
The Nuts and Bolts of a Forum Spam Automator
Youngsang Shin, Minaxi Gupta, Steven Myers

School of Informatics and Computing
Indiana University, Bloomington

{shiny,minaxi}@cs.indiana.edu, samyers@indiana.edu

Abstract

Web boards, blogs, wikis, and guestbooks are forums fre-
quented and contributed to by many Web users. Unfor-
tunately, the utility of these forums is being diminished
due to spamming, where miscreants post messages and
links not intended to contribute to forums, but to adver-
tise their websites. Many such links are malicious. In
this paper we investigate and compare automated tools
used to spam forums. We analyze the functionality of the
most popular forum spam automator, XRumer, in details
and find that it can intelligently get around many prac-
tices used by forums to distinguish humans from bots, all
while keeping the spammer hidden. Insights gained from
our study suggest specific measures that can be used to
block spamming by this automator.

1 Introduction
With millions of websites on the Internet, attracting vis-
itors to a given site is non-trivial. Website operators,
particularly of unsavory sites, are always on the look-
out for new mechanisms to make their websites visible.
While link embedded email spam continues to be a popu-
lar technique for driving traffic to such sites, increasingly,
search engines are being exploited as well. The latter ac-
tivity is so pervasive it is termed web spamming. Specif-
ically, web spamming exploits algorithms used by pop-
ular search engines in order to gain better rankings with
respect to other sites on the Web. While many tricks are
used to achieve the goal, including building link struc-
tures favored by search engines, the focus of this paper
is forum spamming, where miscreants post links to their
websites on forums frequented by Internet users. A fo-
rum is a website where visitors can contribute content.
Examples of forums include web boards, blogs, wikis,
and guestbooks. Forums help miscreants in two ways:
They help drive traffic to a site directly, and simulta-
neously increase search-engine rankings for the linked
websites. Forums are an attractive target for miscreants
because forums with useful content cannot be blacklisted
or taken down. While search engines often have a global
view of the link structure which permits them to discount
some forum spam [23, 14, 11, 9], it does not effectively
help forum operators keep their forums free of spam. Ul-
timately, it is up to forum administrators to remove spam
links or prevent their initial posting!

The effects of forum spamming have been studied be-
fore [18, 21]. In contrast, we focus on how spammers
actually post spam links on forums since understand-
ing their modus operandi can offer important insights for
mitigating forum spamming. Toward our goal, we survey
forum spam automator tools including XRumer, SEnuke,
ScrapeBox, AutoPligg, and Ultimate WordPress Com-
ment Submitter (UWCS) for their functionality. These
tools enable forum spammers to automatically post spam
to a large number of target forums.

We explore XRumer [7] in detail. It is one of the most
popular forum spamming automators on blackhat SEO
forums, in fact perhaps the most, and has the most ex-
tensive set of features. These include the ability to au-
tomatically register fake accounts at target forums, build
appropriate browsing history for each forum, and post
spam. XRumer is capable of posting at forums built
on many software platforms, such as phpBB and vBul-
letin. Additionally, it can be made to learn new fo-
rum platforms it does not directly support. XRumer
can also circumvent spam prevention mechanisms com-
monly employed by forum operators (e.g., automatically
solving CAPTCHAs). To keep spammers hidden and to
avoid blacklisting, XRumer allows the use of anonymiz-
ing proxies which can hide the IP addresses of spamming
machines. Further, it can adjust spamming patterns along
the dimensions of time and message content to thwart de-
tection. The result is a sophisticated tool designed to by-
pass most prevention techniques, and one that can adapt
to changes in forum software platforms. The picture is
not entirely gloomy however, for we find several quirks
in XRumer’s functionality that we believe can be opera-
tionalized into tools that can help mitigate forum spam.

2 Methodology
XRumer has separate demonstration and production ver-
sions. The demo version contains the documentation of
the full version but has limited functionality. We con-
sidered using the production version for this paper as
Motoyama et al. in [17] did, testing the economics of
CAPTCHA solving. However, we were faced with the
moral dilemma that in order to test the efficacy of vari-
ous production features of XRumer, we would have cre-
ate fake accounts and post spam on real-world forums,
against their terms of use. Short of posting on actual

forums, we would simply be posting spam on custom in-
house forums, which would preclude testing of various
production features in their entirety. This dilemma was
not present in Motoyama’s work. Therefore, we decided
to work with the demo version of XRumer 5.05. It allows
registering an account at a forum and then posting a pre-
defined message. We could test this on in-house forums
we setup for the purpose, avoiding any dilemmas.

