
Secure Mobile Code Execution Service
Lap-chung Lam, Yang Yu, and Tzi-cker Chiueh – Rether Networks, Inc.

ABSTRACT

Mobile code refers to programs that come into a host computer over the network and start to
execute with or without a user’s knowledge or consent. Because these programs run in the
execution context of the user that downloads them, they can issue any system calls that the user is
allowed to make, and thus pose a serious security threat when they are malicious. Although many
solutions have been proposed to solve the malicious mobile code problem, none of them are truly
effective at striking a good balance between defeating zero-day attacks and minimizing disruption
to the execution of legitimate applications.

This paper describes a commercial system called SEES that secures the execution of mobile
code that comes into a host computer as an email attachment or as a web document downloaded
through an anchor link by running them on a separate guinea pig machine rather than on the user
machine. Effectively, it takes an isolation approach to the secure mobile code execution problem.
As a result, SEES guarantees that no malicious email attachments or web documents that act on
behalf of the user that downloads them, can damage the resources of the user machine, or can leak
any confidential information. In particular, even zero-day virus cannot cause any harms. We
present the design, implementation and evaluation of SEES on the Windows platform, and contrast
it with other existing approaches to the same problem.

Introduction

Mobile code refers to programs that come into an
end user’s computer over the network and start to exe-
cute with or without the user’s knowledge or consent.
Examples of mobile code include a Java script embed-
ded within an HTML page, a Visual-Basic script con-
tained in a WORD document, an HTML Help file, an
ActiveX Control, a Java applet, a transparent browser
plug-in or DLL, a new document viewer installed on
demand, an explicitly downloaded executable binary,
etc. Because a piece of mobile code runs in the execu-
tion context of the user that downloads it, it can issue
any system calls that the user is allowed to make,
including deleting files, modifying configurations or
registry entries, sending emails, or installing back-door
programs in the home directory. The most common
type of malicious mobile code is email attachment.

Existing solutions to the malicious mobile code
problem fall into two categories: signature-based anti-
virus tools and behavior blocking tools [1]. Neither of
them can stop malicious mobile code or malware
effectively. Because existing antivirus tools are based
on signatures, there is always a time gap between
when a piece of malware first appears and when the
corresponding signature is derived and distributed to
user sites. For malware such as the SQL Slammer
worm, any time gap that is more than a few hours is
unacceptable, because a well-designed worm can take
down the Internet within hours.

Behavior blocking technology sandboxes the
execution of suspicious applications by monitoring
and controlling the system calls the applications make,
according to a security policy. If properly configured,

behavior blocking can even stop zero-day exploits.
However, it is difficult to properly set the sandboxing
security policy for each individual application such
that all existing applications run smoothly and none of
the existing malware can get through. This is espe-
cially true when the source code of the applications to
be sandboxed is not available. Indeed, almost all exist-
ing behavior blocking systems use a single sandboxing
policy for all applications running under a user
account or on the same system. As a result, these sys-
tems tend to trigger many false positives and break
perfectly legitimate applications.

This paper describes the design, implementation,
and evaluation of a secure mobile code execution sys-
tem called SEES (Secure Email Execution Service),
which takes an isolation approach to safeguard an end
user machine from two specific types of mobile code,
email attachments and documents retrieved via a web
browser. SEES identifies incoming email attachments
and web documents, and isolates their execution on a
physically separate machine (called the guinea pig
machine) in such a way that the execution results are
displayed on the end user’s computer screen with the
same look and feel.

Because SEES guarantees that malware embed-
ded in email attachments or web documents never run
on an end user machine, it is impossible for them to
access, let alone damage, the user’s resources. The
guinea pig machine itself is carefully configured so
that the risks of being permanently compromised and
of attacking others when compromised are minimized.

Compared with signature-based anti-virus sys-
tems, SEES does not require periodic signature update

20th Large Installation System Administration Conference (LISA ’06) 53



Secure Mobile Code Execution Service Lam, Yu, & Chiueh

and can effectively protect end users from zero-day
virus. Even if a piece of malware successfully pene-
trates and damages the guinea pig machine, the end
user ’s resources still remain intact. Compared with
behavior blocking systems, SEES supports fine-
grained isolation for specific types of mobile code and
uses a physical segregation approach rather than a
sandboxing approach. As a result, SEES is less intru-
sive in that legitimate applications rarely get disrupted
because of its security protection.

SEES effectively solves the email virus problem
because it addresses the psychological dimension of
the problem: People tend to open legitimate-looking
but possibly virus-containing email attachments for
fear of missing important messages. In addition, more
than 90% of virus entering an enterprise is through
email. SEES provides an additional level of assurance
that even if an email attachment contains virus, it will
not be able to inflict any damage upon a user’s
machine. This ability to tolerate malware allows SEES
to reduce the degree of disruption to legitimate appli-
cation execution to the minimum when compared with
other solutions. It also opens up the possibility that a
user can experiment with a piece of mobile code, for
example, a downloaded executable binary, on the
SEES server before she installs it on her own machine.

Related Work

The physical isolation idea of SEES originated
from the Spout system [2], which is a distributed exe-
cution architecture to secure the execution of Java
applets. Spout uses a web proxy to identify Java
applets in incoming HTML pages and redirect them to
a playground machine. Spout incorporates a Java-
based remote display mechanism rather than Windows
terminal service for remote execution. A similar
approach for secure execution of Java Applets can
also be found in [3].

