Source Address Destination Address Options

1 DROP 192.168.2.0/24 192.168.1.0/24
2 ACCEPT Anywhere 192.168.1.1 dpt tcp:80

Figure 8: A simple network with four host classes.

Structure Analysis Tools
Although query-based testing tools can be a sig-

nificant help to the system administrator, they are lim-
ited by the user’s ability to construct a comprehensive
set of useful queries. It is difficult to tell whether a set
of queries tests every important behavior of the fire-
wall. Furthermore, testing techniques often generate
too much output for the user to easily distinguish dan-
gerous vulnerabilities from desired behavior.

Another approach to firewall analysis is to look
for errors in the structure of the policy specification.
Structure analysis tools [1, 8] detect problems such as
duplicate or conflicting rules. Although these tools do
not directly identify vulnerabilities, they often uncover
fundamental weaknesses in the policy that can produce
more significant errors. Some of these tools also gen-
erate a simpler version of the policy that removes these
structural weaknesses. The generated policy is often
easier to inspect manually than the original policy.

One significant advantage of structure analysis
tools is that they can be fully automatic. The only
input the user must provide is the firewall policy itself.
The tool builds a list of anomalies and outputs a report
or a restructured version of the policy. Unfortunately,
there are many types of vulnerabilities that cannot be
detected using these tools. For instance, allowing mail
traffic from the outside world to certain workstations
could be undesirable behavior on some networks. A
structure analysis tool would not detect a problem of
that nature unless the rule that permitted the flow of
such traffic also conflicted with another rule or vio-
lated the structural criteria in some other way.

Host Classification

The ‘‘Lumeta Firewall Analyzer’’ [18], a com-
mercially available tool derived from FANG [15],
combines some of the advantages of a structure analy-
sis tool with the flexibility of a passive analysis tool.

Lumeta automatically generates a comprehensive set of
queries by using routing information to classify hosts
into groups [18]. This reduces the amount of output
since results can be provided on a per-subnet or per-
zone basis rather than a per-host basis. It also removes
the burden of designing good queries from the user.

The idea of classifying hosts into groups allows a
query engine to provide much simpler output and
addresses the problem of creating good queries. Using
the topology of the network to classify hosts, however,
has the drawback that hosts with very different proper-
ties, but that have similar addresses, are grouped together.

Consider, for instance, the filtering policy shown
in Figure 6. This simple policy restricts outgoing mail
from an internal network 10.239.202.0/24. Outgoing
traffic is only allowed from the mail server, host
10.239.202.38. Other hosts on the subnet are allowed
to send mail to the mail server, but cannot send mail to
each other or to the outside world. Incoming SMTP
mail traffic from the outside world is also dropped
unless it is destined for the mail server.

A classification based on the network topology
would break the network into two groups: the set of
hosts on 10.239.202.0/24 and the set of all other hosts.
However, the mail server is a different type of host
from the other machines on the network. As a result,
queries about mail traffic will return imprecise results.
For instance, the answer to the query ‘‘Can a host in
10.239.202.0/24 send mail to the outside world?’’ will
be ‘‘yes’’ since the mail server is allowed to forward
mail through the firewall. The query ‘‘Can all hosts in
10.239.202.0/24 send mail to the outside world?’’ will
be ‘‘no’’ since the client machines are not allowed to
send mail to anywhere but the mail server.

Neither of these queries accurately describes the
fundamental organization of the network: a special mail
server which can send mail to the outside world and a
set of clients which cannot. To improve the precision of
these queries, we must use a different classification
scheme that allows us to group hosts by their function
as well as by their placement in the network topology.

