
A Multi-Site Virtual Cluster System for Wide Area Networks

Takahiro Hirofuchi∗ Takeshi Yokoi∗ Tadashi Ebara∗† Yusuke Tanimura∗

Hirotaka Ogawa∗ Hidetomo Nakada∗ Yoshio Tanaka∗ Satoshi Sekiguchi∗

∗National Institute of Advanced Industrial Science and Technology (AIST)
†Mathematical Science Advanced Technology Laboratory Co.,Ltd.

Abstract

A virtual cluster is a promising technology for reduc-
ing management costs and improving capacity utiliza-
tion in datacenters and computer centers. However, re-
cent cluster virtualization systems do not have the max-
imum scalability and flexibility required, due to lim-
ited hardware resources at one site. Therefore, we are
now developing an advanced cluster management sys-
tem for multi-site virtual clusters; which provides a vir-
tual cluster composed of distributed computer resources
over wide area networks. This system has great advan-
tages over other cluster management systems designed
only for single-site resources; users can create a clus-
ter of virtual machines from local and remote physical
clusters in a scalable manner, and dynamically change
the number of cluster nodes on demand, seamlessly. In
our system, a multi-site cluster achieves a monolithic
system view of cluster nodes to enable existing appli-
cations to be deployed quickly and managed flexibly,
just as in physical clusters. In this paper, we propose
an advanced cluster virtualization mechanism composed
of two key techniques. An L2 network extension of
virtual machine networks allows transparent deployment
over networks for distributed virtual cluster nodes, and
a transparent package caching mechanism greatly opti-
mizes data transfers in virtual cluster deployment over
network latencies. Experimental results show multi-site
virtual clusters have sufficient feasibility in WAN envi-
ronments and promise great scalability for a large-scale
number of virtual nodes.

1 Introduction

Large-scale datacenters and computer centers need to
maintain enough computer system resources for their
customers in a cost-effective manner. However, it is
difficult to make appropriate investments against unpre-
dictable demands on processing powers. Although re-

cent virtualization technologies contribute to great im-
provements in efficient resource usage, scalability and
flexibility are limited by the total amount of physical
resources at one site. For virtualization of high perfor-
mance computing environments, emerging virtual clus-
ter systems allow rapid deployment of customized clus-
ter systems. They basically reduce deployment costs and
improve resource sharing efficiencies. However, exist-
ing virtual cluster systems focus only on single-site com-
puter resources; users cannot create large-scale clusters
beyond single-site hardware resources and dynamically
extend running clusters in a flexible manner, on demand.

We designed and implemented a multi-site virtual
cluster management system, which enables administra-
tors to create a virtual cluster composed of virtual ma-
chines from distributed computer centers easily, and dy-
namically change its components for ever-changing de-
mands from users, making efficient use of surplus com-
putational resources.

In this paper, we propose two key mechanisms for
multi-site support of cluster virtualization: An L2 ex-
tension of virtual machine networks allows transparent
virtual cluster deployment over WANs, and contributes
to the same usability as a single physical cluster, through
unmodified application programs. In addition, a package
caching mechanism is an essential component for scal-
able deployment of multi-site virtual clusters. It dramat-
ically reduces backbone network traffic among sites and
alleviates network resource requirements to the lowest
feasible levels.

Section 2 clarifies the concept of multi-site virtual
clusters and Section 3 presents key mechanisms for
multi-site support. Section 4 gives design details and
Section 5 evaluates prototype implementation through
experiments. Section 6 notes additional discussions, and
Section 7 summarizes related work. Finally, we conclude
this paper in Section 8.

1

Figure 1: Multi-site virtual cluster concept

2 Multi-Site Virtual Cluster

A multi-site virtual cluster is an advanced cluster virtu-
alization concept for greater scalability and flexibility,as
well as sufficient usability. Beyond physical hardware
limitations at one site, it aims to integrate distributed
computational resources into a single cluster form by ex-
ploiting recent broad bandwidth backbone advances in
WAN environments. A conceptual overview is illustrated
in Figure 1, and its advantages are summarized as fol-
lows.

