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Abstract

In this paper we highlight a number of challenges that
arise in using crawling to measure the size, topology, and
dynamism of distributed botnets. These challenges in-
clude traffic due to unrelated applications, address alias-
ing, and other active participants on the network such as
poisoners. Based upon experience developing a crawler
for the Storm botnet, we describe each of the issues we
encountered in practice, our approach for managing the
underlying ambiguity, and the kind of errors we believe
it introduces into our estimates.

1 Introduction
Underlying virtually all measurement endeavors is the
premise that the signal being measured can be separated
from any noise produced by the environment or the mea-
surement system itself. If this assumption is not true or
if care is not taken to account for noise, then the result-
ing measurements may be badly skewed or meaningless.
This issue has long been appreciated in the Internet mea-
surement community, since even quiescent networks re-
ceive continual streams of bizarre traffic colloquially re-
ferred to as “Internet background radiation” [7]. How-
ever, it is less widely appreciated that variants of this
problem impact our ability to meaningfully study online
distributed malware such as botnets.

In particular, the practice of “crawling” as a technique
for measuring the size, topology and dynamism of dis-
tributed botnets is fraught with the potential for error.
At a minimum researchers must contend with temporal
dynamics (e.g., address space reuse), unrelated applica-
tions (i.e., many bots piggyback on existing communi-
cations protocols), and address aliasing (e.g., via NAT).
Potentially worse, however, is the impact of other ac-
tive participants. Unlike traditional malware whose en-
vironment is largely self-contained within a single ma-
chine, distributed malware is effectively a single artifact
— providing services to the entire Internet. Thus, no sin-
gle group can safely presume to be measuring a botnet in
isolation. In fact the activities of other researchers, mis-
creant competitors or well-meaning vigilantes will auto-
matically be part of any raw measurement.

In this paper, we highlight these problems via our
experiences developing a crawler for the Storm botnet.
Storm uses an existing well-documented peer-to-peer
protocol to implement a directory service and thus is
straightforward to crawl. Unfortunately, the intuitive
way to implement such a crawler — recursively query-
ing peers for their neighbors until a transitive closure is
complete — can produce a size estimate many times
larger than the true size of the network. Indeed, de-
pending on how one measures — over different time
scales, using IP addresses or peer identifiers, using in-
bound requests or active probes — different character-
izations can be reached. We believe this may explain
in part the considerable diversity of claims in the se-
curity press concerning the purported “true size” of the
Storm network. Even discounting the effects of flood-
ers, naive approaches for counting the number of ac-
tive Storm nodes result in estimates an order of magni-
tude larger than the actual number. Over the course of a
typical day, simply counting unique Overnet IDs would
estimate over 900,000 bots and counting unique IP ad-
dresses would estimate over 300,000, whereas the actual
number is likely less than 40,000.

In the remainder of this paper we describe each of the
issues we encountered in practice, our approach for man-
aging the underlying ambiguity, and the kind of errors
we believe it introduces into our estimates. In particular,
we highlight the presence of other active participants in
the system who, at particular points in time, can origi-
nate significant fractions of Storm-related traffic on the
network. Finally, we argue that this problem is likely to
be fundamental and will continue to present challenges
for measuring distributed malware in the future.

2 Related Work
The combination of its effectiveness and unique archi-
tecture has focused increasing attention on the Storm
botnet. Initial work has detailed the operation of the
Storm malware as it transforms a host into a bot, as
well as the basic bot communication patterns [4, 8]. Re-
cent work searching the identifier space of the DHT un-
derlying Storm reveals significant non-uniformities from



poisoning, and suggests one heuristic for pruning poi-
soned peers [11]. We compliment this work with a more
comprehensive pruning strategy that detects and distin-
guishes among peers that are unresponsive, advertise in-
correct addresses, or attempt to poison the network.

The size of a botnet is the most popular metric mea-
sured and reported, yet perhaps the one with the most
variance. Rajab et al. [10] explore this issue in de-
tail, highlighting the challenges of measuring botnet size
and explaining why size estimates can vary substantially.
Our goal is to identify and distinguish active bots in the
system in the face of unrelated application traffic, ad-
dress space reuse, address aliasing, and other active par-
ticipants such as poisoners, polluters, and researchers.
In that sense, we extend the set of techniques in [10]
and [11] for refining size estimates specifically for the
Storm botnet, particularly in the face of poisoning and
NAT. In doing so, though, we not only obtain a more
accurate estimate of botnet size, but more importantly
remove noise from other analyses such as the dynamics,
operation, actions, and behavior of Storm.