Policy-Based Host Classification

Hosts on a network play a variety of roles. Some
hosts are workstations. Some are database servers.
Some are web servers. Some provide multiple ser-
vices. Each type of host is often treated very differ-
ently by the firewall. Hosts of the same type, however,
are usually treated very similarly. This means that the
firewall implicitly classifies hosts into various groups

44 20th Large Installation System Administration Conference (LISA ’06)

Marmorstein & Kearns Firewall Analysis with Policy-Based Host Classification

based on their function. Sometimes the implicit classi-
fication of the firewall policy is not quite as straight-
forward as simply sorting hosts by the services they
provide. For instance, the network may have a web
server that provides service exclusively to hosts inside
the network as well as a general purpose web server
that anyone can access. The filtering policy for these
two systems could be drastically different even though
they are both web servers.

FORWARD (Default DROP)
Target Source Address Destination Address Options

1 DROP 192.168.2.0/24 Anywhere
2 ACCEPT Anywhere 192.168.2.0/24
3 ACCEPT 192.168.2.0/24 192.168.3.0/24

Figure 10: Rule set with a shadowed network.

The rule set in Figure 8 prevents hosts on an
untrusted network 192.168.2.0/24 from accessing sys-
tems on a protected network 192.168.1.0/24. Rule 1
divides the set of hosts into three groups. One group
consists of hosts in the untrusted network. The second
group contains hosts from the protected network. The
third group contains all other hosts on the Internet.
Rule 2 refines this classification by further restricting
which services are available to the web server. This
distinguishes the web server from other trusted
machines, creating a fourth group containing only the
web server.

This classification scheme has many advantages
over a topological classification. An error in the fire-
wall policy will often cause the firewall to treat similar
hosts differently or to treat different hosts alike. This
means that a classification scheme based on the struc-
ture of the firewall policy can be used to directly
detect many kinds of errors. Furthermore, classifying
hosts according to their treatment by the firewall pro-
duces groups of hosts that can be used to increase the
precision of query-based testing techniques.

Calculating Host Classes
There are several possible ways to use the struc-

ture of the firewall policy to create classes of hosts. A
naive approach is to search through the firewall policy
and record every group of addresses that is explicitly
mentioned as a host class.

Unfortunately, the naive approach will generate
overlapping classes. For instance, the host 192.168.1.1
from Figure 8 would be represented twice: once in its
own class and once in the class containing all hosts
from the 192.168.1.0/24 subnet. This is undesirable
because it decreases the precision we can obtain in our
queries. A host that appears in two classes is funda-
mentally different from the other hosts in those classes
and should be categorized separately in order to obtain
accurate results.

The algorithm in Figure 9 reduces the amount of
overlap by splitting overlapping classes into smaller

pieces. The algorithm examines every host and set of
addresses mentioned explicitly in the rule set. Each
new range of addresses is added to a set of potential
classes, C.

set CalculateClasses(Policy P):
1 set C = {0.0.0.0/0}
2 for each rule r in P:
3 for each addr_range S in r:
4 C = InsertAddr(C, S)
5 return C

set InsertAddr(set C, addr_range S):
1 for each element T of C:
2 I = IntersectAddress(S, t)
2 if I is empty:
3 C = SetAdd(C, S)
4 return C
5 C = SetDelete(C, T)
6 C = InsertAddr(C, S-I)
7 C = InsertAddr(C, I)
8 C = InsertAddr(C, T-I)
9 return C

Figure 9: A naive algorithm for computing host
classes.

If a new set of addresses overlaps with an existing
class, we break both classes into three non-overlapping
pieces and replace both original classes with the result.
When we have considered every address of every rule,
the elements of C describe a set of classes that can be
used to analyze the behavior of the firewall.

This approach yields an approximation of the
firewall designer’s view of the network. Addresses
that are explicitly mentioned usually correspond to
important components that the designer intended to
control. Unfortunately, the technique does not give a
perfect picture of the actual behavior of the firewall.
For instance, the firewall rule set in Figure 10 seems at
first glance to have three groups. The algorithm will
create a group for subnet 192.168.2.0/24 and for sub-
net 192.168.3.0/24. It will also create a group repre-
senting ‘‘all other addresses.’’

