
Inflight Modifications of Content: Who are the Culprits?

Chao Zhang
Polytechnic Institute of NYU

Cheng Huang
Microsoft Research

Keith W. Ross
Polytechnic Institute of NYU

David A. Maltz
Microsoft Research

Jin Li
Microsoft Research

Abstract

When a user requests content from a cloud service
provider, sometimes the content sent by the provider is
modified inflight by third-party entities. To our knowl-
edge, there is no comprehensive study that examines the
extentand primaryroot causesof the content modifica-
tion problem. We design a lightweight experiment and
instrument a vast number of clients in the wild to make
two additional DNS queries every day. We identify can-
didate rogue servers and develop a measurement method-
ology to determine, for each candidate rogue server,
whether the server is performing inflight modifications
or not. In total, we discover 349 servers as malicious,
that is, as modifying content inflight, and more than 1.9%
of all US clients are affected by these malicious servers.
We investigate the root causes of the problem. We iden-
tify 9 ISPs, whose clients are predominately affected.We
find that the root cause is not sophisticated transparent
in-network services, but instead local DNS servers in the
problematic ISPs.

1 Introduction

Online advertising has been revolutionizing the adver-
tisement business for many years. As one of the fastest
growing Internet businesses, online advertising is highly
lucrative and profitable, so much so that even giant com-
panies (e.g., Google) with tens of thousands of employ-
ees and tens of billions of revenue can build their entire
business around online advertising. However, also in this
space, are rogue companies that secretly “steal” away ad-
vertisement revenue from existing providers.

Indeed, as [14] has demonstrated, such malicious prac-
tices do exist. When users access content services, con-
tent delivered from the service providers to the users
can be modifiedinflight. Such modifications can change
the content itself, the embedded advertisements, or even
redirect users to undesirable destinations. However, al-
though [14] demonstrates evidence of such malicious
practices, to our knowledge there is no comprehensive

study that examines the extent and the primary root
causes of the modification problem. A cloud service
provider (such as Facebook, Google, Microsoft and Ya-
hoo!) would certainly want to know:(i) What fraction of
its users are subject to inflight modifications?(ii) What
types of modifications are usually taking place?

More importantly, cloud service providers would like
to identify the root causes of the inflight modifications,
so that they can take appropriate measures to defend their
businesses. For example, if evidence shows that the mod-
ifications are carried out by Internet Services Providers
(ISPs), then complaints can be made to regulatory agen-
cies or legal actions can be taken. On the other hand,
if evidence shows that the modifications are due to the
users being affected by malware, then alerting the users
and offering solutions to combat the malicious software
are more appropriate. Existing studies [14, 16], unfor-
tunately, donot provide methodologies for such classi-
fication. Therefore, new methodologies need to be de-
veloped to identify the root causes. In summary, the
real challenge is to develop a methodology that not only
detects the existence of inflight modifications, but also
identifies the root causes of such modifications. Such a
methodology can eventually help cloud service providers
defend their online advertisement business.

To this end, we make the following contributions:

• We design a lightweight experiment and instrument
a vast number of clients in the wild to make two
additional DNS queries every day. By aggregating
the data collected from over 15 million clients, we
identify 4,437 candidate rogue servers.

• We develop a measurement methodology to de-
termine, for each candidate rogue server, whether
the server is performing inflight modifications or
whether it is benign. Among the 4,437 candidate
rogue servers, 349 are deemed malicious, that is,
are modifying content inflight. Astonishingly, more
than 1.9% of all US clients are affected by these ma-
licious servers!

• We investigate the root causes of the problem. We
identify 9 ISPs, whose clients are predominately af-
fected. We find that the root cause is not sophis-
ticated transparent in-network services, but instead
local DNS servers in the problematic ISPs.

2 Data Collection
In this section, we develop an experiment that a cloud
provider (saywww.example.com) can use to deter-
mine the servers that are candidates for making inflight
modifications of its content. Additionally, the experi-
ment determines(i) for each candidate server, the IP ad-
dresses of the clients that are obtaining content from the
server, and(ii) for each such client in the wild, the IP
address of the Local DNS (LDNS) server it is using.

