
Exposing the Lack of Privacy in File Hosting Services

Nick Nikiforakis1, Marco Balduzzi2, Steven Van Acker1, Wouter Joosen1, and Davide Balzarotti2

1DistriNet, Katholieke Universiteit Leuven, Belgium
2Institute Eurecom, Sophia Antipolis, France

Abstract
File hosting services (FHSs) are used daily by thou-

sands of people as a way of storing and sharing files.
These services normally rely on a security-through-
obscurity approach to enforce access control: For each
uploaded file, the user is given a secret URI that she can
share with other users of her choice.

In this paper, we present a study of 100 file hosting ser-
vices and we show that a significant percentage of them
generate secret URIs in a predictable fashion, allowing
attackers to enumerate their services and access their file
list. Our experiments demonstrate how an attacker can
access hundreds of thousands of files in a short period of
time, and how this poses a very big risk for the privacy
of FHS users. Using a novel approach, we also demon-
strate that attackers are aware of these vulnerabilities and
are already exploiting them to get access to other users’
files. Finally we present SecureFS, a client-side protec-
tion mechanism which can protect a user’s files when up-
loaded to insecure FHSs, even if the files end up in the
possession of attackers.

1 Introduction
In an ever expanding Internet, an increasing number

of people utilize online services to share digital content.
Most of the platforms that support file sharing operate in
a broadcasting way. For example, users of social net-
works can upload multimedia files which are then ac-
cessible to their entire friend list. In traditional peer-to-
peer networks (e.g., DC++, KaZaa and BitTorrent), users
share their files with everyone connected to the same net-
work.

Sometimes however, users may want to share files
only with a limited number of people, such as their co-
workers, spouses, or family members. In these situa-
tions, the all-or-nothing approach of sharing files is not
desired. While emailing digital content is still a popular
choice, most email providers do not usually allow attach-
ments that exceed a few tens of megabytes.

One of the first services designed to fill this gap was
offered by RapidShare1, a company founded in 2006.
RapidShare provides users the ability to upload large
files to their servers and then share the links to those files
with other users. RapidShare’s success spawned hun-
dreds of file hosting services that compete against each
other for a share of users. Apart from being used as a way
to share private files, researchers have found that FHSs
are also used as an alternative to peer-to-peer networks
[1], since they offer several advantages such as harder
detection of the user who first uploaded a specific file,
always-available downloads and no upload/download ra-
tio 2 measurements.

In this paper, we present our study on 100 file host-
ing services. These services adopt a security-through-
obscurity mechanism where a user can access the up-
loaded files only by knowing their correct download
URIs. While these services claim that these URIs are
secret and cannot be guessed, our study shows that this
is far from being true. A significant percentage of FHSs
generate the “secret” URIs in a predictable fashion, al-
lowing attackers to easily enumerate their files and get
access to content that was uploaded by other users.

We implemented crawlers for different hosting
providers and, using search engines as a privacy classi-
fication mechanism, we were able to disclose hundreds
of thousands of private files in less than a month. The
second contribution of this paper is a technique to mea-
sure whether attackers are already abusing FHSs to ac-
cess private information. To reach this goal, we cre-
ated a number of “HoneyFiles”, i.e. fake documents that
promise illegal content, and we uploaded them to many
FHSs. These files were designed to silently contact one
of our servers once they were opened. Over the period of
a month, more than 270 file accesses from over 80 dif-
ferent IP addresses were recorded, showing that private
documents uploaded to file hosting services are in fact

1RapidShare AG, http://www.rapidshare.com/
2A user-quality metric used mainly in private BitTorrent trackers

1

actively downloaded by attackers.
The rest of our paper is structured as follows. In Sec-

tion 2 we present a high-level view of how FHSs operate,
followed by a security and privacy study of the top 100
FHSs in Section 3. Section 4 provides the details and
reports the results of our HoneyFiles experiment. In Sec-
tion 5 we present a possible countermeasure to protect
users of vulnerable FHSs. We then present ethical con-
siderations regarding our experiments in Section 6. Sec-
tion 7 explores related work, Section 8 discusses possible
future work, and finally, Section 9 concludes the paper.

2 Life cycle of files on File Hosting Services
In this section, we describe the typical life cycle of a

file in relation to file hosting services and we point out
the privacy-sensitive steps. In order to model this life
cycle we consider a FHS which allows users to upload
files without the need to register an account.

