Measurements and Mitigation of Peer-to-Peer-based Botnets:
A Case Study on Storm Worm

Thorsten Holz?} Moritz Steiner*

*University of Mannheim
{holz,dahl,freiling } @informatik.uni-mannheim.de

Abstract

Botnets, i.e., networks of compromised machines under a com-
mon control infrastructure, are commonly controlled by an at-
tacker with the help of a central server: all compromised ma-
chines connect to the central server and wait for commands.

However, the first botnets that use peer-to-peer (P2P) net-
works for remote control of the compromised machines ap-
peared in the wild recently. In this paper, we introduce a
methodology to analyze and mitigate P2P botnets. In a case
study, we examine in detail the Storm Worm botnet, the most
wide-spread P2P botnet currently propagating in the wild. We
were able to infiltrate and analyze in-depth the botnet, which al-
lows us to estimate the total number of compromised machines.
Furthermore, we present two different ways to disrupt the com-
munication channel between controller and compromised ma-
chines in order to mitigate the botnet and evaluate the effective-
ness of these mechanisms.

1 Introduction

A bot is a computer program installed on a compromised ma-
chine which offers an attacker a remote control mechanism. Bot-
nets, i.e., networks of such bots under a common control infras-
tructure, pose a severe threat to today’s Internet: Botnets are
commonly used for Distributed Denial-of-Service (DDoS) at-
tacks, sending of spam, or other nefarious purposes [5, 24, 15].

The common control infrastructure of botnets in the past was
based on Internet Relay Chat (IRC): The attacker sets up an IRC
server and opens a specific channel in which he posts his com-
mands. Bots connect to this channel and act upon the commands
they observe. Today, the standard technique to mitigate IRC-
based botnets is called botnet tracking [11, 15, 14] and includes
three steps. The first step consists of acquiring and analyzing
a copy of a bot. This can be achieved for example using hon-
eypots [1] and special analysis software [4, 32]. In the second
step, the botnet is infiltrated by connecting to the IRC channel
with a specially crafted IRC client. Using the collected infor-
mation, it is possible to analyze the means and techniques used
within the botnet. More specifically, it is possible to identify
the central IRC server which, in the third and final step, can be
taken offline by law enforcement or other means [9]. An attacker
can also use an HTTP server for distributing commands: in this
setup, the bots periodically poll this server for new commands
and act upon them. The botnet tracking methodology outlined
above can also be applied in this scenario.

Today we are encountering a new generation of botnets that
use P2P style communication. These botnets do not have a cen-
tral server that distributes commands and are therefore not di-

Frederic Dahl?

Ernst Biersack! Felix Freiling*

" Institut Eurécom, Sophia Antipolis
{steiner,biersack } @eurecom.fr

rectly affected by botnet tracking. Probably the most promi-
nent P2P bot currently spreading in the wild is known as Pea-
comm, Nuwar, or Zhelatin. Because of its devastating success,
this worm received major press coverage [13, 17, 22] in which
— due to the circumstances of its spreading — it was given the
name Storm Worm (or Storm for short) [30]. This malware is
currently the most wide-spread P2P bot observed in the wild.

In this paper we study the question, whether the technique
of botnet tracking can be extended to analyze and mitigate P2P
based botnets. Roughly speaking, we adapt the three steps of
botnet tracking in the following way using Storm Worm as a
case study: In the first step, we must get hold of a copy of the
bot binary. In the case of this botnet, we use spam traps to col-
lect Storm Worm generated spam and client side honeypots to
simulate the infection process. The second step, the infiltration
of the botnet, is adopted since we need to use a P2P protocol in-
stead of IRC, HTTP, or other client/server protocols. The third
step, the actual mitigation, is the most difficult: In the case of
Storm Worm we exploit weaknesses in the protocol used by the
bot to inject our own content into the botnet, in an effort to dis-
rupt the communication between the bots. We argue later that
this method is effective against P2P botnets using content-based
publish/subscribe-style communication.

Our measurements show that our strategy can be used as a
way to disable the communication within the Storm botnet to a
large extent. As a side effect, we are able to estimate the size of
the Storm botnet, in general a hard task [25]. Our measurements
are much more precise than previous measurements [12, 17].
This is because measurements previously were based on passive
techniques, e.g., by observing visible network events like the
number of spam mails supposedly sent via the bots. We are the
first to introduce an active measurement technique to actually
enumerate the number of infected machines: We crawl the P2P
network, keep track of all peers, and distinguish an infected peer
from a regular one based on characteristic behavior of the bots.

To summarize, the contributions of this paper are threefold:

1. We extend the method of botnet tracking [11] to P2P based
botnets. We argue that the method is applicable to analyze
and mitigate any botnet using P2P publish/subscribe-style
communication.

2. We demonstrate the applicability by performing a case
study of Storm Worm, thereby being the first to develop
ways to mitigate Storm Worm.

3. In doing this, we present the first empirical study of P2P
botnets giving details about their propagation phase, their
malicious activities, and other features.

2 Botnet Tracking adapted to P2P Botnets

We now present a general method to analyze and mitigate spe-
cific P2P botnets.

2.1 Class of Botnets Considered

The class of botnets we consider are those which use unau-
thenticated content-based publish/subscribe style communica-
tion. This communication paradigm is popular in many of the
well-known file sharing systems like Gnutella, eMule, or Bit-
Torrent. The characteristics of such systems are:

e Peer-to-peer network architecture: These networks have in
common that all network nodes are both clients and servers:
Any node can provide and retrieve information at the same
time. This feature makes P2P networks extremely robust
against node failures, i.e., they provide high resilience.

e Content-based publish/subscribe-style communication: In
such systems the network nodes do not directly send in-
formation to each other. Instead, an information provider
publishes a piece of information i, e.g., a file, using an
identifier which is derived solely from ¢. An information
consumer can then subscribe to certain information using a
filter on such identifiers. In practice, such identifiers can be
derived from specific content of ¢ or simply computed us-
ing a hash function. The P2P system matches published in-
formation items to subscriptions and delivers the requested
information to the consumer.

e Unauthenticated communication: Content providers do not
authenticate information, but authentication is usually im-
plicit: If the information received by a peer matches its
subscription, then it is assumed to be correct. None of the
popular file sharing systems provides authentication.