We set up our own forum server and observed the
packets XRumer generated while posting spam to it. As
we describe later in Section 5, this exercise offered use-
ful insights into defeating XRumer. Additionally, we uti-
lized the documentation to gain insights into its other
functionalities. For example, one file defines the rules
to solve text-based question-and-answer CAPTCHAs.
While spammers can add more rules to it, this file per-
mitted us to determine the class of text CAPTCHAs
XRumer can solve off the shelf. Another file included
information defining how XRumer identifies different
forum software. Finally, other files contained various
User-Agent strings that XRumer can use to imperson-
ate browsers, fake names, addresses, interests etc. This
information is used to create and register fake user ac-
counts on varying forums.

The XRumer demo version does not provide for the
use of an anonymizing proxy that hides the poster’s IP
address. To overcome this limitation, we wrote our own
code that sends an HTTP request to our forum server by
using a public anonymous proxy. This allowed us to ex-
amine the change in the HTTP request forwarded by the
proxy.

In order to compare XRumer’s functionality with other
automators, we surveyed the list of functions different
automators support based on their websites and tutorial
videos available online. This included numerous black-
hat search engine optimization (SEO) forums.

3 Primal Functionalities
We begin by describing XRumer’s basic functionality,
including how it finds target forums, composes spam,
and posts it.

3.1 Preparation for Posting Spam
Collecting Target Forums In order to post spam,
XRumer needs target forums. A spammer can either pro-
vide URLs of target forums or can use Hrefer, a free
supplement to buyers of XRumer. Hrefer uses search
engines to find forums based on a specific list of key-
words provided to it as input. A spammer can directly
provide the entire keyword list, or provide some initial
keywords which Hrefer can use to infer related keywords
through the malevolent use of Google AdWords Keyword
Tool [3]. The keywords play a crucial role in finding the-
matically coherent forums. This is important since post-
ing a spam message to relevant forums reduces the prob-
ability that it will be filtered out.

Hrefer uses the keywords to send search queries.
To send search queries, XRumer allows a spammer
to choose between Google Web Search, Google Blog
Search, MSN, Yahoo, AltaVista, Yandex [8], and board-
reader [1]. Each of these search engines provides APIs
to automate searches but Hrefer does not use them be-
cause APIs provide restricted search results and presum-
able because they can be used to trace a spammer’s ac-
tivity. So, Hrefer tries to mimic web browser behavior. It
parses the returned search results to find target forums.

Composing Spam Message A prudent composition of
the spam message is as important for spammers’ suc-
cess as is finding relevant target forums. Thus, all
messages must have an appropriate subject. To help
defeat message-based filtering, XRumer supports vari-
ous macros that help create variants of spam messages
that are semantically the same but syntactically dif-
ferent. For example, with a simple variation macro,
{variant 1|variant 2|...|variant N}, chooses one of
the N possible variants in the spammed message. The
result is that a spammer can create different greetings
such as {Hi!|Hello!|What’s up!} in the spam message.
XRumer leaves the task of choosing appropriate syn-
onyms up to a spam campaign operator. However, the
spam automator SEnuke, supports an automated the-
saurus of synonyms a spammer can choose from.

In addition to the simple variation macro, a spam-
mer may also use a conditional variation macro based
on the forum’s environment. For example, the macro,
{[TLD 1] text for TLD 1|...|[TLD N] text for TLD N} , de-
cides the output text based on the top level domain (TLD)
of the forum used to post spam. This permits a large
amount of contextualization. For example, {#.com
Hi!|#.fr Bonjour!}, results in an English or French
salutation depending on the .com or .fr TLD. Table 1
provides the full list of macros supported by XRumer.
Multiple studies, including [15, 22, 19], have identified
the use of macros in the context of email spam. In partic-
ular, Pitsillidis et al. in [19] explore how to model variant
spam messages generated from the same spam botnet by
inferring their templates.

XRumer recommends spammers to use Bulletin Board
Code (BBCode) in composing spam messages, par-
ticularly for embedded links. BBCode is a simple
markup language used to format posts in many forums.
For example, using [URL]...[/URL] transforms the
inserted URL into the corresponding anchor tag, ..., in the forum’s HTML rendering.
This enables forum visitors to easily follow a link by
clicking on it. However, the support of BBCode de-
pends on the target forum software and its configuration.
Should the forum not support BBCode, then spammer’s
message would simply be rendered as text. XRumer does
not validate that the forum supports BBCode.