A typical user interaction with a FHS usually follows
the following steps:

1. Alice decides to share some digital content3 with
other users by uploading it to her favorite FHS.

2. The FHS receives and stores the file. It then creates
a unique identifier and binds it to the uploaded file.

3. The identifier (ID) is returned to Alice in the form
of a URI that permits her to easily retrieve the up-
loaded file.

4. Alice may now distribute the URI according to the
nature of her file: If the file is meant to be public,
she may post the link on publicly accessible forums,
news-letters or social-networks, otherwise she may
prefer to share the URI using one-to-one communi-
cation channels such as e-mails or instant messag-
ing.

5. The public or private recipients use the shared URI
to access the file that Alice has uploaded.

6. If the uploaded file violates copyright laws (movies,
music, non-free software) then a third party can pos-
sibly report it. In this case the file is deleted and the
unique ID is possibly reused. If the file survives this
process, it remains accessible for a limited amount
of time (set by the provider) or until Alice voluntar-
ily removes it.

In the context of this paper, we focus on the scenario
in which the user uploads a private file to a FHS and uses
a one-to-one channel to share the unique ID returned by
the service with the intended recipients of the file. We
also assume that the trusted recipients will not forward
the URI to other untrusted users.

In this case, the only way in which the file can be
accessed by a malicious user is either by guessing the

3In the rest of the paper called “file”

unique ID returned by the FHS or by exploiting a soft-
ware bug that will eventually allow access to the up-
loaded files.

3 Privacy study
The first phase of our study consists in comparing

the privacy offered by 100 File Hosting Services. The
list was constructed by merging the information re-
trieved from different sources, such as the Alexa web-
site, Google search engine, and a number of articles and
reviews posted on the Web [9, 14].

Our final top 100 list includes well-known FHSs
like RapidShare, FileFactory and Easyshare
as well as less popular and regional websites like
FileSave.me (India), OnlineDisk.ru (Russia)
and FileXoom.com (Mexico).

Before starting the experiments we manually screened
each website and found that 12 of them provide either a
search functionality (to retrieve the link of a file know-
ing its name) or an online catalogue (to browse part of
the uploaded files). Obviously, these services are not in-
tended for storing personal documents, but only as an
easy way to publicly share files between users. There-
fore, we removed these FHSs from our privacy study and
we focused our testing on the remaining 88 services.

We began our evaluation by analyzing how the unique
file identifiers are generated by each FHS. As we de-
scribed in the previous section, when a user uploads a
file to a FHS, the server creates an unique identifier (ID)
and binds it to the uploaded file. The identifier acts as a
shared secret between the user and the hosting service,
and therefore, it should not be possible for an attacker to
either guess or enumerate valid IDs.

Sequential Identifiers

For each FHS, we consecutively uploaded a number of
random files and we monitored the download URIs gen-
erated by the hosting service. Surprisingly, we noticed
that 34 out of the 88 FHSs (38.6%) generated sequential
IDs to identify the uploaded files. Hence, a hypothetical
attacker could easily enumerate all private files hosted
by a vulnerable FHS by repeatedly decreasing a valid ID
(that can be easily obtained by uploading a test file).

As an example, the following snippet shows how one
of the hosting providers (anonymized to vulnerable.com)
stored our uploaded files with sequential identifiers:� �

http://vulnerable.com/9996/
http://vulnerable.com/9997/
http://vulnerable.com/9998/
http://vulnerable.com/9999/
[...]� �
However, the enumeration attack is possible only

when the URI does not contain other non-guessable pa-
rameters. In particular, we noticed that out of the 34 FHS

2

Sequential ID Non-Sequential ID Tot
Filename:

Required 14 6 20
Not required 20 48 68

Total 34 54 88

Table 1: Analysis of the Download URI’s identifier

that use sequential identifiers, 14 also required the proper
filename to be provided with the secret identifier. For ex-
ample, the URI was sometimes constructed by appending
the filename as shown in the following example:� �

http://site-one.com/9996/foo.pdf
http://site-one.com/9997/bar.xls
http://site-one.com/9998/password.txt
[...]� �
Since the filenames associated to each ID are, in gen-

eral, unknown to the attacker, this feature acts as an
effective mitigation against enumeration attacks. Even
though it would still be possible for an attacker to nar-
row down his research to a particular filename, we did
not investigate this type of targeted attacks in our study.