Note that in such systems communication is very loosely cou-
pled. Neither information consumers know in general, which
node published the information they receive, nor does an infor-
mation provider know, which nodes will receive their published
information. Both points, loose coupling and high resilience,
make these networks attractive technologies for running botnets.

2.2 Botnet Tracking Extended

We now introduce a widely applicable method to analyze and
mitigate any member of the class of botnets described above.
We generalize the botnet tracking method introduced for bot-
nets with a central server to botnets that use P2P networks and
exemplify the method in Section 4 with the help of a case study
on Storm Worm.

Step 1: Exploiting the P2P Bootstrapping Process. A bot
spreading in the wild must contain information to bootstrap it-
self within the botnet. In the case of P2P botnets, the bot must
contain sufficient information on how to connect to the botnet
and how to receive commands from the attacker. Usually this in-
formation includes a number of IP addresses of initial peers, ser-
vice ports and application-specific connection information. By
getting hold of and analyzing a bot, it is possible to extract this
information by either active or passive means.

Getting hold of a bot means to simulate the infection process,
which is a technique known from the area of honeypot technol-
ogy. The main difficulties here are (1) to find out the infection
vector and (2) to simulate vulnerable applications. While (1)

may take some time and is hard to automate, (2) can be effi-
ciently automated, e.g., using sandbox or network analysis tech-
niques. The result of this step is a list of network locations (IP
address / port) of peer services that form part of the P2P botnet.

Step 2: Infiltration and Analysis. As a result of step 1, we
also retrieve connection information to actually join the botnet.
Joining the botnet means to be able to receive botnet commands
issued by the attacker. By crafting a specific P2P client, infiltra-
tion of the botnet remains a dangerous, but technically manage-
able process. It can be dangerous since the attacker could notice
the infiltration process and start to specifically attack us.

Step 3: Mitigation. The mitigation of botnets must attack the
control infrastructure to be effective, i.e., either the servers or the
communication method. We now argue that publish/subscribe-
style communication has weaknesses which can be generally ex-
ploited. In a botnet, the attacker wishes to in some way send
commands to the bots. This is the characteristic of remote con-
trol. However, in publish/subscribe systems, there is no way to
send information directly. Instead, a broadcast is simulated, as
we now explain. The attacker defines a set C' = {¢1, co, ...} of
botnet commands. At any point in time, whenever he wishes to
send a command c; to the bots he publishes c¢; in the P2P sys-
tem. The bots must be able to receive all the commands from
the attacker so they subscribe to the entire set C' and can then
accept commands.

Note that since we consider wunauthenticated pub-
lish/subscribe systems, any member of the P2P system
can publish ¢;. This is the idea of our mitigation strategy: Using
the client from step 2, we can now try to either inject commands
into the botnet or disrupt the communication channel. In
general, disruption is possible: We can flood the network
with publication requests and thus “overwrite” publications by
the attacker. In order to actually inject commands, we need
to understand the communication process in detail and then
publish a specially crafted c;.

3 Inside Storm Worm

Before exemplifying our methodology of tracking P2P botnets,
we provide an overview of Storm Worm. Please note that this
description is a summary of the behavior we observed when
monitoring the Storm botnet for a period of several months. The
attackers behind this network quite frequently change their tac-
tics and move to new attack vectors, change the communication
protocol, or change their behavior in other ways. The results
from this section describe several important aspects of Storm
and we try to generalize our findings as much as possible. To-
gether with the technical report by Porras et al. [23], this is cur-
rently the most complete overview of Storm Worm.

3.1 Propagation Mechanism

A common mechanism for autonomous spreading malware to
propagate further is to exploit remote code execution vulner-
abilities in network services. If the exploit is successful, the
malware transfers a copy of itself to the victim’s machine and
executes this copy in order to propagate from one machine to
another. This propagation mechanism is used for example by
CodeRed [21], Slammer [20], and all common IRC bots [3].
Storm Worm, however, propagates solely by using e-mail, sim-

ilar to mail worms like Loveletter/ILOVEYOU and Bagle. The
e-mail body contains a varying English text that tries to trick
the recipient into either opening an attachment or clicking on an
embedded link. The text uses social engineering techniques in
order to pretend to be a legitimate e-mail, e.g., we found many
e-mails related to Storm that feign to be a greeting card.

With the help of spamtraps, i.e., e-mail addresses not used
for communication but to lure spam e-mails, we can analyze the
different spam campaigns used by Storm for propagation. We
have access to a spamtrap archive between September 2006 and
September 2007 which receives between 2,200 and 23,900 spam
messages per day (8,500 on average). The first Storm-related
message we are aware of was received on December 29, 2006:
It contained best wishes for the year 2007 and as an attachment a
copy of the Storm binary. An analysis of this archive shows that
Storm is quite active and can generate a significant amount of
spam: we found that the botnet was in some period responsible
for more than 10% of all spam received in the spamtraps.

The attackers behind Storm change the social engineering
theme quite often and adopt to news or events of public inter-
est. For example, the name “Storm Worm” itself relates to the
subject used in propagation mails during January 2007 which
references the storm Kyrill, a major windstorm in Europe at that
time. For events of public interest (e.g., Labor Day, start of NFL
season, or public holidays), the attackers use a specific social
engineering scam. Furthermore, they also use general themes
(e.g., privacy concerns or free games) to trick users into opening
the link in the e-mail message. In total, we counted more than
21 different e-mail campaigns for the period between December
2006 and January 2007.

