
USENIX Association

Proceedings of the 17th Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26–31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

ISconf: Theory, Practice, and Beyond
Luke Kanies – Reductive Consulting, LLC

ABSTRACT

ISconf is a configuration management system (CMS) developed through years of experience
automating configuration management. As the number of CMS’s available for use increases, attempts
have been made to explain why one should use ISconf instead of those other tools; specifically, a stark
contrast has been made between tools which depend on convergence, like cfengine, and ISconf, which
strives for congruence. This paper discusses production experience with ISconf, what was good and
what was bad, and also analyses recently developed theories used to explain why ISconf might be
superior to other tools. It further discusses experience integrating ISconf with cfengine, a process in
direct conflict with the accepted ground rules for using ISconf. Based upon this experience, there are
serious limitations in practical usage of ISconf, and proposed theories that support its use are insufficient
and unconvincing. Although ISconf has been found to be a useful tool, it cannot be considered a
sufficiently useful or powerful answer to arbitrary configuration management needs on its own.

Introduction

ISconf [isconf] began life as a makefile [make],
as described in Boostrapping an Infrastructure by
Traugott, et al., [bootstrap]. It was a file specifically
ordered and arranged to describe the dependencies and
relationships between different hosts and the work that
needed to be done on those hosts. Every host was
listed as a make target and had a list of dependencies
associated with it; one could simply run make -f
isconf.mk <hostname>, and make would verify that all of
those dependencies had been resolved. This is a very
simple concept; Unix system administration can usu-
ally be broken down entirely into a sequence of com-
mand lines, and this structure merely took advantage
of that by maintaining that list of command lines in
the order they were executed on a given host.

Although ISconf has gone through two full
rewrites since that initial version, it has barely changed
at all in practice. It still functions entirely as a means of
associating a list of command lines with a given host
name, and that list of command lines is still contained in
a makefile; all that has changed is how the order of
commands is maintained and how the mapping between
host names and commands is maintained.

What has changed the most about ISconf in that
intervening time is the theory behind it. While it was
originally developed out of practice, and its usefulness
hinged entirely on experience, attempts have been
made to provide a theoretical basis for ISconf’s supe-
riority as a tool [order]. While these attempts at theory
cannot lessen ISconf’s basic usefulness, they have
served to muddle the practice of using ISconf, because
of that theory’s requirement that ISconf not be used in
conjunction with any other CMS.

Recent Developments in Theory, and Their Conse-
quences

Initial usage of ISconf demonstrated that it was
very simple to develop a list of commands used to

build a system, and that if those commands were
replayed in the exact order on another host, a host with
the same traits as the first could be easily and consis-
tently built. This was found to be very useful, both for
disaster recovery and for duplication of system config-
urations. The theoretical developments around ISconf
call this deterministic ordering, because they state that
the ordered list must be executed in that specific order
every time, with no deviation.

This deterministic ordering requires three fea-
tures that all known versions of make possess: State
maintenance, failure on error, and consistent ordering.
This has allowed make to be the engine for all of
ISconf ’s functionality with minimal development.
Unfortunately, this ordering requirement also intro-
duces a requirement that make cannot meet: any fail-
ures must leave the system completely unmodified and
in a recoverable, consistent state, meaning that suc-
cessful steps attempted as part of an unsuccessful
sequence must be backed out completely, leaving the
system as though the sequence had never been begun.
This concept is called atomicity [prolog].

State Maintenance

The functionality of make centers around know-
ing how to build programs which rely on various input
files. One develops a list of commands, known as a
stanza, named for the file one wants to create; if that
file does not exist, or is out of date, then those com-
mands should be run. If the commands do not create
the named file, then the commands will be run again
when make is executed again.

ISconf has a special stamps directory devoted to
files marking completed commands. All make stanzas
executed by ISconf perform their appointed task and
then put a stamp file in this directory to mark that they
have completed successfully. Given a list of depen-
dencies associated with a host, make will only execute
those dependences for which a stamp file does not

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 115

ISconf: Theory, Practice, and Beyond Kanies

exist; therefore, make is maintaining a representation
of the state that the host is in. Here is an example
stanza, to elucidate this process:
enable_ftp:
cp /etc/inetd.conf /tmp/inetd.conf
sed ’s/#ftp/ftp/’ /tmp/inetd.conf \

> /etc/inetd.conf
/etc/init.d/inetd restart
touch $@

This stanza makes a backup of the config file to
be modified, then uses sed to uncomment ftp from that
backup file and overwrite the main configuration file.
Inetd is then restarted. Finally, a file with the same
name as the stanza (the macro $@ refers to the name
of the stanza being executed in make) is created so the
stanza does not get run again.
Failure on Error

As make works its way through a list of com-
mands to execute, it exits immediately if any of those
commands fail. This fits its original purpose well,
because it is assumed that some later file requires the
file that just failed to be built. This assumption works
well with ISconf, also; if a command fails, then we
want ISconf to exit immediately, because it is likely
that some later command will depend on the command
that just failed.