Address space reuse via DHCP and address aliasing
via NATs [1, 2, 3] add uncertainty to bot disambigua-
tion when using IP addresses [10]. Application identi-
fiers can disambiguate in both instances [2], but NATs
present yet another problem. Ensuring that a peer is
live and functioning (beyond just appearing in a rout-
ing table) requires active communication with the peer.
However, a crawler cannot directly contact peers behind
NATs. Instead, analogous to [3], we rely upon commu-
nication initiated by peers behind NATs to observe and
disambiguate them.

Finally, since poisoning attacks are being waged
against Storm, whether effective or not as an attack
against Storm [4] any measurement efforts must take
poisoning into account [11]. We describe effective
heuristics for differentiating between valid and mas-
querading Storm nodes and a strong predicate based
upon reverse-engineering the Storm OID generator.

3 The Storm Overnet
We start by providing an overview of the Storm com-
munication architecture. Because of its implications on
crawling and measuring the size of the Storm botnet, we
also describe the custom pseudo-random number gener-
ator Storm uses for generating identifiers.

3.1 Architecture
The Storm botnet is organized around a Kademlia-
based [6] distributed hash table (DHT) implemented us-
ing the Overnet protocol. Each node is identified by
a 128-bit Overnet identifier (OID). At startup, a node
chooses its OID pseudo-randomly and proceeds to find
its neighbors (in the space of OIDs). The search is boot-

strapped from a list of peers included with the binary
itself. The node then advertises itself to its neighbors in
the Overnet, and continues advertising itself throughout
its lifetime to maintain a presence in the network as its
set of neighbors changes. To insert a key-value pair into
the DHT, a node publishes the key, which comes from
the same 128-bit OID space as node identifiers, to a node
with an OID close to the key. To retrieve the value asso-
ciated with a key, a node searches for a node close to the
key; if a node has the associated value, it advertises the
value to the searching node, which then requests it.

Because every Storm node participates in Overnet,
enumerating its participants is a logical means of iden-
tifying bots and determining the botnet’s size and com-
position. However, not all participants can be trusted
implicitly; Storm has both been the target of attempts
to disrupt the network via poisoning, as well as the vic-
tim of buggy implementations which report participants
incorrectly. As we will show, each of these properties
make identifying the true population of the botnet non-
trivial. Based upon the protocol and correct functional-
ity of individual bots, we have developed a number of
heuristics for removing invalid nodes from our partici-
pant list. Doing so also allows us to much more accu-
rately estimate the size of the network.

3.2 Storm OID generator
While reverse-engineering the algorithm Storm uses to
generate OIDs, we discovered that it can generate only
a very small fraction of the possible OIDs (215 Storm
OIDs out of the full 2128 OID space). Although an ap-
parent flaw in Storm’s OID generator, it is very helpful
for a crawler because it provides a convenient means for
identifying Storm nodes. We use this property as an ora-
cle to evaluate heuristics for differentiating Storm nodes
from other Overnet nodes (Section 4.2), and to differen-
tiate valid Storm nodes from masquerading Storm nodes
(Section 4.3).

The flaw in the OID generation algorithm comes from
its use of a custom pseudo-random number generator
(PRNG). Storm generates OIDs using its own PRNG
given by the recurrence:

Ii+1 = (a · Ii + b mod 232) mod m

with a = 1664525, b = 1013904223, m = 32767, and
the initial value I0 is based on the system clock. The
generator appears to be based on a well-known linear
congruential PRNG described in the Numerical Recipes
series of books [9, Ch. 7], which differs from the Storm
PRNG only in the absence of the second modular reduc-
tion (mod m). A pseudo-random OID is generated by
concatenating the low-order bytes of successive PRNG
values:

OIDi = Ii mod 256.



where OID1 through OID16 are the 16 bytes of the OID.
Because there are only 32767 states of the PRNG, there
are only 32767 possible Storm OIDs.