To study the next step in the propagation phase, we examined
the links from Storm-related e-mails with the help of client hon-
eypots. A client honeypot is a system designed to study attacks
against client applications, in our case attacks against a web
browser [31]. We implemented our own client honeypot which
can be used to analyze a given Web site with different kinds of
browsers on top of CWSandbox [32]. Based on this system, we
can determine whether or not the visited site compromised our
honeypot. During five of the different spam campaigns we ex-
amined several URLs referenced in the e-mails. We used dif-
ferent releases of three web browsers, resulting in a total of
eight different browser versions. The results indicate that Storm
exploits only web browsers with a specific User-Agent, a
HTTP request header field specifying the browser version. If
this header field specifies a non-vulnerable browser, the mali-
cious server does not send the exploit to the client. However, if
the client seems to be vulnerable, the server sends between three
and six different exploits for vulnerabilities commonly found
in this browser or in common browser-addons. The goal of all
these exploits is to install a copy of the Storm binary on the
visitor’s machine. We observed that the actual exploit used in
the malicious Web sites is polymorphic, i.e., the exploit code
changes periodically, in this case every minute, which compli-
cates signature-based detection of these malicious sites.

If the malicious Web site successfully compromises the visi-
tor’s web browser or the visitor falls for the social engineering
scam and intentionally installs the binary, the victim is infected.
The binary itself also shows signs of polymorphism: When
continuously downloading the same binary from the same web

server, the size (and accordingly the MD5 checksum) changes
every minute. An analysis revealed that the changes are caused
by periodically re-packing the binary with an executable packer
which is responsible for the change in size.

3.2 System-level Behavior

Storm Worm itself is a sophisticated malware binary and uses
several advanced techniques, e.g., the binary packer is one of
the most advanced seen in the wild [10], the malware uses a
rootkit in order to hide its presence on the infected machine, and
it has a kernel-level component in order to remain undetected
on the system. We do not provide a complete overview of the
system-level behavior due to space limitations and since some
of this information is already available [23, 30].

‘We only mention two aspects that are important to understand
the network-level behavior, which is a key part in understanding
how to infiltrate and mitigate Storm. First, during the installa-
tion process, the malware also stores a configuration file on the
infected system. This file contains in an encoded form informa-
tion about other peers with which the program communicates
after the installation phase. Each peer is identified via a hash
value and an IP address/port combination. This is the basic in-
formation needed to join the P2P network, for which we provide
details in the next section. Second, Storm synchronizes the sys-
tem time of the infected machine with the help of the Network
Time Protocol (NTP). This means that each infected machine
has an accurate clock. In the next section, we show how this
synchronization is used by Storm for communication purposes.

3.3 Network-Level Behavior

For finding other bots within the P2P network and receiving
commands from its controller, the first version of Storm Worm
uses OVERNET, a Kademlia-based [19] P2P distributed hash
table (DHT) routing protocol. OVERNET is implemented by
Edonkey2000, that was officially shut down in early 2006, but
still benign peers are online in this network, i.e., not all peers
within OVERNET are bots per se.

In October 2007, the Storm botnet changed the communica-
tion protocol slightly. From then on, Storm does not only use
OVERNET for communication, but newer versions use their own
P2P network, which we choose to call the Stormnet. This P2P
network is identical to OVERNET except for the fact that each
message is XOR encrypted with a 40 byte long key. Therefore,
the message types enumerated below remain the same, only the
encoding changed. All algorithms introduced in this paper and
the general methodology are not affected by this change in com-
munication since the underlying weakness — the use of unau-
thenticated content-based publish/subscribe style communica-
tion — is still present. Note that in Stormnet we do not need
to distinguish between bots and benign peers, since only bots
participate in this network.

In the following, we describe the network-level communica-
tion of Storm and how it uses OVERNET to find other infected
peers. As in other DHTSs, each OVERNET or Stormnet node has
a global identifier, referred to as DHT ID, which is a randomly
generated 128 bit ID. When the client application starts for the
first time, it generates the DHT ID and stores it. Storm Worm
implements the same mechanism and also generates an identifier
upon the first startup.

Routing Lookup. Routing in OVERNET and Stormnet is
based on prefix matching: A node a forwards a query destined
to a node d to the node in its routing table that has the smallest
XOR-distance with d. The XOR-distance d(a, b) between nodes
a and b is d(a,b) = a @ b. It is calculated bitwise on the DHT
IDs of the two nodes, e.g., the distance between ¢ = 1011 and
b= 01111is d(a,b) = 1011 & 0111 = 1100. The entries in the
routing tables are called contacts and are organized as an unbal-
anced routing tree. Each contact consists of the node’s DHT ID,
IP address, and UDP port. A peer a stores only a few contacts
to peers that are far away in the DHT ID space (on the left side
of the tree) and increasingly more contacts to peers closer in the
DHT ID space (on the right side of the tree).

Routing to a given DHT ID is done in an iterative way. P
sends route requests to three peers (to improve robustness
against node churn), which may or may not return to P route
responses containing new peers even closer to the DHT ID,
which are queried by P in the next step. The routing lookup
terminates when the returned peers are further away from the
DHT ID than the peer returning them.

Publishing and Searching. A key in a P2P system is an iden-
tifier used to retrieve information. In many P2P systems, a key
is typically published on a single peer that is closest to that key
according to the XOR metric. In OVERNET, to deal with node
churn, a key is published on twenty different peers. Note that
the key is not necessarily published on the peers closest to the
key. To assure persistence of the information stored, the owner
periodically republishes the information.