The most widely used tools to protect user
machines from malware are antivirus products from
Norton [4], McAfee [5], Trend Micro [6]. These
antivirus tools can scan files downloaded by web
browsers, ftp clients, and email clients in real time.
They can effectively remove all known viruses before
the viruses can launch the attacks. However, none of
them can stop zero-day attacks since they rely on signa-
tures. This deficiency raises a serious security concern
because Internet enables malware to spread so fast that
even the most prepared antivirus company cannot derive
signatures quickly enough to effectively stop them.

Many desktop machines suffer from malware
intrusion. Kathleen [7] did a survey on 17 network-
based intrusion detection systems, and only Session-
Wa l l from Computer Associates contains a scanner
engine to detect viruses embedded in network traffic.
However, this scanner still relies on signatures, and
therefore cannot handle zero-day exploits. Tripwire [8]
is an IDS running on UNIX-like systems that can

detect zero-day viruses. Tripwire computes a hash
value for each important system file or binary, and uses
it to detect changes to system files. However, it cannot
detect viruses that do not modify any system files.

WindowBox [9] from Microsoft is the closest
system to SEES. WindowBox implements the sandbox
mechanism using a desktop object. WindowBox modi-
fies the Windows 2000 kernel to restrict the access of
suspicious applications only to objects created in the
same desktop. A user may choose to create many
desktops such as work desktop, game desktop and per-
sonal desktop, and decide what applications can run
on each desktop. If a virus is run on one desktop, it
cannot access the network or data created on other
desktops.

There are, however, two problems with Window-
Box. First, applications running on different desktops
still share application configuration files and reg-
istries, which a virus may corrupt to cause damage.
Second, WindowBox requires users to explicitly
decide what applications to run on which desktop and
therefore may pose usability problems in practice. In
contrast, SEES has neither of these problems because
it uses physical isolation and automatic redirection.

Many existing academic sandboxing research
systems such as Janus [10], Consh [11], Tron [12], and
MAPbox [13] are implemented on top of UNIX-like
system. Janus allows users to set permissions on path,
environment variables, network access and display.
When a process runs under Janus, Janus uses a debug-
ging mechanism to monitor each system call made by
the process, and checks the system calls against the
user defined security policy. Consh extends Janus by
adding a virtual file system and a virtual network sys-
tem. Besides setting up a security policy, Consh also
needs to setup the virtual file system correctly for run-
ning applications safely. Instead of setting security
policy for a user or a program, Tron allows users to
specify different security policies for different
instances of the same program. MAPbox groups appli-
cations into behavior classes such as editor class, com-
piler class, mailer class, and browser class, and a spe-
cial sandbox is built for each behavior class.

Another sandbox example is the secure web
browser [14], which is built on top of an OS called
SubOS [15], which offers process-specific protection
mechanisms. An object downloaded by the web
browser is assigned with a sub-userid, and the object
is opened or executed on the context of the chosen
sub-userid. All of these sandboxing systems require
users to set up security policy and choose what and
when to sandbox. Such a sandboxing model does not
work on Windows environments since many Windows
users are used to point and click and they do not have
enough computer knowledge to decide what and when
to sandbox and setup the sandbox environment cor-
rectly. In contrast, the SEES system does not change

54 20th Large Installation System Administration Conference (LISA ’06)



Lam, Yu, & Chiueh Secure Mobile Code Execution Service

the way users use the Windows system. It automati-
cally selects and sandboxes email attachments and
web documents.

Secure Mobile Code Execution

A secure mobile code execution service needs to
address two fundamental issues: identifying a piece of
mobile code when it comes in, and insulating its exe-
cution from the host computer that downloads it.

The majority of malware comes into a user’s
machine because the user clicks on something. Email
attachment is the most common channel. Other possi-
ble channels include web browsers, ftp programs,
peer-to-peer file sharing applications, and messaging
applications such as IM and IRC. Another common
way through which malware penetrates into a user’s
computer is by exploiting the automatic download
capability of Microsoft’s Internet Explorer (IE). Many
web pages contain mobile code such as Java scripts,
VB scripts, and ActiveX control. If the security level
of IE is set to low, IE automatically executes the
embedded mobile code when a user visits those pages.

IE also contains vulnerabilities that enable a web
page to automatically install a piece of malware on a
system even when the security level is set to the high-
est level. Similar vulnerabilities existed in Microsoft
Outlook and Outlook Express. For example, Outlook
could execute mobile code contained in an email
attachment without a user clicking on it. Finally, by
hijacking the control of a server program through such
vulnerability as buffer overflow, malware can take
over the machine on which the server program runs
and potentially spreads to other machines. One such
example is the SQL Slammer worm, which exploits a
vulnerability in the Resolution Service of Microsoft
SQL Server and Microsoft Desktop Engine (MSDE).

The ideal solution to the mobile code identifica-
tion problem is for each network application to inform
the operating system when it downloads and executes a
piece of mobile code. Unfortunately neither existing
applications nor existing operating systems provide
such support. One possible approach to approximate
this ideal is to apply binary or source-level program
transformation techniques to automatically embed such
notification mechanisms into existing network applica-
tions without any programming efforts. Because there
are a large number of entry points malware can use to
infiltrate a Windows PC, SEES chooses to focus on the
two most common types of exploit points: email attach-
ments and web objects downloads through IE.

