
HostDB: The Best Damn
host2DNS/DHCP Script Ever

Written
Thomas Limoncelli – Cibernet Corp.

ABSTRACT

HostDB is a system for generating DNS zone files, BIND configurations, and ISC DHCP
server configurations. It is extremely simple yet powerful, which makes it easy to deploy. It is not
so complicated that it requires an SQL database or web server. It is not a single generation script
but a complete system that includes tools for deploying the files that are generated. The system is
written in Perl and shell and makes heavy use of make. The zone files that it generates look hand-
made, except that they are clean. Powerful tools are also provided to aid in the conversion from
legacy systems. HostDB is the third generation of my DNS maintenance systems and embodies
not just superior software but also best practices in system administration. HostDB uses small
tools that combine to achieve large goals. Initial deployment can be done in stages to reduce risk.
Deployment of updates is fully automated. It rocks.

Introduction

The goal of HostDB is to create a DNS zone
generator that is full-featured without requiring com-
plicated databases and web services. The system uses
simple configuration files and automates deployment.
It is easy to deploy whether you are converting a
legacy system one zone at a time or setting up a new
system from scratch.

Many small and medium sites (dozens or hun-
dreds of machines) hand-edit DNS zone files. This is
an error-prone practice which requires a high skill
level. The smallest typo can cause big outages.

Many large sites (multiple IT teams, locations,
and internet connections) use DNS management sys-
tems that provide no revision control and very little
audit trail of who made what changes. Many also
require external (outside the firewall, or ‘‘public’’)
zone files to be maintained by hand, which adds the
risk that they will become out of date with internal
(inside the firewall, or ‘‘private’’) zones.

The problem with most DNS generation scripts
is that they are either too simplistic to be useful or so
complicated that they are intimidating to install. The
simple ones are fine for doing an initial conversion
from /etc/hosts to zone files that will be hand-edited in
the future. Many are ‘‘point tools’’ that require a lot of
integration work. The complex ones are so unwieldy
that small sites find them too scary to install. Most
don’t handle complicated DNS idioms such as having
special MX records for mail servers, proper handling
of multi-homed hosts, or templates for ranges of simi-
larly named hosts. They don’t handle generating dif-
ferent zone files for inside the firewall versus outside
the firewall (i.e., ‘‘host hiding’’) resulting in hand-
edited external zone files that are prone to errors.

Many generate zone files that are not pretty: hand-
edited zone files would be more readable (if we only
had the time to maintain them that way!). HostDB
fixes all these issues. It does this without introducing a
complicated syntax plus it generates your DHCP con-
figuration file ‘‘for free’’! The code is written in Perl,
shell, and make and is freely available.

Setup time is fast. Really fast. The system can be
used to generate zone files that can be individually
inserted into your legacy systems within minutes of
installing the software. HostDB breaks from the Free
and Open Source Software (F/OSS) tradition of pro-
viding a default configuration that is an arrogant dis-
play of the most complicated features. Instead the
default configuration is a useful example that can
often by used ‘‘out of the box’’ with only small
changes. Documentation is included for migrating
from a legacy system in small steps with plenty of
testing along the way.

Audience

HostDB seeks to fill the void between simple
DNS zone generation scripts and massive DNS/DHCP
database-driven applications. It is perfect for a site that
is starting fresh, or for one that currently hand-edits
zone files and wishes to introduce automation.

The learning curve and installation curve for
HostDB is very small. Thus, it is appropriate for sites
that do not have the need, expertise, or resources
required by systems that have a web-based front-end
or use a SQL database as the backend.

HostDB is good for sysadmins that need an
extremely good solution but don’t have a lot of time.
Migration from a legacy system is extremely easy
because the files that are generated are put into a

19th Large Installation System Administration Conference (LISA ’05) 209

HostDB: The Best Damn host2DNS/DHCP Script Ever Written Limoncelli

repository before they are copied to their final destina-
tion. Thus, comparisons between the legacy zones and
the HostDB-generated zones can be done as part of
acceptance testing. Tools for comparing zones are pro-
vided. Individual zone files can be put into service
permitting an incremental deployment methodology
(rather than a ‘‘flash-cut’’), thus reducing risk.

HostDB is not appropriate for extremely large
organizations with many separate IT groups or sites
with complicated dynamic DNS configurations. Their
needs would be better served with other, larger, sys-
tems. It doesn’t directly support a sophisticated autho-
rization schemes, a web-based interface, or assistance
for dynamic DNS updates. However, HostDB does
have some hooks that make it easy for simple dynamic
DNS to be used. Also, large organizations are often
composed of many smaller IT organizations which
would find HostDB entirely appropriate. These orga-
nizations often have one team that manages all inter-
net connectivity and HostDB is excellent for maintain-
ing the related DNS zones.

At this time HostDB has no support for IPv6.
I’m okay with this.

What Does It Do?

I have seen many exceptional DNS/DHCP con-
figuration management systems that provide excellent
web front ends and are so powerful that implementa-
tion requires an SQL database. HostDB isn’t one of
those.

HostDB lets you track all DNS and DHCP infor-
mation about all your hosts in a single, simple file.
From that file, it generates DNS zones, BIND configu-
ration files (named.conf) and host entries that can be
included in an ISC DHCP server configuration
(dhcpd.conf). Two helper configuration files guide
zone creation and file deployment, but they are basi-
cally static after the system is stable.

The system generates the complete zones and
configurations. No hand-editing after the fact is
required. Thus, automation using make and other tools
is possible.

The system handles complicated DNS idioms
such as:

• Special MX records for mail servers.
• Proper DNS records for multi-homed hosts and

routers.
• Templates for ranges of similarly named hosts.
• Host-hiding (generating different zones for

external DNS servers).
• Clean, human-readable zone files are generated

(as if they were human-generated, but neater)

HostDB includes a tool called ‘‘mkdestinations’’
which generates a Makefile that will efficiently deploy
(push) individual files to local and remote hosts. It
recognizes zone files and treats them specially to pre-
vent zone-transfer storms. Non-zone files can be

deployed as well, making it possible to maintain the
all files related to DNS and DHCP configuration for
multiple servers around a network from one central
administration host.

Major tools are written in Perl, with many helper
programs in BASH shell. Shell glues them together in
a way that is easy for sysadmins to understand. The
system tries not to re-invent the wheel, thus it uses
standard UNIX tools: make, SSH, sed and awk. Sed
and awk have been feeling ignored lately so we threw
some work their way.

How to Configure

There are three configuration files. Each encap-
sulates information that would be updated by a partic-
ular audience. The format is either simple or compli-
cated based on the audience as summarized in Table 1.

The syntax of hostdb.txt is simple because a non-
DNS expert needs to be able to edit it without intro-
ducing errors. Rather than designing a syntax by and
for DNS experts, much effort was spent in designing a
syntax that made sense to the junior engineers that
would be using the system. The filename ends with
‘‘.txt’’ to facilitate non-UNIX admins editing these
files through non-UNIX tools like Notepad.

zoneconf.txt requires a little more knowledge of
how DNS zones work, which is appropriate because
this file should only be edited by a person with
advanced DNS knowledge.

destinations.txt is extremely simple because it
simply states where files are to be copied after they
are generated. It permits files to be renamed as they
are copied, which makes inserting a generated file into
a pre-existing legacy system very easy.

Standard UNIX protections can be used to con-
trol who can edit these files. They are all plain ASCII
files, appropriate for maintaining under revision con-
trol systems like RCS, SCCS, CVS or Subversion.
Any system administrator maintaining key files such
as these without a revision control system is taking an
undue risk. Revision control means knowing what
changed when. When a change is introduced that
causes an outage, one can undo a change, investigate
who made the change, mentor them so they do not
repeat the mistake, and optionally ridicule them during
staff meetings.

