
About the Integration of Mac OS X
Devices into a Centrally Managed

UNIX Environment
Anton Schultschik – ETH, Zurich, Switzerland

ABSTRACT

The UNIX flavors in use today have so much in common that centralized management of
UNIX systems has become almost standard. Since Mac OS X is based on BSD-UNIX it is a
promising candidate for integration into a centrally managed UNIX environment.

Starting from generic administration concepts, this paper develops an integrated management
concept that handles fully automated installation and configuration of hosts. The concept includes
a centralized application management system for console and graphical Mac OS X applications.

The management concept is then implemented based exclusively on standard UNIX tools.
The necessary extensions of these tools to make Mac OS X conform to UNIX standards are
presented, including a proxy tool to forward AppleEvents which facilitate the interprocess
communication for centrally managed graphical Mac OS X applications.

Introduction

The increasing diversity of hardware and soft-
ware makes system management more difficult.
Shorter life-cycles of computer systems require more
frequent upgrades or replacement of hardware and as a
consequence, the installed computers on a large site
rarely are uniform in hardware but rather split into sev-
eral uniform clusters. Automated management of such
an environment is challenging as complexity grows
with each new configuration of hardware and software.

Figure 1: Structure of the Mac OS X operating sys-
tem (from [2]).

Through integrated management of the clusters
common tools and common configuration information
can be reused across the clusters thus reducing the amount
of information required to fully understand the entire site.
Wi t h Mac OS X being a member of the UNIX family
integrated management of Mac OS X in a UNIX environ-
ment comes within reach. In this paper, design,

implementation and deployment of such a system will be
layed out built on some basic principles. The result will
be a management system for UNIX systems that can be
used to manage network-based as well as stand-alone sys-
tems.

In system management three basic principles
keep appearing in tools and methods [1], and these
shall be used as orientation for our integrated manage-
ment system:

• Reproducibility ensures that the same action
produces identical results. Automation, a way
to implement reproducibility, helps to exclude
human error in repetitive tasks.

• Comprehensibility of all actions is necessary for
the administrator especially when troubleshoot-
ing or modifying the configuration.

• Avoidance of Redundancy helps to keep data
consistent and thus easier to manage.

Mac OS X is UNIX Plus . . .
Mac OS X unites the strengths in UI and applica-

tion design of previous Macintosh operating systems
with the stability and flexibility of a modern UNIX
platform. Integrating Mac OS X into a general UNIX
environment requires a closer look at the operating
system since not all parts in Mac OS X have their ori-
gin in the UNIX world:

• Darwin: Darwin is based on Free-BSD includ-
ing the standard UNIX network clients and
servers as well as the usual user space utilities.
The appearance of some daemons and configu-
ration files have been modified to match with
the rest of Mac OS X.

• Quartz, OpenGL, QuickTime: Instead of
relying on the UNIX X11 standard, Apple

19th Large Installation System Administration Conference (LISA ’05) 63



About the Integration of Mac OS X Devices into a Centrally Managed UNIX Environment Schultschik

decided to build an alternative graphic system.
• Classic: The Classic environment provides

emulation support for native pre-OSX applica-
tions. These applications only work with
Apple’s HFS/HFS+ filesystem.

• Carbon: The Carbon library framework pro-
vides compatibility to pre-OSX system calls at
source code level. Carbonized applications also
run on non-HFS filesystems through Carbon’s
HFS emulation although with reduced stability.

• Cocoa: Providing an entire new standard for
application development, Cocoa is based on
modern, UNIX compatible technologies like
XML and Java.

• Aqua: The top layer of Figure 1 represents the
graphical user interface on which the different
GUI applications run.
Looking at the entire operating system, the Dar-

win roots as well as modern Cocoa-based applications
are fully compatible with the rest of the UNIX world
even though Apple did not use the X11 standards in
their graphics system. Thus the key challenge in man-
aging a Mac OS X system as a UNIX is the handling
of legacy applications and their specialties.