In reality, hosts on the 192.168.3.0/24 subnet are
treated no differently from hosts in the ‘‘all other
addresses’’ group, because Rule 3 of the firewall pol-
icy is an unreachable rule. Because all packets from
192.168.2.0/24 will be dropped in Rule 1, no packet
can ever match Rule 3. This is probably an error in the
firewall configuration, but the naive algorithm will
happily report that, as expected, 192.168.3.0/24 is a
special class and the user will not detect the error.

20th Large Installation System Administration Conference (LISA ’06) 45

Firewall Analysis with Policy-Based Host Classification Marmorstein & Kearns

To correct this problem we need to more care-
fully define the concept of a host class. We do this by
constructing an equivalence relation over the set of all
network hosts. The equivalence classes determined by
this relation will give us a precise and complete char-
acterization of the policy that we can use for perform-
ing vulnerability analysis.
Structure-Based Classification

Every firewall policy can be described as a func-
tion, F, that maps the set of all network packets to the
set {ACCEPT, DROP} of filtering decisions. For a spe-
cific packet p, we say F(p) = ACCEPT if the packet
would be accepted by the firewall and F(p) = DROP if
the packet would be dropped by the firewall.

We define an equivalence relation, ≡SD , as fol-
lows: let x and y be any two hosts. We say that x ≡D y if
and only if for any two packets p from x and q from y
that differ only by source address, F(p) = F(q). Simi-
larly, x ≡D y if and only if F(p) = F(q) for any two pack-
ets p from x and q from y that differ only by destination
address. If x ≡S y and x ≡D y, then we say that x ≡SD y.

Informally, two hosts are source equivalent if
replacing the source address of a packet from one host
with the source address of the other does not affect the
filtering decision of the firewall. They are destination
equivalent if replacing the destination address does not
affect the filtering decision. If they are both source and
destination equivalent, we say that they are equivalent
under the relation ≡SD. The relation ≡SD is derived
directly from the function F, which describes the fil-
tering policy of the firewall and can be computed
without any other input from the user.

It can be shown that ≡SD is an equivalence rela-
tion, since it is reflexive, transitive, and symmetric.
This means that ≡SD partitions the set of network hosts
into equivalence classes. In other words, a packet from
a host in a particular equivalence class will only be
accepted if identical packets from other hosts in the
class would also be accepted.

This means that if one host in the class has a vul-
nerability, all hosts in the class are vulnerable. On the
other hand, if that host is adequately protected by the
firewall, then all the others are too. This guarantee
makes the equivalence class paradigm much more use-
ful than the naive classification algorithm or a classifi-
cation based on topology for generating precise queries.
Implementation

In previous work [14], we described an algo-
rithm for representing the rule set of an iptables fire-
wall as a multi-way decision diagram (MDD). We can
use the reduction properties of the MDD to compute
the equivalence classes of the firewall.

An MDD is a directed acyclic graph that can
efficiently represent a function over a large set of vec-
tors. An MDD representation of the rule set of a fire-
wall can be obtained by converting the rule set into a
function over the set of all network packets. An

example MDD is depicted in Figure 11. Each of the
non-terminal levels of the MDD corresponds to one
field of a packet. For space and simplicity, we have
greatly simplified the example by considering only a
few of the fields. In practice, the MDD is much larger
and contains levels for such values as the protocol, the
source port, the destination port, and the TCP flags.

Figure 11: A simplified rule set MDD.

The top level of the MDD in Figure 11 corre-
sponds to the source address of a packet, while the
second level corresponds to the destination address of
the packet. The bottom level is a special terminal level
representing the action that the firewall should take on
a packet. The integer value 0 means to drop the
packet. The integer value 1 means to accept the
packet.