DNS Zone Generation

DNS zones are generated using ‘‘mkzones’’.
Mkzones parses the entire hostdb.txt file, storing the
important bits into various data structures. It then reads
zoneconf.txt which is ‘‘executed’’ line by line, setting
options and generating zones as instructed. Because of
this design, an option can be set one way before a par-
ticular zone is generated and then another way before
the next zone is generated. This is a powerful feature,
letting one system generate zones with very different

210 19th Large Installation System Administration Conference (LISA ’05)

Limoncelli HostDB: The Best Damn host2DNS/DHCP Script Ever Written

needs. For example, if one sub-domain requires differ-
ent default MX records than all the others, it is very
simple to achieve that goal. Other DNS generation
systems assume the same options for all zones. That
makes them inappropriate for very large sites.

File Name Audience Contents Skills required
hostdb.txt Anyone on your

sysadmin team
Info about all hosts Edit text files, maintain a format set

up for them, understand IP
addresses

zoneconf.txt DNS engineers How the zone files and BIND
configuration files are generated

Understanding of DNS zones and
terminology

destinations.txt UNIX admins setting
up BIND

Where zone files and other files
are copied

Knows where zone files are stored
and has root access on DNS servers

Table 1: HostDB configuration files.

The power of mkzones’ algorithms comes from
the fact that the parsing of hostdb.txt is decoupled
from the generation of the zones. This permits more
sophisticated zone generation since the generation
algorithms understands ‘‘the big picture,’’ i.e., all host
information is available at once.

Decoupling parsing from generation also had the
benefit that the input syntax could be changed without
affecting the generation code. We were able to experi-
ment with different syntaxes over time without worry-
ing about how this would break the generation code.

The syntax for hostdb.txt was developed with
massive user input. Users were presented with options
for syntax and their feedback altered the evolution of
the system. Most DNS zone generation systems tend
to be designed for the DNS expert. HostDB has the
benefit of a host list which is in a format that is perfect
for junior sysadmins and the complicated options are
kept far away in a different file where only the experts
can make changes.

The users quickly lined up behind a syntax that
looked like /etc/hosts, not a fancy recursive syntax like
ISC’s BIND and DHCP configuration files. They
requested a single line per IP address because when it
is time to allocate an IP address (their most frequent
task) the procedure they are most comfortable with is
finding an unused IP address in a long list, sorted by
IP address. They also didn’t want to be bothered with
having to keep the file perfectly indented or brackets
matched.

What Makes the Generation So Cool?

To make a zone file look readable took quite a
long time. After many iterations we finally realized
that the most readable zone file stripped hostnames
(removed the domain, when possible), were formatted
with tabs (not spaces), grouped records related to a
particular host, and ordered the hosts by IP address.

Therefore, when generating zone files, we output:
1. The SOA information
2. The NS records

3. Any records for the current zone name (the
domain without any host)

4. All the DNS information related to a particular
host (with hosts listed in IP address order)

You may notice that the examples from
hostdb.txt always specify Fully Qualified Domain
Names (FQDNs). That is, foo.example.com, not just
simply ‘‘foo’’. Usually DNS systems assume a label is
simply a hostname (sans domain) unless it ends with a
single period. However, humans tend to forget the
period. After many iterations of trying to solve this
problem by being fancy, we decided it was better to
require the users to always enter FQDNs and output
warnings if something was not a FQDN.

The decision to group the records in the zone file
by hostname (yet stay in numerical IP address order)
was something of a small breakthrough discovered
after many trials. To do this all DNS information has
to be in memory before the first zone is generated.
This way decisions can be made by checking in-mem-
ory data structures and flags that were built up during
parsing. Items from the in-memory data structures are
deleted as each DNS resource-record is output into the
zone file, thus eliminating the possibility of outputting
the same line twice.
BIND Configuration File Generation

mknamedconf uses the information in
zoneconf.txt to generate ISC BIND configuration files
for DNS masters and slaves inside the firewall, plus
DNS masters outside the firewall. It does not generate
configurations for slaves outside the firewall (exter-
nal) because the author has not yet found the need for
such a thing. External slaves tend to be owned and
managed by separate organizations, often ISPs. We do
not know enough to generate their entire bind configu-
ration, nor can we assume they use BIND. Configura-
tion updates are usually done via manual (emailed)
requests of the owner of the slave server.
DHCP Generation

The DHCP generation is very simple. Mkzones is
called with a flag that tells it to parse the hostdb.txt file
as usual, but then output a ISC DHCP ‘‘host’’ statement
for each machine with DHCP-related data. This infor-
mation can be included in a ISC DHCP ‘‘dhcpd.conf ’’
file, which must be manually created. DHCP configura-
tions are usually too custom to warrant generating them
automatically, except for the host statements.

19th Large Installation System Administration Conference (LISA ’05) 211

HostDB: The Best Damn host2DNS/DHCP Script Ever Written Limoncelli

The Syntax

The systems works in two phases. First, the
zoneconf.txt and hostdb.txt files are used to generate
all the files that are generated. Next the new files are
copied to the appropriate hosts/directories based on a
map described in destinations.txt.

You might think of this as:
Hostdb.txt + zoneconf.txt → generated files
Generated files + destinations.txt → deployed files.

hostdb.txt Syntax
The hostdb.txt file looks like a /etc/hosts file

augmented with flags and parameters. Display 1
demonstrates the syntax of hostdb.txt:

10.1.1.1 pot.example.com
10.1.1.2 kettle.example.com MAC=00:b0:d0:a6:cf:f1
10.1.1.3 spoon.example.com
10.1.1.4 fork.example.com CNAME=pitchfork.example.com
10.1.1.5 spatula.example.com

Display 1: Syntax of hostdb.txt .

10.1.10.1 zathras-red.example.com ISROUTER=zathras.example.com
10.1.20.1 zathras-blue.example.com ISROUTER=zathras.example.com
10.1.30.1 zathras-green.example.com ISROUTER=zathras.example.com
10.1.40.1 zathras-purple.example.com ISROUTER=zathras.example.com

Display 2: Specifying .1 addresses as a router interface.

The zone file ‘‘example.com’’ that would be gen-
erated would be a simple ‘‘A’’ record for each host
plus appropriate NS and MX records as configured in
zoneconf.txt. The reverse zone (1.1.10.in-addr.arpa)
would be one PTR file as appropriate for each host.

Notice that each host is listed by its fully quali-
fied domain name (FQDN). For example, spoon.
example.com instead of just ‘‘spoon’’. During user
testing, it was discovered that it was too difficult to
come up with a syntax that permitted ‘‘short’’ host-
names to be used and still permit multiple domains to
be described in the same file. Various formats were
attempted. In the end, it was decided that it was
cleaner to make every host be listed as a FQDN.

‘‘kettle.example.com’’ has a special option on it:
‘‘MAC=00:b0:d0:a6:cf:f1’’. This identifies its Media
Access Control (MAC) address, or Ethernet, address.
When a DHCP configuration file is generated, this
host will have a ‘‘static assignment’’ or ‘‘permanent
lease’’ for 10.1.1.2. We have found it useful to assign
static assignments to all known hosts, and use ‘‘pools’’
of randomly allocated addresses only for transient
hosts. This makes log files more accurate since most
machines will always appear at the same IP address.

‘‘ f o r k . e x a m p l e . c o m ’’ has a CNAME of ‘‘pitchfork.
example.com’’. This generates a DNS CNAME record.

In addition to CNAME=, there is also
ANAME=. This generates multiple DNS A records
pointing to the same IP address. HostDB generates the
reverse lookup to be the first host on the line, which
seems to be the most common practice.

Multiple ANAMEs and CNAMEs can be listed
by separating them by colons. For example one might
list ‘‘ANAME=pitchfork.example.com:branch.example.
com:divide.example.com’’.

ANAMEs and CNAMEs can both appear on the
same host line.

The plural ANAMES is the same as ANAME, as
is CNAMES the same as CNAME. This makes the
hostdb.txt file slightly more readable.
Multihomed Hosts

HostDB understands that multihomed hosts need
special treatment. For example, a router has many
interfaces. The best practice is to have one DNS label
or name that will return all ‘‘A’’ records; one for each
interface. However network engineers and others need
to be able to specify a particular interface when they
want. HostDB likes it both ways.