Table 1 provides an overview of the techniques
adopted by the various FHSs to generate the download
URIs. The privacy provided by 20 service providers was
extremely weak, relying only on a sequential ID to pro-
tect the users’ uploaded data. Unfortunately, the problem
is extremely serious since the list of insecure FHSs using
sequential IDs also includes some of the most popular
names, often highly ranked by Alexa in the list of the top
Internet websites.

To further prove that our concerns have a practical se-
curity impact, we implemented an automatic enumerator
for the 20 FHSs that use sequential IDs and do not re-
quire the knowledge of the associated filename. Our tool
inserted a random delay after each request to reduce the
impact on the performance of the file hosting providers.
As a result, our crawler requests were interleaved with
many legitimate user requests, a fact which allowed us to
conduct our experiment for over a month without being
blacklisted by any service provider.

When a user requests a file by providing a valid URI,
the FHS usually returns a page containing some informa-
tion about the document (e.g., filename, size, and number
of times it was downloaded), followed by a series of links
which a user must follow to download the real file. This
feature is extremely convenient for an attacker that can
initially scrape the name of each file, and then download
only those files that look more interesting.

By enumerating sequential IDs, our crawler was able
to retrieve information about 310,735 unique files in a
period of 30 days. While this list is “per se” sensitive
information, we tried to estimate how many files corre-
spond to private users’ documents.

It is reasonable to assume that if the user wants to
make her file publicly accessible, she would post the

File Type # Enumerated Files
Images (JPG, GIF, BMP) 27,771
Archives (ZIP) 13,354
Portable Document Format (PDF) 7,137
MS Office Word Documents 3,686
MS Office Excel Sheets 1,182
MS PowerPoint 967

Table 2: Number of files with sensitive types reported as private
by our privacy-classification mechanism

download URI on websites, blogs, and/or public forums,
depending on the target audience of the file. On the
other hand, if a file is intended to be kept private, the
link would probably be shared in a one-to-one fashion,
e.g., through personal emails and instant messaging. We
decided to exploit this difference to roughly characterize
a file as public or private. In particular, we queried for
each file name on Bing, Microsoft’s search engine, and
we flagged as “public” any file whose link was found on
the Web. If Bing did not return any results for our query,
we considered the file as private.

Out of the 310,735 unique filenames extracted with
our enumeration tool, Bing returned no search results
for 168,320, thus classifying 54.16% of files as private.
This classification is quite approximate as the list of pri-
vate files also contains data exchanged in closed “pi-
rate” communities, beyond the reach of search engines’
crawlers [1, 8]. Nevertheless, this technique still pro-
vides a useful estimation of the impact of this kind of
attack on the privacy of FHS users.

Table 2 shows the number of unique private files
crawled by our tool, grouped by common filetypes. In
addition to the major extensions reported in the Table,
we also found several files ending with a .sql exten-
sion. These files are probably database dumps that at-
tackers may use to gain a detailed view of the content of
the victim’s database.

Even though we believe that the majority of these files
contain private information, for ethical reasons we de-
cided not to verify our hypothesis. In fact, to preserve
the users’ privacy, our crawler was designed to extract
only the name and size of the files from the information
page, without downloading the actual content.

Random Identifiers

In a second experiment we focused on the 54 FHSs that
adopt non sequential identifiers (ref. Table 1).

In these cases, the identifiers were randomly generated
for each uploaded file, forcing a malicious user to guess
a valid random value to get access to a single file. The
complexity of this operation depends on the length (i.e.,
number of characters) of the secret and on the charac-
ter set (i.e., number of possible values for each charac-
ter) that is used to generate the identifier. As shown in
Figure 1 and Figure 2, different FHSs use different tech-

3

5 6 7 8 9 10 11 12 13 15 16 20 32 36
0

2

4

6

8

10

12

14
N

um
be

r
of

 F
ile

 H
os

tin
g

S
er

vi
ce

s Filename
not required

Filename
required

Figure 1: Length of the Identifier

10 16 26 36 62 > 62
0
2
4
6
8

10
12
14
16
18
20

Filename
not required

Filename
required

 N
um

be
r

of
 F

ile
 H

os
tin

g
S

er
vi

ce
s

Figure 2: Size of the Identifier’s Character Set

Length Chars Set # Tries Files Found
6 Numeric 617,169 728
6 Alphanumeric 526,650 586
8 Numeric 920,631 332

Table 3: Experiment on the non-sequential identifiers

niques, varying in length from 6 to 36 bytes and adopting
different character sets.

