
Improving Scalability and FaultImproving Scalability and Fault
Tolerance in an ApplicationTolerance in an Application
Management InfrastructureManagement Infrastructure

Nikolay Topilski , Jeannie Albrecht,
and Amin Vahdat

Williams College & UC San Diego



Large-Scale ComputingLarge-Scale Computing

• Large-scale computing has many advantages
• Increased computing power leads to improved

performance, scalability, and fault tolerance

• Also introduces many new challenges
• Building and managing distributed applications to

leverage full potential of large-scale environments
is difficult



Distributed Application ManagementDistributed Application Management

• Develop-Deploy-Debug cycle
• Develop software
• Deploy on distributed machines
• Debug code when problems arise

• Management challenges in large-scale environments
• Configuring resources
• Detecting and recovering from failures
• Achieving scalability and fault tolerance

• Research goal: Build an application management
infrastructure that addresses these challenges

Develop

Deploy

Debug



Deploying an ApplicationDeploying an Application

• Steps required to deploy an application
1. Connect to each resource
2. Download software

3. Install software
4. Run application
5. Check for errors on each machine
6. When we find an error, we start all over…

• A better alternative: Plush Develop

Deploy

Debug



PlushPlush

• Distributed application management infrastructure
• Designed to simplify management of distributed

applications
• Help software developers cope with the challenges of

large-scale computing
• Support most applications in most environments

• Talk overview
• Give brief overview of Plush architecture
• Discuss scalability and fault tolerance limitations in

original design
• Investigate ways to improve limitations



Plush OverviewPlush Overview
• Plush consists of two main components:

• Controller - runs on user’s Desktop

• Client - runs on distributed resources

• To start application, user provides controller with
application specification and resource directory (XML)

Controller

Client

Client

Client

Client

Client

XML



Plush OverviewPlush Overview
• Controller makes direct TCP connection to

each client process running remotely
• Communication mesh forms star topology

• Controller instructs clients to download and
install software (described in app spec)

Controller

Client

Client

Client

Client

Client

XML



• When all resources have been configured,
controller instructs clients to begin execution

• Clients monitor processes for errors
• Notify controller if failure occurs

Controller

Client

Client

Client

Client

Client

XML

Client

Client

Client

Client

Client

Restart
process.

Client

Process
failed!

Plush OverviewPlush Overview



Plush OverviewPlush Overview

• Once execution completes, controller instructs
clients to “clean up”
• Stop any remaining processes

• Remove log files

• Disconnect TCP connections

Controller

Client

Client

Client

Client

Client

XML

Client

Client

Client

Client

Client



Plush User InterfacesPlush User Interfaces
• Command-line interface used to interact with applications
• Nebula (GUI) allows users to describe, run, & visualize applications
• XML-RPC interface for managing applications programmatically



LimitationsLimitations

• Plush was designed with PlanetLab in mind…
• … in 2004!
• PlanetLab grew from 300 machines to 800+

• Plush now supports execution in a variety of
environments in addition to PlanetLab
• Some have 1000+ resources

• Problems
• Star topology does not scale beyond ~300 resources
• Tree topology scales but is not resilient to failure



InsightsInsights
• We need a resilient overlay tree in place of the star
• Lots of people have already studied overlay tree

building algorithms
• Mace is a framework for building overlays

• Developed at UCSD
• Simplifies development through code reuse

• Solution: Combine Plush with overlay tree provided
by Mace!
• Allow us to explore different tree building protocols
• Leverage existing research in overlay networks without

“reinventing the wheel”
• Improve scalability and fault tolerance of Plush



Introducing PlushMIntroducing PlushM
• We extended the existing communication fabric in

Plush to allow interaction with Mace (⇒ PlushM)
• PlushM still uses same abstractions for application

management as Plush
• We chose RandTree as our initial overlay topology

• Random overlay tree that reconfigures when failure occurs

Controller

Client

XML

Client

Client

Client

Client

Client

Client

Client



Evaluating ScalabilityEvaluating Scalability
• Overlay tree construction time



Evaluating ScalabilityEvaluating Scalability
• Message propagation time



Evaluating Fault ToleranceEvaluating Fault Tolerance
• Reconfiguration time after disconnect (ModelNet)



• Plush provides distributed application management
in a variety of environments
• Original design has scalability/fault tolerance limitations in

large-scale clusters

• PlushM replaces Plush’s communication
infrastructure with Mace overlay to provide better
scalability (1000 resources) and fault tolerance

• Future work
• Evaluate PlushM on larger topologies
• Investigate the user of other Mace overlays in addition to

RandTree
• Explore ways to improve PlushM performance

Conclusions and Future WorkConclusions and Future Work



Thank you!Thank you!

Plush http://plush.cs.williams.edu
Mace http://mace.ucsd.edu

Email
ntopilsk@cs.ucsd.edu

jeannie@cs.williams.edu

vahdat@cs.ucsd.edu