Suppose the .1 address of each network was an
interface for our router, zathras. We could specify that
as shown in Display 2.

The DNS zone information generated would be:
zathras IN A 10.1.10.1

IN A 10.1.20.1
IN A 10.1.30.1
IN A 10.1.40.1

zathras-red IN A 10.1.10.1
zathras-blue IN A 10.1.20.1
zathras-green IN A 10.1.30.1
zathras-purple IN A 10.1.40.1

(MX info deleted for brevity, but I assure you they are
awesome.)

Someone that wanted to reach any interface
would use ‘‘zathras’’. A network engineer that needed
to refer to the zathras interface on the ‘‘red’’ network
would specify ‘‘zathras-red.example.com.’’

The reverse-lookup zone indicates the individual
interface names (zathras-red, not zathras).

HostDB also has ‘‘ISMULTIHOMED=’’ which
is the same thing but for servers. Currently it is exactly
the same thing as ‘‘ISROUTER=’’. The separate direc-
tives are provided should different functionality be
required for routers and hosts in future versions.
Host-hiding

Host hiding is where, for either real or perceived
security reasons, most sites do not want to expose the

212 19th Large Installation System Administration Conference (LISA ’05)

Limoncelli HostDB: The Best Damn host2DNS/DHCP Script Ever Written

names of their hosts to the outside world. Inside their
firewall, a host may be called patentdatabase.exam-
ple.com, but outside it should be simply known as
h64-32-179-55.example.com. Obscuring the host name
like this prevents external users from being able to
make educated guesses about good attack targets. It
prevents internal host names from being exposed out-
side the network, which might prevent embarrassment
by preventing ceo-pc.example.com from appearing in
the Apache log files of www.sexyteens.com.

64.32.179.55 database.example.com
64.32.179.56 www.example.com@EXTERNAL ANAMES=example.com@EXTERNAL
64.32.179.57 vpn3000.example.com ANAMES=vpn.example.com@EXTERNALONLY

Internal DNS Records External DNS Records

A PTR A PTR
Host

database.example.com 64.32.179.55 database.example.com FAILS d64-32-179-55.example.com

www.example.com 64.32.179.56 www.example.com 64.32.179.56 www.example.com

example.com 64.32.179.56 www.example.com 64.32.179.56 www.example.com

vpn3000.example.com 64.32.179.57 vpn3000.example.com 64.32.179.57 vpn.example.com

vpn.example.com FAILS vpn3000.example.com 64.32.179.57 vpn.example.com

D64-32-179-55.example.com FAILS FAILS 64.32.179.55 d64-32-179-55.example.com

D64-32-179-56.example.com FAILS FAILS 64.32.179.56 vpn.example.com

Display 3: Demonstration of scopes.

For forward DNS lookups one generally sets up
an external DNS zone file that lists only the hosts that
the public internet needs access to. This is used on
external DNS servers and is often managed separately
from the internal of DNS zones. Any time two separate
databases are used to store information about the same
thing you are asking for trouble; they will get out of
sync. It is my experience that even sites with very full-
featured commercial DNS management systems use a
hand-edited zone-file for their external DNS zones.

Reverse DNS lookups are another matter. Some
sites simply do not provide any reverse-DNS records.
As a result, other sites refuse to talk to them because, for
real or perceived security reasons, other sites are weary
of accepting connections from sites without proper
reverse DNS. Other sites simply use statically generated
reverse labels that encode the IP address to keep them
unique. For example, at this time Optimum Online’s
reverse DNS for 67.82.128.6 is ool-43528006.dyn.
optonline.net (the digits are the hex interpretation of the
IP address, the ‘‘ool’’ is Optimum OnLine).

To that end, HostDB generates a different set of
zone files for ‘‘internal’’ DNS servers (those inside the
firewall) and ‘‘external’’ servers (those accessible to
the public). HostDB generates both sets of zone files
from the same hostdb.txt, thus preventing them from
getting out of sync.

To make this work, HostDB assumes that a host
should be hidden from outsiders unless marked otherwise.
To change the default, add a ‘‘scope qualifier’’ to the end
of the hostname. The scope qualifiers are @EXTERNAL,

@EXTERNALONLY and @INBOUNDNAT. Display 3
shows a hostdb.txt that demonstrates all three.

database.example.com is a normal host. Insiders
have the usual forward and reverse DNS data. Out-
siders can not look up the host’s IP address, and the
reverse DNS information is the anonymous name of
d64-32-179-55.example.com. Lookups of
d64-32-179-55.example.com return a proper A record.

www.example.com is an externally exposed host.
Therefore, the forward and reverse lookups work as
one would expect for both internal and external users.
Since ‘‘example.com’’ is an ANAME for this host, it
behaves the same way.

vpn3000 and vpn demonstrate the @EXTER-
NALONLY scope. This keyword exposes a host exter-
nally but not internally. It is rarely used. In the above
example we use it for a VPN (RAS) server which
external people use to access internal resources. Thus,
they shouldn’t use it when they are inside the com-
pany. We wanted to be able to construct a client con-
figuration that would fail when used inside the fire-
wall, where use of the VPN should be unneeded. Thus
we marked vpn.example.com as @EXTERNAL-
ONLY so that the DNS entry would appear in external
zone files, but not in internal zone files. This achieved
the goal. However, network administrators still needed
to access the VPN server for administrative reasons.
They could use the name vpn3000.example.com
which resolves properly internally.

The last two rows of the table demonstrate that
reverse lookups for the anonymous hostnames are
properly generated. Any A record that is generated
needs a proper PTR record, even when host hiding.

Not pictured in Display 3 is @INBOUNDNAT
which solves a very common, but specific, problem.
Suppose you have an internal host on a RFC1918
address (unrouted) network and someone has decided
to poke a hole in the firewall to let outsiders access it.
The firewall will do some kind of ‘‘reverse NAT’’ so
that packets destined to a particular public address will
be re-written and sent to an internal host. While the
author feels this has risky security implications, at

19th Large Installation System Administration Conference (LISA ’05) 213

HostDB: The Best Damn host2DNS/DHCP Script Ever Written Limoncelli

least HostDB lets you get the DNS records correct
when you choose to use this technique. Here’s how
one would do this with HostDB:
64.32.9.8 host.example.com@INBOUNDNAT
10.1.1.5 host.example.com

198.65.112.13 mta1.example.com ISMAILSERVER

Display 4: Mail server specification via ‘‘ISMAILSERVER’’.

198.65.112.9 normal.example.com
198.65.112.10 msexchange.example.com ISMAILSERVER
198.65.112.11 mta1.example.com ISMAILSERVER
198.65.112.12 mta2.example.com ISMAILSERVER

Display 5: Mail servers with varying priorities in zoneconf.txt .

normal IN A 198.65.112.9
IN MX 10 mta1
IN MX 20 mta2

msexchange IN A 198.65.112.10
IN MX 0 msexchange
IN MX 10 mta1
IN MX 20 mta2

mta1 IN A 198.65.112.11
IN MX 0 mta1
IN MX 20 mta2

mta2 IN A 198.65.112.12
IN MX 0 mta2
IN MX 10 mta1

Display 6: Resulting example.com zone file.

10.1.40.1 zathras-purple.example.com ISROUTER=zathras.example.com
10.1.40.2 server2.example.com
10.1.40.3 server3.example.com
DHCP_POOL_TEMPLATE dhcp-$a-$b-$c-$d-pool.example.com
10.1.40.4 DHCP_POOL
10.1.40.5 DHCP_POOL
10.1.40.6 DHCP_POOL
10.1.40.7 DHCP_POOL
10.1.40.8 DHCP_POOL
10.1.40.9 DHCP_POOL
10.1.40.10 host10.example.com

Display 7: DHCP pool in the middle of a subnet.