Macro Function
{variation 1|variation 2|...|variation N} One variation is chosen as an output

{#[identifier] variation1 1|variation1 2|...|variation1 N}· · · Co-variation by [identifier]
{#[identifier] variationM 1|variationM 2|...|variationM N}

{#[TLD1] variation 1|#[TLD2] variation 2|variation 3|...|variation N} Variation by [TLD]
[color=color url]...[/color] Sets the style of message text to be the same as the link,

so any visual difference between links and text is eliminated
#category, #hostname Replaces word with a category name or host name respectively

#random[range of variants] Randomly chooses one of the variants within the specified range
#file=filename Replaces word with the content of the specified text file

#gennick[identifier] or #gennick[identifier, min length, max length] Generates a nickname with spammer’s controlled lengths
following the domain name and identifier

#file links[filename, num of lines, formation method] Replaces the specified number of lines from the specified file
#err[error maker] Generates typos, with a higher error maker generating more typos

#nomacros...#endnomacros Disables all enclosed macros

Table 1: Macros supported by XRumer

3.2 Posting Spam
XRumer has a built-in database that allows it to post to
various types of forum software: phpBB, PHP-Nuke,
yaBB, vBulletin, Invision Power Board,
IconBoard, UltimateBB, exBB, phorum.org,
livejournal.com, AkoBook, and Simple
Machines Forum. Importantly, it provides tools
to aid in the automated posting of spam to new or
proprietary forum software (cf., Section 3.3).

Registration In order to deter automatic postings most
forums require their visitors to register before they can
post a new message or comment. The registration pro-
cess often involves account activation over email and/or
solving a CAPTCHA. XRumer is built to overcome these
barriers. If a spammer provides email accounts, XRumer
can use them to register fake forum accounts. It mechani-
cally visits targeted forums, fills out necessary forms, and
completes the activation process by processing any stan-
dardized activation mail received in the email accounts.
If the forum requires CAPTCHAs to be solved during
the registration process, XRumer tries to solve them au-
tomatically using built-in algorithms, or permits their so-
lution to be seconded to professional CAPTCHA solving
services (cf., Section 4.1). If no email addresses are pro-
vided, XRumer will automatically create email accounts
on GMail for automated registration.

Posting To post spam, XRumer logs into the site as a
registered user. On forums with multiple topics or dis-
cussions, XRumer uses a priority categorization to de-
termine which topic or discussion to post to. The pri-
ority category is nothing but a rating from one to three.
XRumer’s first priority is to post spam under forum top-
ics enumerated by the spammer. For example, to post
spam on subjects related to “Real estate”, the spammer
might give keywords such as “real estate”, “to lease”, “to
rent”, “rent”, “lodging”, or “apartment”. XRumer looks
for forum topics containing these keywords and attempts
to post to them. If it cannot find any such topic in the
target forum, it tries to find default topics in the second

priority category. XRumer provides a (spammer modi-
fiable) generic list of forum topics, such as “Off topic”,
“Flame”, “Flood” and “Advertising”. If XRumer fails
to find any of the generic categories, its last priority is
to post spam at the most visited forum topic. The last
priority posting actually has the highest importance for
specific types of forums, such as blogs. This is because
blogs usually do not have topic or category postings. Our
recent study on the prevalence and mitigation of forum
spamming [21] confirms this strategy, as we showed that
popular posts receive more spam than unpopular ones.

Just as in the account registration phase, XRumer can
solve CAPTCHAs during the spam posting phase (cf.,
Section 4.1). Further, most forums now provide a func-
tion allowing their users to create a poll for other users to
rate their contributions. XRumer can activate such polls
for their postings. We believe this may help spam post-
ings get attention from other forum users, and lead to an
increased belief in the legitimacy of the spammer’s user
account.

Refspam Forums are almost universally implemented
as server side scripts using scripting languages, such as
PHP, ASP, JSP, or CGI. This allows recording of traf-
fic logs just like regular web traffic. A typical log entry
includes access time, client IP address, page accessed,
and browser version. Some applications, such as Webal-
izer [5], collect and manage more information about traf-
fic to the web server. This often includes the Referer
HTML header, which contains information about the
URL a client visited prior to visiting the current URL.

When XRumer visits a forum on a web server con-
figured with Webalizer, it can insert a Referer header
with the spammer’s target malicious URL in the HTTP
request’s Referer field. The beneficial result for the
spammer is that even if the spammer’s post is removed,
Webalizer would record the spammer’s Referer link
and publish it in a reporting page on the forum server.
When a search engine bot visits the reporting page, it
considers the Referer URLs to be outgoing links from
the forum server. As a result, the spam URL will be

viewed as an outgoing link from the forum server, gain-
ing authenticity. Thus, if the forum has a high search
engine rank, the spammer’s website will benefit from an
increase in its own page rank. This is referred to as refs-
pam in XRumer. Fortunately, search engines can counter
this technique by segregating such reporting pages dur-
ing their crawls, and forum operators can assist in such
processes by putting ref=“nofollow” into the page’s
html file, or by putting “disallow” for such pages in
robots.txt.

3.3 Advanced Spam Posting
Self-Learning Many forums are built on proprietary
software whose input schema are unknown to XRumer.
For such cases, XRumer provides a self-learning func-
tion. The title slightly overstates its functionality. If a
spammer activates this function, XRumer collects un-
known HTML form inputs while trying to post spam
on a given page and returns them. Specifically, it col-
lects inputs with their name, data-type, label-text that ap-
pears next to the input on the form, and the form’s source
URL. The spammer can then specify the responses that
XRumer should give to these input forms. Although
XRumer does not automatically determine the seman-
tic meaning of unknown inputs (as self-learning might
suggest), spammers can use the retrieved information to
facilitate the process of determining an appropriate re-
sponse expected by the given form.

