
Designing and implementing malicious hardware

Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, and Yuanyuan Zhou
University of Illinois at Urbana Champaign, Urbana, IL 61801

Abstract
Hidden malicious circuits provide an attacker with a
stealthy attack vector. As they occupy a layer below the
entire software stack, malicious circuits can bypass tra-
ditional defensive techniques. Yet current work on trojan
circuits considers only simple attacks against the hard-
ware itself, and straightforward defenses. More complex
designs that attack the software are unexplored, as are
the countermeasures an attacker may take to bypass pro-
posed defenses.

We present the design and implementation of Illinois
Malicious Processors (IMPs). There is a substantial de-
sign space in malicious circuitry; we show that an at-
tacker, rather than designing one specific attack, can in-
stead design hardware to support attacks. Such flexi-
ble hardware allows powerful, general purpose attacks,
while remaining surprisingly low in the amount of addi-
tional hardware. We show two such hardware designs,
and implement them in a real system. Further, we show
three powerful attacks using this hardware, including a
login backdoor that gives an attacker complete and high-
level access to the machine. This login attack requires
only 1341 additional gates: gates that can be used for
other attacks as well. Malicious processors are more
practical, more flexible, and harder to detect than an ini-
tial analysis would suggest.

1 Introduction

1.1 Motivation
Attackers may be able to insert covertly circuitry into in-
tegrated circuits (ICs) used in today’s computer-based
systems; a recent Department of Defense report [16]
identifies several current trends that contribute to this
threat. First, it has become economically infeasible to
procure high performance ICs other than through com-
mercial suppliers. Second, these commercial suppli-
ers are increasingly moving the design, manufacturing,

and testing stages of IC production to a diverse set of
countries, making securing the IC supply chain infea-
sible. Together, commercial-off-the-shelf (COTS) pro-
curement and global production lead to an “enormous
and increasing” opportunity for attack [16].

Maliciously modified devices are already a reality. In
2006, Apple shipped iPods infected with the RavMonE
virus [4]. During the cold war, the CIA sabotaged oil
pipeline control software, which was then allowed to
be “stolen” by Russian spies [10]. Conversely, Russian
agents intercepted and modified typewriters which were
to be used at the US embassy in Moscow; the modifica-
tions allowed the Russians to copy any documents typed
on said typewriters [16]. Recently, external hard drives
sold by Seagate in Taiwan were shipped with a trojan in-
stalled that sent personal data to a remote attacker [1].
Although none of these attacks use malicious circuits,
they clearly show the feasibility of covertly inserting ma-
licious elements in the COTS supply chain.

Using modified hardware provides attackers with a
fundamental advantage compared to software-based at-
tacks. Due to the lower level of control offered, at-
tackers can more easily avoid detection and prevention.
The recent SubVirt project shows how to use virtual-
machine monitors to gain control over the operating sys-
tem (OS) [11]. This lower level of control makes defend-
ing against the attack far more difficult, as the attacker
has control over all of the software stack above. There is
no layer below the hardware, thus giving such an attack
a fundamental advantage over the defense.

Although some initial work has been done on this
problem in the security community, our understanding
of malicious circuits is limited. IBM developed a “tro-
jan circuit” to steal encryption keys [3]. By selectively
disabling portions of an encryption circuit they cause the
encryption key to be leaked. This is the best example of
an attack implemented in hardware that we are aware of,
yet it has several shortcomings. First, their attack oper-
ates on hardware-level abstractions directly. They leak
encryption keys from an encryption circuit and they ig-

nore higher-level abstractions and system-level aspects.
This limitation is problematic because security-critical
information rarely maps directly to hardware-level ab-
stractions. Second, although they describe and evaluate a
defensive strategy, existing counter-strategies an attacker
may employ are ignored [17, 18]. Finally, the attack it-
self is hard-coded; their malicious circuit is useful for
only this one specific purpose.

Indeed, a single hard-coded attack in hardware greatly
understates the power of malicious circuitry. This style
of attack is an attack designed in hardware; nobody has
designed hardware to support attacks. The design space
of malicious circuitry is unexplored, outside of simple,
special-purpose, hard-coded attacks. Responding to the
threat of trojan circuits requires considering a variety of
possible malicious designs; further, it requires anticipat-
ing and considering the attacker’s counter-moves against
our defenses. Without such consideration, we remain
open to attack by malicious circuits.

