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1 Introduction

Over the last decade, unsolicited bulk email, or spam,
has transitioned from a minor nuisance to a major
scourge, adversely affecting virtually every Internet user.
Industry estimates suggest that the total daily volume of
spam now exceeds 120 billion messages per day [10];
even if the actual figure is 10 times smaller, this means
thousands of unwanted messages annually for every In-
ternet user on the planet. Moreover, spam is used not
only to shill for cheap pharmaceuticals, but has also be-
come the de facto delivery mechanism for a range of
criminal endeavors, including phishing, securities ma-
nipulation, identity theft and malware distribution. This
problem has spawned a multi-billion dollar anti-spam
industry that in turn drives spammers to ever greater
sophistication and scale. Today, even a single spam
campaign may target hundreds of millions of email ad-
dresses, sent in turn via hundreds of thousands of com-
promised “bot” hosts, with polymorphic “message tem-
plates” carefully crafted to evade widely used filters.

However, while there is a considerable body of re-
search focused on spam from the recipient’s point of
view, we understand considerably less about the sender’s
perspective: how spammers test, target, distribute and
deliver a large spam campaign in practice. At the heart
of this discrepancy is the limited vantage point available
to most research efforts. While it is straightforward to
collect individual spam messages at a site (e.g., via a
“spam trap”), short of infiltrating a spammer organiza-
tion it is difficult to observe a campaign being orches-
trated in its full measure. We believe ours is the first
study to approach the problem from this direction.

In this paper, we explore a new methodology—
distribution infiltration—for measuring spam campaigns
from the inside. This approach is motivated by the obser-
vation that as spammers have migrated from open relays
and open proxies to more complex malware-based “bot-
net” email distribution, they have unavoidably opened
their infrastructure to outside observation. By hooking
into a botnet’s command-and-control (C&C) protocol,

one can infiltrate a spammer’s distribution platform and
measure spam campaigns as they occur.

In particular, we present an initial analysis of spam
campaigns conducted by the well-known Storm botnet,
based on data we captured by infiltrating its distribution
platform. We first look at the system components used
to support spam campaigns. These include a work queue
model for distributing load across the botnet, a modular
campaign framework, a template language for introduc-
ing per-message polymorphism, delivery feedback for
target list pruning, per-bot address harvesting for acquir-
ing new targets, and special test campaigns and email
accounts used to validate that new spam templates can
bypass filters. We then also look at the dynamics of how
such campaigns unfold. We analyze the address lists to
characterize the targeting of different campaigns, deliv-
ery failure rates (a metric of address list “quality”), and
estimated total campaign sizes as extrapolated from a set
of samples. From these estimates, one such campaign—
focused on perpetuating the botnet itself—spewed email
to around 400 million email addresses during a three-
week period.

2 Background
The origins of spam date back to the early-1990s when
legitimate advertisers and scammers alike began to re-
alize the capability of email to reach large numbers of
potential customers or marks. As spam’s prevalence in-
creased, so too did attempts to stop it, whether by main-
taining “blacklists” of IP addresses or filtering on spam
content itself. In their quest to reach their targets spam-
mers have ever adapted to these methods. Where they
once were able to send spam from a few servers under
their control, IP blacklists have forced the development
of bot-based distribution networks that use compromised
PC’s to relay messages and launder their true origin.
Similarly, while spammers could once send the same
message to all their targets, the use of filters based on
statistical learning have in turn caused spammers to dy-
namically add textual polymorphism to their spam, thus
evading the filters.



The research community has come relatively late to
the study of spam, but in recent years there has been
considerable attention focused on characterizing impor-
tant aspects of the spam enterprise including address har-
vesting [13], the network behavior of spam relays [17],
the hosting of scam sites [1] and advances in filter eva-
sion [14]. Similarly, botnets themselves have enjoyed
considerable attention from security researchers, includ-
ing both case studies and analyses of size, number, ac-
tivity, membership, and dynamics [4, 18, 6, 15, 21, 2, 11,
16]. Here too, advances in defenses have provoked im-
provements in the underlying C&C technology. While
early botnets depended exclusively on centralized C&C
channels (typically IRC), modern botnets have devel-
oped increasingly sophisticated methods for obfuscating
or minimizing their C&C exposure. Most recently, the
Storm botnet has become the first that implements a di-
rectory service upon a distributed hash table [12, 9, 19].
In turn, this is used to bootstrap a custom C&C protocol
that constructs a multi-level distribution hierarchy with a
layer of message relays isolating the “foot soldier” bots,
who blindly poll for commands, from a smaller set of
servers that control them. While Storm represents the
current technological front for spammers, at its core the
basic methods are structurally the same as all spam dis-
tribution platforms of which we are aware.

