
Toward an Automated Vulnerability
Comparison of Open Source IMAP Servers

Chaos Golubitsky – Carnegie Mellon University

ABSTRACT

The attack surface concept provides a means of discussing the susceptibility of software to
as-yet-unknown attacks. A system’s attack surface encompasses the methods the system makes
available to an attacker, and the system resources which can be used to further an attack. A
measurement of the size of the attack surface could be used to compare the security of multiple
systems which perform the same function.

The Internet Message Access Protocol (IMAP) has been in existence for over a decade.
Relative to HTTP or SMTP, IMAP is a niche protocol, but IMAP servers are widely deployed
nonetheless. There are three popular open source UNIX IMAP servers – UW-IMAP, Cyrus, and
Courier-IMAP – and there has not been a formal security comparison between them.

In this paper, I use attack surfaces to compare the relative security risks posed by these three
products. I undertake this evaluation in service of two complementary goals: to provide an honest
examination of the security postures and risks of the three servers, and to advance the study of
attack surfaces by performing an automated attack surface measurement using a methodology
based on counting entry and exit points in the code.

Introduction

System administrators frequently confront the
problem of selecting a software package to perform a
desired function. Many considerations affect this deci-
sion, including functionality, ease of installation, soft-
ware support, interoperability, performance, and hard-
ware and software dependencies. However, the sensi-
ble administrator will place significant weight on
choosing a software package with a reasonable posture
towards security.

When selecting a package and installing it ini-
tially, the administrator can ensure relatively easily that
the new configuration is not susceptible to any known
vulnerabilities. However, some software is more prone
to future attacks than others. Sysadmins could benefit
from an easy-to-implement metric which provides an
intelligent assessment of which software packages are
likely to be found vulnerable in the future, not just of
which ones have had problems in the past.

Measurement of the attack surface of a software
package has been proposed as such a metric. The
attack surface is the set of opportunities which the
software package provides for the outside world to
access the software itself. It is measured by enumerat-
ing this set and classifying its elements on the basis of
risk of future attack. Researchers have further pro-
posed automating attack surface measurement by enu-
merating and classifying the entry and exit points of
the software package. In this paper, I describe steps
taken towards performing an automated relative vul-
nerability assessment of open source UNIX IMAP
servers based on measurement of attack surfaces.

Contributions and Roadmap
The paper makes two major contributions. First,

I undertake an in-depth discussion of the relative secu-
rity postures of the three major open source IMAP
servers in use today. Second, I perform a partial mea-
surement of attack surfaces based on the entry/exit
point methodology, and compare the results to my ini-
tial impressions of the servers studied.

In the remainder of this section, I introduce attack
surfaces and IMAP servers. I discuss the prior work
done on attack surface measurement and the rationale
for selecting IMAP servers as the target of my analy-
sis. I discuss IMAP servers at the design level by first
exploring the high-level interactions of the servers
with their environments, then introducing the three tar-
get servers with a focus on the design philosophies and
implementation peculiarities of each. In the next sec-
tion, I introduce the entry/exit point method of attack
surface measurement, and discuss the methodology
used in performing a partial entry/exit analysis of the
IMAP servers, including roadblocks to performance of
a fully automated analysis. Finally, I compare the
results of the analyses performed, and provide conclu-
sions and future directions for attack surface research.
Attack Surfaces
Theory of Attack Surfaces

The attack surface can be used to create a com-
parative software vulnerability metric for packages
which perform similar functions. Such a metric
assesses a system at the design level by observing the
prerequisites for a system to be attacked.

An attack on a system necessarily involves an
attacker who gains access to some resource to which

19th Large Installation System Administration Conference (LISA ’05) 9

Toward an Automated Vulnerability Comparison of Open Source IMAP Servers Golubitsky

he is not entitled. There are some prerequisites without
which an attack cannot occur. First, the attacker must
be able to take some action which affects the system.
If he cannot alter a system’s state at all, he cannot
increase his access to that system. Second, in order for
an attack to be non-trivial, the system must contain
some resource which is accessible after the attack, but
not before. This resource may itself be the target of the
attack, or it may be an enabler which allows the
attacker to reach his eventual target, or to get closer to
it. For example, in the case in which an unauthenti-
cated attacker triggers a buffer overflow in a port-lis-
tening daemon to obtain a root shell on the server, the
action is the daemon, which runs code based on con-
nections received from anyone, and the resource is the
daemon’s root privilege.

The attack surface of a system is simply the set
of all actions made available by the system and all
resources accessible to the system. This set consists of
three types of items: (1) methods, which are exe-
cutable code potentially runnable by an attacker, (2)
channels, which are IPC mechanisms potentially
usable by an attacker, and (3) data items, which are
sources of persistent data (such as files) potentially
readable or writable by an attacker.

However, enumerating system actions and
resources is not very useful in itself, because it tells us
nothing about the specific risks posed by the actions
and the specific opportunities afforded by the
resources. A port-listening daemon which requires
connections to come from a specific IP address and
which asks clients to cryptographically authenticate
themselves before communicating further may pose
less risk than does a daemon which will allow any
client to talk to it. We need some way to discuss the
relative risks posed by different methods or resources.

Prior Work on Attack Surface Measurement

The idea of attack surfaces was introduced by
Howard, and was used to measure the relative attack
surfaces of versions of Windows [11]. Manadhata and
Wing extended the description of attack surfaces in
2004, and discussed ways of measuring attack sur-
faces in the context of Linux versions [14]. Their
approach to the problem that not all system resources
are created equal was to use the Common Vulnerabili-
ties and Exposures (CVE) database [1] to identify sev-
eral types of objects which were most often involved
in attacks on Linux. Typed objects include things like
‘‘http daemon running as root’’ or ‘‘file writable by
group users.’’ They then enumerated those types
within instances of each of several Linux distributions
to draw a comparison.

Several improvements on their analysis are envi-
sioned here. First, manual analysis is tedious and
error-prone, so a means of automating attack surface
measurement is desired. Second, it is not possible to
use this method to compare attack surfaces between

two products – if one has more daemons running as
root, but the other has more world-writable files, we
cannot say anything further about which poses the
greater risk. Third, identifying important resources
based on previously discovered vulnerabilities assumes
both that the set of known vulnerabilities is large
enough to be representative1 and that future attacks
will exploit the same types of resources and actions as
previous attacks. In order to focus on features which
could be attacked in the future, we need to define
types in a way which more accurately assesses the risk
introduced by each. The entry/exit point analysis dis-
cussed in the third section of this paper attempts to
address these issues.

IMAP Servers
The Internet Message Access Protocol provides

e-mail access to authenticated remote users. Once a
Mail Transfer Agent receives a message for a local
recipient, it must place that message into a data store
from which the recipient can access it at his leisure. In
many cases, the MTA places the message directly into
a file, using a mail storage format such as Maildir or
Berkeley mbox. The recipient then logs onto a UNIX
system which has access to the mail file, and uses a
UNIX-based mail client (MUA) to read the message.

IMAP provides a mechanism for the mail store
to be accessed over a network. The MTA hands a mes-
sage off to the IMAP server, either by storing it in a
file format the server can read, or by communicating
with the IMAP server using a mail transmission proto-
col such as SMTP or LMTP (Local Mail Transfer Pro-
tocol). At a later time, the recipient may connect to the
IMAP server over a network, authenticate, and per-
form actions such as reading new messages, deleting
messages, or selecting messages from his mailbox
based on certain criteria [15].