1.2 Our contribution
In this paper, we address these concerns by designing
and implementing Illinois Malicious Processors (IMPs).
We show that IMPs are capable of powerful attacks, use
surprisingly little circuitry, and are difficult to defend
against. Our two primary contributions are:

We consider the malicious circuit design space. Be-
yond simply designing an attack in hardware, we con-
sider hardware mechanisms to support general attacks.
We design two malicious modifications of a CPU; a
memory access mechanism and a shadow mode mech-
anism. The memory access mechanism allows an at-
tacker to violate the target OS’s isolation expectations,
while shadow mode allows the hidden execution of an
evil “firmware”. Both attacks use a minimal number of
transistors, yet allow the attacker wide access to a com-
promised system.

We design and implement potential attacks. Using
our two malicious circuit designs, we design and imple-
ment three attacks. With the memory access mechanism,
we design a privilege escalation attack, which gives an
attacker root without checking credentials or creating
log entries. Within shadow mode, we implement a lo-
gin backdoor that lets an attacker log in as root without
supplying a password, and we implement a service that
steals passwords and sends them to the attacker. These
attacks show the flexible nature of our attack circuitry.
Further, despite the low level of our malicious circuitry,
these attacks cause high level effects on the overall sys-
tem.

To evaluate our ideas, we implement our IMPs both
in simulation and in physical hardware. We modified the

VHDL source of the Leon3 [8] processor (an open source
SPARC design) to include malicious circuitry, and syn-
thesized it to an embedded system development board.
The resulting full system includes common components
such as Ethernet, USB, VGA, etc., and is capable of run-
ning a complete Linux environment. Against this system,
we carried out our login backdoor attack, and measured
the real-world perturbation on the system.

We contribute in several ways. We are the first to de-
sign and implement general purpose hardware (two de-
signs) to support the design of security attacks (three at-
tacks). We show some of the design tradeoffs attackers
may make when designing malicious circuitry, and the
challenges attackers may face in implementing practical
attacks with such circuits.

2 Problem statement, assumptions, and
threat model

In this section we define the problem we address, state
our assumptions, and describe our threat model.

We address the problem of designing and implement-
ing malicious processors that carry out high-level at-
tacks. In this paper we focus on an attacker that adds
additional circuits to carry out the attack. We consider
analog circuit perturbations (both timing and power), as
well as discrete perturbations. We do not consider at-
tacks where the gate-level design is unmodified and the
attacker uses physical phenomena (e.g., excessive heat)
to perturb execution or degrade performance of the cir-
cuit.

There are multitude of opportunities to insert
hardware-based attacks, including the design, fabrica-
tion, packaging, testing, and integration stages (e.g., at
a PC assembly plant).

Motivated attackers will subvert the IC supply chain
if doing so provides sufficient value. Since modifying
an IC is an expensive attack, it is doubtful that “script
kiddies” will turn their adolescent energies to malicious
processors, but the same cannot be said for attackers with
resources. If malicious processors are capable of running
valuable attacks, governments, organized crime syndi-
cates, terrorist organizations, and so on will deploy them
despite their cost. Historically, these types of organi-
zations are experienced at covert operations, and have
demonstrated considerable ingenuity in pursuing their
goals. In contrast, there is little work on malicious pro-
cessors.

3 Hardware designs

Previous work [3] presents a simple, pure hardware de-
sign space for attacks. Specifically, they attack a public-
key encryption circuit. By turning off portions of the

circuit a certain number of cycles in, they enable a key-
leaking attack. Using a 16-bit counter for timing, their
simulated malicious circuit takes an area of 406 gates.
One can easily imagine other pure-hardware attacks,
such as causing a circuit to fail or give incorrect results
after some triggering condition is reached. Further, un-
less the output of the circuit is carefully monitored by du-
plicating the effort, the attack is difficult to detect. How-
ever, such special-purpose attacks are limited. The key
leaking attack is only possible because the hardware they
attack is cryptographic hardware. The only thing such
a malicious circuit can be used for is stealing RSA en-
cryption keys; if one wishes to steal AES keys, or steal
plain text passwords, separate circuits must be designed.
Further, while simple attacks are easy (e.g., fail after 2
years of operation), it is unclear how to realize semanti-
cally richer attacks (e.g., execute the SQL query ‘DROP
TABLE *;’) using this technique.