Each path through the MDD represents one fil-
tering rule. Each node represents a set of related pack-
ets. We use the notation < k, i > to denote the ith node
of level k. Each arc at level k represents a choice of
value for attribute k of the packet. For example, the
first arc of node < 3, 1 > represents a source address
value of 0 and node < 2, 1 > of Figure 11 represents
the set of all packets with source address 0 or 1. The
path < 3, 1 > to < 2, 2 > to < 1, 2 > to < 0, 1 > repre-
sents the rule that any packet with source address 2,
destination address 0, and destination port 1 will be
accepted by the firewall.

1. Construct the MDD representation of each firewall chain.
2. For each chain:
3. Reorder the levels of the chain MDD so that source

address is on top.
4. Record the source equivalence classes.
5. Reorder the levels of the chain MDD so that destination

address is on top.
6. Record the destination equivalence classes.
7. Merge the source and destination classes of all three

chains together.
Figure 12: Outline of the equivalence class computa-

tion algorithm.

46 20th Large Installation System Administration Conference (LISA ’06)

Marmorstein & Kearns Firewall Analysis with Policy-Based Host Classification

In ITVal, we use reduced-ordered MDDs in which
duplicate nodes, with all arcs the same, are not
allowed. This requirement means that each node at
level k represents an equivalence class over the set of
attributes K through k + 1, where level K is the top
level of the MDD. For instance, node < 2, 1 > repre-
sents the source equivalence class containing
addresses 0 and 1. Node < 2, 2 > represents the class
containing source address 2. By reordering the levels
of the MDD, we can calculate equivalence classes
over first the source address and then the destination
address. We can use these intermediate classes to con-
struct classes of hosts that are equivalent under the ≡SD
relation. An outline of the class generation procedure
is given in Figure 12. A more detailed illustration of
the algorithm is given in Figure 13.

Source Class 0: 0.0, 0.1, 1.0
Source Class 1: 1.1, 2.0, 2.1

Destination Class 0: 0.0,0.1,1.0,2.0
Destination Class 1: 1.1
Destination Class 2: 2.1

Host Class 0: 0.0,0.1,1.0
Host Class 1: 1.1
Host Class 2: 2.0
Host Class 3: 2.1

In the initial MDD, the two source
address fields are at the top, so we
do not need to reorder the levels.
The level below the source
addresses is the ''Destination 1''
level. Each node at that level
defines a source equivalence class.
To find the members of that class,
we simply enumerate all paths from
the root node to the node at that
level.

We now reorder the MDD so that
the destination address is at the
top, followed by the source
address levels. The accept and
drop nodes remains at the bottom.
Each node at level ''Source 1''
now defines a destination
equivalence class. The members
of each class can be found by
collecting all paths from the root to
the nodes at that level

We construct the final host classes
by merging and splitting the source
and destination classes. For each
source class and destination class,
we create three new sets. One set is
constructed from the intersection of
the two classes. Another consists of
addresses in the destination class,
but not in the source class. The last
set contains the source addresses
not in the destination class. Empty
classes are discarded.

Figure 13: Step by step construction of the equivalence classes.

In step 1, we generate an MDD representation
for each of the three built-in chains. The MDD repre-
sentation takes into consideration network address
translation and other packet mangling rules. We then
consider each chain in turn. In steps 3 and 4, we com-
pute a list of source equivalent addresses. To do this,
we first use a level swapping algorithm to bring the
levels encoding source address to the top of the graph.
The reduction properties of the MDD now guarantee

that each node at the level immediately below the
source address levels represents an equivalence class
with respect to source address. Each path from the
root node to a node at that level represents one ele-
ment of the equivalence class associated with that
node. Step 4 extracts these equivalence classes and
stores them in a new MDD.

In steps 5 and 6 we perform an identical operation
to collect a list of equivalence classes with respect to
destination address. When we have considered source
and destination address in every chain, we now merge
the various classes together using MDD union, intersec-
tion and difference operators. Finally, we print the result.

Error Detection

The information provided by the host classifica-
tion algorithm can be extremely useful for detecting
errors in the firewall policy. The list of classes is usu-
ally much shorter and simpler than the rule set, so it is
easier for a system administrator to examine.