I chose to investigate IMAP for several reasons.
First, there are three freely-available open source IMAP
servers which share the bulk of the market – UW-IMAP,
Cyrus, and Courier-IMAP. Each server has been in devel-
opment for several years, so the codebases are fairly
mature. Each codebase contains 100,000-250,000 lines of
code. These codebases are large enough that it is not
practical to perform an analysis by reading every line of
the code, but small enough that it is possible to get a
design-level sense of the actions the code takes. Second,
since IMAP is a niche protocol relative to, for instance,
SMTP or HTTP, there has not been a formal security
analysis of IMAP servers in the past. Third, the IMAP
protocol is stateful, and, in particular, provides for both
authenticated and unauthenticated states. In theory, attack
surfaces are well suited for analysing stateful protocols,
because they take into account what privileges are prereq-
uisites for attacking a certain portion of a system. For all
these reasons, studying the attack surfaces of IMAP

1This is certainly not the case for IMAP servers, for which
only about 30 distinct server vulnerabilities are reported in
the CVE.

10 19th Large Installation System Administration Conference (LISA ’05)

Golubitsky Toward an Automated Vulnerability Comparison of Open Source IMAP Servers

servers is both feasible and worthwhile, in that it provides
useful information about server security.

Observation of IMAP Server Software

To assess the effectiveness of the attack surface
analysis, I needed to gain a subjective impression of
the relative security postures of the three IMAP server
packages. In order both to increase my knowledge of
IMAP server operation, and to build a consistent base-
line from which to compare the codebases, I installed
each server package in a constrained environment. To
the extent possible, I applied the same minimal config-
uration to each server.

Observation Methodology
I installed each package using the jail() system

call under FreeBSD 5.2. The jail() call is an extension
of chroot() which restricts a called program and its chil-
dren to operating within a subdirectory of the filesys-
tem. All dependencies of the jailed program, including
libraries, configuration files, devices, and log files and
sockets, must exist within that subdirectory. In addi-
tion, jail() binds all network activity of the jailed
process and its children to one given IP address [12].

Using jail(), I was able to create a miniature vir-
tual server for each IMAP package. Each virtual
server ran only three items: a syslog daemon provid-
ing debug-level system logging for all activity, a lis-
tener of some sort to receive e-mail via LMTP connec-
tions, and the IMAP daemon itself. In addition, I cre-
ated a virtual server containing the Postfix MTA,
whose purpose was to forward mail via LMTP to each
of the three IMAP servers.

For each IMAP server, I attempted to create a
minimal default configuration in which the server lis-
tened only on port 143 for both encrypted and unen-
crypted connections.2 Each server provided access to
one user account, which could be authenticated via a
CRAM-MD5 database.

I determined the minimal set of files which each
server needed in order to function by trial and error. I
modified the jail’s startup routine to start all programs
as children of ktrace(), and used that in combination
with syslog error output to iteratively determine what
additional files were needed. Needless to say, this pro-
cedure does not give an entirely comprehensive view of
all the files a given program might use under any cir-
cumstances. However, it does enable some subjective
assessment of the behavior of each package, including:
installed size and dependencies, behavior during com-
pilation and configuration, network and system behav-
ior during operation, and any notable extra features the
software provided, be these user-visible options, extra
daemons and port listeners, or API methods.

2Technically, the port listens only for unencrypted connec-
tions. However, it is possible for a client to connect and im-
mediately issue the STARTTLS command, thereby encrypting
the remainder of the session.

In the remainder of this section, I will introduce
each of the three IMAP servers in turn, discussing the
project overview of the package, the code layout and
high-level design, my experience in installing and
configuring the package, and my subjective impres-
sion of the security of the package.
High-Level Interactions of IMAP Servers

Some high-level elements are common to all
IMAP servers, as a result of the services they provide.
In particular, there are several ways in which an IMAP
server must interact with its environment in order to
do its job. These interactions correspond to types of
attack surface elements which all IMAP servers must
have, so it is worthwhile to outline them in a general
sense before proceeding to the specifics of each server
package. Figure 1 depicts the interactions described in
the remainder of this section.

lmtpd

OS
Programs

kernel
+ devs

libraries

log
files

config
files

auth
files

lock +
temp
files

mail +
metadata
files

server machine

imapd

IMAP

SMTP/
LMTP

smtpd/

Figure 1: High-level IMAP server interactions and
dependencies. (Executables are white, files are
grey. Imapd may provide lmtpd service inter-
nally).

Remote API
First and foremost, the IMAP server provides a

network API (application program interface) to a
remote user. The server listens on a port – commonly
port 143 for unencrypted or encrypted connections, or
port 993 for encrypted connections only – and
responds to user connection requests.

The IMAP API is the set of commands which the
IMAP server considers to be legal for the remote client
to send. It consists of 30-50 commands, the majority
of which are specified by the IMAP RFC. The user
sends these commands to the server using a fixed for-
mat and a command-specific number of arguments,
and each command has an RFC-defined effect. The
command set includes actions such as CAPABILITY (list
the features offered by this IMAP server), STARTTLS
(negotiate encryption for this connection), AUTHENTI-
CATE (begin some form of negotiation to move from
an unauthenticated state to an authenticated state), and
SELECT (choose a mailbox for further operations).

Most of the commands deal directly with pro-
cessing of e-mail, and thus should be accessible only

19th Large Installation System Administration Conference (LISA ’05) 11

Toward an Automated Vulnerability Comparison of Open Source IMAP Servers Golubitsky

to authenticated users. However, a set of authentica-
tion commands must be available to anyone who con-
nects to the server, so that authentication can take
place. In addition, some servers offer support for fold-
ers available to anonymous users, and thus for an
anonymous login mechanism.3

Access to User E-Mail Data

In order to serve e-mail, the IMAP server must
have a way of receiving that mail from the MTA. The
e-mail reception mechanism can take one of two forms:
either the MTA deposits the mail in a format the IMAP
server can read, or the IMAP server listens over a net-
work or named socket for connections from the MTA.
In the former case, the MTA and the IMAP server must
share disk access. In the latter case, the IMAP server
must run another listening daemon which speaks a mail
transfer protocol such as SMTP or LMTP.

Once the mail has been received, the IMAP
server must be able to read and modify the messages
on disk, and must maintain e-mail metadata in order to
keep track of mailbox state required by the IMAP pro-
tocol. Typically, metadata is stored as separate files
associated with each user or each mailbox, or as
header data within mail files.

Operating System Dependencies

The IMAP server depends on its resident operat-
ing system (a version of UNIX in the cases of my
three reference servers) to provide it with several nec-
essary functions. First, there is a standard set of utili-
ties and system libraries – such as ls and libc – which
are needed by almost any running program.

Second, the IMAP server needs a way to listen
for incoming connections over the network. Some
servers implement their own networking code, while
some take advantage of OS-provided daemons such as
inetd to launch the IMAP server in response to connec-
tion requests.

Third, each IMAP server uses some third-party
libraries to provide various functions. All three servers
make use of OpenSSL to encrypt the communication
channel with the remote user. In addition, some of the
servers use libraries such as BerkeleyDB to process
authentication or metadata files in database formats.