Instead, we consider designing hardware mechanisms
to enable malicious payloads. Specifically, we consider
two mechanisms: a memory access mechanism that pro-
vides unchecked memory accesses and allows an attacker
to bypass the protection of the memory management unit
(MMU), and a shadow mode mechanism that allows at-
tackers to execute an invisible malicious firmware. These
two mechanisms represent different tradeoff points be-
tween analog perturbations, timing perturbations, and
visibility from within the system, as well as the flexibility
of the attack.

3.1 Memory access

Our memory access mechanism provides hardware sup-
port for unprivileged malicious software by allowing ac-
cess to privileged memory regions. Malicious software
triggers the attack by forcing a sequence of bytes on the
data bus to enable the memory access circuits. This se-
quence can be arbitrarily long to avoid false positives,
and the particular sequence must be agreed upon be-
fore deployment. Once the sequence is observed, the
MMU in the data cache ignores CPU privilege levels
for memory accesses, thus granting unprivileged soft-
ware access to all memory, including privileged mem-
ory regions like the operating system’s internal mem-
ory. In other words, loading a magic value on the data
bus will disable protection checking. We implement this
technique by modifying the data cache of our processor
to include a small state machine that looks for the spe-
cial sequence of bytes, plus some additional logic in the
MMU to ignore privilege levels when malicious software
enables the attack.

This mechanism requires relatively few transistors and
is flexible; the attacker can use software to implement
any payload they wish. Although the area of such an at-
tack may be larger than a single, special built circuit, we

instruction
fetch

data
stores

data
loads

writeback/
writethrough

instruction
fetch

data
stores

data
loads

Core

icache fills

dcache fills

dcache

memory bus

icache

L1 cache L1 cache

d−
m

em
or

y
sh

ad
ow

i−
m

em
or

y
sh

ad
ow

Normal Mode Shadow Mode

(activity from shadow
memory is filtered)

Figure 1: Hardware differences when shadow mode is
active.

can use the circuit for much more. For example, consider
how large a special-built circuit would have to be to ac-
cept external control, execute arbitrary database queries,
send the results off-site, and modify the logs to impli-
cate another attacker. In comparison, the memory access
mechanism is tiny. Unfortunately, the software of the at-
tack is visible from within the system (at least until the
attacker bootstraps more traditional rootkit mechanisms).
Furthermore, the attacker must get their malicious soft-
ware running on the system in the first place, albeit with
any privilege level.

Using the memory access mechanism, we implement
a privilege escalation program that bypasses the usual se-
curity checks (see Section 4.1).

3.2 Shadow mode
Our shadow mode mechanism lies in-between pure hard-
ware and pure software; we attempt to minimize the
number of additional circuits needed to carry out the at-
tack, remain hidden, and still support nearly arbitrary
attacks. To minimize the number of additional circuits
needed for an attack we reuse existing circuits by execut-
ing invisible instructions in a new processor mode called
shadow mode. Shadow mode is similar to ISA exten-
sion modes, like Alpha PAL code [5] and Intel system
management mode (SMM) [2], because shadow-mode
instructions have full processor privileges and are invis-
ible to software. However, unlike PAL code and SMM,
we further aim to be invisible to hardware outside of our
IMP. To hide attack instructions and data from hardware
outside of our IMP, we reserve instruction cache lines
and data cache lines for our attack, thus avoiding off-
chip resources and preventing exposure of attack states
and events that could be detected. However, reserving
cache for the attack does perturb the timing of software
running on the system. We quantify the impact of reserv-

ing cache lines for shadow mode in Section 6.
To load shadow-mode attacks on our IMP, we include

two bootstrap mechanisms. One is to include a small
section of bootstrap code that initializes the attack. We
initialize the bootstrap code in the cache memory using
the existing reset hardware (rather than using all zeros),
or alternatively using SRAM reset bias mechanisms such
as described in a recent patent [15]. This code consists
of normal CPU instructions that are executed after a pro-
cessor reset. While this code can then install an attack
directly, more flexibly, the IMP will wait for a predeter-
mined bootstrap trigger; a set of conditions to tell the
IMP to load in a firmware from nearby data. The ex-
act mechanism used to bootstrap attacks depends on the
goals of the attacker, and the assumptions the IMP archi-
tect makes about the target platform. For example, many
of our attacks assume the target platform includes a net-
work interface. When a network interface is present an
attacker can force data into a system easily by sending
it an unsolicited network packet that the OS drops. For
the OS to drop a network packet it must first inspect it,
and the act of inspecting the network packet gives our
bootstrap mechanism sufficient opportunity to look for a
trigger (similar to the memory access mechanism’s trig-
ger) and silently load data within the dropped network
packet as a malicious firmware that runs within shadow
mode.