Scalability: A virtual cluster overlaying multiple sites
can be composed of a greater number of computational
nodes than can single-site hardware resources. This
breaks hardware resource limitations at a single site, and
integrates distributed computer resources as virtual clus-
ters. In recent years, broadband networks over 1Gbps
have been widely deployed between large-scale data cen-
ters and computer centers, and end-to-end reservations
of network resources are becoming possible in academic
and commercial backbone networks. These networks en-
able virtual clusters to be extended to other remote sites
in a scalable manner.

Flexibility: A virtual cluster can be dynamically ex-
panded according to user requests, by adding more and
more virtual machines from remote sites. It is also pos-
sible to shrink it by releasing virtual machines. The vir-
tual nodes belonging to a virtual cluster can be substi-
tutable with other virtual machines of remote sites in
a fairly transparent manner; for instance, some virtual
nodes can be moved to other sites for hardware mainte-
nance or power saving of physical clusters.

Usability: Even though a virtual cluster consists of
distributed virtual machines located at remote sites, it can
be seen as a single system image ”cluster” for users and
applications. Its underlying networking topology is ap-

propriately hidden from the inside of the virtual cluster.
Remote computer resources are integrated into a uniform
computing environment over its underlying heterogene-
ity, so that existing cluster applications can be applied to
distributed environments with smaller efforts. A user ba-
sically operates a virtual cluster in the same manner as
a physical one, using unmodified programs designed for
physical clusters.

3 Virtual Cluster Management System

This section describes our virtual cluster management
system. We recently decided to extend our single-site vir-
tual cluster management system [10] for multi-site clus-
ter virtualization. Its system architecture was carefully
designed to be composed of standard technologies, and
its components were well-modularized for further exten-
sion and customization. Therefore, multi-site extensions
can be seamlessly integrated with it without large modi-
fications. The basic mechanism of cluster virtualization
is the same as that of multi-site cluster virtualization.

In our system, virtual clusters are based on three
types of hardware virtualization; virtual machine mon-
itors (VMMs) for processor virtualization, logical vol-
ume manager (LVM) and iSCSI [16] for storage access,
and VLAN [6] for network isolation. A VMM works on
each node of a physical cluster and hosts multiple vir-
tual machines on it. Storage devices of a virtual machine
are attached via iSCSI from dedicated storage servers, in
which an LVM allocates storage space from large hard
disks. A physical node hosts several virtual machines,
each of which is a member of different virtual clusters.
The private network of a virtual cluster is logically sep-
arated from the physical cluster’s networks by VLAN.
Virtual clusters are completely isolated from each other,
so that users can never use sniffer and tamper with net-
work packets of other clusters.

A user interface is provided through a web browser.
An administrator can specify the upper limit of physical
resources allocated for a virtual cluster, and users make
reservations of virtual clusters with the number of virtual
nodes, the amount of the memory and storage required,
and the start / end time. Users can also specify an operat-
ing system and applications which are then automatically
installed in a reserved virtual cluster.

Our system is fully compatible with a widely-used
cluster management framework, NPACI Rocks [14], in
order to allow users to utilize its pre-packaged soft-
ware repository of various cluster applications. A self-
contained ISO image, called a Roll, includes a set of
RPM files for a cluster application, as well as its cluster-
aware configuration scripts. It should be noted that our
system is also distributed as a Roll, which means Rocks
users can easily install virtual cluster management sys-

2

Figure 2: Virtual cluster management system for a single
site

tems in their physical clusters. It includes a VMware
server, and Linux iSCSI initiator / target systems, as well
as our virtual cluster management programs.

An overview of our system is illustrated in Figure 2.
Our system is composed of four types of physical nodes.
A cluster manager node supports users and administra-
tors of web interfaces, and sends administrative control
messages to other nodes, such as those for the creation
or destruction of virtual machines belonging to a virtual
cluster. It also works as a frontend node of a Rocks clus-
ter, which runs a PXE boot server for installation of other
physical nodes.Gateway nodes and compute nodes
host virtual machines on a VMM, which are launched
or stopped after control messages are received from the
cluster manager.

In our system, virtual clusters on a physical cluster are
also installed and managed by Rocks; unmodified Rocks
and cluster applications work for a virtual cluster. A
virtual machine on a gateway node works as a frontend
node of a virtual cluster, which provides other virtual ma-
chines on compute nodes of a PXE boot installation and
a NAT service.