Reporting XRumer’s rate of successfully posting
spam depends on the spammer’s inputs, including the
spam message and keywords for finding appropriate fo-
rums. To judge its success, XRumer analyzes the HTML
page returned upon its request to post. It generates a
report which shows overall success rates by TLD, fo-
rum software, or both. It also analyzes patterns of URLs
where spam was successfully posted and allows the user
to filter out posting attempts based on various conditions.

4 Detection Avoidance Techniques
XRumer provides various measures to defeat common
counter-measures used by forums to identify forum
spam. We describe them in this Section.

4.1 Solving CAPTCHAs
XRumer can solve text and graphical CAPTCHAs, the
two most common forms of CAPTCHAs in use. For text
CAPTCHAs, XRumer has a number of rules and prede-
fined responses to answer common questions. Specifi-
cally, it can solve three types of questions. The first type
includes arithmetic operations such as “what is the an-
swer for 2+3=?”. The next type asks a visitor to type
the displayed phrase. The last type has trivia questions,
for example “What is the capital of the USA?” To an-
swer such CAPTCHA questions, XRumer has a list of
question and answer pairs. The first two types of text

based CAPTCHAs are easily resolved by parsing and se-
mantic understanding. The last group is solved by us-
ing a lookup table consisting of a list of pairs of com-
mon questions and their responses. In all three cases,
XRumer’s ability to solve text CAPTCHAs can be modi-
fied through a configuration file. In the first two cases,
rules can be used to program XRumer to solve more
complicated problems of arithmetic or retyping. Ques-
tion and answer pairs can also be added.

The success rate of XRumer in solving graphical
CAPTCHA depends on their type. Work by Motoyama
et al. investigated this issue and found that XRumer’s
CAPTCHA solvers targeted “weaker” CAPTCHAs and
achieved an accuracy of 100% in some cases, with a re-
sponse time of under a second [17]. By default, XRumer
tries to solve CAPTCHAs until it is successful. However,
since solving CAPTCHAs hurts performance, XRumer
allows control over the number of failed solving at-
tempts before giving up. While many forums track IP
addresses of failed CAPTCHA attempts for blacklisting
purposes, the use of anonymizing proxies makes this a
non-concern for most spammers. It is worth noting, that
recent upgrades in popular forum software have resulted
in CAPTCHAs that are impervious to XRumer’s solver,
with the exception of Simple Machines Forum [17].

For more complicated graphical CAPTCHAs,
XRumer provides two alternatives: a spammer interven-
tion mode and a subcontracter mode. In the spammer
intervention mode, XRumer presents the irresolvable
CAPTCHA to the spammer after a predefined number
of failures so the spammer can solve it manually. In the
subcontract mode, XRumer allows spammers to use on-
line CAPTCHA solving services such as Anti-Captcha
and CaptchaBot. Both of these services are currently
offering to solve CAPTCHAs at a cost of ≈$1 U.S. per
1000 CAPTCHAs. In addition to these alternatives,
XRumer provides an SDK that a spammer capable of
programming can use to write a solving library in the
form of a DLL.

4.2 Question and Answer
This function allows a spammer to post to a forum both
a question in one post and its answer in another from a
different account. This feature has two purposes. The
first is to disguise a spam message as a solicited answer,
making it hard for a forum moderator to easily block such
postings. The second goal of this functionality is to build
a good activity history for fake accounts. This helps build
history for forums that disallow URLs in messages or
signatures until a user has made 5∼10 legitimate posts.

4.3 Antispam
XRumer provides another function for building a good
history. It is called the antispam function. This function
randomly chooses postings asking a question and tries
to find a thematically relevant answer in other forums on

the Web. Posting such answers can help a spammer build
a good activity history. This is a relatively new feature
of XRumer, still officially in a beta phase for XRumer
v5. However, the existence of this function shows the
level of sophistication the developers of the automated
spamming software are attempting to achieve.

4.4 Anonymizing Proxies
In order to hide the IP address of spamming machines,
XRumer allows a spammer to set up an anonymizing
proxy for XRumer as well as Hrefer. With privacy be-
ing a concern in the Internet today, both free and paid
anonymizing proxies exist and are being used by various
applications already. XRumer and Hrefer simply sim-
plify their use.

