

XtreemOS: a Linux-based Operating System for Large Scale Dynamic Grids

Christine Morin

XtreemOS Scientific Coordinator

INRIA Rennes - Bretagne Atlantique

contact@xtreemos.eu

What is XtreemOS?

Linux-based Operating System

with native Virtual Organization support

for Next Generation Grids

Data Centers

Cloud Computing

Next Generation Grids

> Internet of the Future

Service Infrastructures

Next Generation Grids

"A fully distributed, dynamically reconfigurable, scalable and autonomous infrastructure to provide location independent, pervasive, reliable, secure and efficient access to a coordinated set of services encapsulating and virtualizing resources (computing power, storage, instruments, data, etc.) in order to generate knowledge"

What are the Actors' Needs?

Users

End users - Service Administrators

Ease of use

- Do not want to care with Grid issues
- Want to work with familiar interfaces
- Want to use their non Grid-aware legacy applications
- Simple login as a Grid user in a VO
- Secure and reliable application/service execution
- High performance
- Ubiquitous access to services, applications & data

Administrators

Site admin

Site admin

■ Site administrators

- Ease of management
- Autonomous management of local resources

VO administrators

- Ease of management
- Flexibility in VO policies
- Accounting

Developers' Needs

- Ease of development of Grid applications
 - Reuse existing code
- Stable API
- Conformance to standard API
 - Familiar API Posix
 - Grid application standards

Operating System

Application

Set of integrated services (user account, process, file, memory segment, sockets, access rights)

Operating System

Single computer

Hardware

Why a Grid Operating System?

Middleware Approach

Example: Globus Toolkit

Grid Operating System

Grid Operating System

A comprehensive set of cooperating system services providing a stable interface

for a wide-area dynamic distributed infrastructure

composed of **heterogeneous resources**

spanning multiple administrative domains

XtreemOS Grid OS

XtreemOS

A Grid OS based on Linux with Native VO Support

Application Spectrum

- Wide range of applications...
 - Grid aware distributed applications
 - Grid unaware (legacy) applications executed in a Grid

- ... in different domains
 - E-business
 - Services...
 - Scientific applications
 - ... XtreemOS is an OS!

XtreemOS Fundamental Properties

Scalability

Scale

- Thousands of nodes in thousands sites in a wide area infrastructure
- Thousands of users

Consequences of scale

- Heterogeneity
 - Node hardware & software configuration
 - Network performance
- Multiple administrative domains
- High churn of nodes

XtreemOS Service Scalability

- Scalability with the number of entities & their geographical distribution
 - Avoid contention points & save network bandwidth (performance)
 - Run over multiple administrative domains (security)
- Adaptation to evolving system composition (dynamicity)
 - Run with partial vision of the system
 - Self-managed services
 - Transparent service migration
 - Critical services highly available
 - No single point of failure

XtreemOS Fundamental Properties

Transparency User's Point of View

- Bring the Grid to standard Linux users
 - Feeling to work with a Linux machine
 - Standard way of launching applications
 - ps command to check status of own jobs
 - No limit on the kind of applications supported
 - Interactive applications
 - Grid-aware user sessions
 - Grid-aware shell taking care of Grid related issues
 - VO can be built to isolate or share resources
 - Parameter defined by VO administrator

Transparency

Application & Application Developer's Point of View

- Make Grid executions transparent
 - Hierarchy of jobs in the same way as Unix process hierarchy
 - Same system calls: wait for a job, send signals to a job
 - Processes in a job treated as threads in a Unix process
- Files stored in XtreemFS Grid file system
 - Posix interface and semantics to access files regardless of their location
- Transparent fault tolerance to applications
- Clusters transparent to applications
 - Single System Image

XtreemOS Services

XtreemOS

A VO-aware OS based on Linux

XtreemOS

Virtual Organization Management

Objectives

- To allow secure interaction between users and resources
 - Authentication, authorization, accounting

Challenges

- Interoperability with diverse VO frameworks and security models
- Flexible administration of VOs
 - Flexibility of policy languages
 - Customizable isolation, access control and auditing
- Scalability of management of dynamic VOs
- Embedded support for VOs in the OS
- No compromise on efficiency, backward compatibility