SEES employs API interception techniques to
monitor Win32 API calls made by email clients and
web browsers, and take proper actions when these pro-
grams open or save files. The mobile code identifica-
tion mechanism used in SEES is independent of email
client programs and web browsers.

Once a piece of mobile code is identified, the
issue is how to sandbox its execution in such a way

that malware cannot cause damage and legitimate
applications can run without any glitches. The key
problem here is how to set up the sandboxing policy
accurately so as to eliminate both false positives and
negatives, and automatically so that the security
administration overhead is reduced to the minimum.

Commercial behavior blocking products tend to
err on the false positive side in that they tend to apply
the same sandboxing policy to all applications exe-
cuted by a user or on a given machine. An ideal solu-
tion to this problem is to apply program analysis tech-
niques to extract application-specific sandboxing pol-
icy automatically from arbitrary application programs,
for example, the PAID system [16]. However, this
approach is not always feasible because the source
code of network applications is not always available
and introducing such a sophisticated sandboxing
mechanism may be impossible for certain user sites.

Traditionally, the scope of sandboxing is a
machine or a user account. In the Windows environ-
ment, all known behavior blocking systems apply their
sandboxing mechanism to all processes running under
a user account by limiting their system call privilege.
This approach invariably breaks certain benign appli-
cations because the sandboxing policy cannot possibly
cover the needs of all current and future legitimate
applications. For example, the Word program needs
read/write access to its application-specific directory
and the document directory under the user’s home
directory. Prohibiting Word from accessing those
directories may break the functionality of Word and
inconvenience the user.

On the other hand, it is extremely difficult if not
impossible to devise a sandboxing policy that can
accurately capture and anticipate the requirements of
all non-malicious applications such as Word that are
going to run on a machine or under a user account. In
addition, sometimes even a single process may need to
be sandboxed differently at different times. For exam-
ple, many Windows applications, such as Word, open
multiple documents in the same process to reduce
resource consumption. This means that when a user
opens a local Word document and an email attachment
that contains a Word document, she needs to choose
between sandboxing both documents and sandboxing
neither document.

Instead of sandboxing, SEES chooses to execute
mobile code in a different execution environment than
the one that downloads it. Specifically, mobile code
runs on a physically separate machine called the
guinea pig machine under a low-privilege user
account, and the result of execution is sent back to the
user machine through a remote display mechanism.
This execution architecture provides the same look
and feel for benign programs but provides physical
isolation for potentially malicious programs.

This approach has several advantages. First, it
allows centralized management and enforcement of

20th Large Installation System Administration Conference (LISA ’06) 55



Secure Mobile Code Execution Service Lam, Yu, & Chiueh

security policies, and thus reduces administration work-
load. Specifically, properly configuring the guinea pig
machine is all is needed to defend an enterprise against
malicious code embedded within email attachments or
web documents. Second, the security policies on the
guinea pig machine can be loosened to avoid unnecessary
disruption to legitimate applications without compromis-
ing security. This additional latitude results from the fact
that the guinea pig machine is potentially dispensable and
is logically separate from the rest of the intranet.

Figure 1: In the SEES architecture, mobile code downloaded from an email client or Internet Explorer runs on a
separate guinea pig machine called the SEES server, but the results of mobile code execution are sent back to
the end user machine through a remote display mechanism such as Windows terminal service.

SEES Implementation

SEES System Architecture
Figure 1 illustrates the system architecture of

SEES, which consists of a SEES server and a SEES
client. The SEES server runs on a stand-alone machine
and provides the isolated execution environment for
mobile code. The SEES client takes control when a
user opens an email attachment or a web document.
Whenever a SEES client needs to open a file that
potentially contains mobile code, it sends the file to the
SEES server, which opens the file and displays the
results on the SEES client’s screen. To the user, the
look and feel is the same as if the file is opened locally.

The SEES server consists of three components as
shown in Figure 2, Execution Manager, Security Con-
trol Manager, and System Call Monitor. The Execution
Manager allows a SEES client to run a piece of mobile
code on the SEES server, and provides the same look
and feel as if it is executed locally. The Security Con-
trol Manager provides an isolated execution environ-
ment so that the side effects of mobile code are com-
pletely segregated from the rest of the SEES server. The
System Call Monitor is a traditional sandboxing mecha-
nism that protects the SEES server itself from malicious

code by monitoring and controlling system call invoca-
tions according to a predefined security policy.

Security control
Manager

Execution
Manager

System Call
Monitor

Email
Client

SEES2 Server

SEES2 Client

Terminal
Server

Terminal
Session

API Interceptor

Document Handler

RDC ActiveX Internet
Explorer

 Explorer & 
Command Shell

Figure 2: The detailed software architecture of SEES.
The Execution Manager runs a piece of mobile
code on the SEES server on behalf of a SEES
client. The Security Control Manager provides an
isolated execution environment to segregate the
side effects of mobile code from the rest of the
SEES server. The System Call Monitor protects
the SEES server from malicious system call invo-
cations according to a predefined security policy.
The main component of SEES client is the API
interceptor, which intercepts the save and open
operations of application programs and redirects
mobile code to the SEES server for execution.