Access to Non-Mail Files

Lastly, each server makes use of a number of files
which are not directly accessible to the remote user or
related to e-mail processing, but are used by the server
backend. These files are of four primary types: (1) con-
figuration files to be read at server startup or during
operation, (2) log files or a logging subsystem to be
written with error and/or debugging output, (3) authenti-
cation files or an authentication subsystem to be con-
sulted when a remote user attempts to prove his identity,

3This mechanism typically allows for login with the user-
name anonymous and any valid text string as a password, and
should be familiar to users of FTP.

and (4) lock files and temporary files to be written in
order to store non-permanent data or to control access to
shared elements.

UW-IMAP Server

Overview

UW-IMAP [9] is written and maintained at the
University of Washington by Mark Crispin, the author
of the original IMAP RFC. The purpose of this package
is to provide a simple and flexible drop-in IMAP server
for multi-user systems. The package uses the assump-
tion that IMAP will be one of many login methods
through which remote users can access the system. In
particular, the functional differences between IMAP
access and a shell access method such as SSH should be
only that IMAP access is optimized for mail reading.
Restricting IMAP access beyond the access afforded to
a shell user is not a design goal.

The UW-IMAP server has been under active devel-
opment since 1988, though the entire codebase has been
rewritten several times since then. The current code is
considered to go back only as far as the 2000 imap-2000
release. Looking further back, I find a code overlap of
approximately 20% between imap-2004c1 (the most
recent version as of this writing) and the 1996 imap-4
release, and no overlap between imap-2004c1 and any
release prior to imap-4.

The current codebase contains 135,000 lines of
code and 40,000 lines of other files. Of this code, the
IMAP server itself comprises only 4,000 lines, while
the remainder of the code consists of an internal (com-
piled-in) library called c-client. This library is also the
backend for the Pine e-mail client.

Compiling imapd provides a single binary with a
single purpose. An external program such as inetd
must be used to listen on the appropriate IMAP ports.
When a connection is made, an imapd process is
spawned, handles that single connection, then termi-
nates. Since UW imapd’s place in the system is simple,
the amount of code needed for its implementation is
reduced. The tradeoff is increased dependencies on
other programs to perform core functions, most
notably mail delivery and port listening. The imapd
program also requires no configuration file – configu-
ration options are to be selected at compile time.

One more notable feature of UW-IMAP is that it
is agnostic about mailbox formats. By default, the
UNIX UW installation is compiled with support for
mbox, mbx, mx, mh, tenex, mtx, mmdf, and phile
mailbox types. This support is provided by means of
mailbox drivers. Internal logic is used to guess the
type of a mailbox, and then execution is passed off to
the appropriate driver.

Impressions

The UW codebase does not have a good security
history, and the design does not inspire confidence about

12 19th Large Installation System Administration Conference (LISA ’05)

Golubitsky Toward an Automated Vulnerability Comparison of Open Source IMAP Servers

its future. My survey of IMAP vulnerabilities found in
the CVE database (through December 2004) found
twelve relevant vulnerabilities in the UW server, com-
pared to seven in Cyrus and four in Courier. UW-
IMAP’s primary benefit is that it is the smallest and
simplest of the three servers, both in terms of code size
and major functions provided, and in that it provides a
smaller set of IMAP API methods than the other
servers. (The small API set may be in part due to the
fact that the UW author wrote the IMAP RFC, which
defines the minimal allowable set of API functions.)

However, the drawbacks are many, and seem to
go down to the design philosophy of the package. The
code is not at all modular. An example of this is given
by the imapd program’s main() routine. The routine
contains code to select a mailbox sorting function for
the SORT API method. It also contains three separate
code locations at which the anonymous user is config-
ured (a pre-authentication check at the beginning of
the connection, an outcome of the LOGIN API method,
and an outcome of the AUTHENTICATE API method),
causing three distinct variables to be set each time. In
addition, since the codebase is so non-modular, and
since most of the functionality is provided by a c-
client library which is also the backend for the mail
client Pine, it is possible that functionality may be
compiled in to the UW server which is really only
necessary or desirable for client operation.

The design decision that IMAP access should be
only one method into a user-accessible system effec-
tively prevents administrators from building a closed
box IMAP server. (UW can be compiled in a mode
called closedBox, but the differences from the standard
configuration are limited, and this is not an officially
supported configuration.) The assumption that the
server will not be a closed box shows up in several
places. For example, one of the methods by which the
Pine client attempts to contact an IMAP server uses
rsh or ssh to run a server instance locally. In order to
support this, the imapd server offers a ‘‘pre-authenti-
cated’’ mode, in which a server started under a given
UID is assumed to be authenticated as the associated
IMAP user.

Despite UW-IMAP’s history of buffer overflows,
instances of string functions which do not perform
length-checking (such as sprintf) are still plentiful
within the code. The codebase uses custom makefiles,
rather than GNU configure or some other standard
solution, to maintain the cross-platform build process.
This choice is not necessarily related to security, but it
causes code compilation to be less uniform than might
otherwise be the case. Along the lines of the closedBox
option, the package officially disallows use of a con-
figuration file, but the code specifies the name of a
configuration file which will be read if it exists.
According to the documentation, the results of using
this file to configure the software are unpredictable.

Cyrus Server
Overview

Cyrus is written and maintained by Project Cyrus
at Carnegie Mellon University [4]. Its purpose is to
provide fast and scalable IMAP service. In order to
support this goal effectively, the Cyrus server is, by
design, truly a closed box. Cyrus permissions are
defined internally and do not map to the UNIX per-
missions of the host operating system, and Cyrus uses
its own custom mailbox format which is not guaran-
teed to be parsable by non-Cyrus tools.

Cyrus has been under active development since
1994. In approximately 1999, the codebase was split
into cyrus-imap, the IMAP server, and cyrus-sasl, a set
of flexible authentication libraries and associated utili-
ties for use with IMAP or other Cyrus programs.

The Cyrus codebase contains 210,000 lines of
code and 475,000 lines of other files. It is therefore the
bulkiest of the three codebases, but is also relatively
well documented. Of the included code, 75,000 lines
come from the SASL codebase (the wrapper authenti-
cation libraries themselves, the optional authentication
daemon, plugins for common authentication mecha-
nisms, and utilities for checking and changing pass-
words), while the remainder is the IMAP codebase.
The IMAP side of the code provides a number of aux-
iliary tools and functions, but the code specific to
imapd itself is nearly 70,000 lines.

Compiling IMAP and SASL produces a large
number of binaries and libraries, many of them
optional. In order to function at all, the system
requires: the front-end daemon master to listen for
incoming network connections and pass them off to
the appropriate servers, the imapd binary to handle
IMAP connections, the lmtpd binary to receive incom-
ing mail from the MTA and store it in the Cyrus mail
format, and the ctl_cyrusdb binary to maintain Cyrus’s
extensive collection of mail metadata. The system also
requires the primary SASL library libsasl2, as well as
some helper libraries which implement particular
authentication mechanisms. Cyrus is configured using
the files cyrus.conf, which specifies the listeners and
periodic processes spawned by master, and imapd.conf,
which configures IMAP-specific options.

In order to support fast and scalable service, all
Cyrus code runs under a single UNIX user account. It
is possible to use the UNIX passwd file for authentica-
tion of IMAP users, but doing so requires the use of a
special daemon, saslauthd, which runs as root and with
which the SASL authentication mechanisms commu-
nicate via a named socket.