Detecting Remotely Accessible Services

Simple errors such as typos and transpositions
can often be detected by the presence of a strange and
unexpected class of hosts. The policy in Figure 14 is

20th Large Installation System Administration Conference (LISA ’06) 47

Firewall Analysis with Policy-Based Host Classification Marmorstein & Kearns

intended to protect networks 192.168.1.0/24, 192.168.
2.0/24, and 192.168.3.0/24 by restricting access from
the outside world. Because 192.168.1.0/24 contains
several hosts with important financial information,
outgoing traffic from that subnet should also be
restricted. Mail traffic from the other subnets is
allowed only to the mail server (host 192.168.2.20) to
prevent compromised machines from becoming spam
relays. The rule set also allows arbitrary web access to
a group of web application servers located on the
192.168.3.0/24 subnet. The policy contains several
errors, including a typo in Rule 3 that allows remote
access to a protected service.

FORWARD (Default DROP)
Target Source Address Destination Address Options

1 ACCEPT Anywhere 192.168.3.0/24 TCP dpt:80
2 ACCEPT 192.168.2.0/24 Anywhere
3 DROP 168.192.1.0/24 Anywhere
4 ACCEPT Anywhere 192.168.2.20 TCP dpt:25
5 ACCEPT 192.168.1.0/24 Anywhere

Figure 14: Rule set with errors.

FORWARD (Default DROP)
Target Source Address Destination Address Options

1 ACCEPT 192.168.2.0/24 Anywhere TCP dpt:80
2 ACCEPT 192.168.2.0/24 192.168.3.0/24 TCP dpt:80
3 DROP 192.168.2.0/24 192.168.4.0/24 TCP dpt:80

Figure 15: Rule set with shadowed rules.

The equivalence classes of this example network
are listed in Figure 16. There are five classes of hosts
identified by the algorithm. Class 0 represents the
group of web servers. Class 1 represents a strange
class of hosts that exists because of the typo in rule 3.
The strange, unexpected class makes the effect of the
typo immediately obvious to the administrator.

Class 0: 192.168.3.*
Class 1: 168.192.1.*
Class 2: 192.168.1.*

192.168.2.[0-19]
192.168.2.[21-255]

Class 3: 192.168.2.20
Class 4: [0.0.0.0]-[168.192.0.255]

[168.192.2.0]-[192.168.0.255]
[192.168.4.0]-[255.255.255.255]

Figure 16: Equivalence classes for Figure 14.

Class 2 combines the protected financial network
and the unprotected 192.168.2.0 network, minus the
mail server. This should also arouse the analyst’s sus-
picion since the financial network is supposed to have
much stricter protection than the unprotected subnet.
The fact that they are treated the same by the firewall
indicates that a serious vulnerability exists. Class 3
contains the mail server. It is in a class by itself since

it requires special privileges in order to accept and
relay mail. Everything else belongs to Class 4.

Using the equivalence classes to detect these
errors is much easier than using query based tools. The
presence of a class of hosts consisting entirely of strange
addresses is a clear indication of an error in the policy.
Since the tool requires no input but the policy, all the
user has to do to discover the error is ‘‘fire and forget.’’

A small amount of work is required to interpret
the results of the classification system, but compared
to the effort of constructing precise queries or compil-
ing a list of hosts for active testing, using the equiva-
lence classes is really fairly simple. For large installa-
tions, the gain is even greater due to the number of
rules required to administer a large number of hosts
and the greater difficulty of specifying a comprehen-
sive set of queries that covers all the services provided
by the network.

Detecting Shadowed Rules
If a packet matches more than one rule in the

policy, the firewall will use the first rule that matches.
This can mean that the policy contains useless or
unreachable rules. The presence of these rules usually
indicates an error in the policy.