Review of Available Tools

Several system management tools are available
under Mac OS X that focus on three different manage-
ment areas:

• Installation of the operating system
• Configuration of operating system and appli-

cations
• Software distribution or installation onto an

installed host
The management tools need to be applicable on classic
UNIX flavors while supporting the Mac OS X specific
extensions, e.g., legacy application support. Several
candidate tools were considered, and their strengths and
weaknesses will be discussed in the following sections.
Installation Tools

Several strategies can be chosen to install an
operating system onto a target host. Network-based
installation allows access to centralized services and is
logistically efficient. Therefore only network-based
installer methods are considered in the choice of tools.
NetInstall

Apple provides a native mechanism [3] to install
multiple client machines based on the installation of
packages (.pkg bundles [4]). The target host of an
installation is net-booted from a modified disk image
that will start an installer system. The installer then
installs packages supplied on the booted image.

The package-based approach of NetInstall yields
reproducible and certainly comprehensible results since
all changes on the installed system have their source in
one of the installed packages. As the installer image can
only contain a single configuration several NetInstall

images are required when managing multiple host con-
figurations. Consequently, each image would redun-
dantly contain commonly installed packages making
the management of NetInstall a difficult task in a het-
erogeneous environment.
Net-Restore

Mike Bombich’s NetRestore [5] is a suite of GUI
tools that are based on ASR, Apple’s image manage-
ment tool [6]. An installation is started by net-booting
a target host into the NetRestore installer in which the
administrator selects the image to be restored to the
local disk. The individual images are supplied through
a network share along with post-installation scripts for
the individual configuration of the installed host.

Since the restored system is identical with the
source image the installation itself clearly is repro-
ducible. However creation and maintenance of the
source image is done by hand and the final system can
not be comprehensible as a whole. An administrator nei-
ther explicitly sees why a system is in the current state
nor completely understands the consequences of each
manual step during assembly. As with NetInstall in the
previous section the management of several configura-
tions implies the use of multiple disk images introducing
redundancy between the manually maintained images.
Sun Solaris Jumpstart

Network based installation is done by net-boot-
ing an installation target into the Sun Solaris Jumpstart
[7] system. Once booted Jumpstart uses DHCP and
DNS to determine the correct configuration list of
packages and appropriate pre/post-processing scripts.

The Jumpstart configuration concept is simple
and yet capable of comprehensibly handling individual
configurations. Its design for completely unattended
installation makes the Jumpstart system reproducible.
Configuration Tools

To reproducibly maintain the configuration of
systems, especially in a heterogeneous environment,
automated tools are essential. However to provide the
necessary comprehensibility, configuration information
consisting of a large number of modifications for a tar-
get system must be structured into modules. By postu-
lating module integrity, i.e., that no module destroys
the modifications of another, reuse of modules becomes
possible, thus controlling unwanted redundancy. The
following three tools fulfill this basic requirement.
Cfengine

One of the best known tools comes from Mark
Burgess of Oslo University College. Cfengine [8] is a
highly flexible scripting system that deducts its configu-
ration based on the context of a managed host. Cfengine
supports various UNIX flavors including Mac OS X
and is equipped with its own file sharing mechanism.

Provided that Cfengine is run in the same con-
text, reproducible results can be expected, and modu-
larization is provided through the classes construct.

64 19th Large Installation System Administration Conference (LISA ’05)



Schultschik About the Integration of Mac OS X Devices into a Centrally Managed UNIX Environment

However, since Cfengine does not enforce integrity of
actions or classes, configuration scripts can easily
exceed the state of comprehensibility.
Radmind

Radmind [9] is available on various UNIX
dialects including Mac OS X. Designed for ease of
use, Radmind implements a capture and replay strat-
egy resulting in a tree of dependent load sets consist-
ing of files modified during a capture session.

The capture and replay processes alone are com-
prehensible and reproducible. However the dependen-
cies between load sets restrict the replay of features
between different lines of history. As these restrictions
are not managed by Radmind the replay of an unsuit-
able load set impairs the reproducibility of functional-
ity and the comprehensibility of the configuration.
Template Tree 2

Template Tree 2(TeTre2) [10] is used for the
administration of UNIX clusters. The configuration of
a system is managed using simple file operations
structured into integrity-preserving modules. A subset
of Cfengine functionality is used to propagate the con-
figuration to a target system.

Although dependencies between features in a
TeTre2 configuration exist, these dependencies are
functional rather than historical. This allows features
to be recombined freely without impact on compre-
hensibility or reproducibility.
Software-Distribution Methods

When managing software, the integrity of appli-
cation packages and the operating system ensure that
all available applications are functioning. Knowing the
origin of each file in the system is the basis to main-
tain such integrity. Especially when software packages
are installed intrusively, i.e., by copying them into the
standard directory tree of a system, the tracking of file
origins becomes difficult and thus needs to be exam-
ined more closely.
Fink and the Debian Packaging System

Software built within the Fink Project [11] is
packaged in Debian packages, that are installed with a
well supported tool-suite. A database keeps track of
the origin of installed files by associating them with
their source package. An installer then relies on this
database to ensure the package integrity.