Storage nodes allocate logical volumes of storage
space according to requests from the cluster manager,
and export them to virtual machines via the iSCSI pro-
tocol.

All virtual clusters are fully isolated by a tagging
VLAN. A cluster manager assigns a unique VLAN ID
for a virtual cluster, and physical nodes create tagging
VLAN interfaces (e.g.,eth0.123 on Linux) which are
bridged to the pseudo network interfaces of hosted vir-
tual machines.

3.1 Multi-Site Support Requirements

The requirements of multi-site support are summarized
as follows: First, the multi-site extension needs to
have compatibility with existing components and trans-
parency for the inside of a hosting virtual cluster. Our
single-site virtual clusters are basically designed to be

scalable, flexible, and usable as much as possible for
available hardware resources. We consider this basic de-
sign architecture is also applicable to multi-site virtual
clusters. Its multi-site support should be achieved by a
straightforward extension of the existing design; scala-
bility, flexibility, and usability are improved in a transpar-
ent manner for users, applications, and cluster manage-
ment systems. Users should be able to utilize multi-site
virtual clusters seamlessly by using existing programs
for physical clusters.

Second, multi-site virtual clusters should be allocated
rapidly, and their internal operating systems and appli-
cations should be also installed and configured quickly,
with the minimum manual configurations. These instal-
lations and configurations need to be performed dynam-
ically over networks for additional virtual machines, so
that users can fully customize their virtual clusters any-
time. Both efficient deployment and full customization
must be supported in this mechanism, even for remote
nodes over network latencies.

Third, flexible relocation of virtual machines is re-
quired for management flexibility. Some virtual ma-
chines of a virtual cluster should be able to be moved
to other host machines at remote sites; however the vir-
tual cluster must continue to work properly during the
move. Without this feature, it is difficult to maintain a
large-scale virtual cluster distributed, across many sites
consistently.

3.2 Multi-site Extension Mechanism

To meet the requirements above, we propose two key
extension mechanisms for multi-site support of virtual
clusters, an L2 extension of a virtual cluster network and
transparent package caching. All components of a virtual
cluster, such as virtual machines and storage services, are
located under the same network segment, retaining the
same addressing and naming as a single physical cluster.
All programs designed for local area networks work cor-
rectly, including administrative services such as DHCP,
PXE boot, and cluster monitoring tools, which use mul-
ticast and broadcast messages. In addition, it is basically
possible to utilize the live migration features of VMMs
(e.g., Xen [2] and VMware Infrastructure [20]), designed
for a single network segment.

A transparent package caching service works toward
rapid installation of virtual clusters by dramatically re-
ducing network traffic among sites. It transparently in-
tercepts download requests of packages and saves them
into a local cache repository. Our system exploits a
package-based cluster installer (i.e., one not based on
preauthored virtual machine images), by which users can
customize their virtual clusters with unlimited combi-
nations of pre-packaged applications including cluster-

3

wide setting scripts. This deployment approach also en-
ables an installer on each node to absorb hardware differ-
ences, even for the case of virtual machines (e.g., CPU
architecture). In addition, every node in a cluster can be
customized easily in a different manner, as in our vir-
tual cluster system. As for multi-site cluster deployment
over a WAN, this package-based installation approach
is more suitable than VM-imaged based ones since both
customizability and caching efficiency are achieved.

It should be noted that these extension mechanisms
for multi-site support are not specific to our virtual clus-
ter management system, however, and can be applied to
other virtual cluster projects for multi-site support.

4 Design and Implementation

A multi-site virtual cluster is composed of virtual clus-
ters at its master site and worker sites, and these virtual
clusters at the sites are interconnected by Ethernet VPNs
to be a single cluster. The cluster manager in Figure
2 is modified to send/receive allocation requests of vir-
tual clusters and also reserve network resources if pos-
sible. A virtual frontend node of the local virtual clus-
ter in the master site also works as the Rocks frontend
node of the multi-site virtual cluster; other virtual nodes
at its worker sites are also installed and managed from
the remote virtual frontend. Ethernet VPN services and
transparent cache servers are incorporated into the virtual
cluster management system as independent components
for multi-site support.