Spammers divide their efforts into individual cam-
paigns that are focused on a particular goal, whether
it is selling a product, committing financial fraud, or
distributing malware. Abstractly, we think of each
spam campaign as consisting of a target list of email
addresses—either harvested via crawling or malware or
purchased outright via underground markets [5]—along
with a set of subject and body text templates that are
combined mechanically to create an individual message
for each targeted address. A campaign may consist
of one or more such runs and thus can vary in length
from only a few hours to as long as months (as evi-
denced by Storm’s e-card campaign of mid-2007 [3]).
In turn, a spam campaign is executed by some distribu-
tion platform—typically a botnet—and this infrastruc-
ture can be reused by multiple campaigns (conversely
there is anecdotal evidence of individual campaigns
moving to using different botnets at different points in
time). For reasons of scalability, this infrastructure is
typically responsible for the task of evading textual spam
filters and thus must generate each message algorithmi-
cally based on the campaign’s text templates and a set
of evasion rules, or macros. Also for scalability, the
load of delivering a spam campaign must be balanced
across the infrastructure. While the exact method can
vary (e.g., pull-based vs push-based bots), the logic is
nearly universal: a campaign is quantized into individ-
ual work requests—consisting of a subset of the target

Figure 1: Experimental setup.

list and, optionally, updated templates and macros—that
are distributed as updates from the spammer to the indi-
vidual distribution nodes. Finally, the infrastructure can
report back failures, allowing the spammer to weed out
addresses from their target list that are not viable.

3 Data collection
Our measurements come from both instrumentation and
probing of the Storm botnet [12, 20]. For instrumen-
tation we run bots in controlled environments, and for
probing we use crawling of Storm proxies, as described
below. The key enabler for our infiltration effort was our
development of the capability to analyze the different
forms of Storm communication traffic, which required
a significant reverse-engineering effort.

Storm employs a tiered coordination mechanism. At
the lowest level, worker bots access a form of the Over-
net peer-to-peer network to locate C&C proxy bots.
Workers relay through the proxies requests for instruc-
tions and the results of executed commands, receiving
from them their subsequent C&C. The proxies in turn
interact with “bullet-proof hosting” sites under control
of the botmaster. (Note that our work here focuses en-
tirely on the proxy-based C&C mechanism; we do not
employ any form of Overnet monitoring or probing.)

From late Dec. 2007 through early Feb. 2008 we ran
16 instances of Storm bots1 in virtual machines hosted
on VMware ESX 3 servers. Depending on the machines’
configuration, these bots could run as either workers or
proxies. As workers, they would contact remote prox-
ies and receive instructions such as spamming direc-
tives. As proxies, they would themselves be contacted
by remote workers requesting instructions, which they
recorded and then relayed back into Storm.

In addition, we analyze outgoing C&C requests from
our workers in order to discover the external prox-
ies to which they attempt to communicate. We feed
these proxy identities to a custom crawler that mimics
the presence of additional workers, repeatedly querying
each active proxy for the latest spamming instructions.

Figure 1 summarizes the experimental setup (here,
Overnet is shown only due to its use by our workers to



BOT-BASED DATASET

Timeframe 26 Dec 07 – 04 Feb 08
C&C messages 1.03M
SMTP traffic 3.36M (to Sink)

Contacts from ext. workers 145,585
Contacts to ext. proxies 1,086
Total update messages 208,463
Ext. delivery reports 50,131
Ext. harvest reports 272,546 (9.9% non-empty)

Total spam templates 172,498 (13.3% unique)
Total targeted addresses 66,698,722 (97.7% unique)
Ext. harvested addresses 463,580

CRAWL-BASED DATASET

Timeframe 20 Nov 07 – 13 Feb 08
Proxies contacted 45,909 (722 distinct)

Spam templates extracted 16,977
Email addresses extracted 11,487,402

Table 1: Summary of datasets used in the study.

locate proxies), and Table 1 summarizes the contents of
data we gathered with the setup for our study. The first
group of figures refers to measurements from the bot-
based components of our setup (workers and proxies we
ran in our controlled environment). Here, the term “Ex-
ternal” refers to information sent to us by remote work-
ers contacting our local proxies; “Total” refers to vol-
umes summed across both such external reports plus the
activities of our local workers. (Our local workers do
not generate meaningful harvesting figures, which they
are unable to perform in an effective fashion. Also, our
local workers did not attempt to send spam until Jan 7.)
The second group of figures refers to measurements ex-
tracted from the crawler component of our setup.