In addition to making it easier to identify valid Storm
nodes, this limitation has implications for measuring the
size of the Storm botnet as well. Because there are only
32767 possible Storm OIDs, collisions in the OID space
have been inevitable throughout a majority of the Storm
botnet’s lifetime. As a result, multiple nodes will join
the network with the same OID at the same time, and
therefore OIDs cannot be used to estimate the size of
the botnet. Furthermore, which node receives a mes-
sage addressed to an OID with collisions becomes non-
deterministic. It depends on which peers receive publish
messages, and how those peers deal with aliasing in their
routing table implementation. To mitigate the problem,
a crawler should search for an OID at several different
points in the network.

4 The Stormdrain crawler
We now describe the operation of Stormdrain, the
crawler we developed to identify and track nodes ac-
tively participating in the Storm network. Using Storm-
drain observations, we also show its estimates of the
number of active Storm participants for three weeks
in March. We then discuss various unique challenges
of crawling a botnet like Storm, the implications those
challenges have on the accuracy of identifying and track-
ing valid Storm nodes, and the approaches we developed
for dealing with them.

4.1 Stormdrain operation
We have used Stormdrain to track the Storm botnet since
June 2007. The initial purpose of Stormdrain was to
identify infected nodes at our institution to maintain a
clean network. The crawler bootstraps onto the network
using a list of peers either from a previous crawler in-
stance or a list of peers extracted from a Storm binary.
The crawler then contacts every peer on its internal list
and requests a list of additional peers to increase its
knowledge of the connected peers. After communicat-
ing with all known peers, the crawler performs a pruning
subroutine to determine which peers to remove from its
contact list either because they are no longer respond-
ing, are incorrectly advertised addresses, or are possibly
attempting to poison the network. After pruning, Storm-
drain repeats the process continuously, and periodically
dumps its internal state.

Figure 1 shows the state machine that Stormdrain uses
to track the state of nodes in an Overnet network. Storm-
drain continuously sends messages to peers to monitor
their responsiveness, contacting each peer roughly every
30 seconds. How peers respond to those probes deter-
mines how they transition among states in the machine:
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Figure 1: The Stormdrain state machine for tracking the state
of nodes in Storm. At any point in time, the nodes in the active
state represent Stormdrain’s estimate of hosts actively partici-
pating in the Storm botnet.

1. Stormdrain learns of new nodes as it crawls the
routing tables of peers on the network, and when
it receives unsolicited messages from other peers.
When a new peer replies to a probe, Stormdrain
moves it to the live state.

2. If a new peer does not respond to any probes,
Stormdrain places it in the removed state.

3. If a peer responds to a sufficient number and kind
of probes, the peer moves from live to active. If an
active peer falls below that threshold it moves back
to the live state. We use different kinds of messages
and require multiple responses to help differentiate
between actual Storm nodes and masquerading ac-
tive responders (Section 4.3).

4. Stormdrain moves a live peer that has not re-
sponded after a timeout expires to the dead state
(there are many reasons why a node may not re-
spond (Section 4.4)). A dead peer that responds
before being removed moves back to the live state.
Stormdrain currently uses a timeout of 15 minutes
based upon our experience.

5. Stormdrain probes dead peers at a lower rate. If it
does not respond after a timeout, it moves to the
removed state.

6. An active peer that appears to be abusing Overnet
(flooding, poisoning, broken implementation, etc.),
moves to the removed state immediately and by-
passes any other state; we discuss this issue in more
detail in Section 4.3.

7. Any short sequence of probes to a peer that gen-
erate ICMP error responses moves that peer to the
removed state, again bypassing any other state.

8. If a removed peer that was previously dead starts
responding again, it moves back into the live state.
Stormdrain clears all statistics and counters for the
peer and treats it as if it were a new peer.

The set of nodes in each of these states captures the
activity of nodes in the Storm botnet. The set of new
nodes are those nodes which have been advertised to
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Figure 2: Estimates of the size of the Storm botnet using different notions of liveness over the first three weeks of March 2008.
Note that the y-axis does not begin at zero to better separate the curves.

State # Nodes
New 16,042 (5.53%)
Live 12,955 (4.47%)
Active 38,630 (13.3%)
Dead 4,898 (1.69%)
Removed 217,737 (75.0%)
Total 290,262 (100%)

Table 1: Number of nodes in each of Stormdrain’s states at a
representative moment on February 20, 2008.

