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Abstract

A Java virtual machine (JVM) must some-
times check whether a value of one type can
be can be treated as a value of another type.
The overhead for such dynamic type checking
can be a signi�cant factor in the running time
of some Java programs. This paper presents
a variety of techniques for performing these
checks, each tailored to a particular restricted
case that commonly arises in Java programs.
By exploiting compile-time information to se-
lect the most applicable technique to imple-
ment each dynamic type check, the run-time
overhead of dynamic type checking can be sig-
ni�cantly reduced.

This paper suggests maintaining three data
structures operationally close to every Java
object. The most important of these is a dis-
play of identi�ers for the superclasses of the
object's class. With this array, most dynamic
type checks can be performed in four instruc-
tions. It also suggests that an equality test of
the run-time type of an array and the declared
type of the variable that contains it can be
an important short-circuit check for object ar-
ray stores. Together these techniques result in
signi�cant performance improvements on some
benchmarks.

1 Introduction

A type check is the determination of whether
a value of one type, hereafter the right-hand

side or RHS type, can legally be assigned to
a variable of a second type, hereafter the left-
hand side or LHS type. If so, the RHS type
is said to be a subtype of (or consistent with)
the LHS type and the LHS type is said to be
a supertype of the RHS type. More informally,
the types are said to match.

Java [9] is a strongly-typed programming
language. Almost all type checking is static:
done �rst by a Java source-to-bytecode com-
piler and then veri�ed by a Java virtual
machine (JVM) when classes are loaded.
However, Java's object oriented type sys-
tem makes provision for some run-time type
checking. Explicitly casting a value of one
type to another (the checkcast bytecode),
or testing whether such a cast would suc-
ceed (instanceof), clearly requires such a
check. So does storing an object in an array
(aastore), dispatching a method through an
interface (invokeinterface), or catching an
exception (athrow).

While dynamic type checking overhead is
unlikely to be the dominant performance char-
acteristic on many Java programs, it is signi�-
cant enough on some that it is important that
care be taken as to how such tests are com-
puted. This paper presents techniques for ex-
ploiting information available at compile time
to generate e�cient code sequences.

The next section presents some back-
ground on Jalape~no. Section 3 investi-
gates the cases (instanceof, checkcast, and
invokeinterface) where the putative type is
known at compile time. Section 4 deals with
the cases (aastore and catch blocks) where
this type cannot be determined until run time.
Section 5 shows that careful implementation of
dynamic type check can result in signi�cant
performance improvements on some bench-
marks. Section 6 reviews other approaches to
fast dynamic type checking. And, section 7
concludes.



2 Jalape~no Background

The work reported here was undertaken
in conjunction with the development of the
Jalape~no JVM [1] at IBM's T. J. Watson
Research Center. Jalape~no is primarily de-
signed for servers.1 It is written in Java, but
(rather than running on top of another JVM)
it runs directly on PowerPC-based multipro-
cessors running the AIX operating system [2].

Jalape~no does not interpret bytecodes.
Rather, bytecodes are compiled into machine
code and executed directly.2 Jalape~no has a
baseline compiler, which produces ine�cient
machine code very quickly, and an optimizing

compiler, which can be used to get e�cient
machine code for selected methods. While the
Jalape~no system can be used in a variety of
con�gurations, this paper focuses on a con�g-
uration in which all methods are initially base-
line compiled, and those observed to be com-
putationally intensive or frequently executed
are recompiled by the optimizing compiler. To
implement dynamic type checking, the base-
line compiler emits code invoking methods
that implement the techniques presented in
the remainder of the paper, while the optimiz-
ing compiler aggressively inlines them.

The next subsection provides a brief
overview of the Jalape~no object model. The
following subsections describe the prior han-
dling of dynamic type checking by the two
compilers. The �nal subsection deals with the
interactions of dynamic class loading and dy-
namic type checking.

2.1 Jalape~no object model

Types in Java come in three 
avors: primi-

tive (e.g. int and float), class (e.g. Object,
Truck, and Serializable), and array (e.g.
int[], Object[][], and Truck[]). Classes
are either proper classes (e.g. Object and
Truck) or interfaces (e.g. Serializable).
Jalape~no represents Java types as objects of
the class VM Type. This class is abstract
with three �nal subclasses: VM Primitive,

1The main implications of being a server JVM are
an obsession with performance, particularly on multi-
processors, and a relative insensitivity to space consid-
erations.

2Hereafter, the term \compilation" will refer to
translation from bytecode to machine code unless the
translation from source code to bytecode is explicitly
indicated.