When one rule shadows another, the class list will
often contain fewer classes than expected. For instance,
the rule set in Figure 15 contains two rules that are shad-
owed by Rule 1. Rule 2 is a useless rule. Web packets
from 192.168.2.0/24 to 192.168.3.0/24 are already
accepted by Rule 1. Rule 3 is also unreachable. The
class list for the example network is given in Figure 19.

Class 0: 192.168.2.*
Class 1: [0.0.0.0]-[192.168.1.255]

[192.168.3.0]-[255.255.255.255]
Figure 19: Equivalence classes for Figure 15.

Notice that there are no classes for the networks
192.168.3.0/24 and 192.168.4.0/24 mentioned in rules

48 20th Large Installation System Administration Conference (LISA ’06)

Marmorstein & Kearns Firewall Analysis with Policy-Based Host Classification

2 and 3. When the system administrator discovers that
the policy produces fewer classes than expected, she
will examine the policy more closely and detect the
error. Shadowed rules often indicate that a rule con-
tains an incorrect address. For instance, rules 2 and 3
may have become shadowed by a typo in Rule 1. This
could happen if the source address in Rule 1 was sup-
posed to be 192.168.3.0/24, but was typed incorrectly.

FORWARD (Default DROP)
Target Source Address Destination Address Options

1 ACCEPT 192.168.2.0/24 Anywhere TCP dpt:22
2 ACCEPT 192.168.4.0/24 Anywhere TCP dpt:8080
3 DROP 192.168.4.0/24 192.168.2.0/24 TCP dpt:25

Figure 17: Rule set with outdated rules.

FORWARD (Default DROP)
Target Source Address Destination Address Options

1 ACCEPT Anywhere 10.239.202.13 TCP dpt:25
2 ACCEPT 10.239.202.13 Anywhere TCP dpt:25
3 ACCEPT 192.168.2.3 Anywhere TCP dpt:25
4 ACCEPT 192.168.2.3 Anywhere TCP dpt:22
5 DROP 192.168.2.0/24 Anywhere TCP dpt:25

Figure 18: Rule set for preventing spam relays.

Detecting Outdated Services
Host classification can solve real world prob-

lems. One of our firewalls originally supported a wire-
less network on subnet 192.168.4.0/24. When wireless
service was transferred to another network, we
neglected to update the firewall rules. A portion of our
rule set looked something like Figure 17. A quick
analysis using host classification immediately identi-
fied subnet 192.168.4.0 as a host group, enabling us to
correct the problem. This error would have been very
difficult to detect using query-based analysis tools.
Without apriori knowledge of the error, we had no rea-
son to create a query testing for service on that subnet.
Active analysis tools like Nessus would have detected
no vulnerabilities, since no hosts were available on
that subnet. Using host classification, however, we
were able to immediately identify a serious weakness
in our policy.

Using Equivalence Classes with Other Tools

While a system administrator can detect many
important vulnerabilities simply by studying the host
equivalence classes of a firewall policy, even greater
gains can be achieved by combining the equivalence
class analysis with active and passive testing tech-
niques. To combine the analysis with other testing par-
adigms, we can use the equivalence classes to deter-
mine which systems to test. By taking one or two sys-
tems from each equivalence class, we can increase the
probability that we have tested all the important
behaviors of the firewall.

The filtering policy in Figure 18 secures the mail
service on an internal network 192.168.2.0/24. Mail
from the internal network can only be sent to the mail
server, host 10.239.202.13 . The mail server is allowed
to distribute mail to both internal and external hosts.
All other mail traffic should be dropped. Unfortu-
nately, a copy and paste error created rule 3 of the pol-
icy, which allows mail traffic from a workstation, host
192.168.2.3 to escape the network. If that workstation
is compromised, an intruder can set up a spam relay
on that host and transmit thousands of unauthorized
messages through the firewall.

Class 0: 10.239.202.13
Class 1: 192.168.2.3
Class 2: 192.168.2.[0-2]

192.168.2.[4-255]
Class 3: [0.0.0.0]-[10.239.202.13]

[10.239.202.14-192.168.1.255]
[192.168.3.0-255.255.255.255]

Figure 20: Equivalence classes for Figure 18.