As for the publishing process, the search procedure uses
the routing lookup to find the peer(s) closest to the key
searched for. The four most important message types for
the publish and search process are first hello, to check
if the other peer is still alive and to inform the other peer
about one’s existence and the IP address and DHT ID.
Second, route request/response (kid), to find peers
that are closer to the DHT ID kid. Third, publish
request/response, to publish information. And fourth,
search request/response (key), to search for infor-
mation whose hash is key.

The basic idea of the Storm communication is that an infected
machine searches for specific keys within the network. The con-
troller knows in advance which keys are searched for by the in-
fected machines and thus he publishes commands at these keys.
These keys can be seen as rendezvous points or mailboxes the
controller and infected machines agree on. In the following, we
describe this mechanism in more detail.

Storm Worm Communication. In order to find other Storm-
infected machines within the OVERNET network, the bot
searches for specific keys using the procedure outlined above.
This step is necessary since the bot needs to distinguish between
regular and infected peers within the network. The key is gen-
erated by a function f(d,r) that takes as input the current day
d and a random number r between 0 and 31, thus there can be
32 different keys each day. We found this information in two
different ways: First, we reverse engineered the bot binary and
identified the function that computes the key. The drawback of
this approach is that the attacker can easily change f and then
we need to analyze the binary again, thus we are always one step

Key number
*
1

41— ‘ g@ 32

7

14-10-07

15-10-07 Time 17-10-07 18-10-07

Figure 1: Keys generated by Storm in order to find other infected
peers within the network (October 14-18, 2007)

behind and have to react once the attacker changes his tactics.

The second way to retrieve this information is by treating the
bot as a black box and repeatedly force it to re-connect to the
network. This is achieved by executing the bot within a hon-
eynet, i.e., a highly controlled environment. The basic idea is to
execute the binary on a normal Windows machine, set up a mod-
ified firewall in front of this machine to mitigate risk involved,
and capture all network traffic. Since the bot can hardly identify
that it runs within a strictly monitored environment, it behaves
as normal, connects to the P2P network, and then starts to search
for keys in order to find other infected peers and the commands
from the controller. We monitor the communication and extract
from the network stream the key the bot searches for. Once we
have captured the search key, we revert the honeypot to a clean
state and repeat these steps. Since the bot cannot keep any state,
it generates again a key and starts searching for it. By repeat-
ing this process over and over again, we are able to enumerate
the keys used by Storm in a black-box manner, without actually
knowing the function f used by the binary.

Figure 1 shows the keys found during a period of five days.
We see a clear pattern: On each day, there are 32 unique keys
which are generated depending on the time, and for different
days there is no overlap in the search keys. This result con-
firms the results of our reverse engineering approach. The keys
are important to actually identify Storm-infected machines and
we can also use them for mitigation purposes. Another impor-
tant implication is that we can pre-compute the search keys in
advance: On day d, we can set the system time to d + n and
perform our black-box enumeration process as outlined above.
As aresult, we collect all keys the bot will search on day d + n.

If the attackers change the function that generates the key,
e.g., by using other inputs for f, we can still determine which
keys are currently relevant for the communication within the
botnet with the help of our honeypot setup: By analyzing the
network communication, we can obtain the current search key
relevant for the communication. In general, we can use this
setup to learn the keys a bot searches for in a black-box man-
ner, regardless of the actual computation.

The keys are used by the bot to find the commands which
should be executed: The attacker has in advance published con-

tent at these keys since he knows which keys are searched for
by an infected peer. The keys are similar to a rendezvous point
which both the controller and the bot know. In DHT-based P2P
networks, this is a viable communication mechanism. The ac-
tual content published in OVERNET at these keys contains a file-
name of the pattern “x .mpg; size=+;” [23]. No other meta
tags (like file size, file type, or codec) are used and the aster-
isks depict 16-bit numbers. Our observations indicate that the
bot computes an IP address and TCP port combination based on
these two numbers and then contacts this control node. How-
ever, up to now we do not know how to compute the IP address
and port out of the published numbers. Only bots participate
in Stormnet, thus they do not need to authenticate themselves.
Publications in Stormnet do not contain any meta tags. The IP
address and port of the machine that send the publish request
seem to be the actual information.

All following communication just takes place between the bot
and the control node, which sends commands to the bot. This is
similar to a two-tier architecture where the first-tier is contained
within OVERNET or Stormnet and used to find the second-tier
computers that send the actual commands. Once the Storm in-
fected machine has finished the TCP handshake with the con-
trol node, this node sends a four byte long challenge c in order
to have a weak authentication scheme. The bot knows the se-
cret “key” k = 0x3ED9F 146 and computes the response 7 via
r = c@ k. This response is then sent to the control node and the
bot is successfully authenticated. All following communication
is encoded using zlib, a software library for data compression.

The infected machine receives via this communication chan-
nel further commands that it then executes. Up to now, we only
observed that infected machines are used to either send spam
e-mails or to start DDoS attacks. In order to send spam, the in-
fected machines receive a spam template and a list of e-mail ad-
dresses to be spammed. We found two different types of mails
being sent by Storm: propagation mails that contain different
kinds of social engineering campaigns as introduced in Sec-
tion 3.1 or general spam messages that advertise for example
pharmaceutical products or stocks. The attackers behind Storm
presumably either earn money via renting the botnet to spam-
mers, sending spam on behalf of spammers, or running their
own pharmacy shop. The DDoS attacks we observed were ei-
ther SYN or ICMP flooding attacks.

4 Case Study: Tracking Storm Worm

After an overview of the behavior of Storm Worm, we now
present a case study of how to apply the extended botnet track-
ing methodology outlined in Section 2 for this particular bot. We
show that we can successfully infiltrate and analyze the botnet,
even though there is no central server like in traditional botnets.
Furthermore, we also outline possible attacks to mitigate Storm
and present our measurement results.