Figure 1 shows the difference between running in nor-
mal mode before a shadow firmware has been loaded,
and running in shadow mode. In normal mode, the pro-
cessor goes through the cache hierarchy. While running
in shadow mode, the processor limits what activity will
go out to the memory bus. A portion of the address space
is backed only by the L1 cache. Instruction fetches are
satisfied from a small reserved portion of the icache, and
data loads/stores are satisfied from a reserved portion of
the dcache. If the malicious service needs to access reg-
ular memory then it issues loads or stores outside of the
reserved address space. Otherwise, if it keeps within the
reserved space, then it won’t generate any activity on the
memory bus, and is almost entirely invisible. Not pic-
tured is normal execution while a malicious firmware is
loaded; this is the same as normal execution, except that
a portion of the icache and dcache are unavailable (as
they are holding instructions and data for the malicious
program).

When the attack is running, the shadow-mode code
must be able to gain control of the processor at key points
in the instruction stream. To support transitions into
shadow mode, we use the debugging hardware found on
many processors, which includes breakpoints and watch-
points typically. We extend typical watchpoints to allow
shadow-mode code to trap on data values in addition to
addresses since many of our services use this trigger as
part of the attack.

login: root
password: letmein

Last login: Mon Apr 1
[root@victim ~]$

MAGIC BYTES

FIRMWARE
UDP HEADER

.....
UDP..
FIR..
MAG..
.....
.....

dcacheicache

.....
UDP C
HECKS
UM CO
DE...
.....

Shadow firmware uninstalls.
Attacker logs in as root.

4

UDP packet
Attacker sends unsolicited

1 2

cache area and activated.
Firmware is copied to reserved

EVILD

MAG..
.....
.....

dcacheicache

DE...
UM CO
HECKS
UDP C
ARE..
FIRMW

ATA..
.....

3

byte sequence
Monitor notices the magic

Figure 2: Overview of the login attack.

Using shadow mode, we implement two attacks; a
backdoor service (Section 4.2) and a password sniffer
(Section 4.3).

4 Example malicious services

In this section we discuss the malicious services we im-
plement and the tradeoffs we make in our designs. We
discuss a malicious service that escalates the privileges
of a process, a malicious service that allows attacker to
automatically login to a system, and a malicious service
that steals passwords.

4.1 Privilege escalation
Using the memory access mechanism, we implement a
malicious service that escalates the privileges of a user
process to root privilege level. To carry out the attack,
our privilege escalation program uses our trojaned hard-
ware to turn off protection to privileged memory regions.
Then, it searches kernel memory looking for its own pro-
cess structure, and it changes its effective user ID to root
so it runs with full system privileges.

This attack uses simple hardware mechanisms to allow
malicious software to gain control of the system without
exploiting a bug in software. Our memory access mecha-
nism increases our logic-gate count by only 0.05%, yet it
allows us to violate directly OS assumptions about mem-
ory protection, giving us a powerful attack vector into the
system.

4.2 Login backdoor
Using the shadow mode mechanism, we implement a
malicious service that acts as a permanent backdoor into
a system (Figure 2). To initiate the attack, an attacker
sends an unsolicited network packet to the target system
and the target OS inspects the packet to verify the UDP

checksum. The act of inspecting the packet (necessary to
decide if it should be dropped) triggers the trojaned hard-
ware, and the malicious service interprets the contents of
the packet as new firmware that it loads into the proces-
sor invisibly. The target operating system then drops the
unsolicited packet and continues operation, oblivious to
the attack.

The shadow mode firmware monitors the login ap-
plication. When it detects a user trying to login with the
password “letmein”, the malicious service modifies the
return value of the password checking function to return
true, granting access to any user who uses this password.
To reduce the footprint of the attack, after a successful
login attempt the firmware unloads itself and turns off
shadow mode, returning all processor resources to the
system. By sending then UDP packet and then imme-
diately attempting to login, an attacker requires shadow
mode to be active for a minimal time span.