Thus the fact that make exits immediately upon
encountering an error is used in ISconf to maintain
ordering; if a command fails but the next command is
executed, we will be executing our command list in an
order different from that specified in the configuration.
Having this failure on error guarantees that all of our
hosts have executed up to the point where they com-
pleted their command list or they encountered an error,
but in no instance did they skip a step or execute a
step out of order.
Consistent Ordering

Configuration files for make, also called make-
files, are organized in the form of stanzas, each of
which have up to three parts. All stanzas have a name,
followed by a colon (:). If the stanza has any prerequi-
sites, they will be on the same line as the stanza name,
after the colon. If there are any commands associated
with the stanza name, they begin on the next line after
the stanza name and are indented. Long lines can be
continued with an escaped carriage return.

The make program uses a stable topological sort
to determine the execution order of commands speci-
fied in its configuration files. Make builds a topology of
all parent-child relationships, ordered by the declared
dependencies and the order in which they appear in the
config files, and then linearly walks through these rela-
tionships, executing children first and then parents. As
long as the parent-child relationships and the order in
which they are specified stay the same, make will exe-
cute the commands in the same order every time.

ISconf exploits this consistent ordering. It would
be straightforward to develop a tool which consistently

performs a list of commands in the exact order they are
specified, but make conveniently already has that fea-
ture, so ISconf takes advantage of it.

Atomicity
Unfortunately, something that ISconf also

requires but that make cannot deliver is the atomicity
of all procedures. A set of commands must either
complete entirely, or the set must fail entirely and not
modify the system at all. If a sequence of commands is
begun but a failure is encountered, then the entire
sequence should be backed out, so that the system is
left in an unmodified state. If this cannot be done, then
the system is likely to be in an inconsistent or non-
functional state. It is possible to make ISconf stanzas
idempotent, so that they could be run multiple times
with no ill effect, but it is far more difficult and elimi-
nates the simplicity that ISconf provides. If all stanzas
were idempotent, then most configuration errors could
be easily corrected on the next run of ISconf.

For instance, consider modifying the configura-
tion file of an important service like bind: given a
sequence of commands that modify a configuration
file and then restart the service, if the restart fails
because of a typo in the modification but the modifica-
tion is not backed out, then the service will be down
until a human intervenes.

ISconf requires another level of atomicity; each
stanza that ISconf executes must also be atomic. If a
stanza has multiple commands that modify a system
and that stanza fails, then human intervention will cer-
tainly be required to either manually complete the
stanza or manually back out the completed portions of
the stanza. Given a stanza that creates a directory and
then adds it to a system’s NFS exports file, consider
what happens if the directory creation succeeds but the
configuration change fails. Normally one would solve
the configuration problem and let ISconf run the
stanza again, but the second time the stanza runs, the
directory creation fails because the directory already
exists. A human must modify the system manually in
some way to solve this problem.

Atomicity at both the stanza and the sequence
level are required by ISconf, but we see that both are
missing, partially because make lacks them and par-
tially because atomicity is a difficult problem [matu-
rity]. ISconf certainly is not any more immune to these
problems than other CMS’s, and its use of make makes
it more susceptible in some ways, especially since
atomicity problems can creep into make stanzas in
ways which don’t show themselves until the stanza
has already been run many times.

Practical ISconf Usage

One of ISconf’s biggest strengths is that work
performed with it is very similar to work performed by
hand, so it is very easy to make progress quickly.
Unfortunately, whereas a human would naturally take

116 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Kanies ISconf: Theory, Practice, and Beyond

into account the differences between different hosts,
those differences have to be coded into ISconf, and it
is impossible to code for all of them. This is where
ISconf begins to run into real trouble.

Day to day use of ISconf is affected most by the
fact that it relies on make as its execution engine. The
best it can hope to do is optimize the mapping
between hosts and their execution lists, and possibly
simplify some aspects of using make. Most people
looking for configuration management systems are
seeking some way to better understand the mainte-
nance of their servers, and ISconf is limited in its abil-
ity to provide this understanding. ISconf remains use-
ful as long as it is treated as a modest tool with modest
goals, but as soon as one begins expecting functional-
ity on par with a full CMS, severe limitations surface.