4.1 Exploiting the P2P Bootstrapping Process

At the beginning, we need to capture a sample of the bot. As
outlined in Section 3.1, we can use spamtraps to collect spam
mails and then client honeypots to visit the URLs and obtain
a binary copy of the malware. Based on this copy of Storm
Worm, we can obtain the current peer list used by the binary via
an automated analysis (see Section 3.2).

In the first step, we also use the honeynet setup introduced in
Section 3.3. With the help of the black-box analysis, we are able
to observe the keys that Storm Worm searches for. As explained
before, the controller cannot send commands directly to the bot,
thus the bot needs to search for commands and we exploit this
property of Storm to obtain the search keys. During this step we
thus obtain (at least a subset of) the current search keys, which
allows us to infiltrate and analyze the Storm botnet. With a sin-
gle honeypot, we were able to reliably acquire all 32 search keys
each day for a given Storm binary.

4.2 Infiltration and Analysis

Based on the obtained keys and knowledge of the communica-
tion protocol used by Storm, we can start with the infiltration and
analysis step to learn more about the botnet, e.g., we can enu-
merate the size of the network. First, we introduce our method
to learn more about the peers in OVERNET and Stormnet and
about the content announced and searched for in these networks.
Afterwards we present several measurement results.

4.2.1 Crawling the P2P Network

To measure the number of peers within the whole P2P network,
we have developed our own crawler for OVERNET and Storm-
net. It uses a principle similar to the KAD crawler we de-
veloped [29]. Our crawler runs on a single machine and uses
a breadth first search issuing route requests to find the
peers currently participating in OVERNET or Stormnet. The
speed of our crawler allows us to discover all peers within 20
to 40 seconds (depending on the time of day).

The crawler runs two asynchronous threads: one to send the
route requests (Algorithm 1) and one to receive and parse
the route responses (Algorithm 2). One list containing
the peers discovered so far is maintained and used by both
threads. The receiving thread adds the peers extracted from the
route responses to the list, whereas the sending thread it-
erates over the list and sends 16 route requests to every
peer. The DHT ID asked for in the route requests are cal-
culated in such a way that each of them falls in different zones
of the peer’s routing tree. This is done in order to minimize the
overlap between the sets of peers returned.

4.2.2 Spying in OVERNET and Stormnet

The main idea of the Sybil attack [7] is to introduce malicious
peers, the sybils, which are all controlled by one entity. Posi-
tioned in a strategic way, the sybils allow us to gain control over
a fraction of the P2P network or even over the whole network.
The sybils can monitor the traffic, i.e., act as spies (behavior of
the other peers) or abuse the protocol in other ways. For exam-
ple, route requests may be forwarded to the wrong end-
hosts or rerouted to other sybil peers. We use the Sybil attack to
infiltrate OVERNET and the Stormnet and observe the commu-
nication to get a better understanding of it.

Assume that we want to find out in the least intrusive way
what type of content is published and searched for in the one of
both networks. For this, we need to introduce sybils and make
them known, such that their presence is reflected in the routing
tables of the non-sybil peers. We have developed a light-weight
implementation of such a “spy” that is able to create thousands
of sybils on one single physical machine. We achieve this scal-

Algorithm 1: send thread (is executed once per crawl)

Data: peer: struct{IP address, port number, DHT ID}
Data: shared list Peers = list of peer elements

/+ the list of peers filled by the receive thread and worked on by the send thread =«/

Data: int position =0

/+ the position in the list up to which the peers have already been queried %/

Data: [ist ids = list of 16 properly chosen DHT ID elements

1 Peers.add(seed); /+ initialize the list with the seed peer */

2 while position < size(Peers) do
3 for i=1to 16 do

5

6 position++;

4 dest DHT ID =Peers[position].DHT ID & ids[i]; /+ normalize bucket to peer’s position */
send route requests (dest DHT ID) to Peers[position];

Algorithm 2: receive thread (waits for the route response messages)

Data: message mess = route response message

Data: peer: struct{IP address, port number, DHT ID}

Data: shared list Peers = list of peer elements

/+ the list shared with the send thread
1 while true do

*/

2 wait for (mess = route response) message; foreach peer € mess do

3 if peer ¢ Peers then
4 | Peers.add(peer);

ability since the sybils do not keep any state about the interac-
tions with the non-sybil peers [28]. We introduce 224 sybils into
OVERNET and Stormnet: the first 24 bits are different for each
sybil and the following bits are fixed, they are the signature of
our sybils. The spy is implemented in the following steps:

1. Crawl the DHT ID space using our crawler to learn about
the set of peers P currently online.

2. Send hello requests to the peers P in order to “poi-
son” their routing tables with entries that point to our sybils.
The peers that receive a hello request will add the
sybil to their routing table.

3. When a route request initiated by non-sybil peer P
reaches a sybil, that request will be answered with a set
of sybils whose DHT IDs are closer to the target. This
way, P has the impression of approaching the target. Once
P is “close enough” to the target DHT ID, it will initiate
apublish request or search request also des-
tined to one of our sybil peers. Therefore, for any route
request that reaches one of our sybil peers, we can be
sure that the follow-up publish request or search
request will also end-up on the same sybil.

4. Store the content of all the requests received in a database
for later evaluation.

Using the Sybil attack, we can now monitor requests within the
whole network.

4.2.3 Results for Crawling and Spying

Other Studies related to Storm Worm. Concurrent to our
work, Storm Worm has become the subject of intense studies at
many places around the world [8, 2]. By looking at the (DHT
ID, IP address) pairs collected by our crawler, we found several

instances where DHT IDs that contain a well chosen pattern
covered the whole DHT ID space and the IP addresses map
all to the same institution. We could observe experiments (or
worm activities) going on in San Diego (UCSD), Atlanta (Geor-
gia Tech) and many other places (also on address spaces we
could not resolve). We filtered out all these (DHT ID, IP ad-
dress) pairs before doing our analysis.