Our data collection experiment instruments a vast
number of clients in the wild, each of which makes light-
weight measurements. Specifically, each instrumented
client infrequently resolveswww.example.com , then
reports to our data collection server three pieces of in-
formation: (i) the IP address of the client;(ii) the
IP address of the LDNS used by the client to resolve
www.example.com ; and(iii) the IP addresses of the
servers returned by the LDNS when resolvingwww.-
example.com . These servers returned by the LDNSes
become our “candidate rogue servers”. Some of these
candidate servers will be legitimate servers operated by
www.example.com or one of its partners; other can-
didate servers will actually be rogue servers that perform
inflight modifications.

To collect this data, each instrumented client once
everyday resolves the hostnamewww.example.com .
During this DNS resolution process, the client sends a
DNS query to a local DNS server (LDNS), which is usu-
ally (but not always) operated by the client’s ISP. The
LDNS interacts with the DNS system, and returns the
answer back to the client. The instrumented client then
sends to our data collection server its IP address, the IP
address of its LDNS server, and the IP addresses of the
servers returned by its LDNS.

2.1 Collecting the LDNS Addresses
As described above, we want the instrumented client to
report the IP address of its LDNS (as well as its own IP
address and the server IP addresses). One possible way
to obtain the LDNS IP address is to get it directly from
the client’s OS. However, depending on how the client is
instrumented, such direct access to the LDNS IP address
may not be possible. We now describe a lightweight ex-
periment, calledDNS Echo, which can be implemented
by most instrumentation approaches. This approach is
similar to the Java Applet in Netalyzr [13].

A special hostnameecho.example.com is created
for the experiment. The authoritative name server for the
domainecho.example.com is instructed to respond

to any DNS query forecho.example.com with the
source IP address of the query. Whenever an LDNS
server queries the authoritative name server forecho.-
example.com , it obtains an answer containing the IP
address of itself. This IP address (of the LDNS server) is
then returned to the client that initiated the DNS query.
The process is illustrated in Figure 1.

One might question whether a rogue LDNS server
would simply return the IP address of a rogue web server
to the query ofecho.example.com . Our experience
shows that rogue LDNS servers only interfere with the
DNS resolution of a few selected domains, and they han-
dle all other domains in the normal manner.

Figure 1: Collecting LDNS with DNS Echo Experiment

2.2 Instrumenting Clients
The instrumented clients in the wild need to resolve
two hostnames –www.example.com and echo.-
example.com – and report the obtained IP addresses,
as well as the client’s own IP address, to our data col-
lection server. This can be done in many different ways.
For example, one could embed a Java Applet with such
functionality in popular web pages. When a client vis-
its the web pages ofwww.example.com , its browser
will load and execute the Java Applet, which then re-
solves the hostnames and reports the IP addresses to our
data collection server. Alternatively, the functionality
can be integrated into popular software that is distributed
to worldwide clients.

For our experiment, we added this functionality to an
optional piece of software downloaded and used by mil-
lions of users. A certain percentage of software period-
ically execute the experiment and report the obtained IP
addresses to our data collection server. We emphasize
that the clients donot establish any connections with the
obtained IP addresses – they merely perform two DNS
queries and report the IP addresses. Each DNS query is
a few tens of bytes, so the experiment generates mini-
mal additional traffic for each client. The report from a
client does reveal the client’s IP address (and no other
information that could identify the client). However, the
very same address is already available when the client

2

downloads the software. Therefore, our experiment does
not reveal any additional identifying information about
the clients. In addition, data is collected only from the
users that have opted in to share with Microsoft data
that will help improve their experience, and it is com-
pletely anonymized after 6 months in accordance with
Microsoft’s standard data privacy policies.

The experiment was repeated by each client once per
day and lasted for two months, between Sep. 1 and Oct.
31, 2010.

3 Identifying the Rogue Servers

We investigate inflight modifications for a popular In-
ternet search service, which we refer to aswww.-
example.com . Through the instrumentation described
in the previous section, we collected the IP addresses for
www.example.com that were resolved by millions of
clients in the wild. This list is surprisingly large – there
are 4,437 unique IP addresses. Each of these addresses
is a candidate for a rogue server that performs inflight
modification. To determine which of these servers are
indeed rogue servers, we develop the Revealer Platform,
as described below.

3.1 The Revealer Platform

Not all of 4,437 servers in the list are problematic. For
example, a simple web proxy would be included in the
list, even though it does not modify content at all. In this
section, we describe a semi-automatic framework, called
Revealer, which probes individual servers in the list and
identifies the truly problematic ones.

The key idea is, for each candidate server, to access
the content through each candidate server and also di-
rectly fromwww.example.com . The server isbenign
if the content is the same. On the other hand, the server
is maliciousif it produces different content, such as in-
serting or modifying advertisements.