Software management using Debian packages is
thus reproducible and comprehensible. In a larger
environment where multiple versions of the same
package need to exist file collisions can only be
resolved through renaming or versioning, e.g., gcc-2.95
and gcc-3.3. As not all files are easily relocatable and
the resulting versioned structure always enforces ver-
sion dependencies, creation and administration of such
packages would be expensive.
Network-based Distribution Via SEPP

The SEPP-Packaging [12] system follows a dif-
ferent concept to distribute applications. Rather than

installing applications file by file into an existing
installation each SEPP-package encapsulates a ready-
to-use application within a separate directory. Once
this package directory has been copied or mounted
over NFS the packaged applications are made accessi-
ble to the user using stub scripts. By design SEPP sup-
ports the coexistence of multiple versions even when
dependencies on other SEPP-packages exist.

Through its structure a SEPP installation is com-
prehensible and yields reproducible results. In addition
the Mac OS X standard proposes a similar approach to
encapsulate the files of an application into a bundle
directory. Thus incorporating Mac OS X support into
SEPP is straight forward.

A System Management Concept for Mac OS X

Available Infrastructure
When implementing our Mac OS X management

concept, we relied on the existing infrastructure at our
site. This infrastructure consists of the provided net-
work services and the available tools. These two aspects
of the infrastructure are discussed in this section.
Available UNIX Network Services

Centralization of services is a common approach
to reduce redundancy of information. In the imple-
mentation of the integration concept the following ser-
vices were used:

• DHCP: Management of network configuration
and access control

• LDAP: Consistent user authentication and
group management

• NFSv3: Network-based user homes and appli-
cation packages

• SMB: External access to user homes

While all other services are only available using
a single protocol to prevent confusion, user homes can
be accessed using two different services: NFS and
SMB. NFS is used as default for reasons of speed and
flexibility. However the current implementation of
NFS requires a trusted network and accordingly SMB
is used for remote access from home or across
untrusted networks.
Chosen Tools

Several administration tools were introduced ear-
lier, each being particularly strong in one of the
administration areas. This information is now used to
determine the best suitable tools to implement an inte-
grated concept:

• Network Installation of Mac OS X: Jumpstart
is the best choice even though reimplementa-
tion is necessary because it runs fully automatic
and completely unattended.

• Configuring the System: The built-in limita-
tion of complexity as well as the support for
modularization make TeTre2 the preferred tool
for a structured approach to integration.

19th Large Installation System Administration Conference (LISA ’05) 65



About the Integration of Mac OS X Devices into a Centrally Managed UNIX Environment Schultschik

• Serving Applications: Because the SEPP
approach matches with the Mac OS X applica-
tion concept SEPP is an ideal choice even
though an extension for graphical applications
needs to be implemented.

In the next sections we first introduce each of the tools
in its original form followed by a description of the
changes necessary to make it work on Mac OS X.
Network Installation of Mac OS X Based On UNIX

Standard Protocols
Design of Solaris Jumpstart

Jumpstart is based on the standard UNIX ser-
vices BOOTP/DHCP, TFTP and NFS. Once it is net-
booted, it performs an unattended installation as
described in Figure 2.

The jumpstart system is net-booted on the target
host. Therefore the DNS name of the target host is
known to jumpstart at execution time and thus can be
used to access a configuration directory on an NFS
share with the name of the target host. This directory
contains the pre-/post-installation scripts and a list of
packages that shall be installed.

Net-Boot • Determine IP using DHCP or BOOTP
• Boot the installer system from TFTP, NFS
• Mount required NFS shares

Config-retrieval • Get host name from IP-number and DNS
• Override host name for specified Ethernet address
• Use hostname to retrieve config info from NFS

Pre-Install • Format/partition disks

OS/SW installation • Install required packages
• Update the system using softwareupdate

Post-Install • Configure the system (TeTre2)
• Transfer sensitive data
• Optional custom actions

Reboot • Start the installed system

Figure 2: Steps of a jumpstart installation (black) and the extensions for osxjumpstart (gray).