Storm bots in OVERNET. During full crawls from October
2007 until the beginning of February 2008, we found between
45,000 and 80,000 concurrent online peers in OVERNET. We
define a peer as the combination of an IP address, a port num-
ber and a DHT ID. In the remaining part, we use the term “IP
address” for simplicity. If one DHT ID is used on several IP
addresses, we filter these instances out. We also filter out IP
addresses that run more than one DHT ID simultaneously.

Note that the same machine participating in OVERNET can,
on the one hand, change its I[P address over time. This fact is
known as IP address aliasing. On the other hand, it can also
change its DHT ID over time. This is known as DHT ID alias-
ing. Due to this reason, simply counting the number of different
DHT IDs or IP addresses provides only a rough estimate of the
total number of machines participating in OVERNET. Neverthe-
less, we present for the sake of completeness the total number of
DHT IDs and IP addresses observed during the month of Octo-
ber 2007: With our crawler, we could observe 426,511 different
DHT IDs on 1,777,886 different IP addresses. These numbers
are an upper bound for the number of Storm-infected machines:
Since we enumerate the whole DHT ID space, we find all online
peers, from which a subset is infected with Storm.

About 75% of all peers are not located behind NATSs or fire-
walls and can be directly contacted by our crawler. We used the

MaxMind database [18] to map the IP addresses to countries.
We saw clients from 210 countries. These split up in 19.8% that
cannot be resolved, 12.4% from the US, 9.4% from Uruguay,
6% from Germany etc.

Lower Bound for Storm-infected Machines in OVERNET.
When spying on OVERNET, the benign peers can be distin-
guished from the bots of the Storm botnet: Bots publish files
with characteristic filenames and no other meta tags (see Sec-
tion 3.3 for details). However, not every bot does make such
announcements. This allows us to obtain a lower bound of the
size of the botnet since only peers with this characteristic pattern
are definitely infected with Storm. Note that only the Storm bots
with a public IP address publish content in OVERNET.

Every day we see between 5,000 and 6,000 distinct peers that
publish Storm related content. About the same number of peers
publish real, e.g., non-Storm related, content. Around 30,000
peers per day did perform searches.

Most of the clients that published Storm content (the bots run-
ning on public IP addresses) come from the US (31%) followed
by India (5.3%) and Russia (5.2%). Note, however, that 21%
of the IP addresses could not be mapped to any country. In to-
tal, we observed bots from over 133 countries. Due to the fact
that all social engineering campaigns we observed contain En-
glish text, it is not surprising that the majority of Storm-infected
machines are located in the US.

Estimating the Number of Storm-infected Machines in
OVERNET. All we can measure with confidence are upper
and lower bounds of the number of concurrently active bots in
OVERNET. The lower bound being around 5,000 — 6,000 and
the upper bound being around 45,000 — 80,000 distinct bots.
Storm content was published using roughly 1,000 different
keys per day. This indicates that there are many different ver-
sion of Storm in the wild, since each binary only searches for 32
keys per day. Some of these keys were used in more than 1,500
publications requests, whereas the majority of keys was used in
only few publications. During the observation period in Octo-
ber 2007, we observed a total of 13,307 keyword hashes and
179,451 different file hashes. We found that 750,451 non-Storm
related files were announced on 139,587 different keywords.

storm bots in overnet
1000

storm peers
benign peers

900 | b

800 V \] f x Rh |
700 } ig\/\ﬂ f | \ {’ 1]
600 | ([E V\/ WVV | IK/V

500

peers

15/12/07 22/12/07 29/12/07 05/01/08 12/01/08 19/01/08
date

Figure 2: The number of bots and benign peers that published
content in OVERNET.

From the end of the year 2007 on, the number of storm bots

using OVERNET and the Storm activity in OVERNET decreased.
Figure 2 shows the number of bots and benign peers that pub-
lished content in OVERNET in December 2007 and January
2008. The number of benign peers remains constant, while the
number of storm bots decreases. We think this is due to the fact
that the whole botnet now shifts to Stormnet.

Size Estimation for Stormnet. We can apply the algorithms
outlined above to enumerate all peers within Stormnet. The
important difference between Stormnet and OVERNET is the
fact that OVERNET is used by regular clients and Storm bots,
whereas Stormnet is used only by machines infected with Storm
Worm. Hence, we do not need to differentiate between benign
and infected peers.

We crawled Stormnet every 30 minutes since beginning of
December 2007 until the beginning of February 2008. During
this period, we saw between 5,000 and 40,000 peers concur-
rently online. There was a sharp increase in the number of storm
bots at the end of 2007 due to a propagation wave during Christ-
mas and New Years Eve (Figure 3). After that increase, the num-
ber of bots varied between 25,000 and 40,000 before stabilizing
in the beginning of January 2008 around 15,000 to 30,000. In
total, we found bots in more than 200 different countries. The
biggest fraction comes from the US (23%). As seen in the fig-
ure, Storm Worm also exhibits strong diurnal patterns like other
botnets [6].

40000

35000

30000

25000

20000

stormbots

15000

10000

5000 [¥

12-15 12-22 12-29 01-05
date

19 01-26 02-02

Figure 3: Number of bots in Stormnet, split by geolocation.

Figure 4 depicts the number of distinct IP addresses as well
as the number of distinct “rendez-vous™ hashes searched for in
Stormnet. At the end of 2007, the number of peers searching
in Stormnet increased significantly and the search activity sta-
bilized at high level in the middle of January 2008. Similar to
the diurnal pattern of the number of storm bots, also the search
activity within Stormnet shows a distinct diurnal pattern.