56 20th Large Installation System Administration Conference (LISA ’06)



Lam, Yu, & Chiueh Secure Mobile Code Execution Service

The SEES client is implemented on top of
Remote Desktop ActiveX Control. When a user
invokes a piece of mobile code, the SEES client first
consults with the Security Control Manager to obtain a
low-privilege account, and executes the mobile code
under this account on the SEES server. There are sev-
eral implementation alternatives to supporting the
remote execution mechanism, including Windows ter-
minal server, Linux server running Wine or Crossover
Office and VNC, and Windows server running multi-
user VNC or X Windows.

The Windows terminal server is the best choice
in term of performance overhead and usability, but it
requires expensive licensing charge. A less expensive
way is to use a Linux server running Wine and VNC
(LWV), which is slower and requires much more
memory. Currently Wine can successfully run many
Wi n d o w s applications such as Microsoft Office. Still,
there are many other Windows applications that cannot
run under Wine. Finally, we have developed an experi-
mental version of multi-user VNC for the Windows
platform, but its performance for interactive applica-
tions is still inferior to Windows terminal server.
Mobile Code Identification

The main task of the SEES client is to identify
potentially dangerous contents downloaded from the
network and send the contents to the SEES sever when
users invoke them. Since mobile code can have many
different forms, and they can come into a computer
from many channels, there is no universal mechanism
that can identify mobile code accurately. Our current
approach is to treat the files downloaded by Internet
Explorer or an email client and with dangerous MIME
type such as .exe and .doc as dangerous contents.

The easiest way to identify downloaded contents
is to use a proxy server to monitor and parse the
incoming contents, and mark the contents as danger-
ous if the contents have certain MIME type. The first
version of SEES used this approach. More concretely,
a POP3 proxy server is used to intercept all incoming
emails and rename an email attachment if it contains
dangerous MIME type such as .exe and .doc. The
POP3 proxy server adds a .sees extension to each dan-
gerous attachment so that when a user clicks on a
renamed attachment, the SEES client is invoked
instead of the corresponding application.

However, this proxy server approach has two
major drawbacks. First, the .sees extension tends to
create confusion because it is visible to the end users.
Second, many email servers, such as Microsoft
Exchange Server and IBM Lotus Domino, use different
protocols between themselves and email clients. Worse
yet, emails could be encrypted or email servers could
require a secure connection. As a result, the proxy
server approach inherently entails significant imple-
mentation complexity that cannot be easily removed.

To avoid these problems, SEES employs a client-
side Win32 API interception mechanism to identify

email attachments and downloaded web documents.
The software architecture of the SEES client is shown
in Figure 2. Specifically, the SEES client intercepts
file open and file save operations of email clients and
IE. When the user double-clicks on an email attach-
ment or a link on an HTML page, the email client or
IE calls the ShellExecute family of API to open the
attachment/file. The API interceptor intercepts the
ShellExecute family of API calls and re-directs the
attachment/file to the SEES server. If the user attempts
to save an attachment/file to a target file, the API
interceptor intercepts the GetSaveFileName family of
API calls to append an .sees extension to the target file
if it is in a FAT file system, or flags a ‘‘dangerous’’
flag of the target file if it is in an NTFS file system.

The .sees extension and the unused flag are
meant to indicate to the system that the file is poten-
tially dangerous. Later on, when a user opens this file
through the Windows Explorer or command shell, the
IShellExecuteHook component intercepts the ShellExe-
cute family of API calls, examines whether the file is
dangerous, and re-directs it to the SEES server if it is
dangerous. The advantage of using API interception to
identify downloaded files is that a single mechanism
can work with many different applications as long as
they use the ShellExecute family of API. Currently, we
are extending this interception mechanism to the peer-
peer applications and instant messenger applications.
API Interception

When an email client or IE opens a file, the
Win32 API interceptor intercepts the file open call and
sends a request to the SEES server to open it. If an
email client or IE needs to save a file, the interceptor
marks the file as dangerous. When a user opens a dan-
gerous file, the interceptor also sends the file to the
SEES server. The ShellExecute family of APIs in
shell32.dll of the Windows platform are the most com-
monly used APIs to perform file operations on a file.
Although they are not the only APIs that can be used
to open a file or to execute a file, they are indeed used
by all email clients we have tested, as well as IE,
Explorer, and the DOS shell.

Intercepting Win32 API calls means taking over
the program control when these APIs are called with-
out modifying the monitored applications. The most
commonly used interception mechanisms are Proxy
DLL, EAT Patching, IAT Patching, and Shell Exten-
sion. Proxy DLL replaces an original DLL with a
proxy DLL that contains a call stub for each exported
function in the original DLL. The replacing proxy
DLL assumes the name of the original DLL, while the
original DLL is renamed.

When an application uses the original DLL’s
name to load a DLL, it is the proxy DLL that gets
loaded instead. All the calls made to the functions in
the original DLL are routed to the exported stubs in
the proxy DLL. The proxy DLL can simply forward
the calls to the original DLL, perform some operations

20th Large Installation System Administration Conference (LISA ’06) 57



Secure Mobile Code Execution Service Lam, Yu, & Chiueh

before forwarding, forward the calls to someone else,
or reject the calls. Proxy DLL is the simplest way to
intercept Win32 APIs. However, this technique
requires that the function prototypes of all the exported
functions in a DLL be available. SEES does not use
this approach because some function prototypes of the
DLLs we wan to intercept are not available.