XRumer provides a list of anonymous, free public
proxies. However, this list is not necessarily useful since
the lifetime of free proxies is typically short. For this rea-
son, XRumer recommends that its users use a list of paid
proxies for better performance in terms of speed, uptime
and effectiveness of anonymization. To help, XRumer
includes pointers to lists of public proxies. Irrespective
of the type of proxy used, XRumer verifies each proxy
for anonymity and then saves a list of ones that pass the
test. For checking anonymity, XRumer uses a PHP script
that when installed at a (controlled) web server, shows
HTTP headers in the HTTP request sent by an anonymiz-
ing proxy. If the proxy exposes the IP of the sending
client, XRumer does not use that proxy. XRumer re-
freshes the proxies to be used regularly, by default every
30 minutes.

4.5 Spam Traffic Control
XRumer provides various options for adjusting traffic by
trading off spamming speed and rate of postings. For ex-
ample, the followings are all configurable parameters in
XRumer: the maximum size of forum pages, the max-
imum number of links in forum pages, GET- or POST-
query timeout, and the number of maximal attempts to
solve CAPTCHAs. Spammers can tune these parameters
to cause distinct and hard to recognize traffic patterns.
Further, XRumer supports a scheduler, so when a cer-
tain event happens (e.g., posting finished, a timer goes
off, the number of successful postings reaches a preset
limit), XRumer can schedule the execution of specified
actions.

5 Traffic Characteristics
We used XRumer to post spam to forums we set up for
experimentation. In this section, we discuss traffic char-
acteristics we observed through this exercise. We also
discuss how they can be leveraged to defeat XRumer.

5.1 HTTP header
The first thing we investigated was the HTTP headers
generated by a client machine running XRumer, as ob-

served at a forum web server. The configuration of client
and server used for this experiment is shown in Table 2.
To observe the generated HTTP traffic, we used Wire-
shark [6].

Program Role
XRumer 5.05 demo Forum spam automator

running at the client
Internet Explorer (IE) 6 Client web browser

MS Windows XP Client OS
without any service pack patch

phpBB 3.0.7 Forum software
running on the web server

Apache HTTP server 2.2 Web server
Linux (Kernel 2.6.25) Server OS

Table 2: The configuration of client and server for the
HTTP request observation.

Figure 1 shows the HTTP headers generated by the
client browser. The GET or POST indicates that this
request is a HTTP GET or POST request respectively.
Presence of HTTP/1.1 says that the web client uses
HTTP protocol version 1.1, which supports persistent
TCP connections, unlike HTTP version 1.0. Accept,
Accept-Language, and Accept-Encoding show
acceptable content type, language of the response, and
its encoding respectively. The User-Agent header is
used to identify the HTTP client and its operating sys-
tem (OS). Its value depends on the version of IE and
the version and setting of Windows, such as the pres-
ence of a service pack. The Host header indicates the
name of web server. Connection tells if the web
client wants to keep the TCP connection open or not: a
Keep-Alive indicates a persistent connection while a
Close not. The Cookie header contains the cookie.

GET or POST {path} HTTP/1.1
Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0;

Windows NT 5.1)

Host: {forum host name}
Connection: Keep-Alive

Cookie: {cookie}

Figure 1: Sample HTTP headers generated by Internet
Explorer 6 in MS Windows XP without any service pack.
If the web server is not running on port 80, Host is host-
name:port number. The specification of HTTP header
except that for Cookie can be found in [13]. The de-
tails of Cookie can be obtained at [16].

XRumer puts six headers into its HTTP request, as
shown in Figure 2. It uses HTTP/1.0 while virtually
all modern web clients use HTTP/1.1. It is not clear
why XRumer still chooses HTTP/1.0 over HTTP/1.1

since there is no obvious advantage to using HTTP/1.0.
There are two headers that are different because of
HTTP/1.0 usage. First, the Host header is not sup-
posed to be present in an HTTP/1.0 request but is
present. Furthermore, in our experiment, we use a spe-
cial port number for our web server instead of the stan-
dard port 80. IE sets Host to hostname:port number,
but XRumer sets it just to hostname, without the port
number. The existence of Host header and its uncon-
ventional usage in the HTTP request indicate that this
set of HTTP headers is not from a legitimate web client
and can be used to spot present-day XRumer versions.

GET or POST {path} HTTP/1.0
Accept: */*

User-Agent: {User-Agent string}
Referer: {visiting URL}
Host: {forum host name}
Proxy-Connection: Keep-Alive

Cookie: {cookie}

Figure 2: HTTP headers generated by XRumer

Another noteworthy header due to HTTP/1.0
usage is Proxy-Connection. Although
Proxy-Connection is not a standard HTTP
header for either HTTP 1.0 or 1.1, it was implemented
in some versions of web browsers such as Netscape
Navigator [4]. The HTTP 1.0 web clients supporting
Proxy-Connection put the header to manage
a persistent connection through a web proxy even
though it works only if the web proxy supports it.
XRumer seems to assume that a spammer would use an
anonymizing proxy to hide the IP address, hence it uses
the Proxy-Connection header even though this
header is not a standard header. Again, this feature can
be used to detect XRumer.