The publish activity shows exactly the same behavior over
time compared to the search activity (Figure 5). However, the
number of “rendez-vous” hashes that are searched for is nearly
of an order of magnitude higher than the number of hashes that
are published. For the number of distinct IP addresses, espe-
cially in the week from 29/12/2007 to 05/01/2008 and starting
again on 19/01/2008, the distinct number of IP addresses launch-
ing search queries are two orders of magnitudes higher than the
the number of IP addresses publishing. The number of IP ad-

8000

T T
ip addresses + +

hashes N *
7000 | R

6000 " b
5000 [A
4000
3000 [
2000

1000 -

! ! ! !

T ——

11-24 12-08

12-22 01-05 01-19 02-02

date

Figure 4: Search activity in Stormnet.

dresses searching for content is around three times bigger than
the number of IP addresses publishing content. It is somehow in-
tuitive that the number of IP addresses that search is bigger than
those publishing, since the goal is to propagate information.

T T T T T T
ip addresses + . N
hashes + N
500 P
7
A + 14
. T
400 | . I
: B A
o 2 oAt
800 1 &t F e
¥ ﬁ%u LT T
e W MR VR I iy
i fﬁ* e Fends :&t + %
200 | pEiA SRR i
+ N gg ;ﬁi%ﬁ % I*fﬁ N }? 488 +++
§ e e 4 tﬁg@l £
£ NERE L ‘
100 Jai & sy 5 8 1
PRRT o e iuR
7_—'"'”‘f, L - L L L L
11-24 12-08 12-22 01-05 01-19 02-02
date

Figure 5: Publish activity (distinct IP addresses and rendez-vous
hashes) in Stormnet.

4.3 Mitigation

Based on the information collected during the infiltration and
analysis phase, we can also try to actually mitigate the botnet.
In this section, we present two theoretical approaches that could
be used to mitigate Storm Worm and our empirical measurement
results for both of them.

4.3.1 Eclipsing Content

A special form of the sybil attack is the eclipse attack [26] that
aims to separate a part of the P2P network from the rest. The
way we perform an eclipse attack resembles very much that of
the sybil attack described above, except that the DHT ID space
covered is much smaller.

To eclipse a particular keyword K, we position a certain num-
ber of sybils closely around K, i.e., the DHT IDs of the sybils
are closer to the hash value of K than the DHT IDs of any
real peer. We then need to announce these sybils to the regular
peers in order to “poison” the regular peers’ routing tables and

to attract all the route requests for keyword K. Unfor-
tunately, using this technique we could — in contrast to similar
experiments in KAD [27] — not completely eclipse a particular
keyword. This is due to the fact that in OVERNET and Stormnet
the content is spread through the entire hash space and not re-
stricted to a zone around the keyword K. As a consequence, in
OVERNET and Stormnet, the eclipse attack can thus not be used
to mitigate the Storm Worm network.

4.3.2 Polluting

Since eclipsing content is not feasible in OVERNET or Storm-
net, we investigated another way to control particular content.
To prevent peers from retrieving search results for a certain key
K, we publish a very large number of files using K. The goal
of the pollution attack is to “overwrite” the content previously
published under key K. Since the Storm bots continue to pub-
lish their content as well, this is a race between the group per-
forming mitigation attempts and the infected machines.

To perform this attack, we again first crawl the network, and
then publish files to all those peers having at least the first 4 bits
in common with K. This crawling and publishing is repeated
during the entire attack. A publishing round takes about 5 sec-
onds, during which we try to publish on about 2,200 peers, out
of which about 400 accept our publications. The peers that do
not respond did either previously leave the network, could not
be contacted because they are behind a NAT gateway, or are
overloaded and could not process our publication.

Once a search is launched by any regular client or bot, it
searches on peers closely around K and will then receive so
many results (our fake announcements) that it is going to stop
the search very soon and not going to continue the search far-
ther away from K. That way, publications of K that are stored
on peers far away from K do not affect the effectiveness of the
attack as they do for the eclipse attack.

We evaluate the effectiveness of the pollution attack by pollut-
ing a hash used by Storm and searching at the same time for that
hash. We do this using two different machines, located at two
different networks. For searching we use kadc [16], an open-
source OVERNET implementation, and an exhaustive search al-
gorithm we developed. Our search method is very intrusive, it
crawls the entire network and asks every peer for the specified
content with key K. Figure 6a shows that the number of Storm
content quickly decreases in the results obtained by the regular
search algorithm, then nearly completely disappears from the
results some minutes after the attack is launched, and finally
comes back after the attack is stopped. However, by modifying
the search algorithm used, by asking all peers in the network for
the content and not only the peers close to the content’s hash, the
storm related content can still be found (Figure 6b). Our experi-
ments show that by polluting all those hashes that we identified
to be storm hashes (see Section 4.2.2), we can disrupt the com-
munication of the botnet.

5 Conclusion

In this paper, we showed how to generalize the methodology of
botnet tracking for botnets with central server to botnets which
use P2P for communication. We exemplified our methodology
with a case study on Storm Worm, the most wide-spread P2P
bot currently propagating in the wild. Our case study focussed

x 10

results

15 start of pollution

storm
—— pollution

stop of pollution

storm
—— pollution

stop 7olluton

results
-

start of pollutior

(a) Using the standard search.

0
10 20 30 40 50 60 70 80 [
minutes

10 20 30 40 50 60 70 80 90 100
minutes

(b) Using the exhaustive search.