The Portable Executable (PE) format [17] is the
binary format used by both executable files and DLLs
on the Windows platform. Each DLL PE file contains
a table called Export Address Table (EAT) that stores
the entry point of each exported functions. The
addresses stored in a DLL’s EAT are used for an appli-
cation to call the functions the DLL exports. To inter-
cept a function exported by a DLL, one can add to the
DLL file a new section to store the intercepting func-
tion’s code, and modify the EAT entry of the inter-
cepted function to point to the intercepting function.

When an application calls an intercepted func-
tion, the intercepting function is activated, and the
intercepting function can choose to abort the function
call, forward the function call to the original function,
or perform some other operations. However this EAT
patching technique cannot be easily applied to system
DLLs since the Windows File Protection (WFP)
mechanism discourages such DLL modifications by
nullifying the effects of these modifications. Even if
all backup versions of a system DLL are replaced,
Windows OS can still restore the DLL to the unmodi-
fied version through the Windows Updates mecha-
nism. Another problem of this approach is that modifi-
cation to a DLL has to be compatible with future ver-
sions of the DLL.

Each executable PE file includes an Import
Address Table (IAT), which has an entry for each
imported function (a function exported by a DLL).
After an executable file is loaded into memory, this ta-
ble is filled with the addresses of the imported func-
tions. When an application makes a call to an
imported function, it first looks up the corresponding
IAT entry, and then uses the address contained within
to jump to the target function. IAT Patching modifies
the IAT entry of an intercepted function to point to the
new intercepting function. All intercepting functions
are implemented in a DLL, and the intercepting func-
tions are loaded into memory by a method known as
DLL injection.

There are three ways to inject a DLL to the
address space of a running process: 1) using the
Win32 API SetWindowsHookEx, 2) using the Win32
API CreateRemoteThread, and 3) using the AppInit_DLLs
registry. All these three mechanisms force the Win-
dows OS to load a specified DLL automatically. Each
Windows DLL has a function called DllMain, which is
called automatically by the Windows OS after a DLL is
loaded. Therefore, the code for patching the IAT table
can be implemented in DllMain. However, this IAT
patching technique only works with statically loaded

DLLs. A DLL can be loaded dynamically by using
LoadLibrary and the entry point of a function exported by
a DLL can be obtained by GetProcAddress. To support
dynamically loaded DLLs, both LoadLibrary and GetPro-
cAddress must also be intercepted via IAT patching.

The IShellExecuteHook interface is a shell exten-
sion that can intercept any calls made to ShellExecute
(EX). This is the documented approach to extend the
behavior of the ShellExecute(EX) API with low over-
head, but it cannot intercept other Win32 API calls.
SEES uses both IAT patching and the shell extension
method to intercept the ShellExecute family of APIs
and other APIs. The ShellExecute family of APIs
sometimes are used to perform some other operations
beside opening an attachment. The SEES client ana-
lyzes the arguments used in these API calls to filter
out unwanted cases.
Saving Files to Local Disk

Even though mobile code runs on the SEES
server, it is essential that the user feels that it is exe-
cuted locally. Towards that end, when a user attempts
to save a file from an application running on the SEES
server, the file save interface should show the file sys-
tem on the user’s machine rather than that on the
SEES server. To implement local save for a remote
execution mechanism such as Windows Terminal
Server, one needs to re-direct the file save operation
from the SEES server to the requesting SEES client.
More concretely, when the Execution Manager inter-
cepts a save operation from applications running on
the SEES server, it requests the SEES client to launch
a save as dialog on the SEES client machine, thus pro-
viding the illusion that the user is saving the attach-
ment/file on the local disk.

After the user picks a local file name for the save
operation, the Execution Manager first stores the file
on the server’s disk, and then transfers it to the SEES
client, which then saves the copy to the file location
the user specifies. However, since the SEES server
cannot always detect if an opened attachment is a
virus or not, after the user saves the attachment to the
local machine, it is also marked as dangerous so that it
will be sent to the SEES server next time when the
user clicks on it again.
Isolation of Mobile Code Execution

Because the SEES server is responsible for exe-
cuting mobile code on behalf of all SEES clients
within an organization, it is essential to protect it from
malicious mobile code. That is, it should not be possi-
ble for any mobile code to bring down the SEES
server and deny the mobile code execution service to
other hosts. To provide such protection, SEES adds
the following checks for every mobile code execution
request from the SEES clients:

• Only certain IP addresses are authorized to be a
SEES client.

• Each SEES client can only make a finite num-
ber of mobile code execution requests.

58 20th Large Installation System Administration Conference (LISA ’06)



Lam, Yu, & Chiueh Secure Mobile Code Execution Service

• The total amount of memory and disk usage by
a SEES client is limited.

Process
Identification

Module
Control
Channel

Data
Channel

Kernel Level

User Level

Don’t

Monitor

Monitor
Hook/
Unhook

Inform Malicious 
Call to User

Allow

Disallow

Return Access
Denied

Return

System
Call

User
Level

Process

Security
Control

Manager

System Call
Interception

Module

Device
Communication

Module

Policy
Enforcement

Module

Original
System Call

Figure 3: The detailed software architecture and control flow of the System Call Monitor driver, which is embed-
ded into the kernel. The System Call Monitor only sandboxes the applications that run under a low privilege
SEES user account according to the security policy set by a system administrator. It allows the system applica-
tions and the applications that are not executed under a SEES user account to run normally.