With scalability and repeatability in mind, we de-
velop Revealer to identify malicious servers. Revealer
is scripted using the Chickenfoot browser automation
framework [5] and employs a semi-automatic verifica-
tion procedure. Chickenfoot works as a extension of
Firefox, so Revealer uses the Firefox browser.

Revealer consists of three components: a controller
and two Chickenfoot-based script instances. The con-
troller iterates through a list of search query URLs and
assigns them one by one to both instances. One instance,
calledServer Prober, retrieves the URL from the candi-
date server. The other, calledLegit Server Prober, re-
trieves from a corresponding legitimate server. The two
instances run on two different machines with the same
configuration and are synchronized using a shared file
lock. The content retrieved through both probers is com-
pared to determine whether the candidate server is mali-
cious. The flow is illustrated in Figure 2.

Input
Start

Figure 2: The Revealer framework: Controller, Server Prober
and Legit Server Prober.

To force the browser to access the service through
the candidate server, Server Prober first modifies the lo-
cal DNS resolution file so thatwww.example.com
points to the candidate server.1. Then, it starts a
tshark [4] packet sniffer to capture all incoming and out-
going HTTP traffic. Finally, Server Prober starts Firefox,
which loads the Chickenfoot scripts to retrieve a speci-
fied URL. The retrieved content is saved to local storage
for further analysis. Legit Server Prober follows a similar
procedure to retrieve content from a legitimate server.

The controller compares the files fetched through the
candidate server and from the legit server. If a text string
is changed, the candidate server is recorded as problem-
atic. If link-related change is detected, we need to do
more tests. Because our cloud service is an Internet
search service, the search results are often accompanied
with ads. Therefore, given the same query, when fetch-
ing two pages at the same time from the same host, the
search result pages are possibly different if different ads
are generated by the advertising system. To deal with this
case, when link-related changes are detected, the differ-
ent links are sent to the Legit Server Prober and executed
in the Firefox browser. If these links are not recognized
due to the modification which happened on the path to
the client, the legitimate search server will show the error
“web page doesn’t exist”. For example, a modified link,
http://www.bing.com/aff?p=JZLJk *** , can-
not be served by Bing servers.

At the Candidate Server Prober side, for the links dif-
ferent with the ones from the Legit Server Prober, Re-
vealer follows the URLs embedded in the web page, as
if users are clicking the corresponding links in the page.

1On Windows platform, the DNS file is˜ \WINDOWS\
system32\drivers\etc\hosts ; on Linux, it is /etc/hosts

3

http://www.bing.com/aff?p=JZLJk***

The Chickenfoot cannot directly access the HTML doc-
ument. Instead, it can only access the objects, known
as internal Document Object Tree (DOM), from ren-
dered HTML document. Therefore, Chickenfoot locates
the embedded URLs in the DOM through string match-
ing and loads these URLs to emulate users clicking the
links. Importantly, the click operation may trigger the
execution of JavaScript functions inserted by the candi-
date server if there is any. So, following the links helps
us detect such insertions, while simply fetching the web
page for the specified search URL doesnot trigger these
Javascript functions.

The two files retrieved through the candidate server
and the legitimate server are compared to identify mod-
ifications. Moreover, any referenced pages generated by
the two servers are also compared. If there is a differ-
ence, then the candidate server has performed inflight
modification. Each detected malicious server is out-
putted to a text file, and then removed from the list. Re-
vealer keeps testing the servers on the list in a round-
robin fashion, since malicious servers may randomly
choose to modify pages.

3.2 Types of Modifications

Next, we elaborate various types of modifications dis-
covered by Revealer. Some modifications are quite ob-
vious and easy to catch by ordinary users, while others
are very stealthy and are almost impossible to discover
by untrained users.

Modify search result links. In a search result
web page, the result links are simply replaced. For
example, when searching “dell computers,” the cor-
rect result page contains a link pointing to an en-
try about Dell on Wikipedia. However, we have ob-
served a malicious server that returns a page for which
the text of the link still refers to Wikipedia, but the
link is now changed tohttp://www.example.-
com/goto?id=5d *** . If a user clicks the modified
link, she will be directed to a third party web site, in-
stead of Wikipedia. This type of modification is easy to
identify.