ISconf ’s Feature Set

ISconf is an interface to make, and not much else.
It is entirely a tool for mapping hosts to commands. If
there are functions one needs to perform, those func-
tions must be written. There is no higher-level func-
tionality, no advanced toolset, no powerful configura-
tion language, and no reusable component system. In
fact, the ordering that ISconf requires is really the only
thing it offers, whereas other configuration manage-
ment systems usually lack this ordering but provide
some semblance of all of the above features. In choos-
ing between ISconf and most other CMS’s, this is
largely a choice between a tool which easily organizes
work and a tool which makes the work itself easier.

It is true that many of these features could be
developed over time, especially the advanced toolset.
ISconf 3 already has a number of useful utilities.
ISconf ’s use of make as its API to the utilities upon
which it depends requires that these utilities must also
be capable of functioning independently, because very
little information can be passed from ISconf to the util-
ity being executed. This lack of integration also places a
lower burden of consistency on the authors of the utili-
ties, which means that utilities are likely to have more
localization and individuality than is desirable for a
component of a CMS, placing a further burden on the
sharing of code. Alva Couch’s paper on script maturity
[maturity] discusses this topic in more detail.

Because ISconf stanzas depend heavily on the
environment for which they were written, the share-
able utilities would have to be more abstract than the
actual stanzas. So, in order to make it possible to reuse
someone else’s ISconf code, that code must be written
such that it operates irrespective of how it is called by
ISconf, which is equivalent to saying it must be able to
operate completely independently. Thus, these utilities
could be written for any CMS, and cannot be specifi-
cally written for ISconf, so ISconf confers no advan-
tage here at all, and is detrimental in that it presents
that additional burden of abstraction to those who
would like to write shareable utilities.

What ISconf Understands
Similar to how make depends on the writer of the

makefile to understand the files it is managing, ISconf
depends on its maintainer to understand the commands
it is executing. ISconf currently enforces ordering
entirely at the command level, not at a symbolic or
functional level. This is in stark contrast to tools like
psgconf [psgconf], which are specifically developed to
manage systems at a symbolic level – much easier for
humans to understand – and rely on the CMS to map
the symbols into a deployed configuration.

In most ways, this is a limitation of ISconf. At first
glance, ISconf makes managing a system as easy as
managing a development project, but with use, it
quickly becomes more complicated to control. psgconf
must understand all files it maintains well enough to
rebuild that file from scratch without changing anything
else; as a result, an invocation can help one quickly
recover from a configuration problem or a lost file.

ISconf provides none of this understanding, which
means that more research is required before any change
is queued, and any misconfiguration requires time and
attention from a system administrator. Consider manag-
ing the /etc/services file, which is used for mapping ser-
vice names to numbers. In psgconf, a specific mapping is
maintained in a symbolic form and then converted to a
file, so managing this file involves changing this sym-
bolic form, which is very easy for a sysadmin:
Entries for /etc/services in psgconf
port_names {

"1/tcp" => tcpmux,
"7/tcp" => echo,
"7/udp" => echo,
"9/tcp" => discard,
"9/udp" => discard,
"11/tcp" => systat,
...

};

Any errors in this configuration can be easily repaired,
and the file can be instantly regenerated with correct,
valid contents.

In ISconf, however, the sysadmin merely queues
up a command which does what she thinks is appro-
priate. If the sysadmin made a typo that was not dis-
covered until the stanza was already deployed, then
the file may have to be recovered from backup (during
which time the system is in a failure state), or a throw-
away stanza must be built to recover from the error;
see Listing 1.

You can see that if a few such throwaway stanzas
are made, it quickly becomes very difficult to under-
stand exactly how a given ISconf configuration pro-
duced the configuration on disk. Most often, the local
configuration must be studied, and the list of stanzas
to execute (ISconf 3 comes with the utility islist, which
provides the ordered execution list for any host) must
be followed completely to figure out exactly how a
configuration came to be, and thus understand where

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 117

ISconf: Theory, Practice, and Beyond Kanies

to correct a problem. Correcting a problem thus
includes reverse-engineering a series of scripts as well
as understanding the mapping between configuration
and behavior. Because all of a stanza’s preconditions
are only implicitly documented by the stanzas run pre-
viously, a stanza’s dependencies cannot be assumed
and must instead be tested every time.