XRumer’s first HTTP requests to new web servers
should not have the Cookie header present since no
cookie from the server exists. However, XRumer adds
the Cookie header with an empty value even in its first
HTTP request. This feature can also be used to spot
present-day XRumer versions.

The Referer header generally contains the URL of
the web page from which a user followed a link to ar-
rive at the current page. There is no Referer in Fig-
ure 1 header because the site was visited by directly typ-
ing the URL in to the web-browser, and thus no link
was followed. However, XRumer headers always have
a Referer header. Furthermore, the header’s content
is unusual as compared to normal web browsing, for
XRumer sets it to the currently requested URL by default
and only to the spammer’s advertised link if the refspam
option is turned on. We conjecture that XRumer does this
to make its postings appear legitimate, because for a typ-
ical posting at a forum occurs upon following a link and

thus should have a Referer header. On the other hand,
this would rarely be the current page. In fact, some fo-
rum platforms, including phpBB, have an option to check
if the URL in Referer is valid in terms of availability,
but they cannot validate if the URL in Referer is se-
mantically correct because any web site can have a link
to the currently requested URL.

The User-Agent header can be used by the web
server to infer if a visitor is a bot or human because a
User-Agent belonging to a browser is taken to im-
ply a human being is visiting. Search engine crawlers
typically use different User-Agent strings. To get
around any such checks done by forum servers, XRumer
inserts a User-Agent string belonging to one of the
popular web browsers in an attempt to make its post-
ings look like they were made by a human. In fact, it
changes the strings for different sessions of postings to
look like different web browser each time. Examples of
User-Agent strings are shown in Figure 3. A data
file, x user agent.txt, containing User-Agent
strings shows that it can send a string for MS IE 3.02 to
7.0, Mozilla 0.6 to 6.0, or Opera 7.11 to 9.01. While pre-
vious features will help detect XRumer, this will make it
difficult to identify XRumer.

• Mozilla/4.0 (compatible; MSIE 6.0; Windows NT
5.2; SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)

• Mozilla/4.0 (compatible; MSIE 6.0; Windows NT
5.1; FREE; .NET CLR 1.1.4322)

• Mozilla/4.0 (compatible; MSIE 5.5; Windows NT
5.0)

Figure 3: User-Agent string examples by XRumer.

5.2 Proxy Usage
As described in Section 4.4, XRumer allows spammers
to use anonymizing proxies while posting at forums. We
wrote our own code that used free public proxies to con-
nect to our forum server in order to understand various
aspects of proxy usage. In general, there are four differ-
ent types of proxies available in the Internet:

• Transparent proxies: They identify themselves as
proxy servers by exposing the original IP address of
the poster in HTTP headers.

• Anonymous proxies: They hide the original IP ad-
dress while admitting that they are a proxy server.

• Distorting proxies: Such proxies expose them-
selves as a proxy, but put an incorrect client IP ad-
dress in place of the original IP address.

• High anonymity proxies: Such proxies try to hide
client IP address and the fact that they are a proxy.

For XRumer, high anonymity proxy would be the best
choice since it does not expose the existence of a proxy
server in addition to hiding the original IP address. How-
ever, except transparent proxy, any of the other three

types of proxies can be used by XRumer since they all
hide the original IP address. We refer to all of those three
types of proxies as anonymous proxies subsequently.

Though XRumer supports two types of proxies, HTTP
and SOCKS, we experimented only with HTTP proxies,
as without the professional version of XRumer we could
not determine how XRumer actually connects to SOCKS
proxies, and therefore could not emulate it. Both types
of proxies are often referred to as web proxies. We use
the terminology to refer to anonymizing proxies used by
XRumer in the rest of this paper. Anonymous web prox-
ies are of two types. The first type works only as web ser-
vices. A user visits their website and puts the URL that
they want to visit through the proxy. The web service
forwards the request to its own proxy and gets the page
from the URL. Furthermore, the resultant pages are mod-
ified in that they often contain advertisements or may al-
ter links on the original web page to ensure semantic con-
sistency of links through the proxy. XRumer cannot use
web service proxies directly. The second type of proxy
is an open port proxy. Such proxies provide their IP ad-
dresses and port numbers so that any application can use
them. We experimented with the second kind. Specifi-
cally, we examined how HTTP headers are changed by
the proxies, and if proxies forward traffic directly to the
target host or to another internal proxy for load balanc-
ing. Since the default proxy list provided by XRumer
was not valid, we collected a list of public anonymous
proxies from http://www.xroxy.com. Of the 165
anonymous proxies listed there, 105 were available at the
time of our experiment.