Scopes can pertain to each hostname listed on a
line, whether it is the host, a CNAME or an ANAME.
A host can have multiple ANAMES and CNAMES
and each name can be normal, external, externalonly, or
inboundnat independently of the others. The generation
process becomes quite complicated. What is the right
PTR record to generate if a host is externalonly but has
an ANAME alias that is normal? (Our answer: the
ANAME on the inside, the externalonly name on the
outside). As new situation cropped up we had to fine-
tune the algorithms.

Mail Servers

Marking a host as a mail server means the MX
records should be slightly different. It should have the
default MX records but also an MX record pointing to
itself that is better priority than the others. You specify
this in hostdb.txt with the ISMAILSERVER flag; see
Display 4.

HostDB does not create duplicates, even in
tricky situations like when the default MX record for a
subnet is the same as the host. For example, if
zoneconf. txt specifies that all hosts are to receive MX
records of priority 10 for mta1.example.com and pri-
ority 20 for mta2.example.com and hostdb.txt contains
the code in Display 5, then the example.com zone file
would resemble Display 6.

Host ‘‘normal’’ receives both MX records. ‘‘msex-
change’’ receives the MX records and the best priority
MX pointing to itself. ‘‘mta1’’ and ‘‘mta2’’ have the
best priority pointing to itself with a worse priority MX
pointing to either mta2 or mta1 as appropriate.
DHCP Pools

HostDB provides assistance to anyone creating
large DHCP pools. DHCP pools usually assign
‘‘generic’’ names to each IP address such as
ool-24-12-12-12.comcast.net. Repetitive jobs should
always be automated, thus there is a syntax for auto-
matically generating such hostnames. A DHCP pool in
the middle of a subnet might look like Display 7.

This would generate a host name called
dhcp-10-1-40-4-pool.example.com for the first DHCP_
POOL entry, and similar entries for the rest.

214 19th Large Installation System Administration Conference (LISA ’05)

Limoncelli HostDB: The Best Damn host2DNS/DHCP Script Ever Written

The template takes effect from the point in the file
it appears and continues until another DHCP_POOL_
TEMPLATE line overrides it. For example, at one loca-
tion they wanted to have slightly different hostnames
for a DHCP pool for IP phones. In that address range,
they put the lines shown in Display 8.

DHCP_POOL_TEMPLATE phone-$a-$b-$c-$d-pool.example.com
10.1.100.4 DHCP_POOL
...elided for space...
10.1.100.100 DHCP_POOL
DHCP_POOL_TEMPLATE dhcp-$a-$b-$c-$d-pool.example.com

Display 8: Example template for an IP phone pool.

SOA INTERNAL hostmaster.example.com 1H 15M 30D 60M
SOA EXTERNAL hostmaster.example.com 1H 15M 30D 60M

MX INTERNAL 10 lucy.example.com ; 20 ingw2.example.com
MX EXTERNAL 10 exgw2.example.com ; 10 exgw4.example.com

ZONESERVERS INTERNAL lucy3.example.com ingw2.example.com
ZONESERVERS EXTERNAL exgw4.example.com exgw2.example.com

Display 9: SOA, MX, and ZONESERVERS examples.

ALLOW-TRANSFER INTERNAL "primary_servers"
ALLOW-TRANSFER SLAVE "primary_servers"
ALLOW-TRANSFER EXTERNAL "rev65_servers"

ALLOW-UPDATE INTERNAL "none"
ALLOW-UPDATE SLAVE "none"
ALLOW-UPDATE EXTERNAL "none"

Display 10: Zone transfer and dynamic DNS update permissions.

There is no coordination between the DHCP_
POOL template and the DHCP configuration file that is
generated. That is, if you use the DHCP_ POOL feature
to generate a range of similarly-named systems, you
must manually update the DHCP configuration file to
include those ranges.

A future enhancement would be to have the tem-
plate be a stack, permitting one to more easily switch
to a new template and switch back when one is done.

While it might be useful to be able to specify a
range of IP addresses (rather than to list one per line)
this feature has been delayed until a clear syntax can
be developed. A range would violate the ‘‘one line per
address’’ rule that the sysadmins preferred. It turns out
they often use their text editor’s command to cursor-
down 256 times to jump from subnet to subnet. Thus,
any command that consolidates repetitive lines makes
navigation more difficult.

However, a command-line tool is provided to
generate lists of IP addresses with a template. The
command was used to create the above range:
genrange 10.1.100.4 10.1.100.100 \

’$ip<tab>DHCP_POOL’

Zone Configuration

Zoneconf.txt stores everything required to gener-
ate the zones outside of the host information itself.
Settings here change rarely and are usually the

purview of senior DNS engineers. By keeping these
options separate we avoid accidental modifications by
junior engineers. The lines of this file are executed in
order, like a sequential programming language.

The file usually starts by setting some options:
When a hAAA-BBB-CCC-DDD external name
is created, what domain is it in?
OBSCUREZONE example.com

OBSCUREZONE indicates the domain name to use
for obscured, or anonymous, hostnames in external
zone files.

SOA, MX, and ZONESERVERS sets the SOA
values, default MX records, and NS records to be
included in any zone file created after this point; see
Display 9.

Notice that most commands are repeated once for
INTERNAL and once for EXTERNAL. These settings
are different for internal and external zones. There is
also ‘‘SLAVE’’, which is an internal secondary. There
is no support for external slave servers at this time as
they tend to be at ISPs and don’t let customers update
their DNS server configurations directly.

When the system generates the named.conf file it
will need to know some parameters to insert into any
‘‘ z o n e ’’ setting. For example, we need to specify who
is allowed to do zone transfers and who is allowed to
do dynamic DNS updates. We set those values as
shown in Display 10.

Now the exciting part where we actually create
some zone files. We do these with commands like
DOMAIN and REVDOMAIN; see Display 11.

These lines direct HostDB to generate the zone
file for corp.example.com, then example.com, then
ex.com.

19th Large Installation System Administration Conference (LISA ’05) 215

HostDB: The Best Damn host2DNS/DHCP Script Ever Written Limoncelli

Order is important here. After a host’s DNS
records are output they will not be output again. If
example.com precede corp.example.com, the zone file
for corp.example.com would be nearly empty, contain-
ing only the required SOA and NS records.

Notice that ex.com is only an external zonefile.
That’s permitted. Domains can be internal-only too. If
you mix and match HostDB will do the right thing.
This can be useful for subdomains that exist only
inside the company.

DOMAIN corp.example.com INTERNAL EXTERNAL
DOMAIN example.com INTERNAL EXTERNAL
DOMAIN ex.com EXTERNAL

Display 11: Creating zone files using DOMAIN.

REVDOMAIN CLASSC 64.32.197.0 INTERNAL EXTERNAL
REVDOMAIN CLASSC 64.32.198.0 INTERNAL EXTERNAL
REVDOMAIN CLASSC 10.1.0.0 INTERNAL
REVDOMAIN CLASSC 10.1.255.0 INTERNAL
REVDOMAIN CLASSB 10.100.0.0 INTERNAL
REVDOMAIN CLASSC 10.254.0.0 INTERNAL
REVDOMAIN CLASSC 172.17.17.0 INTERNAL

Display 12: Creating reverse look up zone files using REVDOMAIN.

SOA EXTERNAL hostmaster.example.com 1H 1H 30D 60M
MX INTERNAL 10 lucy.example.com ; 20 ethel.example.com
DOMAIN corp.example.com INTERNAL EXTERNAL

MX INTERNAL 10 betty.example.com ; 20 wilma.example.com
DOMAIN prod.example.com INTERNAL EXTERNAL

SOA EXTERNAL hostmaster.example.com 2H 2H 30D 60M
REVDOMAIN CLASSC 64.32.197.0 INTERNAL EXTERNAL

Display 13: Specifying varied MX records for a particular domain.

REVRANGE 22.33.44.32 22.33.44.63 32-63.44.33.22.in-addr.arpa INTERNAL EXTERNAL

Display 14: Future style of RFC 2317-style range specification.