Entries in /etc/services for ISconf
if this stanza gets run on all your systems, you are very
unhappy
add_myservice_bad:

echo "myservice 888/tcp" > /etc/services # oops, just overwrote the file
touch $@

add_myservice_service:
echo "myservice 888/tcp" >> /etc/services # oops, wrong port number
touch $@

fix_myservice_service:
cp /etc/services /tmp/services.bak
sed ’s/myservice 888\/tcp/myservice 8888\/tcp/’ \

/tmp/services.bak > /etc/services
touch $@

Listing 1: Error recovery stanza.

This problem becomes even more complicated
by ISconf’s susceptibility to problems with latent pre-
conditions, where hosts are differentiated in ways that
aren’t fully understood. For example:
add_goodpkg:
pkginstall GoodPkg

adds ’goodpkg 9000/tcp’
to /etc/services

touch $@

add_newservice:
echo "newservice 9000/tcp" \

>> /etc/services
touch $@

With the comment attached to the add_goodpkg
stanza, it is obvious that these stanzas conflict. But
few of the changes done during package installation
are obvious, even when the known changes are docu-
mented somewhere. If the first stanza is run on a small
subset of hosts and the second stanza is run on all
hosts, it could take a significant amount of time to
track down the source of any problems that result from
this conflict. It is possible to overcome this specific
problem by using ISconf to generate the /etc/services
file similarly to psgconf [psgconf], but this type of
problem crops up constantly in more subtle and less
manageable forms.

It should be noted that ISconf probably does pro-
vide the lowest barrier of entry in terms of managing
the /etc/services file, in that it is incredibly easy to
modify that file in ISconf, but it provides no extra
functionality with that ease of use nor any protections
from mistakes, whereas both cfengine [cfengine] and
psgconf require more initial investment time upfront
but give back significant extra capabilities in return
for that investment.

How ISconf Does Its Job

As has already been seen, ISconf relies on make
for most of its functionality. Inasmuch as make can be
said to have an API (Application Programming Inter-
face), ISconf shares that API. Because make was
developed with a very specific purpose, one that is rel-
atively simple when compared to managing operating
systems, it has a somewhat limited interface. ISconf
inherits all of the limitations of this interface, but tacks
some of its own liabilities onto it.

The make program organizes its commands into
stanzas; each stanza is essentially self-contained and
should perform a single, specific function. ISconf in
turn associates these stanzas with hosts and host types.
This actually means that ISconf’s API is less func-
tional than that of make, because one does not have
access to make’s full preconfiguration capabilities.
Because it is the stanzas that ISconf associates with a
host, and not the actual commands, these stanzas func-
tion as a mapping between a host and what is done on
that host; the commands that a stanza executes could
be changed to be something completely different and
ISconf would never know, or a stanza name could be
changed without changing its functionality and again
ISconf would not notice.

What’s worse, however, is that this means that
each host has two lists associated with it – the list of
stanzas and the list of commands actually executed –
and neither can ever be modified after the fact. One
cannot change the name of a stanza, because make will
incorrectly conclude that it is a new stanza and will
execute it again. One cannot change the commands
that a stanza executes because it is only the old ver-
sion of the commands that has been tested, and one
has no way of really knowing if the new version of the
commands will succeed if the host needs to be dupli-
cated or rebuilt. This is a direct result of ISconf man-
aging a list of make stanzas, rather than understanding
or controlling what it is actually doing.

This is what really hurts ISconf in the long run.
All code and all stanzas that have ever been executed
on any host must be maintained until that host no

118 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Kanies ISconf: Theory, Practice, and Beyond

longer exists, even if they are no longer in active use.
And even if one has found a new way of managing a
given function or file, all of the old methods must be
maintained in case they are needed again during disas-
ter or server duplication. This is because all hosts on
the network are different in some ways (usually at
least hostname and IP address), and although testing
can reduce the likelihood of those differences causing
problems, it cannot actually eliminate the possibility
for problems. Not all dependencies are specifically
encoded as such in ISconf; package installation may
require a certain amount of free space in /var without
there being a check that this space exists. In fact, if
this amount of space is proportional to the size of the
package being installed, it may not be a problem until
an especially large package install is attempted.