4.1 L2 Network Extension

An L2 extension of virtual cluster networks is performed
by an Ethernet VPN service as illustrated in Figure 3.
As mentioned in Section 3, the private network of a vir-
tual cluster is completely isolated from other networks
by means of a tagging VLAN. A VLAN tag1 is added
by a host operating system, and Ethernet frames with a
VLAN tag are sent to other physical nodes through a
LAN. To extend this private network of a virtual clus-
ter, our Ethernet VPN service gets rid of the VLAN tag
from an Ethernet frame and redirects the frame to other
interconnected sites in which virtual machines of a multi-
site virtual cluster exist. This mechanism avoids sharing
VLAN IDs among sites, of which only up to 4096 are
allowed, and enables VPN services to send only the in-
ternal traffic of a virtual cluster.

Our system works with an appropriate Ethernet VPN
mechanism from commercial services and appliances,
such as WAN Ethernet VPN services from ISPs, and pro-
prietary VPN appliances of L2TPv3 [7] or EtherIP [3].

1An additional field in an Ethernet frame header in which a unique
VLAN ID is embedded.

Figure 3: L2 extension of virtual cluster networks

In these cases, a VPN appliance is attached to a LAN
among physical clusters, and configured from a cluster
manager via wrapper scripts of its console interface.

On the other hand, administrators can decide to uti-
lize software VPN programs (e.g., OpenVPN [12], Vtun
[21], or PacketiX [13]) for multi-site support, instead
of external VPN appliances. A VPN program is in-
stalled into a gateway node which has both global and
private network interfaces, is launched to establish Eth-
ernet VPN connections for the untagged private network
(e.g.,eth0.123) of a local virtual cluster. In our pro-
totype implementation, we utilize an open source VPN
software program, OpenVPN, since it can be distributed
with our virtual cluster package for the Rocks toolkit.

4.2 Transparent Package Caching

Figure 4 shows the transparent caching mechanism for
downloading packages. All package retrieval requests
to a remote virtual frontend node are redirected to a
caching service on a local gateway node. The caching
service downloads packages not cached yet, instead of
downloading by local virtual nodes, and saves them for
later requests. Concurrent requests from local nodes are
merged into one remote request by copying partial re-
trieving data to local downloading streams. In the best
case, network traffic between a pair of master and worker
sites is reduced to the total amount of required pack-
age sizes for one virtual node. When building a large
scale virtual cluster, this mechanism is essential for prac-
tical deployment time; without caching packages effi-
ciently, network traffic for installations becomes propor-
tional to the number of remote nodes. Basically, package
cache repositories are separated for virtual clusters re-
spectively, for security reasons. However, it is possible
to share common packages among virtual clusters if their
digital signatures are verified and their licenses allow re-
distribution.

Actually, Rocks has a bittorrent-like mechanism
that transfers downloaded packages among installation
nodes. Downloading network traffic from a frontend

4

Figure 4: Transparent package caching mechanism

node is reduced due to end-to-end package deliveries.
However, this mechanism, only available among in-
stalling nodes, does not work for an initial boot im-
age of approximately 250MB, and unlike bittorrent, only
completely-downloaded files are transferable to other
nodes. Therefore, our system needs another acceleration
mechanism specially designed for reducing network traf-
fic between remote sites over a WAN.

In a prototype implementation, a web proxy server,
Squid [18], is exploited for caching packages, since it
supports a transparent proxy mode and concurrent down-
loading aggregation for one target file. A Squid server
is launched for a virtual cluster, and all outgoing HTTP
requests to package files on a virtual frontend are redi-
rected to its listening port. It is carefully configured to be
fully transparent for Rocks components. Node-specific
requests, such as getting configuration files, are redi-
rected to the virtual frontend without passing through a
caching engine.

4.3 Deployment Steps

Multi-site virtual clusters are deployed in the following
steps. First, a master site, which receives a reservation re-
quest, allocates a single-site virtual cluster with a virtual
frontend node. Next, to extend this to a multi-site virtual
cluster, the master site sends allocation requests of virtual
nodes to other sites. If successfully allocated, VPN ses-
sions are established and virtual machines at worker sites
are launched to start node installation from the virtual
frontend node. Node installation is based on the Rocks
installer; an Ethernet VPN transparently extends a pri-
vate network of the virtual frontend node, except for its
bandwidth and latency restrictions.