Now we can generate the reverse lookup zone
files; see Display 12. The REVDOMAIN options indi-
cate what size in-addr.arpa zone file to create (class A,
B, or C), the starting IP address, and whether this is
internal only or both internal and external.

There are a few tricks one can do. For example,
since the configuration is ‘‘executed’’ line by line, you
can change settings between zones. For example, if
you had different MX records for a particular domain,
you can change along the way; see Display 13.

This would generate corp.example.com with lucy
and ethel as the default MXs. Then the default MXs
would changed to betty and wilma before prod.exam-
ple.com is generated. Then the SOA defaults would be
changed before the reverse domain 197.32.64.in-
addr.arpa would be generated.

Rudimentary support for RFC 2317-style ‘‘class-
less’’ delegations is implemented but not complete.
Eventually there will be a REVRANGE command that
accepts a range like that shown in Display 14. This
will generate a zone file with the specific contents
required for RFC 2317.

Special Cases
While HostDB generates a file named.conf file it

generates a very standard ‘‘zone {}’’ stanza for each
DOMAIN command. If you need something very spe-
cialized, one can use CUSTOMDOMAIN instead.
This will generate no ‘‘zone {}’’ stanza and rely on
you to add one in manually using other means
explained later.

This is particularly important for supporting
Dynamic DNS updates. HostDB supports you by giv-
ing you enough rope to hang yourself.
Summary

That’s all there is to it! You specify what zone
files to create and it generates them plus the
named.conf file. All the hard work is done for you. If
extra lines need to be added to a zone file or configu-
ration file, that can be done with the notation
described in the next section. When the system is fully
configured it should be able to generate all files with-
out any manual intervention.

Header and Footer Files

HostDB can’t be all things to all people, so there
is an ‘‘emergency escape hatch’’ that lets you cus-
tomize any file that is generated. You can add a header
file and footer file to any file created by HostDB. For
any file X generated by HostDB, the file that is actu-
ally created is made up of:

1. The contents of file $TEMPLATES/X-head (if
this file exists).

2. The content generated by the HostDB system.
3. The contents of the file $TEMPLATES/X-tail

(if this file exists).

216 19th Large Installation System Administration Conference (LISA ’05)

Limoncelli HostDB: The Best Damn host2DNS/DHCP Script Ever Written

(The file name suffixes ‘‘head’’ and ‘‘tail’’ are
used instead of ‘‘footer ’’ and ‘‘header ’’ because they
sort better that way.)

This feature is useful for:
• Sneaking special records into a zonefile. If

HostDB won’t generate a zone the way you
want it, add the lines to a -tail file.

• Adding custom zones to a named.conf file. If
there are zones not under HostDB management
you can still add information about them in
named.conf

• Coarsely approximating an ‘‘include file’’
mechanism. If a DHCP server configuration
file doesn’t have an ‘‘include’’ mechanism, you
can wrap the contents of a file around the out-
put of HostDB’s dhcpd.conf

DHCP Generation

HostDB parses the hostdb.txt file and creates the
‘‘host’’ statements appropriate for ISC’s DHCP server.
One stanza is created for each host that has a MAC=
setting. No stanzas are created for hosts without
MAC= settings.

10.10.244.14 dell4.example.com MAC=00:5:3b:F1:21:7a

Display 15: Sample hostdb.txt file.

host dell4.example.com {
hardware ethernet 00:05:3B:F1:21:7A;
fixed-address 10.10.244.14;
option host-name "dell4.example.com";
ddns-hostname "DELL4";

}

Display 16: Generated default template from hostdb.txt file above.

10.10.244.14 dell4.example.com MAC=00:5:3b:F1:21:7a TYPE=win95

Display 17: Minimal template for ‘‘win95’’.

host dell4.example.com {
hardware ethernet 00:05:3B:F1:21:7A;
fixed-address 10.10.244.14;

}

Display 18: Code generated by template above.

10.10.244.13 human1.example.com MAC=00:05:3B:F1:21:7A TYPE=netboot
10.10.244.14 human2.example.com MAC=00:05:3C:E3:32:A4 TYPE=netboot-main
10.10.244.15 human3.example.com MAC=00:05:32:A2:01:12 TYPE=netboot-dev

Display 19: DHCP configuration templates.

A hostdb.txt line that looks like Display 15
would generate the default template like that shown in
Display 16. This is appropriate for most systems.
(Note that the MAC address is reformatted to be pretty
by capitalizing the letters and zero-padding.)

However, if TYPE=foo is included, as alternate
template is used. For example we might want a differ-
ent template if we know the machine has a broken
DHCP client that gets confused by extra data. A
hostdb.txt line like this would select the template
called ‘‘win95’’ which is intentionally minimal (see
Display 17) generates the code shown in Display 18.

If the template includes a hyphen, the text after
the hyphen is passed to the template as a parameter.
Thus templates can be smart. Suppose there is a
default netboot server and a special one for develop-
ers. Templates can be constructed that produce proper
DHCP configuration for each; see Display 19.

Currently the templates are written as subrou-
tines in Perl and are hard coded into the mkdhcp
script. Future versions will move these templates to
their own files, though this work has been deferred to
later because (1) the need for special templates to han-
dle broken DHCP clients is reduced over time as more
vendors figure out how to write DHCP clients that
aren’t broken, (2) nobody’s really complained about
the system as it is.

Deployment (Phear My Aw4z0m3 Makefile Skilz!)

Generating zone files and configuration files is
not enough. They must be deployed to be useful.

Rather than generate files directly where they
will be used, HostDB generates all files in a directory
called ‘‘out’’ (short for output). Sites with a very large
legacy system for DNS/DHCP management can sim-
ply copy the newly generated files (or just the files
that are useful to them) out of this directory. However,
HostDB includes a tool that makes this even easier
called mkdestination. It generates a Makefile that
‘‘does the right thing.’’

Mkdestination takes ‘‘destination.txt’’ for input,
and generates ‘‘destination.mk’’ which can be used in
the Makefile that drives your DNS/DHCP service.

Consider short example destination.txt file
shown in Display 20. The format is a simple list
source files, the ‘‘->’’, then destinations. Destinations

19th Large Installation System Administration Conference (LISA ’05) 217

HostDB: The Best Damn host2DNS/DHCP Script Ever Written Limoncelli

can be a file name or directory on the local machine or
some other. There is no macro expansion or other sub-
stitution mechanism because we want to keep the for-
mat simple.

INTERNAL.example.com INTERNAL.198.32.64.in.addr.arpa -> \
/var/named/. secondary:/var/named/.

INTERNAL.named.conf -> /etc/named/named.conf

SLAVE.named.conf -> betty:/etc/named/named.conf

Display 20: Sample destination.txt file.

destinations.mk: ../destinations.txt
mkdestinations <../destinations.txt >destinations.mk

push: destinations.mk
make -f destinations.mk all

push-local: destinations.mk
make -f destinations.mk all-local

Display 21: Using mkdestinations in a Makefile.

The first line says that to deploy INTER-
NAL.example.com and INTERNAL.198.32.64.in-addr.
arpa one should copy it into the local directory
/var/named, and scp it to a /var/named on a machine
called ‘‘betty’’. The next two lines specify that a file is
to be copied to a particular filename. This permits one
to rename files as they are copied.

Display 21 shows how one might use mkdestina-
tions in a master Makefile.

Invoking ‘‘make push’’ would generate the desti-
nations.mk file (if needed) then run the ‘‘all’’ recipe.
The recipes in the destinations.mk file ‘‘do the right
thing’’ for all files mentioned in destinations.txt.
‘‘make push-local’’ is similar but runs the ‘‘all-local’’
recipe, which only deploys files destined for the local
machine. This is useful for testing purposes.

Mkdestinations is needed to overcome limita-
tions in ‘‘make’’. ‘‘Make’’ has no awareness of remote
file timestamps, nor can ‘‘make’’ handle a dynamic
list of zones and files with multiple destinations.