The three peaks in Figure 1 correspond to identifier
length of six, eight, and twelve characters respectively.
The second graph shows instead that the most common
approach consists in using alphanumeric characters. Un-
fortunately, a fairly large number of FHSs are still adopt-
ing easily guessable identifiers composed only of deci-
mal or hexadecimal digits.

To show the limited security offered by some of the
existing solutions we conducted another simple experi-
ment. We modified our enumerator tool to bruteforce the
file identifiers of three different non sequential FHSs that
did not require the filename in the URI. In particular, we
selected a FHS with numeric IDs of 6 digits, one with
numeric IDs of 8 digits, and one with alphanumeric IDs
of 6 characters. Our tool ran for five days, from a sin-
gle machine on a single IP address. The results, shown
in Table 3, confirm that if the random identifiers are too
weak, an attacker can easily gain access to thousands of
third-party files in a reasonable amount of time.

It is also interesting to note that the success rate of
guessing both numeric and alphanumeric IDs of six dig-
its was about the same (1.1 hit every thousand attempts).

Feature Number of FHSs
CAPTCHA 30%
Delay 49%
Password 26%
PRO Version 53%
Automated File Trashing (2-360 days) 54%

Table 4: Security features

This shows that the size of the space to explore is not the
only variable in the process and that the important fac-
tor is the ratio between the number of possible identifiers
and the total number of uploaded files.

Existing Mitigations

We have shown that different hosting providers, by
adopting download URIs that are either sequential or eas-
ily predictable, can be abused by malicious users to ac-
cess a large amount of private user data. However, some
hosting providers implement a number of mechanisms
that mitigate the possible attacks and make automated
enumeration more difficult to realize.

From a manual analysis of the FHSs in our list we
identified two techniques commonly used to prevent au-
tomated downloads. As summarized in Table 4, 30%
of websites use CAPTCHA and 49% force the user to
wait (between 10 to 60 seconds) before the download
starts. However, note that both techniques only increase
the difficulty of downloading files, and not the process
of guessing the right identifier. As a consequence, our
tool was not restricted in any way by these protection
mechanisms. In addition, we noticed that a large number
of sites offer a PRO version of their service where these
“limitations” are removed by paying a small monthly fee.

A much safer solution consists in adding an online
password to protect a file. Unfortunately, as shown in
Table 4, only a small percentage of the tested FHSs pro-
vided this functionality.

Other Design and Implementation Errors

According to the results of our experiments, many FHSs
are either vulnerable to sequential enumeration or they
generate short identifiers that can be easily guessed by
an attacker. In the rest of this section, we show that, even
when the identifiers are strong enough to resist a direct
attack, other weaknesses or vulnerabilities in the FHS’s
software may allow an attacker to access or manipulate
private files.

While performing our study, we noticed that 13% of
hosting services use the same, publicly available, soft-
ware to provide their services. To verify our concern
about the security of these systems, we downloaded and
audited the free version of that platform. Through a man-
ual investigation we were able to discover serious design
and implementation errors. For instance, the software
contained a directory traversal vulnerability that allows

4

an attacker to list the URIs of all the recently uploaded
files.

In addition, the software provides to the user a delete
URI for each uploaded file. The delete URI can be used
by the user at any time to delete her uploaded files from
the service’s database. This feature can improve the
user’s privacy since the file can be deleted when it is no
longer needed. The deletion ID generated by this soft-
ware was 14 characters long, with hexadecimal charac-
ters. This provides 1614 valid combinations which make
any attack practically impossible. However, we noticed
that the “report file” link, a per file automatically gener-
ated link to report copyright violations, consisted of the
first 10 characters of the deletion code.

Since the “report file” link (used to report a copyright
violation) is publicly available to everybody, an attacker
can use it to retrieve the first 10 digits of the delete URI,
thus lowering the number of combinations to bruteforce
to only 164 = 65, 536.

To conclude, it is evident that even if end-users only
share the download-link with their intended audience,
they can not be certain that their files will not reach unin-
tended recipients. In Section 5, we will discuss a client-
side solution that can protect a user’s files without chang-
ing his file-uploading and file-sharing habits.

4 HoneyFiles
In Section 3 we showed that a significant percentage of

file hosting services use a URI generation algorithm that
produces sequential identifiers, allowing a potential at-
tacker to enumerate all the files uploaded by other users.
In addition, our experiments also showed that some of
the FHSs which use a more secure random algorithm, of-
ten rely on weak identifiers that can easily be bruteforced
in a short amount of time.