4 Campaign mechanics
In this section we briefly describe how Storm worker
bots are instructed to construct the individual spam mes-
sages that they then attempt to propagate.

4.1 Message structure & propagation
In general, workers acquire new tasks in a pull-based
fashion, by actively requesting update messages from
their proxies. (Similarly, they send back delivery and
harvest reports asynchronously, at a time of their choos-
ing.) Update messages consist of three sections, each
possibly empty (if modifying elements of a previous up-
date). These are: (i) template material; (ii) sets of dic-
tionaries containing raw text material to substitute into
templates; and (iii) lists of target email addresses. These
lists typically provide roughly 1,000 addresses per up-
date message. Templates and target lists are labeled with
small integers, which we term a slot. Spam constructed
from a given template is sent to targets in lists labeled
with the corresponding slot numbers. Delivery reports
mirror the target list structure of update messages, with

addresses listed in full upon success, and otherwise an
error code in its stead, reporting the cause of failure.
Harvest reports contain zero or more addresses, not fur-
ther structured.

4.2 Templating mechanism
For spam construction, Storm implements a fairly elab-
orate template language, supporting formatting macros
with input arguments for text insertion and formatting,
generation of random numbers, computation of MTA
message identifiers, dates, and reuse of results of previ-
ous macro invocations. Macros are delineated by a start
marker “%ˆ” and a corresponding end marker “ˆ%”. We
use parentheses below instead of Storm’s markup to ease
readability. A single letter after the initial marker iden-
tifies the macro’s functionality. It is followed by zero
or more macro input arguments, which may consist of
the output of nested macros. We verified the meaning
of the different macro types seen in real traffic by feed-
ing suitably crafted templates to the workers in our setup
and observing the resulting spam they attempted to send.
In addition, we also tested the letters of the alphabet not
encountered in real templates, to see whether they would
provide any functionality. This way, we discovered ten
additional language features. Table 2 summarizes the
language features we identified.

Figure 2 shows the header part of a template as used
by Storm, together with the resulting email message
header. The from-part of the Received header serves
as a good example of macro use. The content is con-
structed as follows:

(C0 (P (R2− 6) : qwertyuiopasdfghjklzxcvbnm) .
(P (R2− 6) : qwertyuiopasdfghjklzxcvbnm))

This macro builds two character strings of length be-
tween 2 and 6 characters, randomly taken from the given
character string, places them around a dot character, and
labels the output string “0.” The result is later picked
up in the Message-ID header. The From: line in
the template illustrates the generation of text via selec-
tion from a dictionary, thereby randomizing the apparent
sender of the message.

5 Measurements of bot spam activity
We now turn to characterizing the observed behavior of
workers as they construct, transmit, and report back on
spam batches. Note that characterizations can reflect ob-
servation of our local workers; remote workers that re-
ported to our local proxies; or remote proxies sending
instructions to our crawler. When unclear from context,
we clarify which subsets of our data apply to each dis-
cussion.

Overall, we observed bots sending spam to 67M tar-
get addresses with very little redundancy: over 65M of



MACRO SEEN LIVE FUNCTIONALITY

(0) X Spam target email address.
(A) X FQDN of sending bot, as reported to the bot as part of the preceding C&C exchange.
(B) Creates content-boundary strings for multi-part messages.

(Cnum) X Labels a field’s resulting content, so it can be used elsewhere through (V); see below.
(D) X Date and time, formatted per RFC 2822.
(E) ROT-3–encodes the target email address.

(Fstring) X Random value from the dictionary named string.2

(Gstring) X Line-wrap string into 72 characters per line.
(Hstring) Defines hidden text snippets with substitutions, for use in HTML- and plain-text parts.

(I) X Random number between 1 and 255, used to generate fake IP addresses.
(Jstring) Produces quoted-printable “=20” linewrapping.