Stormdrain but have yet to respond to a probe. The
set of live nodes are those nodes which are respond-
ing to Stormdrain probes, but have not responded suf-
ficiently well to a range of messages to identify them as
Storm participants (Section 4.3). The set of active nodes
are those nodes which properly respond to a range of
Storm messages and appear to be active participants in
the Storm botnet. The sets of dead and removed nodes
track expired nodes (Section 4.4) which can become live
again (dead) or be removed from further tracking (re-
moved). As one example, Table 1 shows the number
of unique nodes in each of Stormdrain’s states instanta-
neously (note that removed is a two hour sliding window
of recently removed peers).

An immediate consequence of Stormdrain’s node
tracking is that we can estimate the number of active
participants of the Storm botnet. Figure 2 shows esti-
mates for various definitions of participation for the first
three weeks of March 2008. Each count of peers corre-
sponds to an estimate of Storm’s “live population” [10],
the number of peers active at that point in time.

“Active” shows the number of nodes in the active
state, “Responding” shows the number of nodes in the
active and live states combined, and “All” shows the
number of nodes in the new, active, live, and dead states
combined. The “Active Storm” curve is a strict subset
of “Active” showing Stormdrain’s best estimate of the

number of true participants in the Storm botnet using
knowledge of the valid set of Storm OIDs (Section 3.2).
Nodes in “Active” pass Stormdrain’s heuristic for re-
sponding sufficiently well to be labeled as active Storm
participants. However, this heuristic may fail if other
parties use a sufficiently rich emulation of a Storm node,
or the Storm implementation itself. Assuming those par-
ties have not discovered the flaw in Storm OID gener-
ation, we can use the Storm OIDs as an oracle to re-
ject nodes as active Storm nodes if their OID is not in
the known Storm OID set. Considering how close the
“Active” and “Active Storm” curves are, the promotion
heuristic works quite well. We discuss this issue in more
detail in Section 4.3.

These different curves correspond to estimates based
on different definitions of participation. “All” includes
those nodes that have responded to probes within a
long timeout (30 minutes), “Responded” includes those
within a shorter timeout (15 minutes), and “Active” and
“Active Storm” include those that appear to be valid
nodes and have responded immediately. The “All” and
“Responding” estimates include a large number of false
positives (Sections 4.3) and nodes that are expiring (Sec-
tion 4.4). As a result, we consider “Active” to be a more
accurate estimator.

Note that Stormdrain actually tracks two independent
variants of the Storm network simultaneously, the rem-
nants of an older version of the Storm implementation
and the botnet formed by the current Storm implemen-
tation that we refer to as the “encrypted” network (Sec-
tion 4.2). Figure 2 shows results for nodes in the en-
crypted network only, since those are the nodes which
are available, e.g., for Storm spamming activities [5].

4.2 Protocol aliasing
One unique challenge to tracking the Storm botnet is
that Storm and other applications use the same overlay



network protocol, creating a protocol aliasing problem.
Before October 2007, Storm shared its overlay network
with users of Overnet-based file-sharing programs such
as MLDonkey. As a result, a crawler needs to differen-
tiate between nodes participating in the Storm protocol
and other applications. Simply identifying participants
in the network as Storm would include the file-sharing
nodes, thereby overestimating the botnet population.

During the evolution of Stormdrain, we explored two
heuristics for differentiating Storm nodes from nodes
using other applications. One technique is to classify
nodes by their usage of the protocol and by the con-
tent hashes they publish and search for. Overnet pub-
lish messages can contain metadata tags attached to key-
value pairs. File sharing applications can publish content
hashes with metadata, but all but a few versions of Storm
do not. Consequently, a crawler can mark the nodes
publishing or searching for these hashes as non-Storm
nodes. The heuristic is transitive: when a node is marked
as non-Storm, the crawler can mark other hashes that the
node searches for and publishes as non-Storm hashes.
Any node that searches for or publishes those hashes is
non-Storm as well. With this heuristic, the more time
spent crawling the network, the more comprehensive the
set of known hashes becomes.