Note that the modified link points towww.-
example.com , instead of the third party website. Such
modification ensures, when the user clicks the modi-
fied link, she will again connect to the malicious server,
which then redirects the user to an arbitrary third party
web site. We conjecture the purpose is to make inflight
modification flexible.

Modify advertisement links. Advertisement link
is another common type of modification. For ex-
ample, a correct advertisement linkhttp://www.-
example.com/?ld= *** is replaced byhttp://-
www.example.com/aff?p= *** . If the user clicks
the link, she will end up visiting a different advertisement
than the original one. The only change here is the request

parameter after the hostname. Ordinary users typically
do not notice such modification. Yet, it can be easily de-
tected once the links obtained from the candidate server
is compared to the correct ones from a legitimate server.

Insert JavaScript. A malicious server mightnotmod-
ify either search result links or advertisement links, but
rather insert a piece of JavaScript code into the result
page, which then modifies the links only when the user
clicks them. When the modified page is displayed in
the user’s browser, all the result links and advertisement
links appear normal (when the user moves the mouse
over the links). Once a link is clicked, however, the
JavaScript code is invoked with the original link as a pa-
rameter. The JavaScript code returns a new link, which
ultimately loads a completely different web page. Such
a modification is inconspicuous – it cannot be identified
even by comparing all the links. It can only be discov-
ered if the browser follows each link in the result page
and saves the retrieved content from the links.

Redirect requests. In this case, a malicious server
doesnot modify the result or advertisement links; in-
stead, it redirects the query. We discovered two types
of redirection. The first type redirects a search query to a
different search engine. The second type inserts several
rounds of redirection before eventually directing the user
to her destination.

It is instructive to understand the economic motiva-
tions behind this second type of redirection. After care-
fully examining the inserted links, we discover that they
are all related to several online advertisement companies.
These companies get paid when their advertisement links
are clicked by users. The extra rounds of inserted redi-
rection are used to generate clicks, as if they are from a
large number of real users.

In addition, we noticed that this type of modification
is extremely stealthy. It only intercepts and redirects if
the search queries are generated from theaddress bar
of web browsers. Clearly, only intercepting the queries
from the address bar reduces the risk of exposing the ma-
licious servers. Interestingly, most malicious servers that
we have discovered belong to this category.

Aggressive modifications. We also observed two
servers that aggressively change the result web pages.
One server inserts banner advertisements in the home
page of the search service, while the other replace the
the result pages with totally different contents, links, and
ads.

Table 1 gives a summary of the types of malicious
servers discovered. We discovered a total of 349 mali-
cious servers. Of 154 redirected requests from the ad-
dress bar and 72 inserted Javascript.

4 Which Clients are Affected?

We now investigate the client population affected by
the identified malicious servers. Our dataset contains

4

Type of proxy # of IP
Modify search result links 41

Modify ad links 80
Javascript injection 72

Redirect requests from address bar154
Modify whole search results 1

Inject ads on homepage 1

Table 1: The types of malicious servers.

15,688,909 unique clients worldwide. Among them,
about 0.9% (137,871) were (at least once) directed to one
of the 349 malicious servers identified by Revealer.The
percentage is even more significant among the clients in
the US, reaching an astonishing 1.9%!

4.1 Location Breakdown
We first investigate how the affected clients distribute ge-
ographically. To this end, we look up the 137,871 af-
fected client IP address in the Quova IP GeoLocation
database. We find that over 95.4% affected clients are in
the US. All other countries, with the exception of Haiti,
have a percentage below 0.17%. Thus we see that the
bulk of this attack is being directed to US clients.

To gain more insight into how wide the affected clients
spread geographically, Table 2 lists the number of af-
fected clients by cities. Interestingly, all the cities ap-
pearing at the top of the list are located in US. More-
over, some US cities are heavily affected whereas others
are hardly affected. Many of these top cities have rel-
atively small populations; many large cities – including
New York, Los Angeles, and Houston – do not appear on
the list.

Rank City # of affected # of total %

1 Germantown 23,822 30,614 77.8
2 Troy 8,179 13,771 59.4
3 Cincinnati 6,071 36,462 16.7
4 Ashburn 4,465 62,945 7.1
5 Columbus 3,929 37,043 10.6
6 Naperville 3,782 5,206 72.6
7 Rochester 2,556 24,115 10.6
8 Richmond 1,805 18,968 9.5
9 Clarks Summit 1,676 2,076 80.7
10 Elk Grove 1,500 2,074 72.3

Table 2: Top 10 cities ranked by the number of affected clients.