Two simple but common examples are presented
to illustrate this point, both of them very common
functions encountered in usage of ISconf. The first is
usage of ISconf to manage packages on Sun Solaris
systems. Initial package management was done by the
author by creating a stanza for every package that
needed to be installed, and then doing all the neces-
sary work in each package.
add_cvs:
mount -t nfs \

server:/export/pkg /mnt
pkgadd -A /mnt/pkgadd_noask \

-d /mnt/cvs all
touch $@

After a few of these stanzas were created, it became
clear that some method of reducing code duplication
needed to be developed. In response, a single script
responsible for all package management was created,
as well as a way of referring to that script using wild-
cards in make.
pkg/%:
mkdir -p pkg
pkginstall --isconf $@
stamp $@

This script expects a complicated stanza name
like pkg/add__java__1.4.1 to be passed to it, and it
parses that name to figure out what it is supposed to
do. However, because the initial package stanzas were
already executed on all Solaris systems, they could
never be replaced with this new method. Doing so
would risk the new method failing because of its own
existing preconditions, such as the new method requir-
ing a package installed using the old method.

This is actually a relatively innocuous example,
because the two methods are at least compatible. The
author has also encountered situations where an incom-
patible method of performing a function needed to be
developed, such as for managing the contents of a file.

The second example is even more common:
Deployment of a script with a subtle logic bug which
does not get discovered until it is already deployed.

The script works fine on the first hosts on which it is
deployed, but when the script is deployed again on a
differing set of hosts, it fails in an unforeseen way.
The author has written a script for automating usage of
Sun’s DiskSuite application to mirror a system’s boot
disk; this script was originally developed entirely on
systems with SCSI disks, and thus was only tested on
them. When Sun came out with servers with IDE
disks, this script failed horribly. However, the theoreti-
cal foundations of ISconf required that the script be
copied and a new version modified to have the new
functionality, rather than merely upgrading the exist-
ing version, because again, there is no real way of
knowing that the new version would succeed on sys-
tems that the old version had already been run on.

This is an example of software rot, in that the
assumptions of a program became out of date. When
the script was originally written, it was not possible to
purchase a Sun server with IDE disks, so it was
assumed that all disks would be SCSI disks. When
Sun began shipping systems with IDE disks, this
assumption became invalid. This is a very general
problem, because it is not really possible for a script or
program to truly understand or state all of its precondi-
tions, and many of those preconditions are only dis-
covered when they are not met in some new deploy-
ment, long after the script was first put to use.

These two examples illustrate that ISconf
encourages a number of very bad habits: keeping
buggy old scripts around, not implementing better
management methods merely because they would
necessitate what amounts to extra bookkeeping, accu-
mulation of cruft in configuration files, and many oth-
ers. Worse, ISconf encourages its users to break its
own rules; it is unlikely that anyone can read the
above examples and think ‘‘yeah, gotta follow the
rules here.’’ Most sysadmins would prefer to spend the
time now to get the new script and the new package
management methods working, then replace all of the
old instances in specific violation of the principles of
ISconf, rather than deal with having cruft in the con-
figuration files for literally years. Having a CMS
which has strict rules but encourages its users to break
them is self-defeating, and is one of ISconf’s biggest
liabilities. In fact, this aspect of ISconf is what led me
to begin searching for other tools, either to replace or
complement ISconf.

Are These Problems Really Intrinsic?

Given that many of the problems discussed in
this paper are a result of ISconf’s interface to make, it
could be argued that these problems are a result of cur-
rent implementations but are not necessarily intrinsic
to ISconf. Unfortunately for those so inclined, replac-
ing make with another tool which better met ISconf’s
needs could only mitigate the problems, not solve
them; ISconf is just a means of associating hosts with
the specific commands run on those hosts and the

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 119

ISconf: Theory, Practice, and Beyond Kanies

problem concerns the commands, not the framework.
Any attempt at abstracting those specific commands
into symbolic information more useful to humans is in
direct violiation to ISconf’s ordering principles; after
all, how can one really verify that work was done in a
consistent order if one does not even know exactly
what is being done?

A maturity model has been developed for scripts
[maturity] that is useful for assessing whether a script
will consistently result in a valid, functioning configura-
tion. While it is possible to write from scratch a script
that scores highly in this model, it is much safer and
easier to rely on proven high-quality tools which fit this
model. ISconf’s reliance on its users to develop neces-
sary functions makes it less likely that the utilities used
will be mature according to the referenced model, which
results in a greater likelihood of deployment problems.
Other CMS’s might not provide the simplicity that
ISconf provides, but they are much more likely to have
all of their work score highly on the maturity model,
which makes for a more stable infrastructure.