The SEES server executes each piece of mobile
code on a low-privilege account, which allows its pro-
cesses to read/write its home directory and to have
read access to certain system applications and files. As
a result, no mobile code can steal information from the
SEES server or corrupt the system data structures such
as registries, DLLs, and applications. To prevent
mobile code from leaving any permanent effects on
the SEES server, all the modifications to the registries
and file system made by a piece of mobile code are
erased after the execution is done.

More specifically, after installation, the SEES
configuration tool copies the registry files
NTUSER.DAT and UsrClass.dat of each account into a
safe place. After execution of each piece of mobile
code, these two registry files are restored automati-
cally. As a result, when a piece of mobile code starts,
it always start with a ‘‘clean’’ execution context, in
terms of registry values and home directory contents,
and will never get ‘‘infected’’ by other malicious
mobile code.

A key advantage of the SEES architecture is that
the SEES server can use a more lenient security policy
when executing mobile code, as long as such policies
never bring down the server. That is, the SEES server
only needs to protect itself from denial-of-service
(DOS) attacks, and can afford to err for other types of
attacks, since the server itself is not supposed to con-
tain any valuable information. Because of this addi-
tional latitude, SEES is much better than existing
behavior blocking systems because it can minimize
disruption to legitimate applications.

To take this idea to the extreme, we are currently
exploring a namespace virtualization mechanism that
allows each piece of mobile code to modify whatever
files and registries it wants, and yet these modifica-
tions are never visible to the SEES server or other
pieces of mobile code. This mechanism ensures no
legitimate mobile code will be disrupted while protect-
ing the SEES server from malicious mobile code.

System Call Monitoring
As an additional layer of defense, the SEES

server also includes a system call monitor that checks
all the system calls made during the mobile code exe-
cution against a pre-defined sandboxing policy. Any
system calls that violate the sandboxing policy are
denied, and an alert message is sent to the user.

The software architecture of SEES’s system call
monitor is shown in Figure 3. The current SEES pro-
totype monitors only two system calls, NtOpenFile and
NtCreateFile, which are used for both files and network
connection operations. To intercept system calls on a
Windows NT-like environment, we modify KeSer-
viceDescriptorTable [18], which is the system call dis-
patch table data structure in the kernel. The System
Call Interception module first changes the table entries
corresponding to NtOpenFile and NtCreateFile to point
to two SEES hooking functions respectively and saves
the original function pointers. Consequently, all calls
to NtOpenFile and NtCreateFile go through SEES’s
hooking functions.

When the hooking functions intercept a system
call, the Call Source Identification module needs to
identify the process that makes the system call, since
only processes that execute mobile code and the child
processes they create need to be sandboxed. This

20th Large Installation System Administration Conference (LISA ’06) 59



Secure Mobile Code Execution Service Lam, Yu, & Chiueh

module obtains all the relevant information, such as
process ID, terminal session ID, full path of the binary
image of the current process, security identifier (SID)
of the current user, filename or object name (network
object) to be opened, and desired access mode, from
the process structure of the current process making the
system call. The Policy Enforcement module then uses
the collected information to check for access violation.
These policy rules are set up at the configuration time
and loaded into the system call monitoring driver dur-
ing initialization. The Device Communication module
is responsible for informing the user when a sand-
boxed process violates the security policy.

Memory Usage on SEES Server

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40

Number of Sessions

M
em

o
ry

 U
sa

g
e(

M
B

)

Application running with SEES Application running without SEES

Figure 4: The physical memory consumption of the SEES server increases linearly at a rate of 20 MB per new ter-
minal session. In this case, each terminal session runs a WORD instance that opens a 865KB document.

Evaluation

Scalability
The main scalability concern about SEES archi-

tecture is the fact that all mobile code’s execution is
concentrated on a single server using Windows Termi-
nal Services (WTS). In this subsection, we will exam-
ine the start-up latency of individual applications and
CPU/memory consumption on the SEES server. To be
sure, WTS actually supports server clustering to
improve overall throughput and fault tolerance. We
use a DELL desktop with Intel Pentium 4 2.4 GHz
CPU, 768 MB PC2700 DDR memory as the SEES
server and an Acer desktop machine with Intel Pen-
tium 3 650 MHz CPU and 384 MB PC133 SDRAM
memory as a SEES client. The operating systems used
on both machines are MS Windows 2000.

We tested different types of documents using
applications in Microsoft Office Suite and the result
shows that when the available physical memory on the
SEES server is more than 20 MB, the start-up latency
between local execution and SEES-model execution is
only about one second on average. When the number
of active terminal sessions increases, e.g., increasing
to 30 or 40 sessions, there is still no noticeable latency
difference between the two cases. When the available
physical memory is below 20 MB, the application
startup latency increases significantly, i.e., 5 seconds
or longer, because of extensive swapping. This means
the architecture based on WTS does not add to addi-
tional usability problem in terms of latency as long as
the SEES server is installed with enough memory.