A node installation consists of three phases:Phase
1. After a bootstrap system starts, it tries to get a kick-
start file from a frontend node. The kickstart file in-
cludes all configuration information required to auto-
mate an Anaconda-based installer. A Rocks frontend
node dynamically generates this file on request for node-

by-node customization.Phase 2. An installing node
starts to download three file system images which in-
clude installer-related programs and data. It expands
them and launches the advanced installer. The file sys-
tem images areupdate.img, product.img, and
stage2.img, which total 250MB.Phase 3. The Ana-
conda installer starts to run with the kickstart file. It cre-
ates target file systems on disks, and then continues to
download and expand many packages. After all configu-
rations have been made, the node reboots and its instal-
lation is finished.

5 Evaluation

In this section, we evaluate the proposed extension mech-
anisms through experiments with a large number of
physical nodes under emulated networks. We focused on
the deployment feasibility of large-scale multi-site vir-
tual clusters in WAN environments. An overview of our
experiments is illustrated in Figure 5 and Table 1. We
used two physical clusters to emulate a multi-site virtual
cluster of approximately 150 nodes. Cluster A is a master
site cluster and it hosts virtual nodes including a virtual
frontend. Cluster B works as a remote worker site of the
multi-site virtual cluster. Its virtual nodes are installed
from the virtual frontend node in Cluster A over an em-
ulated WAN. Both physical clusters are interconnected
with Gigabit Ethernet via a hardware network emulator,
GtrcNET-1 [4]. GtrcNET-1 guarantees very precise em-
ulated latencies for such high throughput network media.
The private network for Cluster B is switched by Cisco
4006; its switching performance was sufficient for the
whole range of node-to-node throughputs in the experi-
ments. An OpenVPN session is used to make a single
network segment by establishing an Ethernet VPN be-
tween the clusters.

5.1 Virtual Cluster Installation via Ether-
net VPN

We first tested whether a multi-site virtual cluster is pos-
sible in WAN environments by extending the cluster’s
private network with an Ethernet VPN. 10 virtual ma-
chines, respectively launched on physical nodes in Clus-
ter B, are installed through an OpenVPN tunnel over an
emulated WAN with different latencies. A network la-
tency through the OpenVPN tunnel is always under 1ms
without latency emulation. Its maximum throughput is
up to 160Mbps, limited by the processing power of the
OpenVPN nodes, due to Blowfish encryption overhead.
495 RPM packages (900MB) are installed on each virtual
node; they include many Grid and clustering middleware
programs (e.g., Globus Toolkit, Condor, and Sun Grid

5

Figure 5: Experiment overview

Table 1: Experimental environment

Cluster A 16 nodes

AMD Opteron Processor 244
3GB memory

Gigabit Ethernet (Broadcom BCM5703X) x2

Cluster B 134 nodes

AMD Opteron Processor 246
6GB memory

Gigabit Ethernet (Broadcom BCM5704) x2

Engine). The cache server is disabled during this exper-
iment. For the network latencies tested, all virtual nodes
were successfully installed, and all applications basically
worked correctly.

Figure 6 shows the installation time for 10 nodes under
different network latencies.2 Installation time becomes
larger under longer network delays, since package down-
loading takes a longer time due to a TCP congestion al-
gorithm. A well-known solution for reducing download
rates over long network latencies is to optimize TCP win-
dow sizes to be sufficient values. However, this approach
is not appropriate for the installer, which downloads a
large number of small files with different connections.

We also tested the installation of a larger number of
virtual nodes. Huge amounts of network traffic went
through the VPN tunnel, and deployment became much
slower.

The L2 network extension of a virtual cluster is a
straightforward method to create a multi-site virtual clus-
ter, which enables existing installer tools and most appli-
cations to be also used for it without any modification.
However, without package caching, it is difficult to de-
ploy large-scale virtual clusters over WANs for actual
use.

2All virtual nodes finished their installation approximately at the
same time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100

in
st

al
la

tio
n

tim
e

(s
)

RTT (ms)

Installation Time (10 nodes)

Figure 6: Installation time for 10 nodes under emulated
network latencies

5.2 Transparent Package Caching

Next, we tested the transparent package caching mech-
anism for virtual cluster installation over an Ethernet
VPN, which aimed to resolve the problem of huge net-
work traffic during virtual cluster deployment.