In summary, a large amount of the top 100 file hosting
services are not able to guarantee to the user the privacy
of her documents. The next question we investigate is
whether (and to what extent) the lack of security of these
websites is already exploited by malicious users. In order
to answer this question we designed a new experiment in-
spired by the work of Bowen et al. [3] and Yuill et al. [18]
on the use of decoy documents to identify insider threats
and detect unauthorized access.

First, we registered the card3rz.co.cc domain and cre-
ated a fake login page to a supposedly exclusive under-
ground “carding”4 community. Second, we created a
number of decoy documents that promised illegal/stolen
data to the people that accessed them. Each file contained
a set of fake sensitive data and some text to make the
data convincing when necessary. The first two columns

4Carding is a term used for a process to verify the validity of stolen
credit card data.

of Table 5 list the names and descriptions of each file.
The most important characteristic of these files is the
fact that, once they are open, they automatically connect
back to our monitor running on the card3rz.co.cc server.
This was implemented in different ways, depending on
the type of the document. For example, the HTML files
included an tag to fetch some content from our
webpage, the exe file opened a TCP connection upon its
execution, and the PDF documents asked the user per-
mission to open a webpage. For Microsoft’s DOC for-
mat, the most straightforward way we found was to em-
bed an HTML file inside the document. In cases where
user action was required (e.g., the acceptance of a warn-
ing dialog or the double-click of the HTML object in the
DOC file) we employed social engineering to convince
the malicious user to authorize the action.

In addition to the connect-back functionality, one of
the files contained valid credentials for logging into our
fake carding website. We did this to investigate whether
attackers would not only access illegally obtained data
but also take action on the information found inside the
downloaded files.

The last step of our experiment consisted in writing
a number of tools to automatically upload the Honey-
Files to the various FHSs. Since the links to our files
were not shared with anyone, any file access recorded
by our monitor was the consequence of a malicious user
that was able to download and open our HoneyFiles, thus
triggering the hidden connect-back functionality.

Monitoring Sequential FHSs

In our first experiment we used our tools to upload the
HoneyFiles 4 times a day to all the FHSs adopting se-
quential identifiers. We also included the ones that
have Search/Catalogue functionality in order to find out
whether attackers search for illegal content in FHSs.

While we were initially skeptical of whether our ex-
periment would provide positive results, the activity
recorded on our monitor quickly proved us wrong. Over
the span of one month, users from over 80 unique IP ad-
dresses accessed the HoneyFiles we uploaded on 7 dif-
ferent FHSs for a total of 275 times. Table 6 shows the
categorization of the attackers by their country of origin
using geolocation on their IP addresses. While most of
the attacks originated from Russia, we also recorded ac-
cesses from 16 other countries from Europe, the United
States and the Middle East, showing that this attack tech-
nique is used globally and it is not confined to a small
group of attackers in a single location.

The third column of Table 5 presents the download ra-
tio of each HoneyFile. It is evident that attackers favor
content that will give them immediate monetary compen-
sation (such as PayPal accounts and credentials for our
carding forum) than other data (e.g., email addresses and

5

Filename Claimed Content Access Percentage
phished paypal details.html Credentials to PayPal accounts 40.36%
card3rz reg details.html Welcoming text to our fake carding forum and valid credentials 21.81%
Paypal account gen.exe Application which generates PayPal accounts 17.45%
customer list 2010.html Leaked customer list from a known law firm 9.09%
Sniffed email1.doc Document with an embedded customer list of a known law firm 6.81%
SPAM list.pdf List of email addresses for spamming purposes 5.09%

Table 5: Set of files containing fake data that were used as bait in our HoneyFiles experiment. The third column shows the resulting
download ratio of each file by attackers

Countries Accesses
Russia 50.06%
Ukraine 24.09%
United States, United Kingdom, Nether-
lands, Kazakhstan, Germany

2.40% each

Sweden, Moldova, Latvia, India, France,
Finland, Egypt, Canada, Belarus, Austria

1.20% each

Table 6: Attack geolocation recorded by our HoneyFile moni-
tor

customer lists). Out of the 7 reported FHSs, one had a
catalog functionality (listing all the uploaded files), two
of them had a search option and the remaining four had
neither catalog nor search functionality. Interestingly,
one of the FHSs providing a search functionality did so
through a different website, violating its stated Terms of
Service (ToS). This shows that apart from abusing se-
quential identifiers attackers are also searching for sensi-
tive keywords in FHSs that support searching.