The Reimplementation of Jumpstart for Mac OS X
Our Mac OS X reimplementation of Solaris

Jumpstart provides the same basic functionality and
several useful extensions. Some of these extensions
are listed in gray color in Figure 2.

• DHCP: Although Darwin is compatible with
UNIX standards, the net-boot implementation
of Macintosh open-firmware is incompatible
with the normal DHCP protocol and tries to
start negotiations with the DHCP server. With a
patch found in [13] it was possible to net-boot
the installer using Linux and Sun Solaris.

• Override for hostname: One configuration file
in TeTre2 associates all host names with their
Ethernet MAC addresses. With the information
from this file osxjumpstart can set the correct
host name even when a host is booted of a tem-
porary IP address and choose a different host

name for the configuration. We use this feature
when installing portable Macs from a common
set of ‘‘install only’’ IP addresses.

• OS Installation: Since applications are sup-
plied using SEPP, only the operating system
and extensions, e.g., fonts, are installed via
osxjumpstart. The OS packages are provided in
their native .pkg bundle form [4, 14]. Additional
self-built packages are also provided in this for-
mat for consistency.

• Software Update: Using Apple’s softwareup-
date tool Mac OS X and installed packages are
brought up-to-date. Unfortunately softwareup-
date was designed to update an already running
system. Thus the tool is run in a chrooted envi-
ronment on the newly installed system without
requiring a reboot.

• Management of Sensitive Data: All sensitive
data, e.g., passwords, licenses, . . ., is stored in an
encrypted archive and the administrator is
required to enter the encryption key at the begin-
ning of the installation. In the post-install actions
sensitive data is then copied into the system.

Passwords for users in the netinfo database are
stored in separate files under /var/db/shadow/
hash. The hash files can be copied to the ar-
chive from any Mac OS X system with appro-
priately set passwords. The same strategy can
also be applied to the Auto-login password (/etc/
kcpassword) and the Open Firmware password
(nvram security-password and nvram security-mode).

Configuring the System
Design of Template Tree 2

Template Tree 2 (TeTre2) is a configuration man-
agement system that structures the configuration of an
entire site into modules – features in TeTre2 terminol-
ogy. The configuration of a host is defined as a set of
features whereas features consist of simple file opera-
tions. Figure 3 shows the structure of TeTre2. Basic
information like hardware type or Ethernet MAC

66 19th Large Installation System Administration Conference (LISA ’05)



Schultschik About the Integration of Mac OS X Devices into a Centrally Managed UNIX Environment

address of each host (the host.list file) on a site is sepa-
rated from the individual host configuration for all
managed hosts (file site.desc).

C a.txt /b.txt
D /tmp/tmp.txt
...

Features

Actions site.desc

host.list

Hosts

NAME IP ETHER

Figure 3: Structure of the TeTre2 Configuration: In
the host.list a hostname is associated with basic
configuration information like installed OS, Eth-
ernet Address or Network configuration that can
be used as text substitutes in configuration
actions. The site.desc file then selects the features
for a host. Finally each feature contains a file con-
taining a list of configuration actions that are
applied to a host if the associated feature has been
selected in site.desc.

Features encapsulate a certain functionality, e.g.,
install and activate a service, or behavior, e.g., power
management. The ability to enforce integrity allows
flexible combination between features and avoids
coincidental dependencies. Dependencies between
features are designed by the administrator. As a conse-
quence TeTre2 features obtain a semantic aspect in the
context of system administration.

Looking inside a feature one will find simple file
operations such as copying files, creating and remov-
ing directories and generating symlinks. The assembly
of files from chunks, simple text substitution and oper-
ating system dependent execution of file operations
provide more flexibility for the configuration work.
For the sake of comprehensibility TeTre2 never modi-
fies the content of files. Either the files are fully con-
trolled and consequently overwritten or the files are
outside the scope of TeTre2 and thus ignored. Files
with mixed content, e.g., that partially depend on
TeTre2 configuration are managed by custom scripts
running on the target system. For example allowing
users to add their own printers and still manage a
default set of printers through TeTre2 requires this
mixed form of control.
Overview Over the Mac OS X TeTre2 Features

The functionality of the TeTre2 tool itself was
sufficient to configure Mac OS X systems without
modification. However a multitude of new features
were required to control the diverse aspects of a Mac
OS X installation. Figure 4 gives an overview of the
implemented Mac OS X features. The categorization
of the features is not part of TeTre2 but was intro-
duced in the table for the benefit of the reader.