In this experiment, we started by installing 134 virtual
machines on physical nodes of Cluster B at one time. The
virtual machines were booted from their virtual CDROM
drives only for bypassing a PXE boot stage; some nodes

6

Figure 7: VPN throughput with package caching

Figure 8: Private network interface throughput of the OpenVPN node in Cluster B with package caching

stopped at PXE booting due to a download error of a ker-
nel and a small bootstrap system image (initrd.img).
A PXE boot utilizes TFTP to get initial boot files, how-
ever their UDP packets are likely to be lost under a con-
gested network. After the kernel andinitrd.img are
loaded from a CDROM image, an installing node starts
to download initial images and packages from the virtual
frontend in Cluster A. A cache server saves all down-
loaded files into its repository; the total amount of them
is only 1.1GB for all Rocks Rolls. The test network is set
to emulate a 20ms RTT latency, which is a slightly larger
value than that for average RTTs disclosed by many ISPs
for SLA in Japan.

Figure 7 shows the network traffic throughput inside
the Ethernet VPN. During this experiment, network traf-
fic in the downloading direction (TX in Figure 7) is much
greater than that requesting messages to the virtual fron-
tend. However, the throughput retains a much lower

rate vis-a-vis installations of 138 nodes; it is dramati-
cally reduced to approximately the amount of a set of
downloaded files for one node. As in Figure 8, which
shows outgoing network traffic from the cache server to
installing nodes, the cache server correctly multiplexes
concurrent downloading requests to target files. Its high
throughput rate is reduced to the VPN throughput rate by
package caching.

Figure 9 shows installation progress bars of all target
nodes. We made this figure by analyzing HTTP server
logs in the virtual frontend. A target node accesses sev-
eral CGI scripts to get node settings and update infor-
mation during installation. These access records are ex-
ploited in our installation progress analyzer.

As in Figure 9, dynamic kickstart generation is fairly
slow and installation processes are ordered by its retry
count. It is necessary to fix this issue for faster installa-
tion.

7

 0

 20

 40

 60

 80

 100

 120

 140

17:55:00 18:00:00 18:05:00 18:10:00 18:15:00 18:20:00 18:25:00 18:30:00

N
od

e

Time

Installation Progress

phase 1
phase 2
phase 3

Figure 9: Installation progress with package caching. See Section 4.3 about installation phases. Note that progress
bars are sorted by finish time for installation.

The fastest 50 nodes finished approximately at the
same time, just after both VPN and cache download traf-
fic goes down. This means these nodes retrieved the
same downloading files simultaneously from the cache
server which multiplexed them to unique file requests.
Since the Rocks bittorrent-like mechanism does not work
for partial file downloading, the fastest nodes need to get
new package files from the cache server. In cases without
it, these requests got directly to the virtual frontend node;
a huge amount of data is transferred over the network,
and it takes over 2 hours to complete a cluster setup in
the tested environments. Other backbone traffic is sup-
pressed for a long time.

Other slower nodes efficiently exploit the bittorrent-
like mechanism. They download packages from other
nodes which already have them. As Figure 8 shows, af-
ter the fastest nodes have downloaded all packages, all
requests went to installing nodes, not to the cache server.

In the case where all packages are already cached be-
fore deployment, VPN traffic during installation is very
small (e.g., under 400KB in our experiments). All pack-
ages are downloaded from the cache server, not from
the remote virtual frontend over the VPN. The installa-
tion time of the fastest node becomes only 12 minutes
in the emulated WAN. Therefore, a pre-caching mecha-

nism, which stores common files in advance, is consid-
ered quite an effective solution to alleviate harmful net-
work impact on other background traffic and speed up
virtual cluster deployment over networks.

6 Discussion

In our implementation, all virtual nodes in a multi-site
virtual cluster are located in a single network segment.
Existing programs basically work for it in the same man-
ner as in a physical cluster, without any modification.
However, network intensive programs need special care
to avoid performance degradation due to network latency
and insufficient bandwidth over an Ethernet VPN. One
possible solution is that users run network-intensive parts
of programs at each site; virtual nodes in a multi-site vir-
tual cluster are named in a different manner, based on
their physical locations, so that users can optimize the
running of their applications. The physical locations of
the virtual nodes can be distinguished by their MAC ad-
dress, which includes a physical cluster ID number used
in management databases. Also, their IP addresses are
selected from different ranges, and their host names are
assigned with a prefix part for physical locations (e.g.,

8

vcompute-7-123, 7 is a site ID number). In addi-
tion, it is possible to utilize special middleware libraries
addressing heterogeneous network topology (e.g., MPI
library for WAN [8]).