The other major Cyrus design decision which
contributes to scalability is the custom mailbox for-
mat. Individual e-mail messages are stored in a read-
able format in flat files, one file per message con-
tained in one directory per mail folder. (This directory

19th Large Installation System Administration Conference (LISA ’05) 13

Toward an Automated Vulnerability Comparison of Open Source IMAP Servers Golubitsky

structure is similar to that of Maildir.) Mail metadata
is stored in binary database files using a Cyrus-spe-
cific format, and thus cannot necessarily be read by
non-Cyrus tools.

These two design choices bring with them the
requirement that all access to or support of user mail
be performed using Cyrus tools, and typically over the
network. As a result, mail administration commands
are provided via the remote IMAP interface, and a
special subsystem, called sieve,4 is provided for end
user mail filtering tasks which other systems handle
by allowing users to install procmail filters. When
installed, sieve adds extra code, as well as some mech-
anism for end users to edit their filters – the most com-
mon is an extra port listener through which users can
authenticate and make changes over the network.

Impressions
I found Cyrus to be the most impressive of the

codebases in terms of layout. The code is modular and
well documented, and can be easily compiled using
GNU configure.

Since the IMAP server is designed to be run in a
black box, any functionality not explicitly provided
should be denied. Therefore, Project Cyrus takes
breaches very seriously. From a security perspective,
the design feature by which Cyrus runs all its code as
the imapd user has both a major benefit and a serious
drawback. The benefit is that no code (other than the
optional saslauthd) runs as root, so it should never be
possible to gain root access on the Cyrus box solely by
compromising the Cyrus server. Therefore, if your pri-
mary concern is the prevention of root compromises
on your network, the Cyrus methodology is a very
good one. However, the downside is that any arbitrary
code execution vulnerability constitutes a total breach
of the IMAP system. If your primary concern is the
safety of the mail system itself, you might prefer a
system in which a buffer overflow in post-authentica-
tion code gave the authenticated user access only to
his own mail, rather than to all mail and mail metadata
on the system.

Cyrus provides a large number of features inter-
nally, some of which (such as mail administration and
filtering) are required by the design of the system, but
some of which seem like evidence of feature creep.
For instance, there is a notification daemon to provide
flexible user notification of new e-mail. Additionally,
Cyrus, like UW, has a built-in NNTP client, and pro-
vides anonymous user access for the purpose of using
the IMAP server as an NNTP aggregator.

Obviously, the in-band mail administration is
itself risky, since it opens up more code to the IMAP
interface. This risk is somewhat mitigated by the clean
and modular design of the IMAP-visible code, but
cannot be entirely removed. The Cyrus system is also

4Sieve is an open standard mail filtering language, defined
by RFC 3028.

busier than the others – the master process spawns
periodic tasks related to cleaning and optimizing the
database, while UW and Courier’s daemons perform
no work unless a connection is being served.

Courier-IMAP Server

Overview

Courier-IMAP is the IMAP server component of
the Courier MTA [2]. The IMAP server is packaged
with the MTA, but is also available and configurable
as a stand-alone server. Courier is designed to be fast
and scalable while being interoperable with standard
UNIX permission schemes and mailbox formats. It
attains this balance by using the Maildir format, which
is a one-message-per-file format similar to Cyrus, but
is supported by many other applications, including
several MTAs.

Courier-IMAP has been in development since
1998, and has been a continuous codebase since that
time. Like Cyrus, Courier is divided into an IMAP
portion of the codebase and an authentication library,
called courier-authlib. However, the imap/authlib split
was recent in this case, dating back only as far as the
2004 release of courier-imap-4.0.0.

The current codebase contains 135,000 lines of
code and 550,000 lines of other files, so it is relatively
lean and also well documented. Approximately 30,000
lines of code are represented by the authentication
library, and the rest by IMAP. The IMAP codebase
includes various compiled-in helper libraries, such as
Unicode handlers, support for various mail-relevant
RFCs, and support for the Maildir format. The dae-
mon code itself is divided into: a network listener
which provides the functionality of inetd and tcpwrap-
pers in a Courier-specific fashion (couriertcpd), a binary
designed for handling unauthenticated IMAP connec-
tions (imaplogin), and a binary which should only ever
be run by authenticated IMAP connections (imapd).

In addition, Courier-IMAP requires its own sys-
log frontend (courierlogger), several libraries related to
authlib, and a mandatory authentication daemon (auth-
daemond), which listens on a socket. (By contrast to
Cyrus, Courier requires authdaemond even if UNIX
passwords are not used for authentication.)

The Courier server has as a design goal protect-
ing the system from its own end users (legitimate or
otherwise). Therefore, it has a number of configura-
tion settings related to limiting the system resources
available to IMAP users.

Impressions

Courier-IMAP has many positive security-rele-
vant features, and, at an overview level, seems very
well designed. The code is relatively minimal in many
important ways – no NNTP client or anonymous access
is provided. Privilege separation is cleanly implemented
at a conceptual level. For instance, Courier requires a
separate configuration file to run imapd on its non-SSL

14 19th Large Installation System Administration Conference (LISA ’05)

Golubitsky Toward an Automated Vulnerability Comparison of Open Source IMAP Servers

port and on its SSL port, so it is very easy to configure
only the secure port with no risk of accidentally
enabling insecure access. Also, the login design, in
which the pre-authenticated IMAP connection is han-
dled by an entirely separate binary from the one which
provides logged-in functions, is very clean.

Upon closer inspection, however, many things in
the code disappoint. To increase efficiency, the imaplo-
gin process does not always terminate on unsuccessful
connections. The way in which this is implemented
potentially opens opportunities for the connection to
be left in a partially logged-in state. A bug in this por-
tion of the code might allow an attacker to circumvent
the privilege separation. In addition, the code layout
itself is hard to follow and inconsistently modular.

Compilation and configuration were difficult and
seemingly broken – configure is run once for each sub-
directory of the compile directory (rather than main-
taining a cache of, for instance, the location of gcc, or
the size of an integer), leading to slow and repetitive
compilation. More seriously, the compile-time config-
uration takes some values from outside the configura-
tion directory in an undocumented manner. Running
make clean in the Courier directory removes files
which are required for compilation, so it is necessary
to restore from the original tarball in order to redo a
compilation. None of these items is relevant to the
running system, per se, and each may be attributable
to the recent imap/authlib code split, but they are
inconvenient and do not inspire confidence in the
package design.

In addition, there are some features which do not
seem like good ideas. The cyrus-sasl implementation
which allows non-daemon authentication mechanisms
seems preferable to the courier-authlib implementation
which always requires a daemon, thereby mandating
that the system be open to attacks against the daemon
itself. The server also provides some strange user fea-
tures. Most notable among these are: INBOX.Outbox,
a special user-visible mailbox into which users can
place messages for immediate transmission via SMTP,
and loginexec, a file within a user’s top-level Maildir
which is always executed and removed, regardless of
ownership, if it exists.

Summary of Software Observation Results
It is certainly the case that manual software

observation gives an incomplete impression of soft-
ware security. The overall code layout, modularity,
and privilege separation are obscured from the time-
constrained examiner, who sees only the set of files
installed and the modularity of the main() loop.