4.2 ISP Breakdown
We also obtain the Autonomous System Number (ASN)
of each client, affected by the malicious servers, by look-
ing up the client IP address in the Quova IP GeoLocation
database. We map the ASN to its ISP using the table
from [3] and aggregate all the clients within the same
ISP together. In total, there are 1,549 ISPs affected. We
remove the ISPs with less than 50 affected clients, which
reduces the number of affected ISPs to 79. After this

filtering, the total number of affected clients is 131,358.
Table 3 shows the top 20 ISPs ranked by percentage of af-
fected clients. We see that some ISPs are heavily affected
whereas the majority of the ISPs are hardly affected. For
example, the first 9 ISPs, more than 65% of the clients
are affected, whereas all ISPs ranked 17 or larger have
less than 0.22% of their clients affected. Clearly, some-
thing strange is happening in the first 16 ISPs.

Rank ISP # of affected # of total %

1 Ad-base 613 623 98.39
2 Cincy B. 11,645 12,816 90.86
3 Frontier 30,153 33,452 90.14
4 Hughes 21,838 24,315 89.81
5 Cavalier 3,462 3,912 88.50
6 Spacenet 372 478 77.82
7 FiberNet 409 591 69.20
8 WOW 11,521 16,851 68.37
9 SDN 586 899 65.18
10 Onvoy 547 1,014 53.94
11 MPOWER 259 788 32.87
12 DataPipe 329 1,369 24.03
13 XO 571 2,563 22.28
14 Internap 396 3,442 11.50
15 Level3 1,566 32,806 4.77
16 Parasun 84 4,392 1.91
17 Clearwire 82 37,953 0.22
18 AT&T 113 53,165 0.21
19 Suddenlink 77 38,199 0.20
20 BellSouth 409 214,233 0.19

Table 3: Top 20 ISPs ranked by the percentage of affected
clients.

5 What are the Root Causes?
In addition to discovering how many clients are subject to
in-flight modifications and where the clients come from,
a cloud provider would certainly like to be able to iden-
tify the root causes of the modifications. In the previ-
ous section, we observed that a high percentage of clients
from about a dozen ISPs – such as Frontier, Hughes, and
WildOpenWest – are having their web pages modified
inflight. This observation alone, however, does not nec-
essarily imply that these ISPs are involved in the mod-
ifications. Intead, it could very well be that the clients’
local machines are compromised by malicious software
– such asBahama botnet[1] – which directs their search
queries to the malicious servers.

To identify the root cause, in this section, we conduct
detailed correlation analysis. We show that, even though
the observations from individual clients are inconclusive,
by correlating across the millions of clients, we can reach
convincing conclusions.

5.1 LDNS Analysis
Through active probing of the malicious web servers,
we discovered that they are very different from general

5

purpose web proxies. These malicious web servers re-
ject most domains other thanexample.com (and a few
other cloud companies). This suggests that the affected
clients only connect to the malicious web servers when
they accessexample.com (and the few other cloud
companies). Otherwise, their access to other web sites
would be interrupted, which would immediately alert the
clients. The only logical explanation is that, when the
clients resolvewww.example.com , the DNS resolu-
tion process is compromised in one of the DNS stages.
Because the DNS resolution is handled by the clients’
local DNS, it is the logical first place to examine for sus-
picious behavior.

5.1.1 Classifying LDNS

Recall that during the data collection step, we determined
each client’s LDNS server. Given an LDNS server, we
aggregate all the clients that use that LDNS. Based on the
percentage of affected clients, we classify each LDNS as
eithercompromised, healthy, andinconclusive.

0 20 40 60 80 100 120
0

20

40

60

80

100

LDNS rank

P
er

ce
nt

ag
e

66.5%

3.7%

Figure 3: LDNSes ranked by the percentage of affected clients.

Our DNS Echo platform collected 191,479 LDNS IP
addresses. Among the LDNS IPs, there are 5,129 associ-
ated with the affected clients. We then group these LDNS
IPs by /24 prefix and obtain a list of 2,284 prefixes. We
remove any prefix that is associated with less than 50
affected clients, which we deem as statistically insignif-
icant. Finally, this gives 108 LDNS prefixes, which be-
long to 15 ISPs.