Basics: Automounter, Network
configuration, Netinfo builder

Admin tools: SSH public-key access, automatic
package installer

Services: Postfix, sshd,
Filemaker/Meetingmaker server

Clients: LDAP access, automount NFS
homes, SEPP

User specific: Default printers, custom
loginwindow dialog

Figure 4: Categories of TeTre2 features with examples.

Unless documentation is available, features are
created by identifying and verifying the differences
that occur when settings are modified through the Mac
OS X GUI. The concerned files are stored in the fea-
ture and copied during the configuration process. If
several features contribute to the content of a file,
chunk-wise assembly is the solution. However when
the content of a file depends on the current state of the
system, e.g., hardware, the files are generated through
scripts and the configuration for these scripts as well
as the installation of the scripts are handled with
TeTre2. Some of the features we added to TeTre2 for
Mac OS X support were:

• Package Installer Adapted from the correspond-
ing UNIX feature an automatic post-install .pkg
bundle installation is performed through a script.
The package installer is run at each system start
as StartupItem and is also run nightly by cron.
Packages missing on the local system get in-
stalled based on a configuration directory. Up-
grades of existing packages and required reboots
are handled, the latter is done through the reboot
command or by sending an AppleEvent to the
Finder when a user is logged in.

• Netinfo Database Builder Netinfo data is
stored in binary format making direct control
through TeTre2 impossible. As the Netinfo data-
base is required by Mac OS X for some applica-
tions parts of Netinfo are regenerated at each
start using the Netinfo Builder. Netinfo Builder
is a Perl script that compares the current state of
the Database with a desired state in the form of a
raw dump (the term raw might be imprecise
since the dump is ASCII but in a general for-
mat). Netinfo Builder only changes the differing
elements allowing a coexistence between man-
aged and individual settings.

Serving Mac OS X Applications from NFS
Design of SEPP for Command-line Applications

The design goal behind the SEPP [12] applica-
tion distribution system is the encapsulation of ready-
to-run application packages into individual directories.
As a consequence the application executables inside a
SEPP package need to be reconnected to the OS and
its user. SEPP is structured into two parts that are

19th Large Installation System Administration Conference (LISA ’05) 67



About the Integration of Mac OS X Devices into a Centrally Managed UNIX Environment Schultschik

separated physically in two directory trees as shown in
Figure 5. The application packages are located under
/usr/pack/. . .. Optional support for NFS automount is
built into SEPP allowing application packages to be
assembled from various sources.

... mypkg_a

start.pl

bin

sepp pack

cmd1 start.pl

cmd1

mypck_b

Finder

Shell

executable

App1.app

App1.app

macosx

Figure 5: Structure of the SEPP system: The original SEPP system designed for command-line applications is
shown in black and the extensions implemented to support Mac OS X GUI applications are shown in gray. The
boxes in the figure represent executables. Rounded boxes are used for the Perl stubs that a user will execute
directly while the cornered boxes stand for the real applications. The individual start.pl files found in every pack-
age provide customization for the application to be started. The dotted arrows show the chain of actions when
an application is launched.

. . ./Sample.app/
Contents/

Info.plist Contains filenames of executable and icons
MacOS/

the_executable Perl script replacing the real executable
Resources/

sample_icon1.icns Displayed in Finder
sample_icon2.icns
. . ..icns All other Icons referenced in Info.plist

Figure 6: Structure of a Mini application bundle used as application stub. Entry point is the Info.plist file in which all
other filenames of the bundle are found.

The /usr/sepp/ directory is used to manage the
applications on the local system making them available
through the /bin/. . . directory. Rather than symlinking
the executables from an application package, a Perl
script – a stub – stands for the real application binary.
Upon execution the Perl stub (in /usr/sepp/bin/) starts
the real executable inside the package triggering the
automount of the package containing the application.
More precisely the Perl stub starts a package specific
start script named start.pl (inside each /usr/pack/. . .)
which then can properly set everything up before start-
ing the application. The concentration of all adminis-
tration information into one directory (/usr/sepp/) makes
it possible to distribute this directory via NFS resulting
in an application system that is fully centralized.
SEPP for Mac OS X

SEPP supports Darwin and X11 applications on
Mac OS X in the unmodified form. In the case of
Cocoa or Carbon applications the basic structure of
Mac OS X applications [15] comes into play: Mac OS
X applications are packaged into a single, structured

.app bundle directory containing application data or
additional libraries required by the application. Usually
the files and directories within the bundle are addressed
by relative paths allowing an .app bundle to be moved
around on the system without re-installation.