Figure 6: The number of publications by Storm bots vs. the
number of publications by our pollution attack.

on the communication within the botnet and especially the way
the attacker and the bots communicate with each other. Storm
Worm uses a two-tier architecture where the first-tier is con-
tained within the P2P networks OVERNET and the Stormnet and
used to find the second-tier computers that send the actual com-
mands. We could distinguish the bots from the benign peers in
the OVERNET network and identify the bots in the Stormnet and
give some precise estimates about their numbers. Moreover, we
presented two techniques how to disrupt the communication of
the bots in both networks. While eclipsing is not very success-
ful, polluting proved to be very effective. In future work, we
plan to analyze in detail the second-tier computers and try to
find ways to identify the operators of the Storm Worm.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

P. Baecher, M. Koetter, T. Holz, F. Freiling, and M. Dornseif. The
nepenthes platform: An efficient approach to collect malware. In
Proceedings of 9th International Symposium On Recent Advances
in Intrusion Detection (RAID’06), 2006.

J. Ballard. Storm Worm, October 2007. NANOG 41, http:
//www.nanog.org/mtg-0710/kristoff.html.

P. Barford and V. Yegneswaran. An Inside Look at Bomets, vol-
ume 27 of Advances in Information Security, pages 171-191.
2007.

U. Bayer, A. Moser, C. Kruegel, and E. Kirda. Dynamic analysis
of malicious code. Journal in Computer Virology, 2:67-77, 2006.

E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup:
Understanding, detecting, and disrupting botnets. In Workshop on
Steps to Reducing Unwanted Traffic on the Internet (SRUTI’05),
pages 39—44. USENIX, June 2005.

D. Dagon, C. Zou, and W. Lee. Modeling botnet propagation
using time zones. In Proceedings of the 13th Annual Network
and Distributed System Security Symposium (NDSS’06), 2006.

J. R. Douceur. The Sybil attack. In Proceedings of the 1% In-
ternational Workshop on Peer-to-Peer Systems (IPTPS), LNCS,
pages 251-260, March 2002.

B. Enright. Exposing Stormworm, October 2007. Toorcon 9,
http://noh.ucsd.edu/~bmenrigh/.

Federal Bureau of Investigation (FBI). Operation Bot
Roast, February 2007. http://www.fbi.gov/pressrel/
pressrel07/botnet061307.htm.

Frank Boldewin. Peacomm.C - Cracking the nutshell, September
2007. http://www.reconstructer.org/.

F. Freiling, T. Holz, and G. Wicherski. Botnet Tracking: Explor-
ing a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks. In Proceedings of 10th European Symposium On
Research In Computer Security (ESORICS’05), July 2005.

[12]

[13]

[14]

[15]
[16]
(17]

(18]
[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon.
Peer-to-peer botnets: Overview and case study. In Proceedings of
Hot Topics in Understanding Botnets (HotBots’07), 2007.

L. Grossman. The worm that roared. Internet: http://www.
time.com/time/magazine/, September 2007.

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. Both-
unter: Detecting malware infection through ids-driven dialog cor-
relation. In Proceedings of the 16th USENIX Security Symposium,
2006.

Honeynet Project. Know your Enemy: Tracking Botnets, March
2005. http://www.honeynet.org/papers/bots.
KadC. http://kadc.sourceforge.net/.

B. Krebs. Storm worm dwarfs world’s top supercomput-
ers. Internet: http://blog.washingtonpost.com/
securityfix/, August 2007.

Maxmind. http://www.maxmind.com/.

P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer in-
formatiion system based on the XOR metric. In Proceedings of
the 1°* Workshop on Peer-to-Peer Systems (IPTPS), Mar. 2002.
D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the slammer worm. IEEE Security and Privacy,
1(4):33-39, 2003.

D. Moore, C. Shannon, and k claffy. Code-red: A case study on
the spread and victims of an internet worm. In Proceedings of the
2nd ACM SIGCOMM Workshop on Internet Measurment, pages
273-284, New York, NY, USA, 2002. ACM Press.

J. Naughton. In millions of windows, the perfect storm is gather-
ing. http://observer.guardian.co.uk/, Oct 2007.

P. Porras, H. Saidi, and V. Yegneswaran. A Multi-perspective
Analysis of the Storm (Peacomm) Worm. Technical report, Com-
puter Science Laboratory, SRI International, October 2007.

M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multi-
faceted approach to understanding the botnet phenomenon. In
Proceedings of the 6th Internet Measurement Conference, 2006.
M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. My botnet is
bigger than yours (maybe, better than yours): Why size estimates
remain challenging. In Proceedings of 1st Workshop on Hot Top-
ics in Understanding Botnets (HotBots’07), 2007.

A. Singh et al. Eclipse attacks on overlay networks: Threats and
defenses. In Proc. Infocom 06, Apr. 2006.

M. Steiner, E. W. Biersack, and T. En-Najjary. Exploiting KAD:
Possible Uses and Misuses. Computer Communication Review,
37(5), Oct 2007.

M. Steiner, W. Effelsberg, T. En-Najjary, and E. W. Biersack.
Load reduction in the kad peer-to-peer system. In Fifth Inter-
national Workshop on Databases, Information Systems and Peer-
to-Peer Computing (DBISP2P 2007), 2007.

M. Steiner, T. En-Najjary, and E. W. Biersack. A Global View of
KAD. In Proceedings of the Internet Measurement Conference
(IMC), 2007.

J. Stewart. Storm worm DDoS attack. Internet: http:
//www.secureworks.com/research/threats/
storm—-worm, 2007.

Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. T. King. Automated web patrol with strider hon-
eymonkeys: Finding web sites that exploit browser vulnerabili-
ties. In Proceedings of the 13th Annual Network and Distributed
System Security Symposium (NDSS’06), February 2006.

C. Willems, T. Holz, and F. Freiling. CWSandbox: Towards auto-
mated dynamic binary analysis. I[EEE Security and Privacy, 5(2),
2007.