The SEES server’s CPU usage is also related to
its memory consumption. When the SEES server’s
available physical memory is more than 20 MB, its
CPU usage usually reaches a peak value between 50%
and 90% when a terminal session starts or terminates,
but quickly decreases to a lower average value. How-
ever, after the available physical memory becomes
smaller than 20 MB, the CPU usage remains at a high
peak value and that is when the start-up latency starts
to deteriorate.

When the number of active terminal sessions
increases, the memory usage on the SEES server
increases linearly, as shown in Figure 4. In this test,
we created a series of new terminal sessions, each run-
ning a WORD instance that opens a 865KB document,

60 20th Large Installation System Administration Conference (LISA ’06)



Lam, Yu, & Chiueh Secure Mobile Code Execution Service

and the rate of increase in the SEES server’s memory
consumption is about 20 MB per new session. To iso-
late the contribution of the SEES server, we removed
the SEES server control and opened the same WORD
document in new terminal sessions, and the increment
in physical memory usage is about 18 MB per session.
This shows that the SEES server itself consumes only
about 2 MB. The WORD application in this case con-
sumes 8 MB because it opens a document containing
many images. This means that there is a fixed over-
head of about 10 MB associated with each new termi-
nal session even when it is not running any applica-
tion, and a remote-display scheme better than WTS
can be exploited to reduce the memory overhead.
Attack Analysis
Saving Attachment Directly From Email Client

Instead of opening an email attachment, users
can also save an email attachment directly from an
email client application. This operation is different
from the ‘‘Local Save’’ functionality of SEES and
must be identified properly. One solution is to inter-
cept this operation of email client applications and
mark the file to be saved.
Time-bomb Malicious Code

A time-bomb malicious code will not be trig-
gered until some later time or when a specific user
operation takes place. As a result, the system call
monitor on the SEES server may not immediately
detect a time bomb’s malicious behavior. One way to
resolve this problem is to mark the file saved through
‘‘Local Save’’ so that all subsequent invocations of
these files will still be executed on the SEES server.
Benign Installer and Malicious Executable

It is difficult to distinguish a benign application
installer from a malicious executable, because both
can modify system directories and registries. As a
result, the SEES server may falsely mistake a legiti-
mate application installer for malicious mobile code.
We are working on a namespace virtualization tech-
nique that provides a process its own virtual execution
environment by logging all its updates to system
resources, and committing these updates only when it
is sure of the process’s legitimacy.
User Context Contamination

Because a malicious email attachment can
always update the private registry entries or home
directory of the user account under which it runs,
these updates can potentially infect future email
attachments that execute under the same user account.
To address this problem, the SEES server provides an
account refreshing mechanism, which cleans up the
home directory and refreshes the private registry
entries as soon as an existing session terminates.
Attacks Against the SEES Server

The home directory of a SEES user account on
the SEES server is configured to be writable for pro-
cesses under that user account. If a malicious email

attachment keeps creating files, it may consume
excessive disk space on the SEES Server. To prevent
this attack, SEES sets a disk quota limit for each
account using NTFS’s quota management. If an
attacker somehow gets hold of the user ID and pass-
word of a user account on the SEES server, she can
bombard the SEES server with many terminal ses-
sions. The SEES server solves this problem by limit-
ing the total number of terminal sessions per host. In
addition, the attacker can log into the terminal server
to eavesdrop the current applications running under
the same user account or to browse related network
shares. To stop such attacks, the SEES server ensures
that terminal sessions under the same user account
always come from the same host, and the network
share component is disabled.

Conclusion and Future Work

SEES stands out among both research and com-
mercial solutions to the secure mobile code execution
problem because of its unique capability of both stop-
ping zero-day virus and minimizing disruption to exe-
cution of legitimate applications. It achieves this
through accurate identification of specific types of
mobile code and physical isolation of the execution of
these mobile code. The end result is that SEES can
guarantee that no email attachments and web docu-
ments can can act on behalf of the user that downloads
them, can damage the resources of the user machine,
or can leak any confidential information.

As we discussed in the section on the fundamen-
tal issues of secure mobile code execution, there are
many other mobile code entry points that the current
SEES implementations do not capture and therefore
cannot isolate. For example, it is difficult to identify
and sandbox mobile code embedded in an HTML
page or an email body, especially when the HTML
page or email is encrypted.

The main problem is that this type of mobile
code runs in the same address space as the download-
ing application, in this case Internet Explorer or Out-
look, and requires the sandboxing mechanism to use
different sandboxing policies at different times for the
same application. As another example, mobile code
embedded within objects being exchanged through
FTP applications, peer-to-peer file sharing applica-
tions, IRC and Instant Messaging applications
becomes increasingly prevalent, and thus needs to be
identified and sandboxed properly.

Although the physical isolation approach in the
current SEES implementations provides strong protec-
tion, it has two disadvantages. First, it requires an
expensive infrastructure, namely the Windows Termi-
nal Server. Second, it cannot be easily generalized to a
mobile computing environment, because the SEES
server infrastructure may not always be available. To
address these problems, we are currently developing a
logical isolation approach that relies on system call

20th Large Installation System Administration Conference (LISA ’06) 61



Secure Mobile Code Execution Service Lam, Yu, & Chiueh

monitoring and virtualization techniques, and thus
does not require a separate guinea pig machine. We
expect this approach to be more scalable and portable
while providing the same degree of protection as the
physical isolation approach.