Use Cases

Manage VO lifecycle

Manage users

VO Admin

Manage resources

Manage VO policies

Security in XtreemOS

- VO-centric security architecture
 - Grid level security services
 - Global entities: VO, users, nodes (identified by public key certificates)
 - Node (OS) level services
 - Local entities: OS users (uid), OS resources (files (inode), process (pid))
 - Hierarchical policy management
 - Resource access control
 - Resource usage
- Interoperability with third party security infrastructures
 - Kerberos, LDAP, Shibboleth...
- Single-Sign-On

System-Level VO Support

- Policies specified by a VO finally checked & ensured at resource nodes by the local instance of the OS
 - Standard Linux unaware of VOs
 - Isolation & access control mainly rely on user accounts, process id, file permission bits
- What is needed for Linux OS to be able to enforce VO policies
 - OS kernel should deal with VO & VO users identities
 - Identity information should be exploited in standard access control mechanisms
 - Linux OS should supply identity information to Grid level services (XtreemFS, AEM)
- NO modification of Linux kernel
 - Mapping of VO level identities & policies into local ones fully recognized by Linux

System-Level VO Support

- VO-customizable, dynamic mapping of Grid users onto local accounts
 - Integration of Grid user management into Linux using
 - Pluggable Authentication Modules (PAM)
 - Multiple low level authentication technologies into a common high level API
 - Name Service Switch (NSS)
- Interfacing with the Grid authentication services
 - Development of PAM modules to accommodate multiple VO models
 - Authentication, authorization, session management
- User space credential translation
 - NS-Switch
- Access control & logging
 - Caching of authentication data related to a process within the kernel

VO-centric Security Architecture

Key Contributions

- Maximum transparency
 - Grid unaware applications & tools can be used without being modified or recompiled
- Integration of Grid level authentication with system level authentication
 - Creation of dynamic on-the-fly mappings for Grid users in a clean & scalable way
 - No centralized Grid wide data base
- Grid user mappings invisible to local users
- VO are easier to setup and manage
 - No grid map file needed
 - User management does not necessitate any resource reconfiguration

XtreemOS Application Execution Management

XtreemOS

Application Execution Management

Objectives

- Start, monitor, control applications
- Discover, select, allocate resources to applications

Challenges

- Deal with a large variety of resources with changing conditions over time
- Cost to obtain system information and take appropriate decisions has to be orders of magnitude less than in Grid middleware-based systems
- Take advantage of accurate information for better scheduling control

Main Features

- No global job scheduler
- Distributed management of jobs
- No assumption on local node RMS
 - AEM can be used without any batch system
- Resource discovery based on overlay networks
 - Structured and unstructured
 - Multi-criteria and range of values queries

Advanced Features

- Flexible monitoring
- Accounting
- Reservation
 - Nodes with a local resource manager
 - Co-allocation of resources
- Checkpoint/restart mechanisms for grid jobs
- Migration of grid jobs when the user agreement cannot be met anymore
- Interactive applications support
- Support for external workflow engines

XtreemOS

Data Management

XtreemOS

Data Management

Objectives

 Providing to users a global view of their files & transparent access to data through a Grid file system

Challenges

- Efficient location-independent access to data through standard Posix interface in a Grid environment
 - Grid users from multiple VO
 - Data storage in different administrative domains
- Autonomous data management with self-organized replication and distribution
- Consistent data sharing
- Advanced meta data management

XtreemFS Grid File System

Conclusion

- XtreemOS is not yet another Grid middleware
 - Operating system for large scale wide-area platforms distributed over multiple administrative domains
 - Comprehensive set of cooperating services
 - Stable Posix interface
 - Grid-aware Linux distribution
- Native Virtual Organization Support
 - Flexible & scalable VO management
 - Multi-VO & short-term VO support
- Secure, reliable, efficient application/service execution & ease of use and management
- Attractive in the context of the new emerging computing models

Get Involved!

Beta

- Download the first XtreemOS public release in a few days (GPL/BSD)
 - http://www.xtreemos.eu
 - Open development
- contact@xtreemos.eu to register in the pioneer user group

Acknowledgements

- XtreemOS consortium
 - http://www.xtreemos.eu

- □ PARIS project-team @ INRIA Rennes Bretagne Atlantique
 - http://www.irisa.fr/paris

Thank you for your Attention

http://www.xtreemos.eu