Although the current implementation still does not uti-
lize the migration technologies of virtual machines, we
found that it could provide management flexibility to a
degree. Since the (re)installation cost of a virtual com-
pute node is very small, users can dynamically substitute
some virtual nodes of a multi-site virtual cluster with
other virtual machines at other sites with the minimum
interaction. In addition, running jobs can be submitted
to new nodes automatically by simple scripts. However,
this approach is not fully transparent for users and appli-
cations; users may have to extend target applications to
support dynamic node configuration. Moreover, it is dif-
ficult to move a virtual frontend node to a remote site by
this approach; it has all management databases and tools
for use inside of a virtual cluster, and cannot be rein-
stalled while the virtual cluster is working. We consider
it possible, however, to exploit the live migration features
of VMMs to move all virtual nodes transparently to other
sites. Further studies of this point will be made in our fu-
ture work.

7 Related Work

Although in the HPC and Grid research area many stud-
ies have been conducted for virtual clusters (e.g., [5, 9,
11,22]), there are few virtualization systems which allow
single-image virtual clusters over the Internet. VNet [19]
is an experimental VPN program with dynamic adap-
tion of VPN topology, which is used to connect dis-
tributed private networks of virtual machines served un-
der a marketplace-based resource manager [17]. Vio-
Cluster [15] is a computational resource sharing system
based on machine and network virtualization. Virtual
machines on physical clusters are automatically grouped
with VPNs on demand, in accordance with borrowing
and lending policies between different administrative do-
mains. The work queue of PBS is exploited to measure
the demand for processing power in a domain. Compared
with these systems, our system is intended to build large-
scale virtual clusters over a WAN with physical clusters
in a seamless manner. However, their key mechanisms
are also applicable to our system with a straightforward
extension of the current implementation. It is possible
to establish more complicated network topologies rather
than only a master/worker star topology, and dynami-
cally change them in order to adapt to network conditions
and application requirements. A multi-site virtual cluster
can be expanded/shrunk automatically according to re-
source usage policies. It is developed to support cloud
computing of virtualized computing resources. Com-

pared with Amazon EC2 [1] and Virtual Workspace [22],
our system focuses scalable management of distributed
virtual machines at many sites.

8 Conclusion

For achieving the maximum scalability and flexibility
of resource management in datacenters and computa-
tional centers, we have presented an advanced clus-
ter management system for multi-site virtual clusters
over WANs, composed of virtual machines hosted on
widely-distributed physical clusters. The L2 extension
mechanism of virtual machine networks enables exist-
ing cluster application programs to be utilized also for
distributed computational resources in the same manner
as on a single physical cluster. In addition, its package
caching mechanism allows rapid deployment of large-
scale multi-site virtual clusters under network latencies
in WANs. Our experiments showed multi-site virtual
clusters were feasible through the L2 network extension
mechanism, and that the package caching mechanism
was quite essential for scaling them up under WAN la-
tencies. In future work, we will address fully-transparent
migration of virtual clusters and latency-aware optimiza-
tion with HPC libraries and advanced networking mech-
anisms.

Acknowledgment

The authors would like to thank the GtrcNET team of
Grid Technology Research Center for their kind support,
and for their hardware network emulator GtrcNET.

References

[1] A MAZON ELASTIC COMPUTECLOUD. http://aws.
amazon.com/ec2.

[2] BARHAM , P., DRAGOVIC, B., FRASER, K., HAND , S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I.,
AND WARFIELD, A. Xen and the art of virtualization. In
Proceedings of the Nineteenth ACM Symposium on Oper-
ating Systems Principles(2003), ACM Press.

[3] HOUSLEY, R., AND HOLLENBECK, S. EtherIP: Tunnel-
ing Ethernet Frames in IP Datagrams. RFC 3378, Sept.
2002.