(K) IP address of SMTP client.
(M) X 6-character string compatible with Exim’s message identifiers (keyed on time).
(N) 16-bit prefix of SMTP client’s IP address.

(Ostring:num) X Randomized message identifier element compatible with Microsoft SMTPSVC.
(Pnum1[-num2]:string) X Random string of num1 (up to num2, if provided) characters taken from string.

(Qstring) Quoted-printable “=” linewrapping.
(Rnum1-num2) X Random number between num1 and num2. Note, special-cased when used with (D).

(Ustring) Randomized percent-encoding of string.
(Vnum) X Inserts the value of the field identified by (Cnum).

(W) Time and date as plain numbers, e.g. “20080225190434”.
(X) Previously selected member of the “names” dictionary.

(Ynum) X 8-character alphanumeric string, compatible with Sendmail message identifiers.
(Z) X Another Sendmail-compatible generator for message identifiers.

Table 2: Storm’s spam-generation templating language.

the addresses were unique. The target addresses were
heavily concentrated (60%) in the .com TLD, reflect-
ing a similar concentration in harvested addresses. We
also observed over 170K templates (22K unique) used
by the bots to generate spam, far more than the number
of campaigns observed. The high template dynamism
suggests constant tuning by the spammers to continually
subvert filtering.

In the remainder of this section, we discuss prelimi-
nary measurements of the bot life-cycle (the dynamics
of how bots send spam), delivery efficacy (how many
targets actually have mail sent to them), the dictionaries
used to programatically construct messages, the preva-
lence of different kinds of campaigns, address harvesting
behavior, and the presence of test accounts employed by
the botmaster.

5.1 Bot life-cycle

Worker bots begin searching for proxies (via Overnet)
upon boot-up, sending a request for an update message
upon successful contact with one. (The worker then
attempts a TCP port 25 connectivity check to one of
Google’s SMTP servers. However, its subsequent be-
havior does not appear to change whether or not the
check succeeds.) Upon receiving an update with spam
instructions, the worker then attempts to send a spam to
each member of target lists in slots for which the bot has
templates. It targets each address only once per occur-
rence in the list, working through it in sequence. The
only pauses in spamming occur when a worker runs out
of targets, at which point spamming goes idle until the

worker next requests and receives additional targets.
We analyzed 72 bot lifespans to better understand

spamming rates and bot reliability. On average, it takes
our worker bots just over 4 min after boot-up until re-
ceiving the first update message. We have found that
workers are short-lived: they generally fall silent (on
both Overnet as well as C&C) within 24h of start-up,
and on average remain functional only for a little un-
der 4 hr. A reboot spurs them to resume their activity.
This observation can explain the tendency of spam sent
by the Botnet to peak in the mid-morning hours of the
local timezone, shortly after infected machines are pow-
ered on [8]. The overall average spamming rate was 152
messages per minute, per bot.

5.2 Delivery efficacy
We analyzed a total of 30,186 delivery reports that our
proxy bots received from remote workers. This allowed
us to form an estimate of how successfully Storm deliv-
ers spam. Delivery succeeds for only 1/6th of the target
addresses provided. Understanding the causes of failure
required investigation of the error status codes reported
by the bots. By combining reverse-engineering of the
binary with failure-introducing configurations of our in-
ternal setup (DNS failures, SMTP server refusal, etc.) at
different stages of the spam-delivery process, we could
observe the codes returned by our local workers when
encountering these difficulties.

We find that DNS lookup failures account for about
10% of reported failures; 8% of delivery attempts fail
to establish a TCP connection to the SMTP server, 28%



Received: from %ˆC0%ˆP%ˆR2-6ˆ%:qwertyuiopasdfghjklzxcvbnmˆ%.%ˆP%ˆR2-6ˆ%:qwertyuiopasdfghjkl .
zxcvbnmˆ%ˆ% ([%ˆC6%ˆIˆ%.%ˆIˆ%.%ˆIˆ%.%ˆIˆ%ˆ%]) by .
%ˆAˆ% with Microsoft SMTPSVC(%ˆFsvcverˆ%); %ˆDˆ%

Message-ID: <%ˆO%ˆV6ˆ%:%ˆR3-50ˆ%ˆ%%ˆV0ˆ%>
From: <%ˆFnamesˆ%@%ˆFdomainsˆ%>
To: <%ˆ0ˆ%>
Subject: JOB $1800/WEEK - CANADIANS WANTED!
Date: %ˆD-%ˆR30-600ˆ%ˆ%

