
Performance and Forgiveness

June 23, 2008

Margo Seltzer

Harvard University

School of Engineering and Applied Sciences

Margo Seltzer
Architect

Outline

• A consistency primer

• Techniques and costs of consistency

• When weaker forms of consistency makes
sense.

• Case Study
– Amazon Dynamo

– Google Single Sign On

• Conclusions

A Consistency Primer

• Transactions: the gold standard

• Degrees of isolation

• Distributed systems
– Consistency models

– Read/write consistency

Transactions

• The gold standard: ACID
• Atomicity: Multiple operations are all or

nothing.
• Consistency: Data consistency maintained

even in the face of concurrency.
• Isolation: Data behave as if each transaction

runs single-threaded.
• Durability: Changes persist in the face of any

kind of failure.

Distributed Transactions

• Requires distributed locking.
• Commit protocol (2 phase commit) is expensive.

– One site (leader) says “commit.”
– Broadcast “prepare” to everyone.
– Everyone does something durable.
– Everyone responds to leader.
– Leader then make commit durable, releases locks, and

broadcasts, “commit,” to everyone.
– Everyone makes commit durable, releases locks.

Is all this necessary?

• Transactions are serializable (degree 3).

• Read committed (degree 2)
– Provides cursor stability

• Read uncommitted (degree1)
– Allow read of dirty data

May make the locking problem go away,

but doesn’t do much for cost of commit.

Moving to Distributed Data

• How do distributed systems provide high
availability?
– Replication

• Key question: how consistent is the data at
different replicas?

Consistency Models

• Perfect consistency: all replicas are
guaranteed to return the same data at all
times.

• Eventual consistency: if no updates take
place for a long time, all replicas will
eventually become consistent.

• Causal consistency: writes that depend upon
one another are seen in the same order by
everyone.

Read/Write Consistency

• Read consistency
– What you read will be internally consistent, but

may be out of date.

• Write consistency
– Sets of logical writes appear atomically.

Outline

• A consistency primer

• Techniques and costs of consistency

• When weaker forms of consistency makes
sense.

• Case Study
– Amazon Dynamo

– Google Single Sign On

• Conclusions

Real Distributed Transactions

• Writing applications is easy!
• Recovery is tricky (e.g., leader elections, leases, etc).

• Requires distributed locking.
• Expensive commit processing

Settle for read/write consistency instead.
Forget about true distributed locking.

Replicas and Commits

• Fully synchronous: an updater waits until it knows
that everyone has seen and done everything.

• Semi-synchronous: an updater waits until it knows
that “enough” participants have seen and done
everything.

• Probabilistically synchronous: an updater waits until it
knows that “enough” participants have seen
everything.

• Asynchronous: updaters send and pray.

Fully Synchronous

Semi-synchronous

Partially Synchronous

Asynchronous

Outline

• A consistency primer

• Techniques and costs of consistency

• When weaker forms of consistency makes
sense.

• Case Study
– Amazon Dynamo

– Google Single Sign On

• Conclusions

The Real World

• If the user can’t see inconsistency, it doesn’t
really exist.

• If an application can resolve inconsistency,
don’t sweat it.

• If the cost/benefit ratio makes it too expensive,
don’t worry about it.

• If you can recreate it, don’t sweat it.

Outline

• A consistency primer

• Techniques and costs of consistency

• When weaker forms of consistency makes
sense.

• Case Study
– Amazon Dynamo

– Google SSO

• Conclusions

Dynamo

• Amazon’s highly available key/value store.

• Used for things like:
– Preferences

– Shopping carts

– Best-seller lists

– Session management

• Designed for reliability over consistency.

• Strict SLA.

Dynamo: Amazon’s Highly Available Key-value Store, SOSP 2007

Dynamo Implementation

• Key/data store.

• DHT provides distribution, partitioning, replication.

• All data are versioned (vector clock).

• Applications handle multiple inconsistent versions.

• Four possible storage engines on local site:
– Berkeley DB (native key/data store)

– Berkeley DB Java Edition (native key/data store)

– MySQL (RDBMS)

– Persistently backed in-memory buffer

Data Integrity Architecture

• Availability trumps everything.
– Runs on 10,000s of servers
– System unavailability costs real dollars
– Components fail
– Service has strict 99.9%-ile SLA

• Single key writes
– Do not overwrite; make new copies
– No need for transactions

• If multiple copies disagree, vote.

Trade-offs

• Vector clocks detect causal orderings, but …
– Can still get inconsistencies (parallel operations)

– Application reconciles

• No transactional updates, but …
– Use multiple nodes for read/write, but

– Fewer than that required for quorum

– Get response from healthiest nodes, not
necessarily the “preferred nodes.”

Outline

• A consistency primer

• Techniques and costs of consistency

• When weaker forms of consistency makes
sense.

• Case Study
– Amazon Dynamo

– Google Single Sign On

• Conclusions

Single Sign On (SSO)

• Google Accounts: supports many services.

• SSO reliability sets upper bound on
application reliability.

• Required single-copy consistency.

• Data partitioned for load balancing.

• Data replicated for availability.

Data Management for Internet-Scale Single-Sign-On, WORLDS 2006

SSO Architecture

From: Data Management for Internet-Scale Single-Sign-On, WORLDS 2006

Data Integrity Architecture

• Master implements quorum protocol.
– Wait for acks from more than half.

• Majority needed to elect new master.

• Master leases allow consistent reads without
read quorum.

Trade-offs

• Consistent reads must go to master, but …
– Stale reads can happen on replicas.

• Large groups have up to 15 replicas, but …
– Only 5 of those can become masters.

– Commit quorum is only 5 (not 15).

– 10 sites do not contribute to commit latency

• Spread replicas geographically, but
– Not too far as replicas communicate at commit.

Outline

• A consistency primer

• Techniques and costs of consistency

• When weaker forms of consistency makes
sense.

• Case Study
– Amazon Dynamo

– Google Single Sign On

• Conclusions

Conclusions

• Consistency is not always a requirement.
• Many agents can make up for inconsistent

data:
– Applications
– System software
– Users
– Customer service

• Make trade-offs explicitly
– Know the values of the pieces to trade

Thank You!

• For further reading:
– Life beyond distributed transactions: An

Apostate’s Opinion, Pat Helland, CIDR
– http://www-db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p15.pdf

margo@eecs.harvard.edu

margo.seltzer@oracle.com