VM Class, and VM Array. A �eld of the
VM Class class distinguishes proper classes
from interfaces.

Jalape~no also maintains a type information

block (TIB) for each type. A TIB is an Object
array that contains an interface method table

(IMT) and a virtual method table (VMT) for
the type. The �rst slot of the TIB is a ref-
erence to its VM Type object. The work re-
ported in this paper introduces three new slots
in the TIB.

Every object has a header. All object head-
ers contain a reference to the TIB for the ob-
ject's type. (Object headers for arrays con-
tain their length.) Another reference to each
TIB is kept in an array of static values called
the Jalape~no table of contents (JTOC). Dur-
ing execution, a dedicated register holds a
pointer to the base of the JTOC. Figure 1 de-
picts the data structures associated with the
TIB of a prototypical class Truck. The pur-
pose of the (new) second, third, and fourth
slots in the TIB will be discussed in Sec-
tions 3.1, 3.2, and 4 respectively. (Note that
this picture is a simpli�cation of the Jalape~no
object model [1]).

The optimizing compiler's intermediate rep-
resentation includes special-purpose operators
to explictly represent manipulations of the
Jalape~no object model. Thus, its entire suite
of classical optimizations (common subexpres-
sion elimination, loop invariant code motion,
etc.) can easily be applied to operations such
as loading the TIB from an object (or from
the JTOC) or loading the contents of the three
new TIB slots.

2.2 Prior baseline dynamic type check-

ing

Jalape~no's baseline compiler emitted code
to call Java methods to handle each of the dy-
namic type-checking bytecodes. These meth-
ods in turn called a central isAssignableWith
method. This method took two VM Types
and returned true, if a value of the second
could be assigned to a variable of the �rst, and
false, otherwise.

Occasionally, isAssignableWith needed to
load classes dynamically. Class loading up-
dates Jalape~no's global data structures, which
requires holding a global lock. Acquiring the
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Figure 1: A simpli�ed picture showing the structure of the TIB and associated data structures
for the Truck class. Truck's TIB is reachable from the JTOC, from the object header of all
Truck instances, and from the TIB of Truck[].

global lock to do trivial downcasts and object
stores would be costly and would introduce un-
necessary contention. Therefore, two short cir-
cuit tests are performed to avoid acquiring the
lock. The �rst checks if the two types are equal
(and therefore trivially match). If this equal-
ity check fails, a two value cache is consulted
before acquiring the lock. Every VM Type ob-
ject maintains the last RHS type to be found
to be assignable with this LHS type and the
last RHS type to be found not to be assignable
with this LHS type.

2.3 Prior optimizations

The optimizing compiler performs type
analysis [10, 5] and constant propaga-
tion. This enables many instanceof and
checkcast bytecodes to be completely eval-
uated at compile time. For instance,

� If the RHS value is known to be null, then
checkcast succeeds and instanceof

evaluates to false.

� If a checkcast follows on the true branch
of an instanceof test for the same LHS
type, the checkcast can be eliminated.

� Similarly, an instanceof (or checkcast)
following a new of the same LHS type can
be eliminated.

More obscure variations of these idioms are
also handled. Similarly, the dynamic type
check required as part of interface invocation
can often be optimized away. Aggressive inlin-
ing, performed in tandem with these analyses,
uncovers more opportunities to apply these
transformations.

If a dynamic type check cannot be so elim-
inated, the optimizing compiler inlined code
to handle one important special case. If the
LHS type is known at compile-time to be a
�nal class, there can only be a type match if
the RHS type is exactly the same as the LHS
type. In which case, the two types TIBs are
at the same address. Figure 2 shows assembly
code for the sequence used for this test. The
LHS TIB is obtained at a �xed o�set from the
JTOC.3 The RHS TIB is loaded from the ob-
ject header. The two TIB pointers are com-
pared. If they are equal, the types match.
This test takes two independent loads and a
comparison.

In all other cases, the optimizing compiler
emitted code to call the same Java methods
as the baseline compiler. The techniques de-

3A pointer to the LHS TIB cannot easily be stored
as a constant in the compiled code in Jalape~no since a
copying collector might move the TIB between compi-
lation and execution.



L R1,LHSoffset(JTOC) // get TIB address of LHS from JTOC

L R2,TIBoffset(RHS) // get TIB address from RHS Object

CMP R1,R2 // check for equality

Figure 2: Assembly code for type equality test.

scribed in the following sections are now in-
lined by the optimizing compiler to handle
these cases.