This network-based technique for injecting attacks has
two key advantages. First, this technique is flexible since
the attack itself can be updated via the network. This
flexibility allows attackers to adjust the attack to cope to
a changing software environment, or to install a com-
pletely separate attack. Second, this technique avoids
adding extra states and events to the system that are vis-
ible from outside of the CPU. We detect the sequence of
bytes during the UDP checksum calculation, so the at-
tack data has a high probability of already being present
within the data cache. Then, the bootstrap process in-
stalls this data within reserved cache lines, so no off-chip
memory accesses are needed to initialize the attack, even
after the OS drops the packet. For systems without net-
work access, similar external data can be used (e.g., the
first block of a USB key, needed to identify the filesystem
type).

The net effect of this attack is that an attacker can send
one attack packet to a system to enable the “letmein”
password, and then login to any account (including root).
The attacker can then use any traditional methods of ma-
nipulating the system to avoid detection and to carry out
malicious activities. The shadow mode mechanism in-
creases the logic-gate count by only 0.08%, and gives
us unlimited access to the machine without exploiting a
software vulnerability.

4.3 Stealing passwords

Again using the shadow mode mechanism, we imple-
ment a service that steals passwords from users on the
system. Since the processor can ignore software mem-
ory protection at will, the primary difficulty is finding
the passwords within a swamp of random data. Our ser-
vice first interposes on the write library call, searching
for the string “Password:” to identify processes that are
likely to receive passwords. On the following read call

it interposes to record potential passwords.
To find the read and write functions and interpose

on their invocations, we exploit the fixed interface of the
ELF binary file format. A process that is linked against
shared libraries will have sections of its executable file
devoted to the list of library functions it needs. Con-
veniently, one of those sections includes a string table,
which contains the human meaning — the names — of
the library functions. Whenever the IMP encounters a
new process, it switches control to the service, which
parses the executable section of the new process looking
for the parts of the ELF file needed by the dynamic linker.
With this information it can determine first the virtual
and then the physical addresses of the library functions
to interpose on. By setting breakpoints at the physical
addresses, it can find shared library calls regardless of
the virtual address of the caller.

Once we steal passwords, we use two different tech-
niques to leak passwords out of the system via the net-
work. Our first technique uses system calls to access
the network interface. This technique for accessing the
network is hardware independent, and relies only on the
(relatively static) system call interface. The disadvan-
tage of this technique is that it requires interactions with
the operating system that will result in visible attack
states and events. We could reverse state changes by us-
ing an undo log [7], but restoring system-level check-
points would cause timing perturbations. Instead we
make some effort to clean up (e.g., close sockets), but
OS-level memory perturbations resulting from our tech-
nique remain.

A second technique we implement is to overwrite ex-
isting network frames with our own packets. These pack-
ets are UDP packets with a predetermined destination IP
address and data that contains the stolen passwords. To
overwrite packets with our malicious UDP packets, we
must first identify events that indicate the driver is send-
ing a new transmit packet to the device. To identify new
transmit packets, we interpose on memory-mapped I/O
between the driver and the device control registers. For
our network card, the driver writes a command to the
card telling it to allocate a new transmit buffer. Then,
software reads the return value from this allocate. At
this point we know any subsequent writes to the allocated
buffer will be for a new network packet. To overwrite the
driver’s packet, we interpose on writes to the data control
register. Our network card uses memory-mapped I/O to
transfer data so we can modify each store instruction di-
rectly. If the network card had supported direct mem-
ory access (DMA), we could have stalled the write to the
control register that signals the start of a DMA transfer.
While this write is stalled, we could modify the physical
memory used for DMA. Of course we would have to take
special care to prevent software from reading our modi-
fied memory, and we would have to restore the original

data after the transmit completes.
Since this attack must have shadow mode continu-

ously active, it will impose higher timing perturbations
than the previous attacks. We quantify the time overhead
of persistent shadow-mode attacks in Section 6.

5 Implementation

This section describes the implementation of our IMPs
and the three malicious services we used to evaluate our
malicious processors.