Our monitor also recorded 93 successful logins from
43 different IP addresses at our fake carding website us-
ing the credentials that we included inside our Honey-
Files. When a valid username and password combination
was entered, the carding website informed the user that
the website was under maintenance and that she should
have retried later. Fourteen out of the 43 attackers did so
with the notable example of an attacker that returned to
the website and logged in 14 times in a single day. The
multiple successful logins show that attackers do not hes-
itate to make use of the data they find on FHSs. We as-
sume that the fake PayPal credentials were also tried but
we have no direct way to confirm our hypothesis.

In addition to login attempts, we also logged several
attempts of SQL injection and file inclusion attacks con-
ducted against the login page of our fake carding web-
site and against our monitoring component. This shows
that the attackers who downloaded the files from the vul-
nerable FHSs had at least some basic knowledge of web
hacking techniques and were not plain users that some-
how stumbled upon our HoneyFiles. We were also able
to locate a post in an underground Russian forum that
listed our fake carding website.

Monitoring Non-Sequential FHSs

For completeness, we decided to repeat the HoneyFiles
experiment on 20 FHSs that adopt non-sequential iden-

tifiers. Interestingly, our monitor recorded 24 file ac-
cesses from 13 unique IP addresses originating from de-
coy documents placed in three separate FHSs over a pe-
riod of 10 days. Upon examination, two of them were
offering search functionality. While the third FHS stated
specifically that all files are private and no search op-
tion is given, we discovered two websites that adver-
tised as search engines for that FHS. Since our Honey-
files could be found through these search engines and
we never posted our links in any other website, the only
logical conclusion is that the owners of that FHS part-
nered with other companies, directly violating their pri-
vacy statement.

We believe that the above experiments show, beyond
doubt, that FHSs are actively exploited by attackers who
abuse them to access files uploaded by other users. Un-
fortunately, since FHSs are server-side applications, the
users have little-to-no control over the way their data
is handled once it has been uploaded to the hosting
provider.

5 Countermeasures
In previous sections, we showed that not only many

file hosting services are insecure and exploitable, but also
that they are in fact being exploited by attackers to gain
access to files uploaded by other users. This introduces
significant privacy risks since the content that users up-
loaded, and that was meant to be privately shared, is now
in the hands of people who can use it for a variety of
purposes, ranging from blackmailing and scamming to
identity theft.

We notified 25 file hosting providers about the prob-
lems we found in our experiments. Some of them al-
ready released a patch to their system, for instance by
replacing sequential IDs with random values. Others ac-
knowledged the problem but, at the time of writing, they
are still in the process of implementing a solution. Un-
fortunately, not all the vendors reacted in the same way.
In one case, the provider refused to adopt random identi-
fiers because it would negatively affect the performance
of the database server, while another provider “solved”
the problem by changing the Term of Service (ToS) to
state that his system does not guarantee the privacy of
the uploaded files.

Therefore, even though it is important to improve the

6

security on the server side, countermeasures must also
be applied on the client side to protect the user’s privacy
even if her files end up in the hands of malicious users.

An effective way of securing information against
eavesdroppers is through encryption, for example by us-
ing password-protected archives. In some cases, how-
ever, the default utilities present in operating systems
cannot correctly handle encrypted archive files5. There-
fore, we decided to design and implement a client-
side security mechanism, SecureFS, which automatically
encrypts/decrypts files upon upload/download and uses
steganographic techniques to conceal the encrypted files
and to present a fake one to the possible attackers. The
motivation behind SecureFS is to transparently protect
the user’s files as well as providing a platform for de-
tecting attackers and insecure file hosting services in the
future (see Section 8).

SecureFS is implemented as a Firefox extension that
constantly monitors file uploads and downloads to FHSs
through the browser. When SecureFS detects that the
user is about to upload a file, it creates an encrypted copy
of the document and combines it with a ZIP file contain-
ing fake data. Due to the fact that ZIP archives place
their metadata at the end of the file, a possible attacker
who downloads the protected file will decompress it and
access the fake data without realizing that he is being
mislead. Even if the attacker notices that something is
wrong (e.g., by noticing the size difference between the
ZIP file and the resulting file) the user’s file is still en-
crypted and thus protected. On the other hand, when a
legitimate user downloads the file, SecureFS recognizes
its internal structure and automatically extracts and de-
crypts the original file.

Most of the described process is automatic, transpar-
ent and performed without the user’s assistance. The de-
tails of SecureFS and our prototype are publicly avail-
able6.