2.4 Dynamic class loading

If the LHS type of a checkcast or
instanceof bytecode has not loaded when the
bytecode is compiled, the compiler cannot de-
termine whether the LHS type is a proper class
or an interface. Furthermore, the �rst execu-
tion of the generated code may need to load,
resolve, and initialize this type. To handle
this situation both compilers emit code that
invokes a helper method.

After the �rst call, the overhead of calling
the helper method is super
uous, the type will
have been loaded. It is not expected that su-
per
uous calls to the helper method will be
frequently executed. Any method containing
a frequently executed call site in baseline com-
piler code will be recompiled by the optimizing
compiler. By the time the code is recompiled,
any class that has not yet been loaded is un-
likely to be referenced often in the future.4

Hereafter, it is assumed that the LHS type
has been loaded at compile time.

3 When the LHS type is known

The instanceof, checkcast, and
invokeinterface bytecodes name the
type that the RHS value is supposed to
match. This section examines how this
information can be exploited if the named
class has been fully loaded at compile time.5

The next subsection addresses the case that

4To handle the rare case that a previously unex-
ecuted path becomes the hot path of a method, the
helper method could report its caller to the adaptive
system's controller [3] every time it is called. If a par-
ticular method calls a helper method too often, the
controller could schedule it for re-recompilation.

5The instanceof and invokeinterface bytecodes
fail if the RHS value is null, checkcast succeeds. Often
the compiler can infer the result of this test at compile
time. It is assumed below that the value is known not
to be null.

the LHS type is a proper class. Subsequent
subsections consider interfaces and arrays.

3.1 Proper classes

This section considers by far the most preva-
lent case of dynamic type checking: the LHS
is known to be a proper class that has been
loaded at compile time. To handle this case,
Jalape~no maintains two (short) �elds in each
VM Type: a unique type id and a type depth.
The depth of Object (and of primitive types)
is 0. The depth of arrays is 1. And, the depth
of a class (other than Object) is one more than
the depth of its superclass.

Following Cohen [6], one of the new slots
in a type's TIB is devoted to a display of su-
perclass ids. The ith component of this array
(of shorts) is the id of the superclass of the
type at depth i. The id of Object is the zeroth
component of this array for every proper class.
The class's own id is the depth'th component
of its display.

To answer the dynamic type checking ques-
tion in this case, the RHS TIB is loaded from
the header of the RHS object, the RHS su-
perclass ids display is loaded from the TIB,
the component of this array corresponding to
the depth of LHS is loaded, this value is com-
pared to the id of LHS, the match succeeds if,
and only if, these quantities are equal. Both
the depth and the id of LHS are compile-time
constants.

There is 
aw in the above scenario: what if
the depth of LHS is greater than the depth of
RHS? In this case, the types don't match. But,
to check for it requires an additional (semi-
independent) load and an additional compar-
ison. This is especially annoying since most
classes (particularly those that appear on the
left hand side of a dynamic type checking ques-
tion) have very small depth. Assembly code
with and without this checking is shown in
Figure 3.

To avoid most bounds check, all superclass



Without array bounds checking

L R1,TIBoffset(RHS) // get TIB adddress from RHS Object

L R1,SuperclassIDs(R1) // get superclass ids display

L R1,LHSdepth*2(R1) // get ID from display

CMPI R1,LHSid // compare ids

With array bounds checking

L R1,TIBoffset(RHS) // get TIB adddress from RHS Object

L R1,SuperclassIDs(R1) // get superclass ids display

L R2,LengthOffset(R1) // get array length

CMPI R2,LHSdepth // is the array large enough?

BGE NOMATCH // if not, the types don't match

L R1,LHSdepth*2(R1) // get ID from display

CMPI R1,LHSid // compare ids

Figure 3: Assembly code for subclass test.

ids arrays are padded out to some minimum
length6 (currently six).7 For any test with
LHS depth less than this length, the bounds
check can be (and is) omitted. Thus, the bulk
of dynamic type checks can be performed in
four instructions: three (dependent) loads and
a comparison. It is so fast that it does not
pay to perform a short-circuit test for the case
when LHS and RHS are equal (see Figure 2).

3.2 Interfaces

Closely related to the normal case, but much
less prevalent, is the case that the LHS type
is an interface.8 This case occurs for the
invokeinterface bytecode [12], and for the
instanceof and checkcast bytecodes if the
LHS type happens to be an interface.