Received: from auz.xwzww ([132.233.197.74]) by dsl-189-188-79-63.prod-infinitum.com.mx with .
Microsoft SMTPSVC(5.0.2195.6713); Wed, 6 Feb 2008 16:33:44 -0800

Message-ID: <002e01c86921$18919350$4ac5e984@auz.xwzww>
From: <katiera@experimentalist.org>
To: <voelker@cs.ucsd.edu>
Subject: JOB $1800/WEEK - CANADIANS WANTED!
Date: Wed, 6 Feb 2008 16:33:44 -0800

Figure 2: Snippet of a spam template, showing the transformation of an email header from template (top) to resulting
content (bottom). The .-symbol indicates line continuations. Bold text corresponds to the formatting macros and
their evaluation.

NAME TOTAL REDUNDANCY (%) AVERAGE SIZE SAMPLE

linksh 67,808 86.13 99.96 76.119.95.66
pharma links 67,771 92.11 9.03 http://iygom.tryyoung.cn/?625112501432

domains 39,936 96.94 1040.94 013.net
names 39,695 96.72 875.54 steven88

mynamesl 6,880 99.93 98.97 Ada
trunver 6,876 99.99 4.00 2.0.0.6 (Windows/20070728)
svcver 6,871 99.97 10.00 6.0.3790.0
ronsubj 6,813 99.96 6.00 Best job for you
eximver 6,706 99.99 19.00 4.04

mynames 6,700 95.60 616.02 Abel

Table 3: Properties of the 10 most frequent dictionaries found in the bot-based dataset.

fail because the SMTP session does not begin with the
expected 220 banner, 1% fail due to errors in the HELO
stage, 18% at the RCPT TO stage, 14% at the MAIL
FROM stage, and 4% at the DATA stage.

5.3 Dictionaries

Storm’s spamming operation relies heavily on the use
of F-macros to generate polymorphic messages and to
create URLs for the recipients to click on. In the bot-
based dataset, we observed a total of 356,279 dictionar-
ies, clustered under 33 different names. Dictionaries re-
peat heavily, with only 2% being unique across the over-
all set of dictionaries bearing the same name.

The group with the least redundancy is “linksh”
(14% unique), whose purpose is Storm’s self-
preservation: the spam content includes the raw
IP addresses of proxy bots that serve up web content
designed to trick the email recipient into downloading
and executing a Storm executable.

Table 3 summarizes the main aspects of the dictionar-
ies we observed.

5.4 Campaign Topics
Many of the campaigns are identifiable by the templates
the use. For example, self-propagation spam uses the
wormsubj dataset for the subject line, while pharma-
ceutical spam the pharma dataset. By identifying cer-
tain template keywords, we were able to classify many
of the 16,977 templates retrieved by the crawler. Un-
fortunately, many were image-based, which could not
be classified easily. Table 4 shows the topic breakdown
for templates collected during the measurement period
(November 20, 2007 to February 13, 2008).

5.5 Address harvesting
Our local proxies received a total of 272,546 harvest re-
ports from 522 remote workers. Only 10% of these con-
tained any addresses.

The reports reflected a total harvest of 929,976 email
addresses, of which 463,580 were unique. Figure 3(a)
shows the distribution of overall harvest size per bot,
with duplicates removed. Workers on average re-
ported nearly a thousand distinct addresses, with the top
harvest—seemingly a regular home customer with an In-
dian ISP—contributing 96,053 addresses. In addition,
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Figure 3: Harvest properties. (a) Distribution of the number of unique addresses reported by each bot. (b) Distribution
of the percentage of addresses uniquely reported by the bots

TOPIC FRACTION

Self-propagation 22%
Pharmaceutical 22%

Stocks 11%
Job offer 1%
Phishing 1%

Unknown image 39%
Unknown other 4%

Table 4: Campaign topic breakdown for the 16,977 tem-
plates retrieved by the crawler during the collection pe-
riod (November 20, 2007 to February 13, 2008).

as seen in Figure 3(b), addresses reported by individual
workers are often unique across the entire harvest (that
is, had that worker not reported, those addresses would
not have otherwise been reaped). For example, for 50%
of the workers, 84% or more of their reported addresses
were not otherwise harvested.