Figure 3 plots the rank of the LDNS prefixes against
the affected ratio. We see that the affectation ratios dra-
matically vary among the various LDNSes. We observe
there are clear turning-points at 66.5% and 3.7%. There-
fore, we conservatively choose two thresholds of 60%
and 5% for classification. A LDNS is classified ascom-
promisedif the affected ratio is lager than 60%, while
ashealthyif the ratio is less than 5%. The LDNSes in-
between are classified asinconclusive. Figure 4 shows
the CDF of the affected ratio. We observe that more
than 95% of the LDNSes are either compromised (48)
or healthy (55). (Due to space limitation, we do not pro-
vide a detailed analysis for the remaining 5 inconclusive
LDNSes.)

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Percentage of affected clients

C
D

F

Figure 4: The CDF of the affected clients percentage for
LDNS.

5.1.2 Who is behind the compromised LDNSes?

ISP
Official LDNS Clients

cpmzd. all % affect all %

Hughes 14 14 100 20,745 21,779 95.5
Frontier 13 14 93 29,899 32,266 92.7
Cavalier 7 7 100 3,362 3,864 87
FiberNet 1 1 100 395 562 70.3
Spacenet 1 1 100 360 368 97.8
Onvoy 3 3 100 496 651 76.1
WOW 3 3 100 11,471 16,732 68.6

Cincy B. 1 1 100 11,644 12,574 92.6
SDN 1 1 100 578 653 88.5

Table 4: ISPs operating compromised (cmpzd) LDNSes.

All LDNSes arenot deployed by ISPs. For an LDNS
deployed by an ISP, we expect it would mostly service
clients from the same ISP. Based on this rule, we de-
fine an LDNS asofficial to an ISP if more than 50% of
the clients using the LDNS are from the ISP. Surpris-
ingly, most – 44 out of 48 – of the compromised LDNS
servers are official LDNS servers for 9 ISPs, as shown
in Table 4. Furthermore, for each of these ISPs, almost
all their LDNS servers are compromised. For instance,
Hughes Network deploys 14 official LDNS servers and
all 14 are compromised. (The only exception here is one
– of fourteen – Frontier LDNS server. Its affected per-
centage is (10%) and it is classified as inconclusive.)

Thus we can conclude the majority of the inflight mod-
ifications are caused by a small number of LDNSes that
are responding to DNS queries (for small number of
cloud service providers) with malicious servers. The ma-
licious servers then perform the inflight modifications.
Moreover, a small number of ISPs (about one dozen) op-
erate these LDNSes; for each such ISP, essentially all of
its LDNSes are compromised.

Once all the official LDNS servers of an ISP are iden-
tified as comprised, there are certain measures a cloud
provider can take to correct the situation. If the LDNSes
are compromised because they run the same vulnerable
version of DNS software, then the cloud provider can

6

notify the ISP about the problem. Or if the ISP is volun-
tarily involved in inflight modifications, then appropriate
actions, including legal ones, might be taken to stop the
malicious activity.

5.1.3 Do the LDNSes discriminate among users?

From our dataset, we observe that a compromised LDNS
is sometimes used by clients outside its own ISP. It is
of interest to investigate whether the external clients are
similarly affected as the clients from within the ISP. Ta-
ble 5 shows affirmative results. Except for FiberNet and
Spacenet, which appear to ban DNS queries from exter-
nal networks, the compromised LDNS servers in the re-
maining 7 ISPs also affect external clients.

We further confirm this result by actively probing the
compromised LDNS servers. In particular, we send
DNS queries to the 44 LDNS servers to resolvewww.-
example.com from two vantage points, one at an uni-
versity and another at an enterprise network. The LDNS
servers of 4 ISPs (Fiber, SpaceNet, Cincinnati Bell, and
South Dakota) didn’t reply. Those of the remaining
5 ISPs all responded with the IP address of malicious
servers. Therefore, we conclude thatthe compromised
LDNS servers don’t behave differently depending on the
origin of the DNS request; they indiscriminately redirect
all clients to the malicious servers.

ISP external ISPs # of clients # of affected %

Hughes 6 200 164 82
Frontier 2 1,117 1,094 97.9
Cavalier 2 46 39 84.7
FiberNet 0 0 0 –
Spacenet 0 0 0 –
Onvoy 1 33 23 69.7
WOW 1 22 14 63.6

Cincy B. 2 27 18 66.7
SDN 1 193 146 75.6

Table 5: External Clients from different ISP (external ISP) are
Affected.