To handle interfaces, a slot in the TIB is de-

6Alternatively one could allocate a �xed number
of short slots in the TIB to hold the �rst k entries
of the superclass ids display. This has the additional
bene�t of eliminating a load from the common case
test sequence. We chose not to do this in Jalape~no
because storing non-reference values in a TIB (which
is declared as an Object[]) would require special-case
extensions to Jalape~no's garbage collectors.

798% of all the proper classes in our benchmarkpro-
grams (Table 1), the libraries they use, and Jalape~no
itself were covered by using a minimum length of 6. A
minimum length to 4 would have covered 92% of them,
and a minimum length of 2, 54%.

8The number of interfaces is much smaller than the
number of proper classes. Most proper classes don't
implement any interfaces and many of those that nom-
inally do implement interfaces are, in fact, never used
as instances of interfaces. For all these reasons, byte-
codes that name interfaces are executed far less often
than those that name proper classes.

voted to an array indexed by interface id. The
value at an entry in this array tells whether the
class implements this interface. Since the re-
sult of the question cannot in general be deter-
mined before it is asked for the �rst time,9 the
entries in this array have three possible values:
YES, NO, and MAYBE. Whenever a MAYBE
value is encountered the proper answer is com-
puted and stored into the array. The values of
this implements trits array is currently stored
as a byte.10

Assembly code for this case is shown in Fig-
ure 4. In the usual (non-MAYBE) case, the
answer may be computed with three depen-
dent load instructions. An additional compar-
ison and usually-untaken conditional branch
are needed to account for the MAYBE case.
As with the superclass ids display, the need
for an array bounds check can be eliminated
by padding all implement trits array to a
minimum size. However, unlike with proper
classes, entries in this fast portion are a scarce
resource.11 When a bounds check is needed, it

9Java interfaces are not leaded with the class that
implements them. Furthermore, either a class or an in-
terface may have changed since the source-to-bytecode
compiler established that the class implemented the in-
terface.

10If space were a more important consideration, each
trit could be encoded in two bits. This would require
an additional rotate and mask to unpack its value.

11In the current implementation, interface entries
are assigned in a �rst-come, �rst-served fashion (al-
though we ensure that a few commonly used interfaces
such as java.util.Enumeration receive a fast entry).
In the future, online pro�le data may be used to de-
termine which interfaces should be assigned to the fast
portion of the implements trits array.



Without array bounds checking

L R1,TIBoffset(RHS) // get TIB adddress from RHS Object

L R1,ImplementsTrits(R1) // get array of trits from TIB

L R1,LHSInterfaceId(R2) // get trit for this interface

CMPI R1,1 // 1 => yes (class implements intrface)

BLT NO // 0 => no

BGT MAYBE // >1 => maybe (further checking required)

With array bounds checking

L R1,TIBoffset(RHS) // get TIB adddress from RHS Object

L R1,ImplementsTrits(R1) // get array of trits from TIB

L R2,LengthOffset(R1) // get length of trits array

CMPI R2,LHSInterfaceId // can trits array contain this interface?

BLE MAYBE // trits array too small => maybe

L R1,LHSInterfaceId(R2) // get trit for this interface

CMPI R1,1 // 1 => yes (class implements intrface)

BLT NO // 0 => no

BGT MAYBE // >1 => maybe (further checking required)

Figure 4: Assembly code for implements interface test.

requires an additional semi-dependent load of
the array length, a comparison, and a usually-
untaken conditional branch. If the bounds
check fails, the implements trits array is ex-
tended and �lled in with MAYBEs.

The need to handle the MAYBE case allows
for a cute space savings. Most classes never
end up of the right hand side of a dynamic
type checking question with an interface on the
left hand side.12 We want to avoid allocating
a big implements trits array for these classes
since it will never be used. (Of course, one
cannot tell which classes these are ahead of
time.) Therefore all TIBs are initialized with
their implements trits slots pointing to a single
shared trits array �lled with MAYBEs. The
routine that handles the MAYBE case checks
to see if an object's TIB still points to this
shared array and if necessary allocates a new
non-shared array before changing the MAYBE
to a YES or NO.

A further space savings might be realized
by exploiting the observation that equivalence
classes of classes could share the same imple-
ments trits. All members of an equivalence
class derive from the same root class and none

12Instances of only 21% of all types in our bench-
mark programs (Table 1), the libraries they use, and
Jalape~no itself actually appeared as the RHS of a dy-
namic type checking question when an interface was
the LHS.

of them except the root implement any new
interfaces.