To access web proxies, we wrote our custom web
client in Python. Then, we sent an HTTP request to our
web server through the proxies. We inserted only the fol-
lowing HTTP headers: Accept, Accept-Language,
Accept-Encoding, User-Agent, Host,
Connection, and Referer, which are the headers
sent by MS IE 6 except Referer in Figure 1. 55
proxies did not add any additional HTTP header. The
remaining 50 proxies added one or more HTTP headers
listed in Table 3. One interesting HTTP header is
Accept-Encoding. The Python urllib2 package
sent its value as “identity”, while 45 proxies actually
removed the Accept-Encoding header. Among 60
proxies sending the header, 9 proxies changed its value
from ‘identity’ to ‘text/html, text/plain’. Most modern
web browsers send an Accept-Encoding header
with a gzip compression value [20]. This information
can be used to detect if an incoming HTTP request is
through a proxy in many cases.

We also examined if the anonymous web proxies sent
incoming traffic directly to the web server. Among 105
proxies, almost a half (54) did that. The others forwarded
incoming traffic to other intermediate proxies.

HTTP header # of proxies
Cache-Control 49

Keep-Alive 1
X-Bluecoat-Via 3

X-Forwarded-For 1

Table 3: HTTP headers inserted by public anonymous
proxies and the number of proxies adding each header

6 Comparison with Other Forum Spam
Automators

We compare XRumer with the other forum spamming
automators including SEnuke, ScrapeBox, AutoPligg,
and UWCS in terms of their functions. 1 The basic
spam posting functions that XRumer, SEnuke, Scrape-
Box, and AutoPligg support are similar while UWCS’s
functions are comparatively primitive. The main differ-
ence is the forum platforms supported. While XRumer
can post spam to forums built on various forum plat-
forms, ScrapeBox supports only three platforms, while
AutoPligg and UWCS can spam only one platform, Pligg
and WordPress respectively. ScrapeBox and UWCS sup-
port only blog platforms. Thus, they do not provide an
automatic registration function since many blogs do not
require their visitors to register in order to leave a com-
ment. SEnuke targets a number of popular forum ser-
vices, but focuses more on creating splogs. Splogs are
spam blogs whose sole purpose are to have spam posted
to them. Most of the automators, with the exception of
UWCS, present macro support for writing syntactically
different spam messages. SEnuke even offers an auto-
matic spam message generation tool for an additional
fee. No other automator offers this feature, including
XRumer.

The advanced functions are where XRumer’s sophis-
tication stands out. While all the automators we sur-
veyed report on the results of their activity and support
anonymizing proxies, only XRumer allows various re-
porting options and can be modified to post on new, un-
supported forum platforms. Furthermore, only XRumer
has the functionality for building legitimate posting his-
tories and for controlling spam traffic with various op-
tions. Finally, all automators except UWCS provide in-
tegration with CAPTCHA solving services.

7 Related Work
Spam in general and forum spam in particular has been
studied [18, 21]. However, tools used by spammers
are less studied. Cova et al. analyze phishing toolkits
used to build phishing sites in [12]. Their study throws
light on miscreants’ modus operandi from a different per-
spective than ours. Motoyama et al. investigated the
economics of CAPTCHA solvers, including this aspect
of XRumer [17]. Their study focused largely on paid
CAPTCHA solving services.

Detection of software similar to XRumer or another

forum spam automators has thus far not been studied.
Works in [10, 2] propose methods for detecting proxy
usage in general which can be helpful in detecting the
use of anonymizing proxies by forum spam automators.
These works use skew in server response time, patterns
of TCP acknowledgments, and packet inter-arrival times
to achieve their goal.

8 Conclusion
We investigated various features of a popular forum
spam automator, XRumer, in this paper. We found that
XRumer takes many steps to defeat common measures
forum operators take to dissuade misuse. It can also keep
spammers hidden, making detection even more challeng-
ing. Consequently, our study offers important lessons for
why current methods to protect forum misuse are inade-
quate.

We also find that a few features of current XRumer
versions can help fingerprint and detect its postings. For
example, search engine pages can identify XRumer’s use
of refspam, as we discussed in Section 3.2. Further,
XRumer uses HTTP headers in unusual ways, which can
aid in detecting XRumer’s postings. Its use of anonymiz-
ing proxies can also be detected, simply by learning the
IP addresses of free and paid anonymizing web prox-
ies available. However, many XRumer users probably
have no moral issues in using botnet-based proxy ser-
vices, in which case the blacklisting of proxy services
would be worthless. Further, certain forums that require
anonymity (e.g., dissident forums) may very well require
legitimate postings from proxy services. While we were
able to investigate the key features of XRumer through
the demo version, the unavailability of Hrefer limited our
study, in that we were unable to observe how it collects
forums for spamming.