Unsurprisingly, the most frequently harvested
domains all correspond to major email ser-
vices: hotmail.com, yahoo.com, aol.com,
mail.ru, gmail.com, mynet.com, msn.com,
rediffmail.com, etc. These for the most part
closely match the most prevalent domains in email
address lists, as well.

However, about 10% of the harvested addresses do
not correspond to a valid top-level domain. Frequent er-
rors include .gbl, .jpg, .msn, .hitbox, .yahoo,
.com0, .dll; clearly, some of these reflect inade-
quate pattern-matching when scouring the local filesys-
tem, or files that contain slightly mangled addresses. In-
terestingly, unlike for correctly harvested addresses, the
prevalent patterns for error here differ to a greater degree
from the errors seen in address lists used during cam-
paigns, suggesting that some additional pruning/filtering
is likely applied to harvested addresses.

We also note the possibility of seeding machines with
honeytoken addresses encoded to uniquely identify the
machines on which they are planted. Unlike harvesting
errors, these addresses could look completely legitimate,
and in fact would be functional; any subsequent use of
them would would then strongly indicate that the ma-
chine encoded within the address had been compromised
and its file system scoured for email harvesting.

5.6 Botmaster test accounts
(Note: we have left details vague in this section because
the specifics have implications for current law enforce-
ment activity.)

In our analysis we uncovered the presence of a tem-
plate slot which sent email to a set of just 4 email ad-
dresses. Upon inspecting the message template, we dis-
covered that a modified version of the spam body ap-
peared a few hours later, again sent to the same set of
addresses. All four addresses have a similar structure
and correspond to large email providers. We speculate
that the botmaster uses these addresses to test the de-
gree to which the structure of their new campaign is vul-
nerable to detection by the spam filters that large sites
employ. This possibility suggests an opportunity for a
form of counter-intelligence (similar in spirit to that em-
ployed in [18]): perhaps at the vantage point of such
a provider we can detect the pattern of an initial mes-
sage sent to a small number of addresses, and flagged
as spam, followed by a subsequent similar message sent
more broadly. Such an approach might be able to both
detect the onset of a new spam campaign and help un-
mask the spammer via their access to the test account.

6 Estimating Campaign Size
In this section we attempt to estimate the total size of
a campaign mailing list based on a small sample of the



overall botnet activity. Specifically, we estimate the total
mailing list size used in one of Storm’s self-propagation
campaigns. We use an estimation method called Mark
and Recapture, which is widely employed to estimate
the sizes of animal populations. As a check on the above,
we also compute an estimate based on sample intersec-
tion with a list of addresses known to have received
Storm spam.

Both estimation methods are grounded in a set of sta-
tistical assumptions about the underlying sampling pro-
cess, namely that:

1. the address list does not change,
2. addresses are sampled with equal probability, and
3. addresses are sampled independently.

We emphasize that none of these assumptions are be-
lieved to hold absolutely: it is reasonable to expect, for
example, that address harvesting (Section 5.5) is used
to augment the distribution list, and that delivery reports
(Section 5.2) are used to prune the list. We have also
seen addresses that differ only in their capitalization,
suggesting that the list may contain duplicates. Nev-
ertheless, we believe our techniques provide reasonable
first-order estimates of the total list size.

6.1 The wormsubj Campaign
One of the longest-running campaigns in our crawl-
based dataset is identified by a Subject header of the
form “Subject: %ˆFwormsubjˆ%.” It is a self-
propagation campaign: the body of the message con-
tains a URL for downloading the Storm executable. Our
crawler downloaded this template 3,777 times, with an
observed total distribution list of 1,797,458 addresses.
Because the subject line is drawn from a known set of
strings (the contents of the “wormsubj” dictionary), it is
also possible to identify messages generated by this tem-
plate. We use this feature of the campaign to identify
such messages in our spam trap (which was also used in
the Spamscatter study [1]).

6.2 Mark and Recapture
Mark and Recapture is a widely used technique for es-
timating animal populations. In its simplest form, it in-
volves capturing and tagging a small sample of an ani-
mal population, and counting the number of tagged spec-
imens in another sample taken some time later. An es-
timate of the total population is then given by C0C1/R,
where C0 is the number initially captured and tagged,
C1 is the number captured in the second sample, and R
is the number of animals in the second sample with tags.
This is the so-called Lincoln-Petersen estimator.