3.3 Arrays

The �nal case where LHS type is known is
when it is an array. This case has three dis-
tinct subcases depending on whether the in-
nermost element type is a primitive type (or
a �nal class), the Object class, or some other
non-�nal class type.

To support type-checking of arrays, each
type is assigned a dimension (stored in a short
�eld of VM Type): primitive types, -1; class
types, 0; and arrays, the number of left brack-
ets (\[") in their descriptors. In e�ect, the
dimension of an array is the number of times
it can be subscripted.

For an object to be assignable into a vari-
able that is an array whose innermost element
type is primitive, or is a �nal proper class,
the object's class must be identical to that of
the variable: it must be an array of the same
dimension with the same innermost element
type. In this case, the type equality (�gure 2)
test serves as the dynamic type check.

This type equality test can be performed for
the remaining cases as well. If it succeeds, the
types match. Otherwise, further tests are re-
quired. If the innermost class of the LHS is a
class other than Object, then the RHS must



have the same dimension, and its innermost
type must be assignable with that of the LHS.
If the innermost class of the LHS is Object,
any array of the same dimension whose inner-
most type is not a primitive type is assignable
with it. Furthermore, any array with greater
dimension is assignable with it, since any array
can be assigned to a variable of type Object.

4 When the LHS type is unknown

This section considers two cases where the
LHS type of the dynamic type checking ques-
tion cannot be determined at compile time.
These cases arise when an exception is thrown
and when an object is stored in an array.

When an exception (or any other
Throwable) is thrown, Jalape~no walks
up the thread's call stack examining stack
frames. In each frame, it determines the
call site, �nds any try blocks that contain
it, and checks to see if the exception (the
RHS) type matches the type declared for an
associated catch clause (the LHS type). This
is a constrained instance of the dynamic type
checking question. Both types must be proper
subclasses of Throwable. The depth and id
of the LHS type are obtained from its type
object (stored in an object associated with
the compiled method). There is a match if,
and only if, the entry in the RHS's superclass
ids display at the LHS's depth equals the
LHS's id.13

When an object is stored in an array, a check
is performed to make sure that the type of the
object is compatible with the element type of
the array. It may not be immediately obvious
why such a dynamic type check is necessary.
After all, Java's source to bytecode compiler
(and, at class-load time, the JVM's veri�er)
guarantee that the type of the object is com-
patible with the element type of the declared
array. The problem is that this declared el-
ement type may be less restrictive than the
runtime element type.

Consider Figure 5. Variable x is declared
to be an array of Object and variable y

is declared to be a Petunia. At compile

13This scheme works even if the LHS type has not
been loaded. The depth of such a type appears to be
zero (because it has not yet been computed), but the
type already has a unique id. Since this id is not the
id of Object (slot 0 of the RHS's display) the match
fails as it should.

Object [] x = makeObjectArray();

Petunia y = makePetunia();

x[0] = y;

Figure 5: Object array stores require checking.

time (and classload time), the assignment
x[0] = y; looks �ne because Petunia is a
subclass of Object. However, suppose that
makeObjectArray returns an array of Truck.
Unless Petunia is a subclass of Truck (or y is
null), the assignment is illegal. This can only
be determined at runtime.

This is unfortunate. In the �rst place, in
almost any Java program, although object ar-
ray stores may be fairly frequent, they fail ex-
tremely rarely, if at all. Furthermore, in a typ-
ical Java program, almost all of such stores are
perfectly innocuous: either the type of the ob-
ject being assigned is the element type of the
array being assigned into, or the runtime type
of the array is the same as the declared type
of the variable that holds it. To make the for-
mer case easy to check, a slot in the TIB is
devoted to the element type TIB. (This entry
is null in TIBs for non-array types.) To make
the short-circuit test the TIBs of both the LHS
and the RHS are loaded. Then the LHS's el-
ement type TIB is loaded. If this is equal to
the RHS's TIB, the match succeeds.

The latter case is even easier, if the declared
type of the variable containing the array is
available at compile-time. The TIB for the
LHS's declared type is loaded at a �xed o�set
from the JTOC. If this is equal to the LHS's
runtime TIB, the match succeeds. This short-
circuit test is especially nice in that it is obliv-
ious to the type of the RHS value. Thus, the
test can be hoisted out of a loop in which some
or all of the entries of an array are assigned
values.