In this paper, we do not intend to, nor can we, quan-
tify how effective is XRumer’s in its act of spamming fo-
rums. This is because its effectiveness depends highly on
forum spammers’ SEO knowledge, which is the basis of
successful spam contents and links. Furthermore, while
our findings can help mitigate forum spam in the short
run, XRumer can adapt to make this cat-and-mouse game
more difficult by adapting to the above countermeasures.
As it is, automators, including XRumer, evolve aggres-
sively not only to improve their success rates, but also to
better avoid the deployed countermeasures. For the long
run, a promising approach seems to be to make forums
intentionally divert from homogeneous registration and
posting forms, making it impossible for automators such
as XRumer to build databases of expected forum func-
tionalities.

Acknowledgment
The authors would like to thank Patrick Fitzgerald from
Symantec for providing materials on XRumer and for

proof-reading the manuscript.

References
[1] Boardreader. http://www.boardreader.com.
[2] Forensics wiki - proxy detec-

tion. http://www.forensicswiki.org/wiki/
Proxy server#Proxy detection.

[3] Google AdWords keyword tool.
https://adwords.google.com/select/ KeywordToolExternal.

[4] Mozilla HTTP handler, nsHttpHandler.cpp source code.
http://bonsai.mozilla.org/cvsblame.cgi?file=mozilla /net-
work/protocol/ http/src/nsHttpHandler.cpp&rev=1.129#387/.

[5] Webalizer. http://www.mrunix.net/webalizer/.
[6] Wireshark. http://www.wireshark.org.
[7] XRumer. http://www.botmasternet.com.
[8] Yandex. http://www.yandex.com.
[9] ABERNETHY, J., CHAPELLE, O., AND CASTILLO, C. Web

spam identification through content and hyperlinks. In WWW
AIRWeb (2008).

[10] CANINI, M., LI, W., AND MOORE, A. W. Toward the identifi-
cation of anonymous web proxies. In PAM (2009).

[11] CASTILLO, C., DONATO, D., GIONIS, A., MURDOCK, V., AND
SILVESTRI, F. Know your neighbors: Web spam detection using
the web topology. In ACM SIGIR (2007).

[12] COVA, M., KRUEGEL, C., AND VIGNA, G. There is no free
phish: An analysis of “free” and live phishing kits. In USENIX
WOOT (2008).

[13] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MAS-
INTER, L., LEACH, P., AND BERNERS-LEE, T. Hypertext
Transfer Protocol – HTTP/1.1. RFC2616, 1999.

[14] GAN, Q., AND SUEL, T. Improving web spam classifiers using
link structure. In WWW AIRWeb (2007).

[15] KREIBICH, C., KANICH, C., LEVCHENKO, K., ENRIGHT, B.,
VOELKER, G. M., PAXSON, V., AND SAVAGE, S. On the spam
campaign trail. In USENIX LEET (2008).

[16] KRISTOL, D., AND MONTULLI, L. HTTP state management
mechanism. RFC2965, October 2000.

[17] MOTOYAMA, M., LEVCHENKO, K., KANICH, C., MCCOY, D.,
VOELKER, G. M., AND SAVAGE, S. Re:CAPTCHAs - under-
standing CAPTCHA-solving services in an economic context. In
USENIX Security Symposium (2010).

[18] NIU, Y., WANG, Y.-M., CHEN, H., MA, M., AND HSU, F. A
quantitative study of forum spamming using context-based anal-
ysis. In NDSS (2007).

[19] PITSILLIDIS, A., LEVCHENKO, K., KREIBICH, C., KANICH,
C., VOELKER, G. M., PAXSON, V., WEAVER, N., AND SAV-
AGE, S. Botnet judo: Fighting spam with itself. In NDSS (2010).

[20] SCHRÖPL, M. Which browsers can handle content-encoding:
gzip? http://schroepl.net/projekte/mod gzip/browser.htm.

[21] SHIN, Y., GUPTA, M., AND MYERS, S. Prevalence and mitiga-
tion of forum spamming. In IEEE INFOCOM (2011).

[22] STERN, H. A survey of modern spam tools. In CEAS (2008).
[23] ZHOU, D., BURGES, C. J., AND TAO, T. Transductive link spam

detection. In WWW AIRWeb (2007).

Notes

1. We surveyed XRumer 5, SEnuke 6, ScrapeBox 1.14.6,
AutoPligg 5, and UWCS 2.5 at the time we wrote this
paper. However, the authors of these tools have been ac-
tively updating their functionalities. Thus, some restric-
tions of each tool might be no longer valid.

	Introduction
	Methodology
	Primal Functionalities
	Preparation for Posting Spam
	Posting Spam
	Advanced Spam Posting

	Detection Avoidance Techniques
	Solving CAPTCHAs
	Question and Answer
	Antispam
	Anonymizing Proxies
	Spam Traffic Control

	Traffic Characteristics
	HTTP header
	Proxy Usage

	Comparison with Other Forum Spam Automators
	Related Work
	Conclusion