The system administrator can easily detect this
problem by combining host classification with a pas-
sive testing tool. The host classes for the example net-
work are listed in Figure 20. By taking a source
address from each of these groups and matching it with
a destination address from each of the groups, we can
construct the set of 16 ITVal queries listed in Figure 21.

Notice that while the list of classes does not
immediately cause concern, the query results show
that 192.168.2.3 can access port 25 on host
192.168.3.0, which is in the ‘‘outside world’’ class of
hosts. This strategy can identify serious problems
without producing an overwhelming amount of input.
Using the query tools by themselves would either have
produced an enormous amount of data or required a
large time investment in writing queries. Combining
classification with passive testing limits the scope of

20th Large Installation System Administration Conference (LISA ’06) 49

Firewall Analysis with Policy-Based Host Classification Marmorstein & Kearns

the query to the important distinctions between hosts
and requires very little work from the user.

QUERY DPORT TO
10.239.202.13 AND FROM
10.239.202.13 AND IN NEW;
1 Port: 25

QUERY DPORT TO
10.239.202.13 AND FROM
192.168.2.3 AND IN NEW;
2 Ports: 22 25

QUERY DPORT TO
10.239.202.13 AND FROM
192.168.2.1 AND IN NEW;
1 Port: 25

QUERY DPORT TO
10.239.202.13 AND FROM
192.168.3.0 AND IN NEW;
1 Port: 25

QUERY DPORT TO
192.168.2.3 AND FROM
10.239.202.13 AND IN NEW;
1 Port: 25

QUERY DPORT TO
192.168.2.3 AND FROM
192.168.2.3 AND IN NEW;
2 Ports: 22 25

QUERY DPORT TO
192.168.2.3 AND FROM
192.168.2.1 AND IN NEW;
0 Ports:

QUERY DPORT TO
192.168.2.3 AND FROM
192.168.3.0 AND IN NEW;
0 Ports:

QUERY DPORT TO
192.168.2.1 AND FROM
10.239.202.13 AND IN NEW;
1 Port: 25

QUERY DPORT TO
192.168.2.1 AND FROM
192.168.2.3 AND IN NEW;
2 Ports: 22 25

QUERY DPORT TO
192.168.2.1 AND FROM
192.168.2.1 AND IN NEW;
0 Ports:

QUERY DPORT TO
192.168.2.1 AND FROM
192.168.3.0 AND IN NEW;
0 Ports:

QUERY DPORT TO
192.168.3.0 AND FROM
10.239.202.13 AND IN NEW;
1 Port: 25

QUERY DPORT TO
192.168.3.0 AND FROM
192.168.2.3 AND IN NEW;
2 Ports: 22 25

QUERY DPORT TO
192.168.3.0 AND FROM
192.168.2.1 AND IN NEW;
0 Ports:

QUERY DPORT TO
192.168.3.0 AND FROM
192.168.3.0 AND IN NEW;
0 Ports:

Figure 21: Queries auto-generated using host classes.

Author Biographies

Robert Marmorstein plans to graduate with a Ph.D.
from the College of William and Mary in the summer of
2007. When he is not actively researching ways to man-
age and analyze firewalls, he spends his time avoiding
grues in the Great Underground Empire and tinkering
with his collection of UNIX-based systems.

Phil Kearns is an Associate Professor of Computer
Science at the College of William and Mary. His research
interests lie in the general area of computer systems.

Conclusion

Policy-based host classification has several sig-
nificant advantages over existing firewall analysis
techniques. Examining the classes implicitly defined
by the firewall policy allows a system administrator to
detect many kinds of firewall errors and anomalies.
When combined with active or passive testing tools,
the technique can be even more powerful. Using the
equivalence classes significantly decreases the amount
of the work required to verify the policy and is a step
toward a fully automatic firewall analysis solution.
The latest version of ITVal, provides a special
‘‘CLASSES’’ query that displays a list of the host
equivalence classes. The tool and some examples of
its use can be found at http://itval.sourceforge.net .