Conversely, we can also positively identify Storm
nodes by their use of hashes specific to Storm. When
a newly infected Storm node starts, for example, it
searches for well-defined hashes to rendezvous with the
rest of the Storm botnet. With the assistance of Joe Stew-
art, we reverse-engineered the algorithms used to encode
and decode Storm key-value pair content hashes. Storm-
drain can therefore identify hashes as known Storm con-
tent with very high probability, and mark any node
searching for or publishing those hashes as Storm nodes.

Once we reverse-engineered the Storm OID
PRNG (Section 3.2), these heuristics were no longer
necessary. An Overnet message containing one of the
32K Storm OIDs immediately identifies that node as a
Storm node. For evaluating our methodology, however,
we can use the set of Storm OIDs as an oracle to
estimate the accuracy of the above heuristics.

For instance, we examined a snapshot of 24 hours of
nodes observed on the Overnet network that are subject
to the protocol aliasing problem between Storm and file-
sharing applications. Using the known Storm OID set as
an oracle, 35% of those nodes are infected with Storm.
The metadata heuristic greatly overestimates the set of
Storm nodes as 94% of all nodes. The known Storm hash
heuristic, however, severely underestimates the set, only
identifying one node as a Storm node. Neither heuristic
effectively resolves the protocol aliasing problem, moti-
vating the other heuristics we developed below.

In October 2007, Storm began to “encrypt” its mes-

sages using a simple transformation with a static key.
With this change, Storm bifurcated into “encrypted” and
“unencrypted” networks: newly infected nodes commu-
nicated with each other using encrypted messages, and
previously infected nodes were stranded. This older ver-
sion of Storm remains active today, however. At any one
point in time, nearly 5,000 hosts remain infected with
the older form of Storm communicating using “unen-
crypted” traffic. Stormdrain actively tracks nodes in both
variants of the Storm network.

Fortunately, the use of encrypted communication con-
veniently solves the protocol aliasing problem: all nodes
using encryption use the Storm protocol. With the
reverse-engineered key, we could readily separate Storm
nodes from other nodes in the Overnet network. How-
ever, although nodes on the encrypted network commu-
nicate using the Storm protocol, not all of those nodes
are actually hosts infected with the Storm bot.

4.3 Adversarial aliasing
Another unique aspect of crawling a botnet like Storm
is the challenge of differentiating between actual Storm
nodes and other nodes that masquerade as Storm nodes.
We call this effect adversarial aliasing. Over time Storm
has received significant attention from other parties, and
the actions of these parties substantially influence the
act of measuring Storm. Just as we crawl and monitor
Storm, so do other groups. Storm has also been the target
of attempts to poison or pollute the network to prevent
it from functioning efficiently, or at all. As one exam-
ple, earlier in Storm’s life cycle, updates to the binary
were disseminated by publishing URLs to a set of hard-
coded keys. By advertising non-existent nodes close to
those keys, it was theoretically possible to prevent nodes
from finding the published URLs and thus prevent them
from downloading updates [12]. As another example,
the connectionless nature of UDP allows messages with
spoofed source addresses to reach the application layer
and force peers to consider these IPs as possible nodes in
the network. Finally, when a node trusts unsolicited pub-
lish messages, an attacker can overwrite the value stored
at the key and pollute the network.

Network poisoning, for example, remains an active
phenomenon. Figure 3 shows Stormdrain’s estimates of
live, active, and dead peers on March 10, 2008. At 14:00
there is a sudden influx of messages from several so-
called unique hosts. Since these hosts contacted Storm-
drain directly, it considers these hosts as live. These
hosts do not respond to any subsequent probes, however,
and Stormdrain quickly moves them to the dead state and
eventually removes them. Without these responsiveness
heuristics, those 5,000 spoofed hosts would have sub-
stantially inflated the estimate of the size of Storm.

Given the presence of other nodes masquerading as
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Figure 3: Live, active, and dead peers on the encrypted net-
work on March 10, 2008. Note the anomalous increase in the
number of live peers at 14:00 due to source address spoofing
by other parties.

Storm nodes, not all of the nodes that Stormdrain dis-
covers are from hosts infected and under control of the
Storm botnet. We use four heuristics to identify mas-
querading Storm nodes.

First, Stormdrain queries all nodes it learns about. If
a node never responds to a query, Stormdrain removes it
from further consideration.