5.1.4 The Value of Public DNS Servers

So far, we have concluded that for the above 9 ISPs,
clients are mostly affected due to compromised LDNS
servers. An interesting question is: if a client bypasses
the compromised LDNS, will it still be affected? For ex-
ample, do the ISPs deploy additional transparent network
devices that force the clients to connect to the malicious
servers? If so, then bypassing LDNS alone wouldnot
help.

To this end, we now examine whether clients are af-
fected if they use LDNS servers outside of the 9 ISPs.
The results are shown in Table 6. It is clear that nearly
all the clients using external LDNSes get correct pages.
This is very likely another reason, besides improving
global traffic management [10], why a cloud provider

like Google offers a public DNS service [2]. We believe
thatswitching to a public DNS service will help circum-
vent inflight modifications for the clients from the 9 listed
ISPs.

ISP # of clients # of affected %

Hughes 1,140 3 0.2
Frontier 1,093 2 0.1
Cavalier 412 0 0
FiberNet 347 0 0
Spacenet 0 0 0
Onvoy 82 1 1.2
WOW 275 0 0

Cincy B. 387 0 0
SDN 859 5 0.5

Table 6: Clients using external DNS.

10
−1

10
0

10
1

0.88

0.9

0.92

0.94

0.96

0.98

1

Percentage of affected clients from different ISP

C
D

F

Figure 5: The distribution of affected percentage (by ISP).

5.2 Compromised Host Machines
Now we examine the clients for which their associ-
ated LDNSes are classified as healthy. There are 55
healthy LDNSes (i.e., affected percentage is less than
5%). We actively probe these LDNSes by resolving
www.example.com . Only 5 LDNSes responded, none
of which ever responded with an IP address of a mali-
cious server. Therefore, we conjecture that these LDNS
servers are genuinely healthy and arenot the culprits of
the inflight modifications. We further conjecture that the
affected clients associated with these LDNSes are instead
affected by malware in their local hosts; this malware
intercepts the DNS query and responds with the mali-
cious server IPs. This, in fact, is how theBahama botnet
has been reported tostealtraffic from popular search en-
gines [1].

To validate our conjecture, we examine all the clients
associated with healthy LDNS servers. We group the
clients by their ISPs (ISPs with less than 10 clients are
removed). Figure 5 plots the CDF of affected percentage
of a total 275 ISPs. We observe that only a small percent-
age of clients are affected within each ISP. For example,

7

more than 95% of the ISPs show affected percentage less
than 1.0% and the biggest percentage is 3.7%.

6 Related Work

Reis et al. [14] developed a client-side JavaScript tool,
called web tripwire, demonstrated the existence of in-
flight modifications. Since then, however, there has been
lacking of an extensive study about the scale and the root
causes of the problem. These are the key questions we
explore in this paper.

Inflight modifications can be prevented through end-
to-end encryption, such as HTTPS [15]. In HTTPS,
HTTP goes over SSL/TLS connection, which offers both
integrity and confidentiality. With the recent advance
of accelerating HTTPS with commodity hardware [12],
switching all traffic to HTTPS appears within reach.

However, HTTPS breaks caching, a key approach
used to accelerate Internet today. Stream signing tech-
niques [8] can be used to address the shortcoming, but
they cannot handle dynamically generated content – such
as Internet search responses – as gracefully as static con-
tent.

Instead of detecting modifications, some research ef-
forts focus on identifying similarities of online advertise-
ment, which bear similarity to our Revealer framework.
Guha et al. [9] studied the impact of user privacy loss
due to online advertising. The focus of these studies,
however, is completely different from ours.

Client-side instrumentation techniques are explored
extensively in measurement studies. Casado at el. [6]
employed JavaScript to collect edge-network proper-
ties and study middle-boxes in the Internet. Kiciman
at el. [11] proposed a JavaScript tool to monitor web-
application performance from end-users’ browser. Dif-
ferent from these studies, we develop an extremely light-
weight instrumentation technique to overcome deploy-
ment barriers and shift focus to analysis, where a tiny
bit of information from millions of clients each is aggre-
gated and correlated to reveal the root causes of inflight
modifications.

We remark that Netalyzr [13] employs a technique
very similar to DNS Echo to discover the local resolvers
of arbitrary clients. But different from our study, Net-
alyzr focuses on aspects closely related to DNS perfor-
mance, such as extension support, manipulation, proxy
and reliability, etc.