6 Ethical Considerations
Testing the security of one hundred file hosting

providers and extracting information for thousands of
user files may raise ethical concerns. However, analo-
gous to the real-world experiments conducted by Jakob-
sson et al. [5, 6], we believe that realistic experiments
are the only way to reliably estimate success rates of at-
tacks in the real world. Moreover, we believe that our ex-
periments helped some file hosting providers to improve
their security. In particular, note that:
• The enumerator tools accessed only partial informa-

tion of the crawled files (the file’s name and size) and
did not download any file content.

5How to open password-protected ZIP in Mac OS X, http://
www.techiecorner.com/833/

6http://www.securitee.org/sfs/

• The enumerator tools employed a random delay be-
tween each requests to avoid possible impacts on the
performance of the file hosting providers.

• We did not break into any systems and we immedi-
ately informed the security department of the vulner-
able sites of the problems we discovered.

• The HoneyFiles were designed to not harm the user’s
computer in any way. Moreover, we did not distribute
these files on public sites, but only uploaded them (as
private documents) to the various FHSs.

7 Related Work

Different studies have recently been conducted on the
security and privacy of online services. For example,
Balduzzi et al. [2] and Gilbert et al. [16] analyze the im-
pact of social-networks on the privacy of Internet users,
while Narayanan et al. [10] showed that by combining
public data with background knowledge, an attacker is
capable of revealing the identify of subscribers to online
movie rental services. Other studies (e.g., [13, 17]) fo-
cused on the security and privacy trends in mass-market
ubiquitous devices and cloud-computing providers [11].

However, to the best of our knowledge, no prior stud-
ies have been conducted on the privacy of FHSs. In
this paper we reported the insecurity of many hosting
providers by experimentally proving that these services
are actually exploited by attackers. There are, how-
ever, a number of cases where sequential identifiers of
various services have been exploited. For example, re-
searchers investigated how session IDs are constructed
and in which cases they can be bruteforced [4]. The
study is not restricted to IDs stored in cookies, but also
analyzes the sequential and non-sequential IDs present
inside URIs. Recently, researchers also identified issues
with sequential identifiers in cash-back systems [15].

Antoniades et al. [1] notice that the recent increase of
FHSs is threatening the dominance of peer-to-peer net-
works for file sharing. FHSs are found to have better per-
formance, more content and that this content persists for
a longer time than on peer-to-peer networks like BitTor-
rent. Researchers have also used FHSs as a distributed
mechanism to store encrypted filecaches that can be used
by a collaborating group of people [7].

Honeypots [12] have been traditionally used to study
attacking techniques and post-exploitation trends. Yuil
et al. [18] introduce Honeyfiles as an intrusion detection
tool to identify attackers. Honeyfiles are bait files that
are stored on, and monitored by, a server. These files are
intended to be opened by attackers and when they do so,
the server emits an alert. Similarly, Bowen et al. [3] use
files with “stealthy beacons” to identify insider threats.

7

8 Future Work
In Section 5 we presented our design for a client-side

protection mechanism for files uploaded to FHSs. We
described the process of appending a ZIP archive with
fake data to each uploaded file.

While at the moment the fake document is a simple
text file that informs the attacker of his wrong doings,
we are currently investigating alternative uses. For ex-
ample, the ZIP archive could contain a file that, when
opened, “calls home” (see Section 4) and informs the file
owner of the illegitimate file access. In order to pre-
serve the user privacy, “home” can be a separate web
service that will in turn report to users which file was
maliciously downloaded and when. The service itself
can also be adopted as a FHS monitor which will inform
the users about vulnerable FHSs that should be avoided.
This privacy-rating functionality can be beneficial to the
community by allowing non-security inclined users to
choose a secure FHS and by pushing the developers of
the insecure FHSs to correct their privacy issues.

9 Conclusion
In this paper, we investigated the privacy of 100 file

hosting services and discovered that a large percentage
of them generate download URIs in a predictable fash-
ion. Specifically, many FHSs are either vulnerable to
sequential enumeration or they generate short identifiers
that can be easily guessed by an attacker. Using differ-
ent FHS enumerators that we implemented, we crawled
information for more than 310,000 unique files. Using
the Bing search engine as a privacy-classification mech-
anism, we showed that 54% of them were likely private
documents since they were not indexed by the search en-
gine. We also conducted a second experiment to demon-
strate that attackers are aware of these vulnerabilities and
they are already exploiting them to gain access to files
uploaded by other users. Finally we presented SecureFS,
a client-side protection mechanism which is able to pro-
tect a user’s files when uploaded to insecure FHSs, even
if the documents ends up in the possession of attackers.