Efficient Updates of Remote Files
Make has no idea if betty:/var/named/named.

conf is up to date because it is on a different machine.
Therefore, mkdestination compensates by creating
local timestamp files after a remote operation is com-
plete (that is, after a remote file is updated success-
fully it touches a local file whose name encapsulates
the destination server and filename). Future timestamp
comparisons can be done against the local file. Rather
than recopying a file to a remote machine ‘‘just in
case’’, the timestamps can be compared. In the case of
copying a file to betty:/var/named/named.conf, the
timestamp file ds/ betty__var_named_named.conf is
created. (The actual filename is much more compli-
cated to encode special characters that might cause
problems.)

Mkdestination also creates a recipe called
‘‘clean’’ which deletes all timestamps. Thus, to force a

‘‘push’’ to all other hosts, simply ‘‘make clean’’ then
‘‘make push’’ and all files will be copied whether they
need it or not.
Efficient Zone Serial Number Updates

The other interesting feature of mkdestination is
that it is smart about zone serial numbers.

DNS zone files have an embedded serial number
which is used to determine when zone transfers are to
happen. If a secondary has a zone of serial number X,
and is told that the primary has a higher serial number,
it requests a download of that zone (a ‘‘zone trans-
fer ’’). Zone transfers are a CPU- and (possibly) net-
work-intensive operation. We want to prevent gratu-
itous zone transfers.

The problem, however, is that the only way to
know if a zone file will change is to generate the new
one and compare it to the old one. The comparison
can’t be a simple ‘‘cmp’’ or ‘‘diff’’ because the serial
number inserted into the zone file will be different
every time. Most changes to hostdb.txt tend to affect
only a few zone files.

Again, mkdestination to the rescue. mkdestina-
tion knows about serial numbers and can do compar-
isons that ignore the serial number line of a zonefile.
The methodology is as follows.

HostDB generates all files in a directory called
‘‘out’’. Any file that needs a serial number contains
the text ‘‘:serial:’’ anywhere a serial number is to be
placed. This makes comparison of zone files easier.
Any file that did change is copied to a directory called
MP and another copy is placed in a directory called
MS. The MP directory contains a plain copy of the
zone but the MS directory contains a copy of the file
with ‘‘:serial:’’ changed to the serial number used for
all files generated at that time. When deciding which
files need to be deployed, the timestamp of MS is used
to determine if the file needs to be copied but the file
that is copied comes from MP.

After a file is successfully deployed, a timestamp
file is created in the DS directory marking the comple
tion. In the case of copying a file to betty:/var/named
named.conf, the timestamp file with a name like DS/
betty__var_named_named.conf is created. The result is

218 19th Large Installation System Administration Conference (LISA ’05)

Limoncelli HostDB: The Best Damn host2DNS/DHCP Script Ever Written

that files are only copied when absolutely needed. It is
optimal.

At a site with dozens of zones the DNS servers
were being hit fairly hard by all the zone transfers.
After mkdestination’s technique was deployed the
administrators were very happy to see that very few
zones were actually being transferred after typical
updates. It was quite impressive to see many, many
zone files with an assortment of serial numbers as
diverse as the history of updates had dictated. Yet, no
tool more complicated than ‘‘mkdestination’’ and
‘‘make’’ was needed.

If this sounds confusing to you, just be happy in
the knowledge that you don’t have to understand it to
benefit from the efficiencies. Files that don’t need to
be copied across your network aren’t copied.

genrange >hostdb.txt -d example.com 10.1.1.0 10.1.1.139
genrange >>hostdb.txt -d example.com 10.1.1.140 10.1.1.250 ’$ip\tDHCP_POOL’
genrange >>hostdb.txt -d example.com 10.1.1.251 10.1.1.255
genrange >>hostdb.txt -d example.com 64.32.179.0 256 ’#$ip\tex$hex.$DOMAIN\@EXTERNAL’

Display 22: Generating hostdb.txt from scratch.

#10.1.1.0 UNUSED0A010100.example.com
#10.1.1.1 UNUSED0A010101.example.com
...elided for space...
#10.1.1.138 UNUSED0A01018A.example.com
#10.1.1.139 UNUSED0A01018B.example.com
10.1.1.140 DHCP_POOL
10.1.1.141 DHCP_POOL
...elided for space...
10.1.1.249 DHCP_POOL
10.1.1.250 DHCP_POOL
#10.1.1.251 UNUSED0A0101FB.example.com
#10.1.1.252 UNUSED0A0101FC.example.com
#10.1.1.253 UNUSED0A0101FD.example.com
#10.1.1.254 UNUSED0A0101FE.example.com
#10.1.1.255 UNUSED0A0101FF.example.com
64.32.179.0 ex4020B300.example.com
64.32.179.1 ex4020B301.example.com
...elided for space...
64.32.179.254 ex4020B3FE.example.com
64.32.179.255 ex4020B3FF.example.com

Display 23: Output from above commands.

Deployment Examples

Here are two examples of how to deploy
HostDB. First we will consider a new site starting
from scratch. Then we will see how easy it is to
deploy in a pre-existing environment.

We need a place to put our files. The HostDB
files can be put in any directory as your site’s require-
ments dictates (/var/hostdb or /home/adm/hostdb is
typical). HostDB assumes that all executables will be
found in the shell’s PATH. As a result, test datasets
can be placed anywhere (even /tmp). When testing
new executables, one can simply put the newer ver-
sions ahead of the older ones in the shell’s PATH.

In these examples we will use /var/hostdb and
assume the PATH is set correctly.

Example 1: Starting from Scratch
In this example we are starting from scratch.

Imagine we are setting up a new network for a new
company. We have one external network (64.32.179.0/
24) and one internal network (10.1.1.0/24). There will
be a dhcp pool from .140 to .250 in the first network.

We begin by generating the hostdb.txt file. We
generate a list of each IP address. That way when a
junior engineer goes to allocate an IP address, they
don’t have to understand anything but (1) find an
unused address on the right subnet, (2) remove the
comment symbol and change the hostname as appro-
priate. This prevents them from introducing typos into
the list of IP addresses, and prevents mistakes such as
thinking they can create new IP subnets by simply
editing this file. It also keeps the file neat and orderly
in case you work with people that can not be trusted to
keep a file in numerical order.

Display 22 shows commands that will generate a
hostdb.txt that is a good starting point.

• Line 1 creates commented-out sample lines for
the first 140 addresses.

• Line 2 creates addresses for our DHCP pool.
Note the custom template.

• Line 3 completes the internal network’s addresses.
• Line 4 uses a different template for the external

hosts. It also demonstrates that if the second IP
address is replaced by an integer, it is inter-
preted as a count of how many lines to output
instead of an end address.

Display 23 shows the output.

Now edit the hostdb.txt to include the initial
hosts that will be installed. To make sure that nobody

19th Large Installation System Administration Conference (LISA ’05) 219

HostDB: The Best Damn host2DNS/DHCP Script Ever Written Limoncelli

tries to allocate a broadcast address, we mark the ‘‘all
zeros’’ address as ‘‘foo-net.example.com’’ and the ‘‘all
ones’’ address as ‘‘foo-bcast.example.com’’ where
‘‘foo’’ is a unique name for each subnet. Display 24
shows the non-comment lines.