The most visible features are this high-level view
of the code, the ease of installation and compilation,
and the presence and quality of documentation (partic-
ularly the subset used to assist the initial installation).
It is easy to find the set of mandatory requirements
and dependencies of each package in the chosen

configuration, but impossible to tell what additional
requirements other configurations might impose.

In addition, any extra features which are offered
to the user or provided in the software’s back end are
very visible. If such features appear to be security
risks, their effect on the examiner’s opinion of the
code may be disproportionate to their effect on the
actual code security. In this particular case, my views
on the codebases were strongly affected by the defen-
sive attitude towards security concerns taken by the
UW-IMAP documentation, and by the presence of
strange features in the Courier-IMAP codebase.

Based on manual software observation alone,
Cyrus appeared likely to be the most secure and UW
likely to be the least secure of the three packages.

Entry/Exit Point Analysis

In this section of the paper, I return to the formal
definition of attack surfaces, and describe steps taken
towards a methodical measurement of the attack sur-
faces of my testbed IMAP servers. I report on the par-
tial results obtained from my analysis, and discuss
how the results compare to those derived by manual
examination. This comparison is useful both because
of what it says about IMAP servers per se, and
because, in order to use entry/exit point analysis to
measure attack surfaces, we need to ensure that the
results obtained from that analysis are meaningful.

In addition, my analysis is also interesting in
terms of the obstacles to automated measurement
which I encountered. The problems encountered in
this analysis, some technical and some related to the
analysis methodology, need to be solved in order to
meaningfully automate the measurement of the attack
surface of a given codebase.

Entry/Exit Background

The entry/exit methodology endeavors to provide
two major developments in the measurement of attack
surfaces. The first is the ability to automate the dis-
covery of attack surface elements. The second is the
ability to numerically compare the attack surfaces of
different codebases.

Automated Discovery of Attack Surface Elements

Entry/exit analysis utilizes the following simple
insight into attack surface measurement: In order to
launch an attack on a system, an attacker must either
transmit data into the system or receive data from the
system [13].

Suppose we want to look at a codebase and, at
the code level, find all the places which might be part
of the attack surface. Any place in the code which is
part of the attack surface must contain a call which
receives data from or transmits data to the outside of
the system. Therefore, if we find all such points, then
we have found all positions on the attack surface, and
we need only verify that each such point is actually an

19th Large Installation System Administration Conference (LISA ’05) 15

Toward an Automated Vulnerability Comparison of Open Source IMAP Servers Golubitsky

attack surface element, and classify each one into an
attack class (a set of attack surface elements which
pose the same level of risk to the system).

This opens the door for automated attack surface
measurement, since it should be possible to find entry
and exit points in a manner which is at least somewhat
automated.

Numerical Comparison of Attack Surfaces

One major difficulty with the attack surfaces dis-
covered by a more ad hoc analysis is that they cannot
be compared to one another, because there is no clear
way to numerically order the features measured. How-
ever, if we use entry and exit points to find positions
within the code at which attack surface elements
occur, our task becomes easier.

Suppose that, for each position in the code, we
can determine what access rights are needed to run
that code, and what privileges the running code has.
Then, we have a one-dimensional set of access rights
which are directly comparable, and a similar set of
privileges. Moreover, the relative ordering we should
use on these elements is clear: it is more difficult to
gain administrator access than it is to gain user access,
and it is more difficult to gain user access than it is to
gain unauthenticated access. Similarly, root is more
powerful than an imapd system user, which is more
powerful than a normal user, which is more powerful
than a service account.

We can then assign to privilege and access levels
numerical values which are consistent with this order-
ing. Given these, we compute the attackability of a
given attack surface item by observing that higher priv-
ilege items are more desirable targets (more attackable),
and that higher access-right items are more difficult to
target (less attackable). If we have defined functions

p : {privileges} → ℜ
and

ac : {access_rights} → ℜ ,
and if a given item has privilege Q and access rights
B, then we can define the attackability of that item as

attackability =
p(Q)

ac(B)
.5

Therefore, if we have two different items with compa-
rable privilege and access levels, we can numerically
compare them in terms of attackability, and we can
sum over all the attackabilities in a given codebase’s
attack surface, and compare the sum to that of another
codebase.

However, we cannot actually measure attackability
as a one-dimensional quantity. This is because the attack
surface, as noted in the introductory sections, consists of
three different types of elements – methods, data, and
channels – and there is no straightforward way to

5This definition is arbitrary, and is chosen because it is a
simple function which varies directly with privilege and in-
versely with access rights.

correlate elements of these three types. Therefore,
entry/exit analysis should ideally yield a three-dimen-
sional vector describing the system attackability, data
attackability, and channel attackability of a codebase.

Methodology for Entry/Exit Point Measurement
In this section, I discuss both the methodology I

used for the successful measurement of method entry
and exit points in the IMAP codebases, and my efforts
to measure data and channel entry and exit points.

Measuring Data and Channels
The insight in measurement of data and channels

is that, because of the way UNIX is designed, a process
cannot read or write to a channel or persistent data
object without making either a system call or a call to
an external library which makes that system call itself.

Of course, we do not know the identities of all
those external system or library calls. However, they
are easy to find: a binary examination tool such as nm
[8] will find the list of symbols which are referenced
by a piece of compiled code. Then, a source code
examination tool such as ctags [6] will give us a list of
symbols actually defined within the code. Any sym-
bols which show up in the nm output but not in the
ctags output must be externally defined.

Once discovered, these external methods must be
examined manually to determine whether they access
data or channels, and what manner of access they per-
form (read, write, create, delete). However, in my
experience, there were only about 150-200 unique
external methods per codebase. Even better, these
methods are provided by external libraries or by the
operating system, rather than by the examined code-
bases. Therefore we can expect them to behave identi-
cally across codebases. Once the behavior of fopen()
has been classified on a given operating system for one
codebase, that classification can be used without modi-
fication for any other codebase running on that operat-
ing system. I was able to classify the calls made by my
sample codebases, and to obtain a list of internal meth-
ods which made calls to external data and/or channels.

From there, the task became more difficult. The
UW-IMAP codebase contained 896 instances in which
an internal function made an external call involving
data or channel access. That number might correspond
to even more actual references. (For instance, a modu-
lar codebase might define an internal function whose
job was to open a file and read from it. That function
might be referenced from multiple different places in
the code, each time with a different filename.) A very
good code analyser might be able to find internal
object names, leaving us with statements of the form
‘‘routine X read from the file whose name is stored in
the variable foo at line 796.’’ However, I did not have
access to a code analyser of that quality, and, even so,
this tells us nothing about which entities outside of the
given codebase require permission to read or write the
file, nor about whether the codebase’s installation

16 19th Large Installation System Administration Conference (LISA ’05)

Golubitsky Toward an Automated Vulnerability Comparison of Open Source IMAP Servers

procedure faithfully adheres to the strictest permis-
sions possible rather than negligently substituting
more relaxed permissions than needed.

We can instead work from the other end, and use
software observation in a jailed environment to obtain
the full list of files that each codebase requires in
order to operate. However, this tells us only about the
files required by the specific configuration used in the
example jail, rather than the full set of files which
might be required or used by the software.