Acknowledgements: This research is partially funded
by the Interuniversity Attraction Poles Programme Bel-
gian State, Belgian Science Policy, the IBBT, the Re-
search Fund K.U.Leuven and from the European Union
Seventh Framework Programme (FP7/2007-2013) under
grant agreement n. 257007.

References
[1] ANTONIADES, D., MARKATOS, E., AND DOVROLIS, C. One-

click hosting services: a file-sharing hideout. In Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement
conference (2009), ACM, pp. 223–234.

[2] BALDUZZI, M., PLATZER, C., HOLZ, T., KIRDA, E.,
BALZAROTTI, D., AND KRUEGEL, C. Abusing social networks

for automated user profiling. In Proceedings of the 13th inter-
national conference on Recent advances in intrusion detection
(Berlin, Heidelberg, 2010), RAID’10, Springer-Verlag, pp. 422–
441.

[3] BOWEN, B., HERSHKOP, S., KEROMYTIS, A., AND STOLFO,
S. Baiting inside attackers using decoy documents. Security and
Privacy in Communication Networks (2009), 51–70.

[4] ENDLER, D. Brute-Force Exploitation of Web Application Ses-
sion IDs. Retrieved from http://www. cgisecurity. com (2001).

[5] JAKOBSSON, M., FINN, P., AND JOHNSON, N. Why and How
to Perform Fraud Experiments. Security & Privacy, IEEE 6, 2
(March-April 2008), 66–68.

[6] JAKOBSSON, M., AND RATKIEWICZ, J. Designing ethical
phishing experiments: a study of (ROT13) rOnl query features.
In 15th International Conference on World Wide Web (WWW)
(2006).

[7] JENSEN, C. Cryptocache: a secure sharable file cache for roam-
ing users. In Proceedings of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the op-
erating system (2000), vol. 54, ACM, pp. 73–78.

[8] LAI, E. What’s replacing P2P, BitTorrent as pirate hang-
outs? http://www.computerworld.com/s/article/
9139210/.

[9] MUELLER, W. Top free file hosts to store your
files online. http://www.makeuseof.com/tag/
top-free-file-hosts/.

[10] NARAYANAN, A., AND SHMATIKOV, V. Robust de-
anonymization of large sparse datasets. In Proceedings of the
2008 IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2008), IEEE Computer Society, pp. 111–125.

[11] PEARSON, S. Taking account of privacy when designing cloud
computing services. In Proceedings of the 2009 ICSE Workshop
on Software Engineering Challenges of Cloud Computing (Wash-
ington, DC, USA, 2009), CLOUD ’09, IEEE Computer Society,
pp. 44–52.

[12] PROVOS, N. A virtual honeypot framework. In Proceedings of
the 13th conference on USENIX Security Symposium - Volume 13
(Berkeley, CA, USA, 2004), SSYM’04, USENIX Association,
pp. 1–1.

[13] SAPONAS, T. S., LESTER, J., HARTUNG, C., AGARWAL, S.,
AND KOHNO, T. Devices that tell on you: privacy trends in con-
sumer ubiquitous computing. In Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium (Berkeley,
CA, USA, 2007), USENIX Association, pp. 5:1–5:16.

[14] SHARKY. 100 of the best free file hosting upload sites.
http://filesharefreak.com/2009/08/26/
100-of-the-best-free-file-hosting-upload-sites/.

[15] THIERRY ZOLLER. How NOT to implement a Payback/Cash-
back System. In OWASP BeNeLux (2010).

[16] WONDRACEK, G., HOLZ, T., KIRDA, E., AND KRUEGEL, C.
A practical attack to de-anonymize social network users. In Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2010), SP ’10, IEEE Computer Society,
pp. 223–238.

[17] WRIGHT, C. V., BALLARD, L., COULL, S. E., MONROSE, F.,
AND MASSON, G. M. Spot me if you can: Uncovering spo-
ken phrases in encrypted voip conversations. In Proceedings of
the 2008 IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2008), IEEE Computer Society, pp. 35–49.

[18] YUILL, J., ZAPPE, M., DENNING, D., AND FEER, F. Honey-
files: deceptive files for intrusion detection. Proceedings from
the Fifth Annual IEEE SMC Information Assurance Workshop,
2004., June (2004), 116–122.

8