10.1.1.0 main-net.example.com
10.1.1.1 zathras-main.example.com ISROUTER=zathras.example.com
10.1.1.2 fileserver.example.com
10.1.1.3 mailserver.example.com ISMAILSERVER
10.1.1.4 vector.example.com
10.1.1.10 staffpc1.example.com MAC=00:b0:d0:a6:cf:f1
10.1.1.11 staffpc2.example.com MAC=00:b0:d1:a7:c0:d1
10.1.1.11 staffpc2.example.com MAC=00:b0:c2:b3:c3:d3 TYPE=freebsd
10.1.1.140 DHCP_POOL
10.1.1.141 DHCP_POOL
10.1.1.142 DHCP_POOL
...elided for space...
10.1.1.249 DHCP_POOL
10.1.1.250 DHCP_POOL
10.1.1.255 main-bcast.example.com@EXTERNAL
64.32.179.0 ext-net.example.com@EXTERNAL
64.32.179.1 isp-router.example.com@EXTERNAL
64.32.179.2 zathras-ext.example.com@EXTERNAL ISROUTER=zathras.example.com@EXTERNAL
64.32.179.3 mailqueue.example.com@EXTERNAL ISMAILSERVER
64.32.179.4 vector.example.com@INBOUNDNAT
64.32.179.5 exweb.example.com ANAME=www.example.com@EXTERNAL
64.32.179.255 ext-bcast.example.com@EXTERNAL

Display 24: Edited hostdb.txt file.

TEMPLATEDIR ..
OBSCUREZONE example.com

SOA INTERNAL hostmaster.example.com 3h 1h 1w 1h
SOA EXTERNAL hostmaster.example.com 3h 1h 1w 1h

MX EXTERNAL 10 mailserver.example.com
MX INTERNAL 10 mailqueue.example.com ; 20 s1.isp.com

ZONESERVERS INTERNAL fileserver.example.com mailserver.example.com
ZONESERVERS EXTERNAL mailqueue.example.com exweb.example.com

ALLOW-UPDATE INTERNAL done
ALLOW-UPDATE INTERNAL none
ALLOW-UPDATE SLAVES none
ALLOW-UPDATE EXTERNAL none

DOMAIN example.com INTERNAL EXTERNAL
REVDOMAIN CLASSC 10.1.1.0 INTERNAL
REVDOMAIN CLASSC 64.32.179.0 INTERNAL EXTERNAL

Display 25: Example zone.txt file.

bash/sh/ksh alias:
alias makeh=’cd /var/hostdb/out && make -f ../Makefile’

csh/tcsh alias
alias makeh ’cd /var/hostdb/out && make -f ../Makefile’

Display 26: Shell ‘makeh’ alias definitions.

Display 25 shows our zoneconf.txt file, which
is almost the same as the example provided with the
software. Most sites can use this template and simple
change ‘‘example.com’’ to their domain and edit
their MX records and ZONESERVERS to suit their
needs.

The last three lines show which zones to generate.
First the zone for example.com, which has different

values for the internal and external version. Next we
generate the reverse lookup zone for 10.1.1.0/24,
which only generates an internal zone file. Lastly we
generate the 64.32.179.0/24 zone reverse lookup
which has different internal and external values.

Copy the template Makefile into the main direc-
tory and we are ready for our first attempt at generat-
ing our zones. To save ourselves typing, we’ll create
an alias for bash/sh/ksh or csh/tcsh (see Display 26).
Then we can do ‘‘makeh’’ to generate a new set of
files. If we are happy we can do ‘‘makeh push’’ to
deploy the files. As a result, the ‘‘out’’ directory now
contains:

220 19th Large Installation System Administration Conference (LISA ’05)

Limoncelli HostDB: The Best Damn host2DNS/DHCP Script Ever Written

$ ls -1
EXTERNAL.179.32.64.in-addr.arpa
EXTERNAL.example.com
EXTERNAL.named.conf
EXTERNAL.named.root
INTERNAL.1.1.10.in-addr.arpa
INTERNAL.179.32.64.in-addr.arpa
INTERNAL.example.com
INTERNAL.named.conf
SLAVE.named.conf

Notice that each filename is prefixed with ‘‘INTER-
NAL.’’, ‘‘EXTERNAL.’’ or ‘‘SLAVE.’’ . All other
files are tagged as being appropriate for either the
inside or the outside. EXTERNAL.named.root is the
NIC’s ‘‘root cache’’ file which the Makefile automati-
cally retrieves via FTP.

EXTERNAL.named.conf -> mailqueue:/etc/namedb/named.conf \
exweb:/etc/namedb/named.conf

EXTERNAL.example.com EXTERNAL.179.32.64.in-addr.arpa \
EXTERNAL.named.root -> \
mailqueue:/var/named/. exweb:/var/named/.

INTERNAL.named.conf -> fileserver:/etc/namedb/named.conf \
mailserver:/etc/namedb/named.conf

INTERNAL.example.com INTERNAL.1.1.10.in-addr.arpa \
INTERNAL.179.32.64.in-addr.arpa -> fileserver:/var/named/. \
mailserver:/var/named/.

Display 27: File ../destinations.txt: where files are to be copied.

Now check the zone files by manual inspection.
Correct any errors by editing ../hostdb.txt and re-run-
ning ‘‘makeh’’ until you are satisfied.

Notice that in addition to zone files, ISC BIND
named.conf files are generated. If you examine them,
you’ll find them very anemic. They just contain the
‘‘ z o n e {}’’ entries which are automatically generated. To
create a complete file, determine what you would put
before and after the generated parts and put them in the
proper -head and -tail files. Any text in ../INTER-
NAL.named.conf-head is prepended to the generated
file, and any text in ../INTERNAL.named.conf-tail is
appended to the end of the generated file. The same is
true for all files generated by the system.

Now that we are happy with the files being gen-
erated, it’s time to tell HostDB where to put them. To
do that, we create ../destinations.txt which lists where
each file is to be copied; see Display 27.

• Line 1 specifies that EXTERNAL.named.conf
is to be copied to mailqueue.example.com in a
directly called /etc/namedb. It is renamed to
named.conf as it is copied. It is also copied to
exweb.

• Line 2 specifies three files that are to be copied
to two servers in their /var/named directories.
The files are not renamed as they are copied.
Instead, we will make sure the configuration
files that refer to these files must specify the
filename as they exist.

• Line 3 is like line 1 but for the internal servers.
• Line 4 is analogous to line 2.

This command will generate a makefile that will do the
actual copying: makeh destinations.mk . Finally,
‘‘ m a k e h push’’ will actually copy the files into place. A
few rounds of debugging and the system is deployed.

Example 2: Replacing a Legacy System
In this scenario we have a working system where

we hand-edit zone files and copy them using a shell
script. To move from a legacy system to HostDB
requires a lot of testing. HostDB includes utilities that
help every step.

The first and most difficult step is to convert the
zone files and turn them into hostdb.txt format. This is
the reverse of what HostDB does! Sadly, we can’t
reverse the polarity of the flux capacitor and have
everything ‘‘just work.’’ Luckily, the HostDB package
includes zone2hostdb which does 90% of the work for
you. It takes a zone file as input:
zone2hostdb <zonefile >hostdb.txt-base

Since this step is automated we reduce the poten-
tial for mistakes considerably.

This gives you a first draft of what hostdb.txt
should be. Now check these issues:

• Verify all mail servers are listed as ISMAIL-
SERVER

• Verify that all routers and multihomed hosts are
marked as ISROUTER or ISMULTIHOMED
as appropriate

• Mark any broadcast addresses so they are not
accidentally used

• Check any ANAMEs to verify that the official
name is listed first on the line and that actual
aliases are listed in an ANAME. This assures
proper PTR records

• If any special cases are in place for PTR records,
make sure the name to be used for the PTR
record is always the first hostname on the line

• Set the scope to @EXTERNAL for any hosts
accessible externally

• Set the scope to @INBOUNDNAT for any host
that is accessed by external users by a different
address than internal users

• Set the scope to @EXTERNALONLY for any
hostnames only external users should access
(very rare)

• Anything else ‘‘special’’ about your DNS zones

19th Large Installation System Administration Conference (LISA ’05) 221

HostDB: The Best Damn host2DNS/DHCP Script Ever Written Limoncelli

The next step is to use genrange to enumerate
every IP address that should be listed in your
hostdb.txt file, whether it is commented out or not. We
use the same ‘‘genrange’’ commands as in the first
example except we save the output to a file called
hostdb.txt-enum.

INTERNAL.example.com -> dnsserver:/var/named/zone.example.com..zone

Display 28: Replacing a legacy zone file.

mergeiplists hostdb.txt-base hostdb.txt-enum >hostdb.txt

Display 29: Merging lists.