As has been mentioned multiple times, ISconf suf-
fers from the fact that it is based entirely on precondi-
tions, but it does not and can not actually code in all of
those preconditions. This means that all ISconf stanzas
are only valid in the specific environment in which
they’ve been tested, which is created by the sequence of
stanzas up to the one in question. Any other use of the
stanza is not likely to result in desirable results. The
commands executed by the stanza might be indepen-
dent, but the stanza itself, as run by ISconf, requires the
sequence that has already been executed.

Notes on Undecidability and Turing Equivalence

Tr a u g o t t , et al., recently published a paper [order]
claiming that all self-modifying systems, which covers
all modern configuration management systems, can be
equated to Universal Turing Machines, and thus are sus-
ceptible to what is called the Halting Problem [halting],
which is a specific instance of the mathematical prob-
lem of Undecidability [undecidability]. Traugott, et al.,
go on to claim that ISconf is actually the only CMS
immune to this problem.

While I do not find this comparison particularly
worthy of investigation, the claim that ISconf is some-
how immune to a problem to which other CMS’s are
susceptible deserves a closer look. ISconf’s theoretical
immunity to the Halting Problem arises from its require-
ment that all actions must be tested by a human before
being deployed in production. The implication is that
once a given command sequence has been tested in a
non-production environment, it can be deployed in a
similar production environment and remain immune to
any vestiges of the Halting Problem.

Again without addressing the validity of the claim
that CMS’s are susceptible to the halting problem, if it
can be shown that a successfully tested ISconf sequence

is still not guaranteed to succeed, then this testing ceases
to be any special feature of ISconf, and thus cannot pro-
vide any differentiation from other CMS’s.

Theoretically speaking, it is trivial to create a
command sequence which can succeed during testing
but will fail in production: simply build in prerequi-
sites which only exist in the test environment, such as
IP addresses, host names, or domain names. Practi-
cally speaking, I have seen a number of sequences
which succeeded in testing, or even in initial produc-
tion deployments, which later failed because of differ-
ences in pre-existing conditions. I have encountered
problems with host installation, package installation,
and hostname length, all of which tested just fine but
failed in production.

From both theoretical and practical perspectives,
it is obvious that testing an ISconf command sequence
provides nothing like a guarantee, so this testing can
no more protect ISconf from fundamental limitations
of the given system than testing with other CMS’s can.
In fact, because ISconf is so dependent on the bits on
the disk and has no higher level facilities for managing
objects above the most basic level, it is likely to be
more susceptible to fundamental limitations, because
it is operating at the same level as those limitations,
rather than at a level slightly above them, as psgconf
tries to do.

Where to Go From Here

It is apparent that ISconf has fundamental, intrin-
sic flaws, but the realization that ISconf’s rules must
be bent allows one to take advantage of what ISconf
can do while going elsewhere for more complicated
demands. I have found ISconf’s ability to map work
lists to host names very useful, especially with the typ-
ing system as developed in ISconf 3, but found its
functionality lacking. Even better, after experimenta-
tion with cfengine I found that there were symbolic
similarities between ISconf’s concept of a host type
and cfengine’s concept of a host class, and in fact, the
format of the two details in the tools was almost
exactly the same.

Because I was dissatisfied with the current func-
tionality of ISconf, but wanted to keep the existing
work lists, an attempt was made to integrate ISconf
with cfengine. Interestingly, significant research effort
has been spent in justifying that these two tools are
incompatible in their approaches to system manage-
ment, yet the author found them to be completely
orthogonal, and very compatible.

Cfengine Integration
Cfengine is a very useful tool, especially for its

its ability to discover the state of the system on which
it is running and then perform actions based on that
state. However, some actions are obviously intrinsi-
cally ordered (one cannot format a volume that has not
been created), and ordering arbitrary events in cfengine

120 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Kanies ISconf: Theory, Practice, and Beyond

is inordinately complicated. Thus, it seemed that
cfengine’s higher-level capabilities could benefit from
ISconf ’s functionality.

cfagent.conf
groups:

check to see if the istypes.cf file exists
istypes = (IsPlain(${workdir}/inputs/istypes.cf))

import:
any::

ispref.cf # creates the istypes.cf file

istypes::
istypes.cf
main.cf

isconf.cf
import all other files if istypes.cf exists;
otherwise, import nothing other than isprep.cf

ispref.cf
control:

create the istypes.cf file, and mark all ISconf
types as installable
AddInstallable = (ExecResult(${workdir}/bin/istypes))

isconf.cf
control:

actionsequence = (copy "module:runisconf -cf=${ALLCLASSES}")

copy:
${isconfsource} dest=/var/isconf

r=inf
server=${isconfserver}

Listing 2: Example configuration.