Second, we identify and remove peers which suspi-
ciously send information about too many peers into the
network too rapidly. The implementation of the Kadem-
lia algorithm that Storm uses is not particularly aggres-
sive. After the bootstrap phase, it does not learn about
new peers very rapidly. As the crawler nears transi-
tive closure and goes into steady-state, new peers should
only be learned at approximately the rate at which new
peers come online. We do not observe valid nodes dis-
seminating information about many new nodes far above
the anticipated rate, so any node that does is flagged as a
flooder and removed from our peer list.

Third, if a peer reports more than a small proportion
of bogon addresses (RFC 1918, Multicast, IANA Re-
served, etc.), Stormdrain removes it from consideration.
The cutoff proportion is strictly above zero, though, as
Storm nodes do not perform any sanity or reachability
checks before inserting a peer into its own peer list, and
bogon addresses routinely show up in communication
with valid peers.

Finally, after we determined that the Storm PRNG
would produce only a small set of node OIDs, Storm-
drain now marks any peer as non-Storm whose OID is
not in that set. As discussed in Section 4.1, these OIDs
allow us to validate Stormdrain’s heuristics of which
nodes are actual Storm hosts. The “Active” curve in Fig-
ure 2 is the estimate based upon the above heuristics, and
the “Active Storm” curve includes just the set of active

Location Hallmarks
Germany Random OIDs with lower 10 bytes constant.

Floods the Storm network aggressively with thou-
sands of fake node IPs.

Iran Random OIDs biased to upper half of space (first
bit always set).

Sweden Random OIDs biased to upper half of space (first
bit always set). Does not appear in routing tables
of any other peers.

France One fixed OID, relatively passive crawler, appears
to just be sampling Storm.

East Coast, US 257 OIDs evenly distributed in ID space behind
one IP, port number used as upper two bytes of
the OID.

East Coast, US Uniform random OIDs, both a Storm implemen-
tation and crawler behind the same IP, does not
report other peers.

West Coast, US Random OIDs biased to upper half of space 100:1.
Does not report IPs in response to queries.

Table 2: Other parties participating in the “encrypted” Storm
network on April 4, 2008.

nodes with valid Storm OIDs. The proximity of these
curves demonstrates how well the heuristics work.

In addition, given the set of rejected nodes we can
trace their IP addresses to determine where in the net-
work they originate. Further, based upon observing the
traffic generated by those nodes, we can roughly char-
acterize their behavior as part of the Storm overlay. Ta-
ble 2 lists some of the other parties we observed par-
ticipating on the Storm network, where in the Internet
they originate, and observations of their behavior. Note
that their presence can skew estimates of the size of the
Storm botnet far more than the number of OIDs they use,
particularly if they flood the network with fake node IPs
(and they do). The Storm authors also have an Over-
net presence used to facilitate the proper functioning of
bootstrapping botnet command and control via Overnet.

Just as Stormdrain has to take into account the pres-
ence of other active participants interacting with the
Storm network, Stormdrain itself has an effect on the
network, too. Stormdrain selects a random OID on every
query and response that it sends, and these OIDs will en-
ter the routing tables of other nodes participating in the
Storm Overnet that Stormdrain interacts with directly or
indirectly. As such, Stormdrain will appear to be mil-
lions of bots with random OIDs over time. Although
the impact might appear substantial, other participants
tracking nodes in the network can easily identify Storm-
drain as an invalid node. Stormdrain does not spoof its
source IP, and manual inspection of the source of such
hashes would identify Stormdrain as an incorrectly func-
tioning node. In fact, another instance of Stormdrain on
the current network would be quickly removed for flood-
ing OIDs and would not have an impact on our estimate
of the network size.



Cause Number Fraction
Invalid IP 49 0.02%
Dead 54,020 24.8%
ICMP Error 61,853 28.4%
Unresponsive 101,812 46.8%
Total 217,734 100%

Table 3: Number of peers removed by Stormdrain and the
cause of removal during a representative 2 hour interval on
February 20, 2008.

4.4 Temporal dynamics

The active node population of Storm is constantly
changing over time: hosts arrive and leave continuously.
Learning about new hosts is straightforward. Stormdrain
actively crawls the routing tables of peers in the network,
and continuously receives unsolicited messages adver-
tising hosts. However, when tracking the active popula-
tion of bots, it is crucial to also track when nodes become
inactive.