Making the packaged applications available to the
Finder is more of a challenge. A closer look at the
anatomy of a .app bundle however leads to the following
solution. The Finder only needs a part of the bundle files
to display the application and associated documents. We
use this fact in the Mac OS X extensions of SEPP by
copying all the required files to form an independent
miniature application – an application stub – in the
/usr/sepp/macosx/ directory. In this application stub a small
Perl script is used to start the real application. Figure 6
shows the structure of such an application stub directory.
By making the contents of the /usr/sepp/macosx directory
available as an item in the Finder’s left hand navigation
bar users can access all SEPP applications in a natural
Mac-like way.
Special Application Support

All binaries in a SEPP package are started indi-
rectly through the package specific start.pl script. One
of the advantages of such a script is the ability to pre-
pare the environment for an application. Mac OS X
SEPP packages make regular use of start.pl since many
applications do not follow the standard exactly.

68 19th Large Installation System Administration Conference (LISA ’05)



Schultschik About the Integration of Mac OS X Devices into a Centrally Managed UNIX Environment

Providing locally installed Files to Applications
Some Mac OS X applications require files to be at a
certain location in the system. Often the current user’s
permissions are not sufficient and as a consequence
these modifications cannot be done in start.pl. There-
fore a sudo gateway has been opened for SEPP pack-
ages under Mac OS X allowing start.pl to run a second
package specific script with administrator privileges.

To prevent abuse of this mechanism sudo is
restricted to a small SEPP tool which starts the script
after ensuring that the script is at a valid location
inside the package with correct ownership and permis-
sions. Therefore only the package maintainer can cre-
ate privileged scripts that are allowed to run.

Legacy Carbon Applications Many commercial
applications are still running under Carbon and depend
on a HFS-like filesystem behavior. While many Car-
bon applications remain fully functional when started
from NFS, some applications insist on being stored in
HFS volumes.

Figure 7: Sequence diagram of AppleEvents exchanged between the Finder, the stub for an application, and the
application itself. After being started by the Finder the stub itself starts the real application using evntproxy. Evnt-
proxy then forwards all AppleEvents to and from the real application.

To support these special Carbon applications
they are transfered onto a HFS formated disk image
that is stored in the SEPP package on any filesystem
since the disk images are managed by Darwin. start.pl
mounts this image and executes the application on
HFS. Using shadow file support these images even
can be made writable.
Forwarding AppleEvents With evntproxy

AppleEvents [16] provide a convenient way for
applications to communicate among each other. This
includes the ability of one application accessing another
application to open or print a document for example.

Under SEPP an application stub is started before
the real application and in some cases this indirect
start can cause AppleEvents from Finder to be sent to
the stub instead of to the real application. Conse-
quently the real application cannot participate in
AppleEvent interactions

We have solved this problem with the creation of a
proxy for AppleEvents – evntproxy – which is started in
the application stub. Figure 7 shows the sequence dia-
gram for the handling of AppleEvents through evntproxy.

Experience Gathered on the Deployed System

Current Installation
At the time of writing the integrated Mac OS X

system described here is installed on more than 50
computers consisting of two homogeneous clusters as
well as several individual computers with various G4
and G5 hardware. More than 80 SEPP application
packages exist covering the frequently used commer-
cial applications from Microsoft, Adobe and Apple, as
well as a variety of UNIX tools and applications. Cen-
tralized infrastructure is provided by two Sun Solaris
and one Linux server. Special application services like
Meetingmaker and Filemaker server are run from an
Apple XServe that is also managed through osxjump-
start, TeTre2 and SEPP.
Migration & Maintenance

Since most of the integrated Macs are connected
to the same local network and thus to the same services
only a small subset of features required customization.
As TeTre2 is able to activate individual features for a
predefined group of managed hosts, the configuration
of the two clusters could be created in a very short
time. Even for the individually configured Macs many
features could be reused and thus applied group-wise.