Although I was satisfied with ISconf’s ability to
perform most work, there was a significant amount of
functionality within cfengine that ISconf lacked, such as
the ability to verify file permissions and restart pro-
cesses which died. However, I did not want to just
implement cfengine independent of ISconf, because
cfengine would need to know how hosts were different
and then be able to behave differently according to those
differences. Thus, I decided that if I could integrate
cfengine and ISconf, such that ISconf had access to all of
cfengine’s states, and cfengine had access to all of
ISconf ’s host types, I could get the best of both tools
without having to store the same information (such as a
host being an oracle server) in more than one place.

When this integration project was begun, ISconf
used Damian Conway’s excellent Parse::RecDescent
[recdescent] perl module as a parsing engine, and the
format it used for host type names was slightly incom-
patible with cfengine classes. Because parsing was
becoming very slow (taking up to 30 seconds for some
key files), the parsing engine was rewritten using
Parse::Yapp [yapp] and Parse::Lex [lex], and the for-
mat of the host type names was changed to exactly
match cfengine classes. This allowed for a simple point
of integration: make all ISconf host types available to
cfengine as classes, and make all cfengine classes avail-
able to ISconf as host types. Thus, attaching a work
list to an oracle_server type in ISconf would allow one

to set file permissions based on that oracle_server class
in cfengine, and discovering in cfengine that a host is a
Sun sparc system would allow ISconf to perform spe-
cific actions based on that fact.

Unfortunately, the modifications to ISconf’s
parser were the easiest step in the integration process.
Because of a parsing optimization within cfengine, all
classes that might be set at some point must be known
at parse time, either through hard setting or through
use of the AddInstallable command. After much experi-
mentation and many false steps, a script was written
that collects all of the ISconf types for a host and gen-
erates a cfengine file which sets those types; if cfengine
finds that file, then it includes it, and if it does not find
the file, then it exits without doing any work. This
way one can guarantee that no work is done without
all knowledge being available.

An example configuration (trimmed for clarity)
is included in Listing 2.

Existing implementations of ISconf have a
preparatory script which refreshes its configuration
with the most recent version; integration with cfengine
enabled an easy replacement of this external script
with cfengine’s file transport capabilities, on both the
client and server side.

Upon successful integration, there was immedi-
ate benefit. I had previously written some simple utili-
ties for managing file permissions and ownerships, but
those utilities were lacking in key functionality which
cfengine possessed, and certainly did not meet the

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 121

ISconf: Theory, Practice, and Beyond Kanies

maturity requirements of most organizations. Integra-
tion allowed immediate access to all of cfengine’s file
permission functions, based entirely on information
collected from ISconf; in other words, cfengine was
able to immediately replace a separate, less capable
script without any extra development effort (although
it did take some practice with cfengine, obviously).

As this integration has progressed, an interesting
conceptual transformation happened; the ISconf host
types conceptually became just facts, just as Couch, et
al., observed that cfengine states are Prolog Facts [pro-
log]. Rather than being part of a hierarchical typing
system, they were just logically true or false, even if
they were set that way based on that hierarchical typ-
ing system. This allows one to build work lists as a
group, without having to consider that work list as a
host type. For instance, consider a lengthy application
configuration process, such as is necessary for
cfengine: installing three different applications, modifi-
cation of the /etc/services file, creation of the cfengine
key pair, downloading the update.conf file, uploading
the public key to the cfengine server, and finally run-
ning cfengine the first time to get everything started.

It would make no sense to make this into a host
type, because all systems will run it. It is clearly just a
related, ordered list of work, not a separate type of
server. The precepts of ISconf require that one add
each item in this list to all configured host types, or at
least add them to a base type, with no indication that
the work is related; however, if one considers ISconf
types to just be classes, rather than mapping to a
server type, then one can very easily configure this as
an ordered work list, maybe named cfengine, and then
attach it to the necessary host types. This retains the
fact that these steps are all related, while still satisfy-
ing ISconf’s ordering requirements.

Another process that became far easier with an
integrated cfengine and ISconf was the testing that
ISconf requires so much. To test a new stanza in
ISconf, one must do a partial roll-out of that stanza,
but one can only do that to entire host types, both
development and testing. The method ISconf uses to
get around this problem is requiring multiple domains
(e.g., test and prod), different fileservers for each
domain, and then deployment of the new stanza first
on the test fileservers then on the production file-
servers. This partial deployment requires that all file-
servers be treated differently because they must all
have different branches of the ISconf configuration. If
two people want to do partial roll-outs of code in two
unrelated host types, they basically cannot.