[4] K ODAMA , Y., KUDOH, T., TAKANO , R., SATO, H.,
TATEBE, O., AND SEKIGUCHI, S. GNET-1: Giga-
bit Ethernet network testbed. InProceedings of Cluster
2004: IEEE International Conference on Cluster Com-
puting(2004), IEEE Computer Society.

[5] K RSUL, I., GANGULY, A., ZHANG, J., FORTES, J.
A. B., AND FIGUEIREDO, R. J. VMPlants: Providing
and managing virtual machine execution environments

9

for grid computing. InProceedings of the ACM/IEEE Su-
percomputing 2004 Conference(2004).

[6] LAN MAN S TANDARDS COMMITTEE OF THE IEEE
COMPUTER SOCIETY. IEEE standards for local and
metropolitan area networks: virtual bridged local area
networks. IEEE, 1999.

[7] L AU , J., TOWNSLEY, W. M., AND GOYRET, I. Layer
Two Tunneling Protocol - Version 3 (L2TPv3). RFC 3931
(Proposed Standard), Mar. 2005.

[8] M ATSUDA, M., KUDOH, T., KODAMA , Y., TAKANO ,
R., AND ISHIKAWA , Y. Efficient MPI collective opera-
tions for clusters in long-and-fast networks. InProceed-
ings of Cluster 2006: IEEE International Conference on
Cluster Computing(2006), IEEE Computer Society.

[9] M CNETT, M., GUPTA, D., VAHDAT, A., AND

VOELKER, G. M. Usher: An extensible framework for
managing clusters of virtual machines. InProceedings of
the 21st Large Installation System Administration Con-
ference (LISA 2007)(2007), USENIX Association.

[10] NAKADA , H., YOKOI, T., EBARA , T., TANIMURA , Y.,
OGAWA , H., AND SEKIGUCHI, S. The design and im-
plementation of a virtual cluster management system. In
Proceedings of the first IEEE/IFIP International Work-
shop on End-to-end Virtualization and Grid Management
(EVGM2007)(2007).

[11] NISHIMURA , H., MARUYAMA , N., AND MATSUOKA,
S. Virtual clusters on the fly - fast, scalable, and flexible
installation. InProceedings of the Seventh IEEE Inter-
national Symposium on Cluster Computing and the Grid
(CCGrid 2007)(2007), IEEE Computer Society.

[12] OPENVPN. http://openvpn.net/.

[13] PACKETIX VPN. http://www.softether.com/.

[14] PAPADOPOULOS, P. M., KATZ , M. J.,AND BRUNO, G.
NPACI Rocks: Tools and techniques for easily deploy-
ing manageable Linux clusters. InProceedings of Cluster
2001: IEEE International Conference on Cluster Com-
puting(2001), IEEE Computer Society.

[15] RUTH, P., MCGACHEY, P., AND XU, D. VioCluster:
Virtualization for dynamic computational domains. In
Proceedings of Cluster 2005: IEEE International Confer-
ence on Cluster Computing(2005), IEEE Computer So-
ciety.

[16] SATRAN , J., METH, K., SAPUNTZAKIS, C., CHADALA -
PAKA , M., AND ZEIDNER, E. Internet Small Computer
Systems Interface (iSCSI). RFC 3720, Apr. 2004.

[17] SHOYKHET, A. I., LANGE, J., AND DINDA , P. A.
Virtuoso: A system for virtual machine marketplaces.
Tech. Rep. NWU-CS-04-39, Northwestern University,
July 2004.

[18] SQUID: OPTIMIZING WEB DELIVERY. http://www.
squid-cache.org/.

[19] SUNDARARAJ, A. I., AND DINDA , P. A. Towards virtual
networks for virtual machine grid computing. InProceed-
ings of the Third Conference on Virtual Machine Research
And Technology Symposium (VM’04)(2004), USENIX
Association.

[20] VM WARE INFRASTRUCTURE. http://www.
vmware.com/.

[21] VTUN: V IRTUAL TUNNELS OVERTCP/IPNETWORKS.
http://vtun.sourceforge.net/.

[22] ZHANG, X., FREEMAN, T., KEAHEY, K., FOSTER, I.,
AND SCHEFTNER, D. Virtual clusters for grid commu-
nities. In Proceedings of the Sixth IEEE International
Symposium on Cluster Computing and the Grid (CC-
GRID2006)(2006), IEEE Computer Society.

10