Author Biographies

Dr. Lap Chung Lam is the Chief Engineer of
Rether Networks Inc. He received his B.A. in CS and
mathematics from SUNY at New Paltz, and Ph.D. in
CS from Stony Brook University in 1997 and 2005
respectively. He received a best paper award from the
Program Analysis for Security and Safety Workshop
(PASSWORD) co-located with ECOOP 2006. Dr.
Lam’s current research interest focuses on computer
security, software protection, and program analysis.
He can be reached electronically at lclam@rether.com .

Yang Yu is a Ph.D. candidate in the Computer
Science Department of Stony Brook University. He
received his B.S. and M.S. in computer science from
Tsinghua University, Beijing, China in 1999 and 2002
respectively, and M.S. in computer science from Stony
Brook University in 2005. He has received a Best
Paper Award from 2005 Annual Computer Security
Applications Conference (ACSAC). His current
research interest lies in operating system and system
security. He may be reached at yyu@cs.sunysb.edu .

Dr. Tzi-cker Chiueh is a Professor in the Com-
puter Science Department of Stony Brook University,
and the Chief Scientist of Rether Networks Inc. He
received his B.S. in EE from National Taiwan Univer-
sity, M.S. in CS from Stanford University, and Ph.D.
in CS from University of California at Berkeley in
1984, 1988, and 1992, respectively. He received an
NSF CAREER award in 1995, an IEEE Hot Intercon-
nect Best Paper award in 1999, a Long Island Soft-
ware Award in 1997 and 2004, and a Best Paper
Award from 2005 Annual Computer Security Applica-
tions Conference (ACSAC). Dr. Chiueh has published
over 140 technical papers in refereed conferences and
journals. His current research interest lies in wireless
networking, computer security, and storage systems.

Bibliography

[1] Conry-Murray, Andrew, Product focus: Beha-
vior-blocking stops unknown malicious code,
2002, http://www.networkmagazine.com/shared/
article/showArticle.jhtml?articleId=8703363&
classroom= .

[2] Chiueh, Tzi-cker, Harish Sankaran and Anindya
Neogi, ‘‘Spout: A transparent distributed execu-
tion engine for java applets,’’ IEEE Journal of
Selected Areas in Communications, Vol. 20,
2002.

[3] Malkhi, D. and M. K. Reiter, ‘‘Secure execution
of java applets using a remote playground,’’
IEEE Transactions on Software Engineering,
Vol. 26, 2000.

[4] Symantec: Norton antivirus 2004 professional,
2004, http://www.symantec.com/nav/nav_pro/
features.html .

[5] McAfee: Mcafee virusscan, 2004, http://us.mcafee.
com/root/package.asp?pkgid=100 .

[6] Tr end Micro: Officescan, 2004, http://www.trend
micro.com/en/products/desktop/osce/evaluate/
features.htm .

[7] Jackson, Kathleen A., ‘‘Intrusion detection sys-
tem (ids) product survey,’’ Los Alamos National
Laboratory report LA-UR-99-3883, 1999.

[8] Kim, G. H. and E. H. Spafford, ‘‘The design and
implementation of tripwire: A file system
integrity checker,’’ ACM Conference on Com-
puter and Communications Security pp. 18-29,
1994.

[9] Balfanz, Dirk and Danie R. Simon: ‘‘Window-
box: a simple security model for the connected
desktop,’’ Proceedings of the 4th USENIX Win-
dows Systems Symposium, pp. 37-48, 2000.

[10] Goldberg, Ian, David Wagner, Randi Thomas,
and Eric A. Brewer, ‘‘A secure environment for
untrusted helper applications,’’ Proceedings of
the 6th USENIX Security Symposium, San Jose,
CA, 1996.

[11] Alexandrov, Albert, Paul Kmiec, and Klaus
Schauser, ‘‘Consh: A confined execution envi-
ronment for internet computations,’’ USENIX
Annual Technical Conference, 1999.

[12] Berman, Andrew, Virgil Bourassa, and Erik Sel-
berg: ‘‘Tron: Process-specific file protection for
the UNIX operating system,’’ Proceedings of the
1995 USENIX Technical Conference, pp. 165-
175, 1995.

[13] Acharya, Anurag and Raje Mandar, ‘‘Mapbox:
Using parameterized behavior classes to confine
untrusted applications,’’ Proceedings of the Tenth
USENIX Security Symposium, 2000.

[14] Ioannidis, Sotiris and Steven M. Bellovin,
‘‘Building a secure web browser,’’ USENIX
Annual Technical Conference, FREENIX Track,
pp. 127-134, 2001.

[15] Ioannidis, Sotiris and Steven M. Bellovin, ‘‘Sub-
operating systems: A new approach to applica-
tion security,’’ Technical Report MS-CIS-01-06,
University of Pennsylvania, 2000.

[16] Chiueh, Tzi-cker, Paid: Program-semantics
aware intrusion detection, 2003, http://www.ecsl.
cs.sunysb.edu/paid/index.html .

[17] Microsoft Coporation, Microsoft portable exe-
cutable and common object file format specifica-
tion, 1999, http://www.microsoft.com/whdc/hwdev/
hardware/PECOFF.mspx .

[18] Schreiber, Sven B., Undocumented Windows
2000 Secrets A Programmer ’s Cookbook, Addi-
son-Wesley, pp. 266-268, 2001.

62 20th Large Installation System Administration Conference (LISA ’06)