We implement our malicious processors on an FPGA
development board using a modified version of the
Leon3 processor [8]. The Leon3 processor is an open
source SPARC processor that implements the SPARC v8
instruction set and includes a memory management unit
(MMU). We modify the design of the processor at the
VHDL level, and synthesize and run it on the FPGA. Our
system runs Linux and has many of the peripherals one
would find on a typical computer system, such as Ether-
net, USB, VGA, and PS/2.

To support attacks we implement the full memory ac-
cess mechanism, and most of the shadow mode mecha-
nism using our FPGA-based system. Our shadow mode
implementation supports the loading and running of in-
visible malicious firmware. Also, we modify the watch-
point hardware to trap on values instead of addresses,
with the watchpoint exception routing code using a small
bootstrap software stub (as described in Section 3.2).

We evaluate our privilege escalation attack (Section
4.1) and our service for automatic login (Section 4.2) on
our FPGA-based system. Also, we us a full-system func-
tional simulator for more detailed analysis of the auto-
matic login attack, and to evaluate the password stealing
attack (Section 4.3).

6 Evaluation

This section evaluates the impact of an IMP on a sys-
tem. Using our hardware-based testbed, we evaluate the
circuit-level impact of our designs and we measure the
runtime performance impact of our shadow mode mech-
anism. We measure the performance impact of shadow
mode since it is the only mechanism that perturbs the
timing of the system.

6.1 Circuit-level perturbations

Table 1 summarizes the circuit-level impact of imple-
menting our memory access mechanism and implement-
ing our shadow mode mechanism using our modified
Leon3 processor. To implement our memory access
mechanism, we modify the data cache and the MMU

Processor Logic gates Lines of
VHDL code

baseline CPU 1,787,958 11,195
CPU + memory access 1,788,917 11,263
CPU + shadow mode 1,789,299 11,312

Table 1: This table summarizes the circuit-level impact
of our IMPs compared to a baseline (unmodified) Leon3
processor. We show the impact of an IMP that includes
our memory access mechanism and an IMP that includes
our shadow mode mechanism.

so that memory permission checks are ignored for ma-
licious software. To implement our shadow mode mech-
anism we modify our instruction and data caches to re-
serve one set in each cache for attack code and attack
data, after an attack has been initialized. Also, we add a
new type of watchpoint that traps on load/store values in-
stead of addresses, and we make some minor changes to
the existing watchpoints to make them suitable for use in
shadow mode. We synthesize our designs using the Xil-
inx ISE 9.1i tool chain, which is used to create images
that run on our FPGA. Our memory access mechanism
adds 959 logic gates to the baseline processor and our
shadow mode modifications add 1341 logic gates. This
0.05% and 0.08% increase in logic is likely to decrease
for larger processor that include up to one billion logic
gates. Also, we make few changes to the VHDL code of
the processor; we add 68 lines of code for our memory
access mechanism and 117 lines of code for our shadow
mode mechanism.

Our mechanisms do not affect the timing of our pro-
cessor. Using the Xilinx tool chain, we perform a de-
tailed timing analysis of our circuits and we verify that
our designs are off the critical path. Our IMPs run at
40 MHz, which is the recommended clock speed for our
hardware configuration.

6.2 Timing perturbations

To test timing perturbations we use our FPGA-based sys-
tem. Our processor runs at 40 MHz, has a 2-way set as-
sociative 4k instruction cache, a 4-way set associative 8k
data cache, and 64 MB of main memory, which is com-
parable to a mid-level embedded system.

Figure 3 shows the timing effects of various attack
conditions. We run various benchmarks; four CPU
bound SPEC benchmarks bzip2, gcc, parser, and twolf,
as well as an I/O bound benchmark wget, where we re-
peatedly downloaded files from a remote system. As the
embedded system was rather small (64MB of RAM) and
runs a fully-featured operating system (Linux), this rep-
resents every SPEC CINT2000 benchmark that had suf-

gcc parser twolf bzip2 wget AVG
0.0

.25

0.5

.75

1.0

known root

persistent

baseline

transient

Timing Peturbations

Figure 3: Time perturbations are measured relative to the
baseline (non-attack) tests.