Thus, using entry and exit points to count data and
channel attack surface elements is not yet a solved problem.
Measuring Methods

This problem is more tractable. We would like to
measure the set of all internal code which is runnable
by an attacker. Provisionally, we measure code at the
function level. First, we look at code which the
attacker can call directly. Each of the three IMAP dae-
mons uses a function with a name like main() to
receive all input from the remote user, meaning that
each daemon provides one reachable function. This is
not very interesting.

Therefore, we can extend our analysis by looking at
functions which are themselves called by those directly
reachable functions, and are thus indirectly reachable by
the attacker. We obtain these function names using a pro-
gram flow analysis tool. In the case of IMAP analysis, I
used a tool called cflow [7]. Display 1 shows some sam-
ple cflow output from the UW-IMAP case.

1 main {src/imapd/imapd.c 253}
2 strrchr {}
3 mail_parameters {src/c-client/mail.c 297}
4 fatal {}
5 env_parameters {src/osdep/unix/env_unix.c 150}
6 fs_give {src/osdep/unix/fs_unix.c 57}
7 ... mail_parameters ... {3}
8 free {}

Display 1: Partial cflow output from UW-IMAP codebase.

This gave several hundred lines of output per
codebase, the name of every function reachable from
the main() function. In order to count each method in
the attack surface, I needed to find out what access
rights it had, and with what privilege it ran. Some
manual preparation was needed in order to obtain that
information from the codebase.

On a UNIX system, the privilege with which the
code runs is the privilege with which it started, unless
a system call has occurred which changes privilege,
such as setuid(). If a program starts running as root and
later drops privilege, then any functions called before
the setuid() call are called as root, and any functions
called after setuid() are called as an unprivileged user.

It is slightly more difficult to determine the
access needed to reach a certain element of the code,
because it is necessary to find each code location at
which authentication is performed. For instance, a call
which compared the password provided by the user to
one retrieved from a local file would constitute a

change of authentication state – before that compari-
son, a user is unauthenticated, but after the compari-
son is successful, he is authenticated.

However the access is determined, once we know
where the access and privilege changes occur, we can
edit the directly reachable routine, creating a copy for
each access and privilege pair which contains only those
calls reachable from that level. Here is an example from
my edit of the Cyrus codebase. Display 2 shows the
original code fragment, from the part of the main loop
which handles the AUTHENTICATE command.

In Cyrus, the variable imapd_userid is always set upon
successful authentication, and at no other time. I edited the
code fragment shown in Display 3 with that in mind, retain-
ing only the code accessible to an unauthenticated user.

Note that I needed to verify that it is possible for
authenticate_command() to return to the main loop upon
failure. If authenticate_command() instead killed the
process, or jumped to another segment of code, then I
would have considered the call to snmp_increment() to
also be unreachable by an unauthenticated user, and
would have deleted it as well.

Once the edited copy had been made, I could then
rerun cflow and obtain a subset of the original code ele-
ments, the subset reachable by the unauthenticated user.
I then repeated this process for the Cyrus authenticated
user, for the anonymous user, and for the administrative
user, and for all combinations of access and privilege in
each of the UW-IMAP and Courier codebases.

Obstacles to Entry/Exit Point Measurement

In the process of counting reachable methods, I
encountered a number of obstacles, some technologi-
cal, some integral to the enumeration process. I men-
tion both types of difficulties, since technological
problems might be solved by better tools, but, if those
tools do not exist, the process of writing them offsets
the time gains of automation.

Determining Whether Data Has Been Transmitted

In principle, we are not concerned with all func-
tions reachable from the direct entry point, but only
with functions through which the attacker can transmit
the data required by his attack. How do we measure
the subset of functions which actually allow the
attacker to transmit data?

Clearly, if an attacker can input arbitrary data
which is immediately read into an internal buffer
belonging to the function, he has transmitted data into

19th Large Installation System Administration Conference (LISA ’05) 17

To w a r d an Automated Vulnerability Comparison of Open Source IMAP Servers Golubitsky

the function. However, consider a more restrictive case,
in which, for instance, the input must have a certain for-
mat, such as being a valid SSL key, but is otherwise
chosen by the attacker. Then consider the case in which
the attacker can only insert a single integer value, such
as a return code. Consider the case in which the
attacker ’s return code is ignored by the calling function.

...
if (imapd_userid) {
protocol_printf(imapd_out,
"%s BAD Already authenticated==>[ignored: r]<====>[ignored: n]<==", tag.s);

continue;
}
authenticate_command(tag.s, arg1.s, haveinitresp ? arg2.s : NULL);
snmp_increment(AUTHENTICATE_COUNT, 1);

} else if (!imapd_userid) goto nologin;
else if (!strcmp(command.s, "Append")) {
if (c != ’ ’) goto argsmissing;
...

Display 2: Original Cyrus-IMAP authentication code fragment.6

...
if (imapd_userid) {

}
authenticate_command(tag.s, arg1.s, haveinitresp ? arg2.s : NULL);
snmp_increment(AUTHENTICATE_COUNT, 1);

} else if (!imapd_userid) goto nologin;
...

Display 3: Modified Cyrus-IMAP code: subset of code accessible to an unauthenticated user.

static int md5try = 3;

char *auth_md5_server (authresponse_t responder,int argc, char *argv[])
{
char *ret = NIL;
...
u = (md5try && strcmp (hash,hmac_md5 (chal,cl,p,pl))) ? NIL : user;
...
if (u && authserver_login (u,authuser,argc,argv))
ret = myusername ();

else if (md5try) --md5try;
...
if (!ret) sleep (3); /* slow down possible cracker */
return ret;

}

Display 4: Vulnerable CRAM-MD5 function in UW imap-2004a.

My conclusion was that the safest route is to
count every called function, regardless of the syntax or
content of the call. Display 4 shows an example which
supports that conclusion. It is taken from the UW
imap-2004a codebase7 which was reported to be vul-
nerable in early 2005 [10] (all code irrelevant to the
attack has been excised for clarity).

The problem here is caused by the logic used to
set the variable u – the check done on md5try is

6Cyrus-IMAP is copyright 1994-2000 Carnegie Mellon
University. Some function and variable names have been
modified at the request of CMU.

7UW-IMAP is copyright 1988-2004 University of Wash-
ington.

backwards, so that, if md5try is 0 (if the attacker has
tried to authenticate too many times using CRAM-
MD5), the call automatically succeeds where it should
automatically fail. The attacker does not need to send
any particular exploit data in order to break into this
system. All he needs to do is to attempt CRAM-MD5
authentication unsuccessfully three times, and then he
will be authenticated on the fourth try.

In that light, it seems very reasonable to claim that
causing a line of code to be run is sufficient, from an
entry/exit point perspective, to transmit data into that code.
Undercounts and Overcounts

In order to automatically enumerate reachable
methods, it is necessary to have an accurate method of
detecting code execution paths. There are many tools
which profess to do this, but, in practice, there are
problems which lead to undercounts or overcounts.

First, in order to avoid undercounts, it is neces-
sary to have a program which parses the code accu-
rately. I used cflow for my final analysis because it
employs gcc -E, and therefore works quite well.

18 19th Large Installation System Administration Conference (LISA ’05)

Golubitsky Toward an Automated Vulnerability Comparison of Open Source IMAP Servers

However, cflow ignores function arguments and pro-
gram logic, which one might prefer to take into
account.