HostDB includes a utility called ‘‘mergeiplists’’
that will merge these two lists properly even though
some of the lines are commented out. It assumes the
first appearance of an IP address is the authoritative
line and throws the others away. Thus, we list the
hostdb.txt-base first because our hand-edited file
should be authoritative; hostdb.txt-enum is just to fill
in the gaps; see Display 29. Now we have a pretty
decent draft of our hostdb.txt file.

Before we can put it into use, we should test it
extensively and then only switch to it incrementally.

Testing is made easier by a utility that is included
called ‘‘canonzone’’. Comparing two zone files can be
difficult because of small changes in white space, sort-
ing, and so on. ‘‘canonzone’’ reads a zone file and out-
puts it in a very specific, clean, regular, format (a
canonical format). If you are comparing a legacy zone
file and a generated zone file, pass both thought
canonzone first and the comparison will be much eas-
ier. The distribution includes a file called ‘‘Exam-
ple_comparezones’’ which takes two files, passes
them through canonzone, strips them down to just
DNS A records, and compares them.

Here are some tips for testing your new zones:
• Use Example_comparezones as a template for

your own comparison scripts.
• Review each email server and verify the MX

records are as required.
• Review all other servers and verify their DNS

records are as expected.
• Review each external host and verify all of its

records (test from inside and outside).
• Set up a new DNS server and load the zones.

Make sure they load without outputting any
errors or warnings in BIND’s logfile.

• Query the DNS server to make sure you get
expected results for mail servers and other
important hosts. When you are satisfied, ask
co-workers to do the same.

• When you are satisfied, configure yourself and
a few trusted users’ machines to use this new
DNS server. If anything breaks, fix it. After a
few days, have your coworkers switch to this
DNS server. Make sure they know to report
problems to you.

When you are satisfied with the zone files, you
can slowly migrate them into your legacy system. The

destinations.txt file can be used to roll out just the spe-
cific zones you are confident in.

Suppose your legacy system loads your main
zone from a file called /var/named/zone.example.
com..zone, you can replace that file with the HostDB-
generated file with a statement like that shown in Dis-
play 28. Obviously you should make good backups
before deploying any new zones.

To push that zone out, ‘‘makeh push’’.

Te s t , test, test. Be ready to revert to the legacy
zone if the problems you find are insurmountable. Fol-
low any in-house procedures related to change windows
and so on. For example, do not introduce new zones:

• Right before you leave for vacation
• The same week as the quarterly results or taxes

are being prepared
• The week of a major deadline for your company
• The week raises and promotions are being

decided

Lastly, you can replace your named.conf files with
the ones that are generated by HostDB (though if your
zone filenames change, be very careful!). You should
also integrate the Makefile into your system so that it
controls all DNS-related activity from one central point.

Related Work

There are many other open source systems that
do some or part of what HostDB does. There are even
a few that do a lot more, especially where dynamic
registration is involved. However, the goal of HostDB
is to maximize features without having to resort to
requiring a web front-end or SQL backend. The author
believes HostDB is superior to all systems that don’t
require an SQL backend, and easier and faster to install
than any of the systems that require SQL databases.

Here is my comparison to some popular utilities:
• h2n – O’Reilly’s ‘‘DNS and BIND’’ by Paul

Albitz and Cricket Liu comes with h2n (and an
enhanced version is called h2n-hp). These are
fine DNS generator scripts. While it can be
used for one-time conversion, there are features
that let you maintain the host list as a /etc/hosts-
like file. However, this is a ‘‘kit’’, not a com-
plete system. It does not include anything like
mkdestinations for deployment. No DHCP sup-
port. Source: www.oreilly.com/catalog/dns3 .

• DNSDusty – While this system does automate
deployment of the files it generates, it requires
a web interface (but no SQL database). It
makes adding a host very easy for a junior
sysadmin once it is set up. No DHCP support.
Source: www.poochiereds.net/dnsdusty .

222 19th Large Installation System Administration Conference (LISA ’05)

Limoncelli HostDB: The Best Damn host2DNS/DHCP Script Ever Written

• dnscvsutil – Maintains your DNS zone files under
CVS control and automatically updates reverse
zones. Helping someone do a better job of main-
taining hand-edited zone files is exactly the oppo-
site of what I want to encourage. Though, revi-
sion control is better than no revision control. No
DHCP support. Source: freshmeat.net/projects/
dnscvsutil .

• Sauron – Sauron is a free DNS/DHCP manage-
ment system with Web and command line inter-
faces. It can manage multiple servers and gen-
erates complete dhcpd and named configura-
tions from the database. This is a very complete
and impressive package. It manages deploy-
ment of generated files. However, it does
require a web interface and SQL database.
Source: http://sauron.jyu.fi/ .

• Updatehosts – A very comprehensive system for
managing DNS information. This is popular at
many large commercial sites. However, the
learning curve seems overly steep as it requires
understanding of database relations. This is not
for the neophyte or someone trying to set up a
new site quickly. Requires SQL. No DHCP sup-
port. Source: ftp://ftp.tic.com/pub/updatehosts .

The Future

New features are added to HostDB on a regular
basis.These projects are being considered:

• Make testing even easier: mkdestination should
create a ‘‘diff’’ recipe that diffs the last distrib-
uted against the most recently generated files.

• Eliminate the need to modify the default Make-
file: Move ‘‘restart commands’’ to the mkdesti-
nation system.

• Add classless delegation support: Complete sup-
port for RFC 2317-style ‘‘classless’’ delegations.

• Add IPv6 support: Add support for IPv6
records. (Those long addresses aren’t going to
be fun to type. We need some human-factors
help here.)

• Improve legacy conversion: Update zone2hostdb
to read multiple zones, including reverse DNS
zones, and use the information to do a better job.
In particular, PTR records could be an indicator
of which name is a canonical name and which is
an ANAME.

Conclusion

HostDB generates really cool DNS zone files with
all the features required by sites with complicated DNS
configurations, such as aliases, ‘‘external only’’ names,
‘‘ h o s t hiding’’ and multihomed hosts. It also generates
the ISC BIND configuration files required for primaries,
secondaries, and external DNS servers. DHCP configu-
ration for static leases are generated for ISC DHCP
using a very flexible template-based mechanism. It is
easy to configure and deploy, yet sophisticated behind

the scenes. It does not offer complicated features such as
real-time host authorization, web front-ends, or any fea-
ture that required sophisticated and difficult to maintain
databases.

Deploying the files is made easier through the
use of a simple Makefile that is generated for you. The
updates are very sophisticated, doing the minimal
number of updates locally and to remote machines,
even being careful not to create ‘‘zone transfer
storms’’ by not updating a new serial number for a
zone that does not warrant it.

Availability

The software open source and is available at
http://www.everythingsysadmin.com/hostdb on the web.

Acknowledgements

I would like to thank Glenn Sieb for his feedback
when designing the file formats, David H. Potter for
assistance developing the mkdestination algorithm,
Joe Gross who read the most painful early drafts of
this paper and helped me turn it into a much better
paper, and Josh Simon for his editing and proofread-
ing assistance.

References

Albitz, Paul, Cricket Liu, DNS and BIND, Fourth Edi-
tion, O’Reilly, April, 2001.

Cheswick, William R., Steven M. Bellovin, Aviel D.
Rubin, Firewalls and Internet Security:
Repelling the Wiley Hacker, 2nd Edition, Addi-
son-Wesley, February, 2003.

Christiansen, Tom, Nathan Torkington, Perl Cook-
book, Second Edition, O’Reilly, August, 2003.

Limoncelli, Thomas A. and Christine Hogan, The
Practice of System and Network Administration,
Addison-Wesley, 2002.

Wall, Larry, Tom Christiansen, Jon Orwant, Program-
ming Perl (third edition), O’Reilly, July, 2000.

19th Large Installation System Administration Conference (LISA ’05) 223