ficiently small inputs to successfully run. We had four
experimental cases, respectively:
Baseline: Run the benchmarks on unmodified hardware
and without attacking.
Known Root: Run the benchmarks on unmodified hard-
ware, but attack the system in the middle. We use the
proper root password to log in and steal the /etc/shadow
file. This represents the best scenario an attacker could
hope to have; they already have proper credentials, and
all they need to do is deliver their payload. This imposes
1.32% overhead over the base case (arithmatic average).
Transient: Run the benchmarks on hardware with
shadow mode support. In the middle of the benchmarks,
we used the hardware login backdoor (described in Sec-
tion 4.2) to login and steal the /etc/shadow file. This im-
poses an average of 1.34% overhead compared to the
baseline; this is merely 0.0235% over the known root
case. The underlying payload is by far the most expen-
sive portion of the attack. This “hit-and-run” style at-
tack minimized the amount of time that shadow mode
is active since the attack cleans itself up after successful
logins. Hence, all hardware resources are available for
non-malicious jobs and the overhead is minimized.
Persistent: Run the benchmarks on hardware with
shadow mode support, and have the hardware login back-
door continuously active. Shadow mode is active during
the entire run; it is never disabled. This imposes an av-
erage of 13.0% overhead compared to the baseline, or
11.5% compared to the known root attack.

7 Defending against malicious processors

Unsurprisingly, current defense techniques are com-
pletely ineffective against malicious processors. Fortu-
nately, defense is mainly a matter of detection, and ma-
licious processors differ from their benevolent counter-
parts in several ways. This section covers detecting mali-
cious processors via the analog and digital perturbations
they introduce. Since the malicious processor designer
can tradeoff among these, the best defense is most likely

a combination approach.

7.1 Analog side effects
The possibility of using power analysis to identify mali-
cious circuits was considered in recent work by Agrawal,
et al. [3]. However, power analysis began as an attack
technique [12]. Hence there is a large body of work to
preventing power analysis, especially using dual-rail and
constant power draw circuits [17, 18]. For the designer
of a trojan circuit, such countermeasures are especially
feasible; the area overheads only apply to the small tro-
jan circuit, and not to the entire processor.

Analog side effects can also be used to identify indi-
vidual chips. Process variations cause each chip to be-
have slightly different, and Gassend, et al. use this fact
to create physically random functions (PUFs) that can
be used to identify individual chips uniquely [9]. Chip
identification ensures that chips are not swapped in tran-
sit, but chip identification can be avoided by inserting the
malicious circuits higher up in the supply pipeline.

7.2 Digital perturbations
Current testing, reverse engineering, and fault-tolerance
techniques are unsuitable for detecting digital side effects
resulting from compromised ICs. IC testing [19] enu-
merates through various input states and transitions, and
measures the output to confirm that the IC is perform-
ing correctly. The skillful malicious processor architect
has several weapons to try to avoid digital side effects.
Waiting for a period of time is the most straightforward,
although this could cause problems depending on how
long the tests run. Waiting for a specific input will almost
certainly pass testing, but now the attacker must induce
this sequence on deployed systems. Given the large state
space of a microprocessor1, it is quite possible that digi-
tal testing will fail to discover malicious circuits even if
the attacker takes no precautions.

IC reverse engineering can re-create complete circuit
diagrams of manufactured ICs. However, these tech-
niques are time consuming, expensive, and destructive,
taking up to a week to reverse engineer a single chip and
costing up to $250,000 [13]. Thus, these techniques can
be used on only a small percentage of samples, providing
malicious ICs an opportunity to escape such techniques.

Fault-tolerance techniques [14, 6] may be effective
against malicious ICs. In the Byzantine Generals prob-
lem [14], Lamport, et al. prove that 3m+1 ICs are
be needed to cope with m malicious ICs. Although
this technique can be applied in theory, in practice this
amount of redundancy may be too expensive because of

1A processor with 16 32-bit registers, a 16k instruction cache, a
64k data cache, and 300 pins has at least 2655872 states, and up to
2300 transition edges.

cost, power consumption, and board real estate. Further-
more, only 59 foundries worldwide can process state-of-
the-art 300mm wafers [16], so one must choose man-
ufacturing locations carefully to achieve the diversity
needed to cope with malicious ICs.

8 Conclusions

In this paper we have laid the groundwork for construct-
ing malicious processors capable of valuable, high level,
sophisticated attacks. We argue that the IC supply chain
is large and vulnerable, and that there are organizations
with the competence, resources, and motivation to build
and deploy malicious circuits. We implemented two gen-
eral purpose mechanisms for designing malicious pro-
cessors, and used them to implement attacks that steal
passwords, enable privilege escalation, and allow auto-
matic logins into compromised systems.