For instance, in the following example, method_c
is not actually reachable from method_a, but cflow
would claim it was:

method_a() {
method_b(DONT_USE_X);

}

method_b(int flag) {
if (flag != DONT_USE_X) {

method_c();
}

}

Other tools which perform some of these func-
tions include doxygen [5], which parses function argu-
ments in a relatively usable fashion, but has a poor
understanding of C syntax and does not deal with
logic, and cqual [3], which is intended to handle both
function arguments and program logic, but is difficult
to work with and possibly buggy in practice.

A major source of undercounts in the IMAP case
is caused by function pointers – variables which store
the names of functions. At the point of execution, the
function is referenced only by the name of the vari-
able, so there is no reliable way to tell what actual
function is being executed. All three IMAP codebases
make use of function pointers, and no tool I found was
capable of parsing them.
Classifying Multiply-Accessed Methods

Once the codebase has been divided by privilege
and access levels, many functions are identified which
are accessible by code running at different levels. This
code may belong to internal or external helper rou-
tines, or it may be authentication-relevant code which
has inadvertently been left too open. In order to clas-
sify the code, I needed to generate a strategy for han-
dling such functions.

One strategy would be to count each function
twice, once per privilege/access pair from which it
was accessible. However, this seemed to overcount in
the case of, for instance, an administrative user and a
normal user who could both access normal user code.

Another approach would be to count only the
worse of the two levels, i.e., if the function was acces-
sible to either an unauthenticated user or to an authen-
ticated user, count it as unauthenticated. However, this
would probably provide an undercount, because an
authenticated user might be able to reach more of the
functionality of a routine than an unauthenticated user.
If there are two attack paths related to a given func-
tion, both should be counted.

I compromised by creating new privilege and
access levels to reflect multiply-accessible code. For
instance, if root and user are privilege levels, then
root+user would be the privilege level for code which
could be reached at either of those levels. In the IMAP

codebases, the appropriate total orderings of privilege and
access levels were clear even with the additional levels.
Results of Entry/Exit Point Measurement

For each codebase, I identified the function
responsible for receiving network connections from
remote users, and broke down the codebase by privi-
lege and access levels as previously described. For the
UW and Cyrus codebases, this was a simple matter of
finding the single input-handling function.

The Courier codebase was somewhat more com-
plex. In that case, the program couriertcpd receives and
processes an incoming network connection, does some
checking, and then hands the connection off to imaplogin,
which processes authentication routines. If imaplogin
reports success, then an imapd process is spawned.
Therefore, in order to find all the routines which could
run at each privilege and each access level in the Courier
case, I needed to analyse all three of these programs.

I also performed an analysis of Courier in which I
omitted the couriertcpd code, which all runs as root and
is accessible to unauthenticated users. Since the Courier
and Cyrus codebases include network listeners in their
codebases, while UW relies on inetd to provide network
connectivity, I was interested in gauging the amount of
code required to listen for network connections.

0

100

200

300

400

500

600

700

800

900

Full code Runs as
root

Accessible
by any

UW

Cyrus

Courier

Courier w/o tcp

Figure 2: Number of reachable methods in each
codebase: (a) full codebase, (b) code which runs
as root, (c) code accessible at any access level.

Method Counts By Codebase
Figure 2 shows a representative subset of break-

downs of method counts among the codebases. The
left graph shows the total number of methods reach-
able in each codebase. The middle graph shows the
number of methods reachable by code which is run-
ning as root. (Note that Cyrus has no reachable code
which runs as root.) The right graph shows the number
of methods which are open to all access levels defined
for the codebase. That is, in the UW case, this graphs
functions which are reachable by an unauthenticated
user, by an anonymous user, and by an authenticated
user. In the Cyrus case, this graphs functions which
the unauthenticated, anonymous, authenticated, and
administrative users can all reach. In the Courier case,
this graphs functions which the unauthenticated and
authenticated users can both reach.

19th Large Installation System Administration Conference (LISA ’05) 19

Toward an Automated Vulnerability Comparison of Open Source IMAP Servers Golubitsky

Total Orderings for Privilege and Access Rights
Once I had counted all reachable code methods, I

needed to populate the total orderings for the privi-
leges and access rights. All types in each ordering
needed to be assigned numerical values, so that the
attackability of each attack class, and thus of the entire
system attack surface, could be computed.

Access Rights Points

admin 8
auth 4
anon 1.5
auth + anon 1.45
admin + auth + anon 1.4
unauth 1
admin + unauth 0.95
auth + unauth 0.9
admin + anon + unauth 0.85
auth + anon + unauth 0.8
admin + auth + anon + unauth 0.75

Table 1: Attackability ordering for method access
rights (higher value is harder to attack).

Privilege Points

service 2
user 3
user + service 4
imapd 7
root 10
root + user 13
root + user + service 14

Table 2: Attackability ordering for method privileges
(higher value is more valuable target).

Table 1 contains the ordering I derived for access
rights, and Table 2 contains the ordering for privi-
leges. Note that the ordering results naturally from
known information about security of UNIX servers
and the IMAP domain, but that the specific numerical
values chosen are arbitrary.
System Attackability of IMAP Servers

Table 3 shows the system attackability of each
IMAP server given these values and the reachable
methods determined by the automated method. This
table shows that, according to the attackability metric
used here, Courier is the least vulnerable of the
servers, while UW and Cyrus score similarly. The
results also indicate that much of Courier’s vulnerabil-
ity is caused by its network listening code. This
implies that Cyrus, which also contains network lis-
tening code, might be less vulnerable than UW were
the functionality provided to be taken into account.

However, Figure 3 is worth noting. It demonstrates
that the attackability metric is somewhat dependent on the

exact numbers of points chosen for various privileges and
access rights, even if the total ordering is held constant.
By default, I assigned seven points to the special imapd
user employed by Cyrus. However, a site which was
most conscious of the need to avoid root compromise on
their machines could assign imapd five points, close to
the value for an unprivileged user, and would find that
Cyrus significantly outperformed UW in attackability. A
site with a different posture could note that any attack on
the imapd user risked opening up all users’ e-mail, and
therefore was almost as bad as a root compromise. If this
site assigned nine points to imapd, Cyrus would suddenly
appear radically more attackable than UW.

Codebase
System

Attackability

UW-IMAP 5044
Cyrus 5217
Courier 3122
Courier w/o tcp 1813

Table 3: System attackability of IMAP servers.

0

1000

2000

3000

4000

5000

6000

7000

8000

imapd = 5
points

imapd = 9
points

no anon
access

UW

Cyrus

Courier

Courier w/o tcp

Figure 3: System Attackability of IMAP servers, with
(a) imapd user worth 5 points, (b) imapd user
worth 9 points, (c) imapd user worth 7 points and
no anonymous access.

This tradeoff between protecting root and protect-
ing user mail from other users is symptomatic of an
obvious security consideration which arises when trying
to decide whether to use Cyrus or a more convention-
ally-designed IMAP server. This example is included to
demonstrate that the attackability metric does not protect
us from having to make that judgment call.

In general, however, the attackability metric seems
to agree reasonably well with observation. Despite the
large size of the Cyrus codebase, its attackability is sim-
ilar to that of UW-IMAP, indicating that Cyrus has good
privilege separation while UW-IMAP does not. Indeed,
the major effect of this metric as applied is to reward
code with good privilege separation, which is a reason-
able goal, though only one of many.