Peers can become inactive, or dead, for a wide vari-
ety of reasons: they can be NATted nodes behind silent
drop firewalls, previously valid peers which have been
cleaned or shut down, currently active peers which have
been restarted and have chosen a different port for com-
munication, or invalid addresses sent by a buggy or ma-
licious poisoning node. In a similar vein, nodes which
had previously responded to Stormdrain’s probes and
fell silent could be due to rebooted or cleaned machines.
It is also common that a NAT device in front of the peer
has lost the mapping for communication between the in-
fected machine and Stormdrain.

The Storm Overnet implementation includes no
method of removing bad hosts from its internal peer list.
As a result, Stormdrain has to determine when peers ex-
pire and much of the development effort put into Storm-
drain has been to improve the accuracy of pruning dead
nodes from the list of active nodes. Stormdrain repeat-
edly sends messages to its list of known nodes and tracks
which nodes respond. The data structure for connected
peers includes a counter of unanswered messages for ev-
ery peer. Peers which have never replied are removed
after a handful of unanswered messages, whereas peers
which had previously responded and were considered
connected and in good standing are given more leeway
in terms of missed replies. If messages sent to a peer re-
sult in more than a few ICMP errors of any sort, Storm-
drain considers the host unlikely to be able to communi-
cate and discards it. Table 3 shows the number of nodes
removed by Stormdrain over a representative two-hour
time period and the reason why Stormdrain removed the
nodes.

4.5 Bridging middleboxes
While the removal of false positives like poisoned data
and stale mappings is an important facet of gaining an
accurate view of the network population, ensuring that
the crawler does not remove valid peers is equally im-
portant. The problem is that valid peers may not be able
to always receive and, hence, respond to probes from
Stormdrain. Lacking responses to probes, Stormdrain
may then decide that those peers are dead when in fact
they are still active participants in the botnet. While we
do not have any evidence that valid peers will refuse to
respond to valid queries, NATs and firewalls can refuse
to forward our traffic to nodes which are behind them.
This dropping can either be because the node has never
contacted us before, or the mapping between the external
port and the internal node has expired and communica-
tion is no longer possible.

When a node, even one which is not responding, is
added to the Stormdrain state machine, we keep track
of how many times this node has been advertised to us,
and whether it has been advertised by an active node.
If a node is behind a NAT and has not been informed
of the presence of our crawler by one of its peers, we
will be informed of its existence by active nodes but will
not be able to communicate with it directly. Conversely,
if a node is behind a NAT which times out UDP ports
rapidly, it will be continually reported to us as active,
but our crawler’s mapping in the NAT table might be lost
and, with it, our ability to communicate with this node.

Although second-hand knowledge of NATted nodes
is helpful, if we were able to convince these nodes to
initiate contact (for the former case) or continually con-
tact Stormdrain (in the latter case), we can form a much
more informed estimate of which nodes are behind such
NATs. For the latter case of rapidly remapping NAT de-
vices, the problem is that nodes do not query Stormdrain
often enough to maintain the connection within the de-
vice’s NAT table. One key deficiency of earlier versions
of Stormdrain in this case is that, while it sent queries
and listened for responses, it did not send responses of
its own to nodes which query it. Having Stormdrain re-
spond to nodes which query it refreshes NAT and fire-
wall timeouts, thereby enabling Stormdrain to probe and
track those nodes more reliably.

For the former case, we devised another heuristic to
elicit new connections from nodes with which we have
never had any direct contact. This heuristic takes advan-
tage of semantics of Storm node behavior. Over time, we
found that certain regions in the ID space (with locality
defined by the XOR metric) would become very pop-
ular for a short period of time. To make it more likely
that NATted nodes contact Stormdrain, whenever Storm-
drain noticed these popular hashes it chose for itself an
OID in that region while crawling the network.
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Figure 4: Upper bound error estimates of the number of NATted nodes with which Stormdrain could not communicate consistently
over the first three weeks of March 2008. Note that the y-axis is log scale.

These two techniques had a noticeable improvement
on Stormdrain’s ability to track NATted nodes. Table 4
shows the effect of implementing these techniques and
deploying them on January 28, 2008. The table shows
two columns, each counting the number of nodes in the
live, active, and dead states, and the number of nodes
that never responded. The first column shows counts for
the day before deploying the techniques, and the second
column for the day after. These techniques reduced the
number of unresponsive nodes and live nodes that failed
to promote to active, overall increasing the fraction of
active nodes by 9%.