The installation was done at the users work place
with no need to transport any hardware. As all instal-
lation resources are network based simultaneous
installation of several Macs was possible. In some
cases only untrained teaching assistants equipped with
the necessary passwords were required on site since
jumpstart is managed centrally and runs unattended.
Public-key SSH access during installation allowed an
administrator to intervene remotely when required.

19th Large Installation System Administration Conference (LISA ’05) 69



About the Integration of Mac OS X Devices into a Centrally Managed UNIX Environment Schultschik

Since an entire osxjumpstart installation takes about
30 minutes without requiring the presence of an admin-
istrator, quicker reaction is possible when replacing
defective hardware, e.g., to set up a replacement Mac.

The automounter under Mac OS X Panther pre-
sented us with a number of challenges: When reload-
ing larger automount-maps, the automount shares
were not available for the fraction of a second. The
reason for this is that the automounter removes and
regenerates all the symlinks it puts in place to trigger
automounts as soon as it has to reload its maps. A sec-
ond instability in the automounter allowed the mount
directory to be accessed before the mount was com-
pleted. As a result some files get accessed on the local
directory rather than the NFS network shares. To
ensure the availability of the users home directories a
script is run in the login_hook of the LoginWindow
application, triggering the mount and then waiting for
its completion. A first look at the automounter in Mac
OS X Tiger revealed several modifications raising the
hopes that an OS upgrade will provide a more stable
automounter.
User Acceptance

The introduction of the integrated Mac OS X
concept was widely accepted on the user side. From a
user ’s point of view the integrated system looks almost
identical to a normal Mac OS X environment and
users familiar with Mac OS X observe the following
changes:

• The users are able to roam between workstations
and continue to work in an identical setup since
user homes and applications are managed cen-
trally.

• Applications provided by SEPP are found under
/Network/Applications. As multiple versions of a
package may exist the recommended version is
accessible through the subdirectory Default.

• The start of an application is slightly slower as
it is transfered over the network. This effect
occurs only during start. Once the application is
cached the user is no longer slowed down and
can work at normal speed.

• Since SEPP is managed centrally, newly
installed applications appear on all managed
Mac OS X hosts without any user interaction.

• The homes of all other users are available
through NFS including UNIX and Windows
users. Consequently the integrated Mac-Users
need to take more care with file permissions.

• A check for pending software updates is done
each night or in a StartupItem during boot. If a
reboot is required for an update, the user is noti-
fied and given the chance to save all documents.

• The NFS based home directories are automatically
backed up every night which allows to restore
files that were accidentally overwritten or deleted.

Limitations
So far all of the encountered applications could be

brought into a form that makes them work in a SEPP

environment. However the effort to do so is sometimes
not justified. In the case where an application is only
used on one or two hosts or when an application is too
closely connected to the operating system (e.g., Scanner-
Software, some server applications) it is more efficient to
capture the application into a .pkg bundle and install it
with osxjumpstart.
Special Configurations

The integrated Mac OS X system was also
deployed on five Macs which are only connected to
the servers via an insecure, low-bandwidth network.
NFS could not be used either during installation or
operation. By leaving aside the TeTre2 features for
network services and by implementing the necessary
features to substitute required functionality the config-
uration for a stand-alone Mac was created.

SEPP packages are installed on the local disk
with the option to rsync and install other packages.
User homes are stored locally. To allow these users to
roam their data is synchronized with their network
home regularly using unison.

To support on site installation of the stand-alone
Mac OS X systems a disk-based version of osxjumpstart
has been created that works independent of network
resources. The copied .pkg bundles, SEPP packages, and
the osxjumpstart and TeTre2 configuration has to be
updated from the network based master copy regularly.

Conclusion

A system management concept has been imple-
mented that allows us to manage Apple’s Mac OS X as
part of an integrated UNIX environment. Fully automated
administration tools are provided that support fully unat-
tended and highly flexible system installation and configu-
ration based on common UNIX standards and a centralized
network infrastructure. A software management tool allows
the users to work transparently with applications residing on
multiple local and network-based sources without prior
installation.

As the same administration structures are used for
several software platforms fewer tools need to be mas-
tered and maintained and an administrator can proceed
identically when working on different systems. The reuse
of configuration information is supported by the tools
even across software platforms. As the tools are designed
for limited complexity an administrator is able to under-
stand the consequences of his or her actions more easily.