The couriertcpd example demonstrates that it is
difficult to compare systems which perform different

20 19th Large Installation System Administration Conference (LISA ’05)

Golubitsky Toward an Automated Vulnerability Comparison of Open Source IMAP Servers

functions, and that even between systems which are
very similar in functionality, one system may provide
many more of its own dependencies. In the process of
measuring attackability, it is necessary to consider the
external systems on which each codebase depends.

Conclusions

In this section, I discuss the feasibility of per-
forming an automated entry/exit analysis as a means
of comparing software security. I also discuss future
work needed to determine whether entry/exit analysis
of attack surfaces will be practical, and whether it will
be useful. I close with a few words about the security
of the specific IMAP servers I studied.

Feasibility of Entry/Exit Analysis

One important point is that it is difficult to ensure
that any analysis is comprehensive. In the particular case
of this analysis, I looked at only the code available via the
network API, and did not examine the code added by
periodic cleanup processes, LMTP, etc. I also did not look
at the authentication daemons provided by Cyrus and
Courier as part of the authentication facility. IMAP com-
municates with those via socket, so they would have sur-
faced had I done a channel analysis. It is still necessary to
manually examine the code’s functionality in some detail
in order to find starting points for automated analysis.

In addition, entry/exit analysis is not trivial to
perform. Approximately four to eight hours of labor
was required to prepare each codebase for analysis by
cflow, and that took into account significant familiar-
ity with the code in question. The most time-consum-
ing aspect is dividing the code based on privilege and
access levels, but some time is also required to find
the correct internal function definitions within a com-
plex codebase, given that cflow and related tools can-
not read Makefiles.

The division of the code is not entirely automatable
work – some judgment calls are required in order to
determine, for instance, at exactly what point authentica-
tion takes place. In theory, the Courier approach, in which
a different physical piece of software handles execution at
each privilege and access level, should make things eas-
ier. In practice, there are thorny issues even in that imple-
mentation, since authentication, setuid(), and exec() of the
other daemon do not all take place simultaneously, nor
even necessarily within the same function as one another.

In addition to all this, I did not attempt the data or
channel enumerations, which would be more complex
and difficult. In those cases, it might be complicated to
even determine the total ordering among access rights –
is a channel which can restrict by IP addresses higher or
lower risk than a channel which implements anti-DoS
protection?

However, entry/exit analysis holds the promise
of giving usable information which speaks meaning-
fully about the internal security posture of a codebase,

and which is derived from less work than that required
for a comprehensive manual analysis.

Future Work
Measurement of system attack surfaces could be

improved by viewing the code at a level other than the
function level, i.e., by looking inside functions and
giving more weight to larger or more complex ones in
analysis. This would be aided by the use of better tools
which could trace the flow of execution through the
code more accurately. It would also be useful to take
into account which functions were actually compiled
into the code in use, perhaps by comparing the full
reachable code tree with symbol analysis of the result-
ing binary, or by replacing cflow with some tool which
actually could read Makefiles.

Performing a data and channel analysis of entry
and exit points would also provide a significant amount
of information about the practicality of using entry/exit
analysis to obtain a full picture of the system.

In addition, the problem of comparing codebases
which perform the same overall function, but not the
same subsets of that function, will need to be solved.
For instance, if it were possible to determine what sub-
set of the Cyrus and Courier codebases was dedicated
to providing port listener functionality, then administra-
tors could compare an analysis of inetd to just those
subsets, and thereby determine whether the Cyrus and
Courier implementations of that functionality were
more or less risky than a third-party implementation.

Comparison of IMAP Server Software
I will finish with some brief words about the rel-

ative security of IMAP servers as a result of this anal-
ysis. My subjective impression that the Cyrus and
Courier codebases are better designed than the UW
codebase was corroborated by the entry/exit analysis
results. In particular, the lack of internal privilege sep-
aration in UW-IMAP indicated that that codebase is
not designed in a security-conscious way. In compar-
ing Cyrus and Courier, I determine that Cyrus is better
built, but overreaches significantly in terms of the
number and diversity of features it offers, while
Courier is designed in a very security-conscious man-
ner, but implemented somewhat more strangely. My
conclusion is that despite the administrative headaches
it introduces, Courier is likely to be the best security
risk when choosing one of these three products to act
as an open source IMAP server.

Acknowledgements

I would like to thank Jeannette Wing and Dawn
Song for enabling me to do this project, introducing
me to the attack surfaces framework, and giving me
advice and assistance along the way. I would also like
to thank Pratyusa Manadhata for all his help with
attack surfaces and entry/exit points, and Rob Siem-
borski for his explanations and corrections on the sub-
ject of IMAP implementations.

19th Large Installation System Administration Conference (LISA ’05) 21

Toward an Automated Vulnerability Comparison of Open Source IMAP Servers Golubitsky

Availability

Because much of my entry/exit analysis was per-
formed manually, there is no distributable software
associated with this project. The project page at http://
www.glassonion.org/projects/imap-attack/ contains a more
detailed description of the methodology, along with
scripts I used, and the detailed output of the analysis.

Author Information

Chaos Golubitsky first worked in system admin-
istration while an undergraduate at Swarthmore Col-
lege. After earning a B.A. in Mathematics and Com-
puter Science, she worked at the Harvard-Smithsonian
Center for Astrophysics for three years, where she
became interested in log monitoring. She returned to
school for an M.S. in Information Security from
Carnegie Mellon University, where she focused on
practical analysis and improvement of system and
software security.

References

[1] Common Vulnerabilities and Exposures Data-
base, http://www.cve.mitre.org .

[2] Courier-IMAP, http://www.courier-mta.org/imap/ .
[3] Cqual, http://www.cs.umd.edu/˜jfoster/cqual/ .
[4] Cyrus IMAP Server, http://asg.web.cmu.edu/cyrus/ .
[5] Doxygen, http://www.stack.nl/˜dimitri/doxygen/ .
[6] Exuberant Ctags, http://ctags.sourceforge.net/ .
[7] FreeBSD Ports: cflow, http://www.freebsd.org/cgi/

url.cgi?ports/devel/cflow/pkg-descr .
[8] GNU Binutils, http://www.gnu.org/software/binutils/ .
[9] University of Washington IMAP, http://www.

washington.edu/imap/ .
[10] ‘‘UW-imapd fails to properly authenticate users

when using CRAM-MD5,’’ Vulnerability Note
VU#702777, US-CERT, http://www.kb.cert.org/
vuls/id/702777 , January, 2005.

[11] Howard, M., J. Pincus, and J. M. Wing, ‘‘Mea-
suring Relative Attack Surfaces,’’ Proceedings of
Workshop on Advanced Developments in Soft-
ware and Systems Security, August, 2003.

[12] Kamp, P.-H. and R. N. Watson, Jails: Confining
the Omnipotent Root, Technical report, FreeBSD
Project, http://docs.freebsd.org/44doc/papers/jail/
jail.html .

[13] Manadhata, P., ‘‘Entry Points and Exit Points,’’
Personal communication, 2005.

[14] Manadhata, P. and J. M. Wing, Measuring a Sys-
tem’s Attack Surface, CMU-CS 04-102, Carnegie
Mellon University, January, 2004.

[15] Mullet, D. and K. Mullet, Managing IMAP,
O’Reilly Media, Inc., 2000.

22 19th Large Installation System Administration Conference (LISA ’05)