Even with these heuristics, there could still be errors
in Stormdrain’s estimates of active nodes. To estimate
the potential magnitude of this error, we can use counts
of the number of nodes that stopped responding and
never responded as upper bounds on the error — note,
though, there are many reasons why nodes stop respond-
ing or never respond.

Figure 4 shows the number of active Storm nodes
from Figure 2 together with the number of nodes that
stopped responding and never responded for the first
three weeks of March 2008. These measurements are
of the encrypted network only, and exclude the effects
of flooders advertising fraudulent IP addresses as iden-
tifiers (Section 4.3). Also note that the y-axis is in log
scale. As an upper bound, Stormdrain could potentially
lose track of thousands of nodes behind NATs that had
been responding but stopped. Our experience, however,
is that any error is much less than this number since it
has to include nodes that actually leave the network in
that time period. The number of nodes that never re-
spond is much smaller. Even if all of these nodes were
actual Storm nodes that Stormdrain could not commu-
nicate with, the error estimate of the number of active
nodes would be less than 1%.

Before After
Live 30,567 (49.6%) 22,963 (34.3%)

Active 22,833 (37.1%) 37472 (55.9%)
Dead 7,915 (12.8%) 6403 (9.56%)

Never resp. 283 (.459%) 162 (.242%)

Table 4: The number of nodes in the live, active, and dead
states in Stormdrain one day before and one day after deploy-
ing the query responsiveness and popular hash locality heuris-
tics on January 28, 2008.

5 Conclusion

In this paper, we have described our experience trying to
measure the membership dynamics of the Storm botnet.
What seemed an easy task, given Storm’s use of a well-
documented protocol (Overnet), was in fact significantly
complicated by a range of factors including innocent ap-
plications using the same protocol, the impact of address
translation, and the challenges presented by active net-
work spoofing and poisoning by outside parties (such
as other research groups). We have characterized these
problems in this context and described the set of heuris-
tics and accommodations we have developed to maintain
accurate estimates in spite of their influence. However,
the entire endeavor begs the question, “How can one be
sure?”, in such an environment. It seems likely that the
same kinds of problems we have encountered will con-
tinue to arise with new botnets, although they will un-
doubtedly have their own intricacies and complexities.
Unfortunately, it seems overly optimistic to hope that
the techniques we have developed will prove universally
applicable and thus our community should have consid-
erable skepticism about the veracity of botnet measure-
ment results going forwards.

Considering this we offer a number of suggestions,
ranging from the grounded and pragmatic to the wildly



naive and optimistic. First, when evaluating botnets us-
ing existing protocols for their organization or command
and control, researchers should be required to explain
how they differentiate between bots and aliasing from
other protocol users. Simply claiming that the botnet
does not overlap with other applications is not suffi-
cient since this can happen both intentionally (from the
botmaster using the existing infrastructure to jump start
their own) or inadvertently (via aliasing from NAT or
simply a bot host that also happens to have the applica-
tion on it).

Second, researchers should be expected to document
the key assumptions underlying their measurements.
Several of these assumptions (e.g., bot ID persistence,
bot ID uniqueness, IP address persistence and IP address
uniqueness) should be considered fundamentally suspect
in the same way that assumptions of Poisson packet ar-
rival times trigger eye rolls in the networking commu-
nity. Only when such assumptions are independently
validated should results based on them be permissible.

Finally, care must be taken not to inadvertently mea-
sure the activities of other researchers. Addressing this
problem is perplexing because there is nothing funda-
mental that allows one to make this determination; a
sufficiently sophisticated researcher can design software
that is indistinguishable from a bot at the network layer
or simply infect a large number of honeypots with the
bot itself and manipulate their behavior. Conversely, a
bot herder wishing to conceal their activities might make
subsets of their bots behave anomalously and thereby be
mistaken for other researchers (and hence not be mea-
sured). In the end we have no perfect proposal. Life was
decidedly easier when one could study malware in iso-
lation. However, since network-persistent malware like
today’s botnets seems likely to stay, it behooves us to
be aware of these problems and do our best to manage
them.
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