We showed that portions of this design space are sur-
prisingly low in the amount of hardware and the possibil-
ity of detection, while still allowing impressive attacks.
The login attack used only 1341 additional gates, yet
gave an attacker complete and high-level access to the
machine. This same hardware could support a wide vari-
ety of attacks and is flexible enough to support dynamic
upgrades.

Overall, we found that malicious processors are more
practical, more flexible, and harder to detect than an ini-
tial analysis would suggest; malicious hardware deserves
its share of research attention.

Acknowledgment

We would like to thank Frans Kaashoek and Milo Martin
for suggesting we look at privilege escalation. We would
like to thank Jonathan Smith for pointing us to the DoD
report on high performance IC supply, and we would
also like to thank Vikram Adve, Landon Cox, Michael
LeMay, and Ed Nightingale for feedback on an early
draft of this paper. Finally, we would like to thank the
anonymous reviewers for their helpful feedback.

References

[1] Maxtor basics personal storage 3200.
http://www.seagate.com/www/en-us/support/downloads/
personal storage/ps3200-sw.

[2] The IA-32 Intel Architecture Software Developer’s Man-
ual, Volume 3: System Programming Guide. Technical
report, Intel Corporation, 2004.

[3] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and
B. Sunar. Trojan detection using ic fingerprinting. In Pro-
ceedings of the 2007 IEEE Symposium on Security and
Privacy, May 2007.

[4] Apple Computer Inc. Small number of video
ipods shipped with windows virus. 2006.
http://www.apple.com/support/windowsvirus/.

[5] P. Bannon and J. Keller. Internal architecture of alpha
21164 microprocessor. compcon, 00:79, 1995.

[6] T. C. Bressoud and F. B. Schneider. Hypervisor-Based
Fault-Tolerance. In Proceedings of the 1995 Symposium
on Operating Systems Principles, pages 1–11, December
1995.

[7] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A Survey of Rollback-Recovery Protocols in
Message-Passing Systems. ACM Computing Surveys,
34(3), September 2002.

[8] Gaisler Research. Leon3 synthesizable processor.
http://www.gaisler.com.

[9] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Sili-
con physical random functions. In Proceedings of the 9th
ACM conference on Computer and communications se-
curity, pages 148–160, New York, NY, USA, 2002. ACM
Press.

[10] D. E. Hoffman. CIA slipped bugs to Soviets. The Wash-
ington Post, February 2004. http://www.msnbc.msn.com/
id/4394002.

[11] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J.
Wang, and J. R. Lorch. SubVirt: Implementing mal-
ware with virtual machines. In Proceedings of the 2006
IEEE Symposium on Security and Privacy, pages 314–
327, May 2006.

[12] P. C. Kocher, J. Jaffe, and B. Jun. Differential power anal-
ysis. In CRYPTO ’99: Proceedings of the 19th Annual In-
ternational Cryptology Conference on Advances in Cryp-
tology, pages 388–397, London, UK, 1999. Springer-
Verlag.

[13] J. Kumagai. Chip detectives. IEEE Spectr., 37(11):43–49,
2000.

[14] L. Lamport, R. E. Shostak, and M. C. Pease. The byzan-
tine generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[15] P. A. Layman, S. Chaudhry, J. G. Norman, and J. R.
Thomson. United States Patent 6906962: Method for
defining the initial state of static random access memory.

[16] U. S. D. of Defense. Defense science board task
force on high performance microchip supply. Febru-
ary 2005. http://www.acq.osd.mil/dsb/reports/2005-02-
HPMS Report Final.pdf.

[17] D. Sokolov, J. Murphy, A. Bystrov, and A. Yakovlev. De-
sign and analysis of dual-rail circuits for security applica-
tions. IEEE Trans. Comput., 54(4):449–460, 2005.

[18] K. Tiri and I. Verbauwhede. Design method for constant
power consumption of differential logic circuits. In DATE
’05: Proceedings of the conference on Design, Automa-
tion and Test in Europe, pages 628–633, Washington, DC,
USA, 2005. IEEE Computer Society.

[19] N. H. Weste and K. Eshraghian. Principles Of CMOS
VLSI Design, A Systems Perspective. Addison Wesley,
1993.