References

[1] Al-Shaer, Ehab S. and Hazem H. Hamed, ‘‘Mod-
eling and management of firewall policies,’’
Transactions on Network and Service Manage-
ment, April, 2004.

[2] Barisani, Andrea, ‘‘Testing firewalls and IDS
with ftester,’’ In Insight, Newsletter of the Inter-
net Security Conference, Vol. 5, 2001, http://
www.tisc2001.com/newsletters/56.html.

[3] Bogaerts, Philippe, HPING tutorial, August,
2003, http://www.radarhack.com/dir/papers/hping2_
v1.5.pdf .

[4] Eronen, Pasi and Jukka Zitting, ‘‘An expert sys-
tem for analyzing firewall rules,’’ Proceedings of
the 6th Nordic Workshop on Secure IT Systems,
2001.

[5] Eychenne, Herve, iptables man page, March,
2002.

[6] Farmer, Dan and Wietse Venema, SATAN: Secu-
rity Administrator’s Tool for Analyzing Net-
works, 1995, http://www.fish.com/zen/satan/ .

[7] Fyodor, ‘‘The art of port scanning,’’ Phrack, Vol.
7, Num. 51, September, 1997.

[8] Gouda, Mohamed G. and Alex X. Liu, ‘‘Firewall
design: Consistency, completeness, and compact-
ness,’’ Proceedings of the International Confer-
ence on Distributed Computing Systems, IEEE
Computer Society, March, 2004.

[9] Internet Security Systems, Internet Scanner User
Guide Version 7.0 SP 2, 2005, http://documents.
iss.net/literature/InternetScanner/IS_UG_7.0_SP2.
pdf .

[10] Lampe, John, Nessus 3.0 Advanced User Guide,
October, 2005, http://www.nessus.org .

[11] Liu, Alex X., Mohamed G. Gouda, Huibo Heidi
Ma, and Anne H. Ngu, ‘‘Firewall queries,’’ Pro-
ceedings of the 8th International Conference on
Principles of Distributed Systems (OPODIS-04),
LNCS 3544, Springer-Verlag, December, 2004,
http://www.cs.utexas.edu/users/alex/publications/
FirewallQueries/query.pdf .

[12] Marmorstein, Robert, ITVal Project Website,
2005, http://itval.sourceforge.net .

[13] Marmorstein, Robert and Phil Kearns, ‘‘An open
source solution for testing NAT’d and nested ipt-
ables firewalls,’’ 19th Large Installation Systems
Administration Conference (LISA ’05), pp.
103-112, December, 2005.

50 20th Large Installation System Administration Conference (LISA ’06)

Marmorstein & Kearns Firewall Analysis with Policy-Based Host Classification

[14] Marmorstein, Robert and Phil Kearns, ‘‘A tool
for automated iptables firewall analysis,’’
FREENIX Track, 2005 USENIX Annual Techni-
cal Conference, pp. 71-82, April, 2005.

[15] Mayer, Alain, Avishai Wool, and Elisha Ziskind,
‘‘Fang: A firewall analysis engine,’’ Proceedings
of the IEEE Symposium on Security and Privacy,
May, 2000.

[16] Quinton, Reg, Using Solaris ipfilters, http://ist.
waterloo.ca/security/howto/2005-08-19/paper.pdf .

[17] Singer, Abe, ‘‘Life without firewalls,’’ ;login:,
Vol. 28, Num. 6, pp. 27-30, December, 2003.

[18] Wool, Avishai, ‘‘Architecting the Lumeta fire-
wall analyzer,’’ Proceedings of the 10th USENIX
Security Symposium, August, 2001.

20th Large Installation System Administration Conference (LISA ’06) 51