Once integrated with cfengine, however, testing
new ISconf stanzas becomes far easier. All test and
production hosts should be marked so in either
cfengine or ISconf (depending on configuration needs);
when it comes time to test a new sequence of work, it
can be created as an independent work list, and
cfengine can initially enable that work list only for test

systems. Once the test is complete, cfengine or isconf
can then easily enable it for all hosts. For instance:
in a cfengine config file
test_domain_com::

AddClasses = (mytestworklist)

If the test list succeeds, then it can be deployed on all
hosts either through ISconf, by adding it to another
ISconf type, or through cfengine by eliminating the
test_domain_com:: portion of the file.

For the future, the author would like to begin
replacing some of ISconf’s configuration files with
cfengine. For instance, instead of having a hard map-
ping of host names to host types in ISconf’s hosts file,
the mapping could be maintained within cfengine. This
would enable cfengine’s logical testing capabilities ear-
lier in the ISconf process, but would also sacrifice
ISconf ’s ability to associate arbitrary variables with
hosts and host types (cfengine does not currently have
a facility for passing arbitrary variables to its modules
or shellcommands).

Conclusion

ISconf is billed as an enterprise configuration
management system, capable of managing all aspects
of system administration, but it is found instead only
to be capable of ordering work done by some other
system. This finding does not invalidate ISconf’s use-
fulness, but significantly reduces its scope while at the
same time allowing it to be used with other tools
which have greater functionality. Most of the existing
theory explaining ISconf’s usefulness is found want-
ing, and the purported conflict between tools like
ISconf which preach congruence and tools like
cfengine which preach convergence is found not to
exist. Turning ISconf into a cfengine module is found
to make both tools significantly better.

Biography

Luke Kanies graduated from Reed College in
1996 with a Bachelor’s degree in Chemistry. He has
since been honing his skills at using Unix to do less
work through automation and abstraction. He cur-
rently runs a consulting company, Reductive, LLC.
Reach him via email at luke@madstop.com .

Availability

ISconf 3, by Luke Kanies, is available via the web
at http://www.sourceforge.net/projects/isconf . Cfengine,
by Mark Burgess, is available via the web at http://
www.cfengine.org . PSGConf, by Mark Roth, is avail-
able at http://www-dev.cites.uiuc.edu/psgconf/.

References

[bootstrap] Traugott, S. and J. Huddleston, ‘‘Bootstrap-
ping an infrastructure,’’ Proc. LISA XII, 1998.

[cfengine] Burgess, M. ‘‘Cfengine: a site configuration
engine,’’ USENIX Computing Systems, Vol. 8,
Num. 3, 1995.

122 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Kanies ISconf: Theory, Practice, and Beyond

[decidability] Decidability, http://wombat.doc.ic.ac.uk/
foldoc/foldoc.cgi?decidability .

[isconf] ISconf: The Infrastructure Configuration Engine,
http://isconf.org .

[lex] Verdret, P., Parse::Lex perl module, http://search.
cpan.org/author/PVERD/ParseLex-2.15/ .

[make] Make, http://www.gnu.org/software/make/|.
[maturity] Couch, A., ‘‘An Expectant Chat on Script

Maturity,’’ Proc. LISA XIV, 2000.
[order] Traugott, S. and L. Brown, ‘‘Why Order Mat-

ters: Turing Equivalence in Automated Systems
Administration,’’ Proc. LISA XVI, 2002.

[prolog] Couch, A. and M. Gilfix, ‘‘It’s Elementary,
Dear Watson: Applying Logic Programming To
Convergent System Management Processes,’’
Proc. LISA XIII, 1999.

[psgconf] Roth, M., PSGConf, http://www-dev.cites.
uiuc.edu/psgconf/ .

[recdescent] Conway, D., Parse::RecDescent perl mod-
ule, http://search.cpan.org/dist/Parse-RecDescent/ .

[turing] Turing, A., ‘‘On Computable Numbers, with
an Application to the Entscheidungsproblem,’’
Proceedings of the London Mathematical Soci-
ety, Series 2, Vol. 32, pp. 230-265, 1936-37.

[yapp] Desarmenien, F. , Parse::Yapp perl module, http://
search.cpan.org/author/FDESAR/Parse-Yapp-1.05/ .

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 123

124 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