The integrated Mac OS X system shows only sub-
tle changes versus a vanilla Mac OS X system and thus
allows users to orient themselves easily. Due to the
modular structure of the configuration data and its auto-
mated application, state and behavior of a system is
intuitively predictable increasing the user’s confidence
in the installation. The option to roam between work-
stations allows more flexibility to the user while reduc-
ing the impact of hardware failure.

70 19th Large Installation System Administration Conference (LISA ’05)



Schultschik About the Integration of Mac OS X Devices into a Centrally Managed UNIX Environment

Reproducibility, comprehensibility and centrali-
zation require some effort to implement but in the long
run this investment is paid back both through reduced
maintenance cost and higher user satisfaction.

Availability

All code for the integrated Mac OS X system is
licensed under the terms of the GNU GPL. At the time
of writing the SEPP extensions for Mac OS X already
are available under http://isg.ee.ethz.ch/tools . The
remaining code is to be published on the same URL.

Author Biography

After having developed image processing software
in both an industrial and a scientific environment, Anton
Schultschik found his way to system administration as
member of the IT support group (ISG.EE) at the Depart-
ment of Information Technology and Electrical Engineer-
ing at the Swiss Federal Institute of Technology (ETH
Zurich). With a focus on Mac and Solaris/Linux support
and development, he also maintains the local LDAP
directory services and the Condor batch processing clus-
ter. In his spare time he likes to spend time with is new-
born son or extend his knowledge on various IT topics.

Bibliography

[1] Traugott, S. and J. Huddleston, ‘‘Bootstrapping
an Infrastructure,’’ Proceedings of the 12th Sys-
tems Administration Conference (LISA), 1998.

[2] Apple, Macosx, An Overview for Developers,
http://www.tri.ucalgary.ca/tri1/Downloads/Mac/
OSXDeveloper/macosx_overview.pdf .

[3] Apple Developer Connection, Mac OSX Server
System Imaging and Software Update Admini-
stration, http://images.apple.com/server/pdfs/
System_Image_and_SW_Update_v10.4.pdf .

[4] Apple Developer Connection, Introduction to
Software Distribution, http://developer.apple.com/
documentation/DeveloperTools/Conceptual/
SoftwareDistribution/index.html.

[5] Bombich, Mike, Bombich Software: NetRestore,
http://www.bombich.com/software/netrestore.html .

[6] Apple, ASR – Apple Software Restore, http://
developer.apple.com/documentation/Darwin/
Reference/ManPages/man8/asr.8.html .

[7] Amorin, Kevin, Solaris Jumpstart Automated
Installation, http://www.amorin.org/professional/
jumpstart.php .

[8] Burgess, Mark, ‘‘Recent Developments in
Cfengine,’’ Unix.NL Conference, Waardenburg,
Netherlands, 2001.

[9] Craig, Wesley D. and Patrick M. McNeal, ‘‘Rad-
mind: The Integration of Filesystem Integrity
Checking with Filesystem Management,’’ Large
Installation System Administration Conference,
2003.

[10] Oetiker, Tobias, ‘‘TemplateTree II: The Post-
Installation Setup Tool,’’ Proceedings of the 15th

Systems Administration Conference (LISA), http://
isg.ee.ethz.ch/tools/tetre2/pub/tetre-lisa.pdf , 2001.

[11] Fink, http://fink.sourceforge.net/ .
[12] Oetiker, Tobias, ‘‘SEPP – Software Installation

and Sharing System,’’ Proceedings of the 12th
Systems Administration Conference (LISA), http://
people.ee.ethz.ch/˜oetiker/sepp/ , 1998.

[13] ISC DHCP 3.0 Mac Netboot Patch, http://staff.
harrisonburg.k12.va.us/˜rlineweaver/macnb/ .

[14] Bombich, Mike, Mike’s Mac OS X Management
Software and Tips, http://www.bombich.com/ .

[15] Apple Developer Connection, Introduction to Bun-
dle Programming Guide, http://developer.apple.
com/documentation/CoreFoundation/Conceptual/
CFBundles/index.html .

[16] Introduction to Apple Events Programming
Guide, http://developer.apple.com/documentation/
AppleScript/Conceptual/AppleEvents/index.html .

[17] Schweikert, David, ‘‘ISGTC: an alternative to
˜bofh/bin,’’ 4th International System Administra-
tion and Network Engineering Conference, http://
isg.ee.ethz.ch/publications/papers/isgtc-sane.pdf ,
2004.

19th Large Installation System Administration Conference (LISA ’05) 71