Dagon et. al [7] conducted a large-scale scan of IPv4
addresses and discovered over 10 million open recur-
sive (local) DNS resolvers. By probing a subset of
these resolvers, they extrapolated that 2.4% are rogue
DNS servers, which the authors define as providing in-
correct answers to queries for purposes of commercial
gain, phishing, or other abuse. Our study differs from
that effort, as identifying rogue content servers is much
less straightforward, which is why we develop the Re-

vealer platform. More importantly, our correlation anal-
ysis identifies the culprits behind the rogue servers with
convincing evidence.

7 Conclusion
In this work, we conduct a large scale measurement to
examine the inflight modification problem in the wild.
We identify candidate rogue servers, and determine the
ones performing inflight modifications using ourRe-
vealer framework. We discover more than 300 mali-
cious servers, which affects more than 65% clients from
9 ISPs. We find that the root cause is not sophisticated
transparent in-network services, but instead local DNS
servers in the problematic ISPs.

References
[1] Beware the Bahama Botnet.

http://blog.clickforensics.com/?p=314 .

[2] Google Public DNS.code.google.com/speed/public-dns/ .

[3] Summary of ASes.http://bgp.potaroo.net/cidr/autnums.html .

[4] Wireshark.www.wireshark.org .

[5] BOLIN , M., WEBBER, M., RHA , P., WILSON, T., AND

M ILLER , R. C. Automation and Customization of Rendered Web
Pages. InProceedings of the 18th annual ACM symposium on
User interface software and technology(2005), UIST ’05.

[6] CASADO, M., AND FREEDMAN, M. J. Peering Through the
Shroud: The Effect of Edge Opacity on IP-Based Client Identifi-
cation. In4th USENIX Symposium on Networked Systems Design
& Implementation(2007), NSDI ’07.

[7] DAGON, D., PROVOS, N., LEE, C., AND LEE, W. Corrupted
DNS Resolution Paths: The Rise of a Malicious Resolution Au-
thority. In Proceedings of The 15th Annual Network and Dis-
tributed System Security Symposium(2008), NDSS ’08.

[8] GENNARO, R., AND ROHATGI, P. How to Sign Digital Streams.
Inf. Comput. 165(February 2001), 100–116.

[9] GUHA , S., CHENG, B., AND FRANCIS, P. Challenges in mea-
suring online advertising systems. InProceedings of the 10th
annual conference on Internet measurement(2010), IMC ’10.

[10] HUANG, C., MALTZ , D. A., GREENBERG, A., AND L I , J. Pub-
lic DNS System and Global Traffic Management. InIEEE INFO-
COM (2011).

[11] K ICIMAN , E., AND L IVSHITS, B. AjaxScope: A Platform for
Remotely Monitoring the Client-side Behavior of Web 2.0 Appli-
cations. In21st ACM SIGOPS symposium on Operating systems
principles(2007), SOSP ’07.

[12] KOUNAVIS, M., KANG, X., GREWAL, K., ESZENYI, M.,
GUERON, S., AND DURHAM , D. Encrypting the Internet. In
ACM SIGCOMM(2010).

[13] KREIBICH, C., WEAVER, N., NECHAEV, B., AND PAXSON, V.
Netalyzr: Illuminating the Edge Network. InProceedings of the
10th annual conference on Internet measurement(2010), IMC
’10.

[14] REIS, C., GRIBBLE, S. D., WEAVER, N. C., AND KOHNO, T.
Automation and Customization of Rendered Web PagesDetecting
In-Flight Page Changes with Web Tripwires, 2008.

[15] RESCORLA, E. SSL and TLS: Designing and Building Secure
Systems. Addison Wesley, 2010.

[16] VRATONJIC, N., FREUDIGER, J.,AND HUBAUX , J.-P. Integrity
of the Web Content: The Case of Online Advertising. InUsenix
CollSec’10(2010).

8

http://blog.clickforensics.com/?p=314
code.google.com/speed/public-dns/
http://bgp.potaroo.net/cidr/autnums.html
www.wireshark.org

	Introduction
	Data Collection
	Collecting the LDNS Addresses
	Instrumenting Clients

	Identifying the Rogue Servers
	The Revealer Platform
	Types of Modifications

	Which Clients are Affected?
	Location Breakdown
	ISP Breakdown

	What are the Root Causes?
	LDNS Analysis
	Classifying LDNS
	Who is behind the compromised LDNSes?
	Do the LDNSes discriminate among users?
	The Value of Public DNS Servers

	Compromised Host Machines

	Related Work
	Conclusion