For our analysis, we use the Bayesian multiple-
capture model described by Gazey and Staley [7]. In this
setting, email addresses are the individual animals, the
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Figure 4: Cumulative distribution function for the
wormsubj campaign total mailing list size: aggressive
(dotted) and conservative (solid) estimators.

complete mailing list is the population, and each batch
of 900–1,000 addresses retrieved with a template is a
sample of the population. We use two estimators: the
standard estimator described in [7], which assumes that
all addresses are chosen independently, and a modified
estimator that only requires that the first addresses of the
batch included with each template be independent. We
refer to them as the aggressive and conservative estima-
tors, respectively. Figure 4 shows the estimate CDF for
both. The aggressive estimator estimate is 437 million
and the conservative estimator estimate is 376 million,
with the 95% confidence interval for the conservative es-
timate between 206 million and 790 million addresses.

6.3 Sample Coverage
To compute the second estimate, we monitored an email
domain for Storm spam and used the proportion of the
domain covered by our sample to estimate the fraction
of the complete list included in our sample. In other
words, if D email addresses in a given domain receive
wormsubj spam, and R of those occur in our sample
of size C, then we estimate the entire list to consist of
DC/R addresses. In fact, this method is just the two-
capture case of the Mark and Recapture method, where
the monitored domain is considered the first (tagged)
sample, and the set of addresses we receive from Storm
the second sample.

Over the campaign time period (late 2007 to early
2008), a total of D = 3015 distinct addresses received
wormsubj. Of those, only R = 8 occurred in the list of
C = 1, 797, 458 addresses retrieved by our crawler for
this campaign. This gives an estimate of the total list size
of approximately 677 million addresses, which is just
within the 95% confidence interval of the conservative
estimator. The 95% confidence interval for the Sample
Coverage estimator itself is 410 million to 1,880 million.



Because this estimator is unreliable when R is small, we
consider it a “sanity check” for the Mark and Recapture
estimate.

7 Conclusion
Understanding how the enemy thinks is a requirement
for anticipating their next move; doubtless there’s an apt
Sun Tzu quote describing this. Thus, we are ever mo-
tivated to improve our understanding of the spammer’s
approach and methods: spamcraft, to hijack a Cold War
term. However, a key limitation in this goal is how well
we can measure the spammer’s activities. While spam
is a near-universal problem, each spam victim can only
bear witness to the teeniest sliver of the larger picture.
Thus, outside of a few large anti-spam companies, re-
searchers have lacked any means to obtain a sufficiently
large and distributed view of spam activity from which to
form representative conclusions. Moreover, since such
activity is heterogeneous by its nature (consisting of all
received spams), it is difficult to begin to isolate the ac-
tivity of a particular spam crew, or to extract the dynam-
ics, targeting, and evolution of a single spam campaign
during its lifetime. Finally, spammers rely on intelli-
gence from their delivery infrastructure—including tar-
get liveness and the harvesting of new addresses—that
is inherently invisible to a spam recipient.

Even though these problems might each be accom-
modated to varying degrees, the opportunities of instead
measuring spam at its source are strong. An ideal so-
lution would be to infiltrate spam organizations them-
selves, observe the address lists they construct, the com-
mands they deliver, and the feedback they receive. How-
ever, as few in the research community have a strong
aptitude (and legal standing) for covert operations, we
believe the next best opportunity is presented by the
networks of bots used to distribute the vast majority of
today’s spam—distribution infiltration. In this setting,
reverse-engineering can suffice to infiltrate the distribu-
tion infrastructure and “drink from the spam firehose”
at will. In this paper, we have demonstrated this ap-
proach in the context of the Storm network, extracting
millions of samples pre-sorted by campaign, and observ-
ing the same intelligence that the botnet delivers to the
spammers themselves. In so doing, we have documented
a number of interesting aspects of such campaigns, in-
cluding automated error reporting, address harvesting, a
sophisticated template language, and dedicated test ac-
counts. We have further constructed a well-grounded
estimate of the size of one of the address lists in the hun-
dreds of millions. While both our data and our experi-
ences are preliminary, we believe the underlying tech-
nique is sound, and offers an unprecedented level of
detail about spammer activities—virtually impossible to
otherwise obtain using traditional methods.
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Notes

1. The binary used for most of experiments
was a withlove.exe version with MD5 hash
cbb4dedbfa7b57bb1e47063467c14e4f.

2. Spam does get sent even when no dictionary content
is available for a particular name. The output that would
normally result is simply omitted.
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