There are two ways the declared type of an
array could inadvertently get estranged from
the bytecode. If the array is stored in a pure
local variable (as opposed to a parameter or a
�eld), Java's source-to-bytecode compiler has
thrown away the declared type (that it must
be a subtype of Object[] can be inferred).
More prosaically, an array of a particular class
could get upcast to an array of a more gen-
eral type (usually Object) as a side-e�ect of



being passed to some generic service method.
A prime example is the arraycopy method
of java.lang.System. Sometimes, such situa-
tions can be ameliorated by inlining the of-
fending service method. Notice, that even if
the information about the declared type of the
LHS has been lost, this test degenerates into
a short-circuit test for the runtime LHS type
being Object[], an important subtest in its
own right.

In the cases that these two short-circuit
tests fail, the most prevalent situation is that
the LHS array is an array of some proper class
(rather than an array of an interface or an ar-
ray of arrays). A type match can be detected
fairly quickly. The LHS element type is loaded
from its TIB (available from the failed short-
circuit tests). The depth and id �elds can be
loaded from this type. If the depth'th entry
in the RHS's superclass ids display is the el-
ement type id, the types match. Otherwise,
either the types don't match, or the LHS is an
array of interfaces or an array of arrays. These
�nal cases so rare that they can be safely be
handled by a helper method without measur-
able impact on performance.

5 Performance

Jalape~no can be deployed in a multitude
of variations. Key discriminates include: the
garbage collector (copying or not, generational
or not), the compiler (baseline or optimizing,
level of optimization) to be used on methods
of classes included in Jalape~no's boot image,
the compiler to be used on methods of classes
loaded dynamically, whether such methods
should be compiled immediately when their
class is loaded, and whether, under what cir-
cumstances, and how methods should be re-
compiled.

For our experiments, we used a con�gura-
tion that currently obtains the best Jalape~no
performance on the SPECjvm98 benchmarks.
It uses a copying, non-generational garbage
collector. The optimizing compiler (at opti-
mization level 2) is used to statically compile
all methods in the boot image. The �rst time
a dynamically loaded method is invoked, it is
compiled using the baseline compiler. Meth-
ods observed via online pro�ling to be com-
putationally intensive or frequently called are
selected for recompilation with the optimizing

compiler by Jalape~no's adaptive optimization
system [3].

The performance impact of the changes to
dynamic type checking were evaluated us-
ing the SPECjvm98 [7] benchmarks and the
Jalape~no optimizing compiler [4]. (Table 1
provides a description of each benchmark, the
number of classes that comprise the bench-
mark, and the size, in bytes, of its class �les.)
The best elapsed time from 10 runs during a

single JVM execution of each benchmark is re-
ported. The size 100 (large) inputs were used
for the SPECjvm98 benchmarks. The time
for the optimizing compiler to compile itself
(roughly 80,000 lines of Java source code) is
shown as the opt-compiler benchmark. Re-
sults were obtained on an IBM 43P Model
140 with one 333MHz PPC604e processor and
512MB of main memory running AIX v4.3.

Not surprisingly, the new dynamic type
checking implementation only improves the
execution times of those benchmarks that
perform signi�cant amounts of dynamic type
checking: opt-compiler, javac, and jess.
Interestingly, these are also the three largest
(and arguably the most object-oriented) pro-
grams in our benchmark suite. Overall, the
largest improvement comes from e�cient dy-
namic type checking for proper classes, al-
though array store checks and interfaces are
also factors on some benchmarks.

6 Related work

We are unaware of other work that attempts
to exploit the particularities of Java's type
system to expedite dynamic type checking.
Krall et.al. [11] review, and supercede, earlier
work on dynamic type checking in a general
multiple-inheritance environment.

Oberon [14] is an object oriented language
with a simple inheritance model based on type
extensions [13]. Cohen [6] presents a display-
based technique for constant-time dynamic
type checking in this setting. This work did
not pad displays to avoid the array bounds
checks. P�ster, et. al. [8] pad displays (to
eight elements) but restricts the maximum
depth of inheritance. Jalape~no does not have
such a maximum, rather it uses a minimum
display size (6) to eliminate the bounds check
in almost all cases.



Number Class File Size
Benchmarks Description of Classes (in bytes)

compress Lempel-Ziv compression algorithm 12 17,821
jess Java expert shell system 150 396,536

db Simple memory resident database 3 10,156
javac JDK 1.0.2 Java compiler 175 561,463
mpegaudio Decompression of audio �les 54 120,182

mtrt Two-thread ray-tracing algorithm 25 57,859
jack Java parser generator 55 130,889
opt-compiler Jalape~no optimizing compiler 393 1,378,292

Table 1: The benchmark suite. The �rst seven rows are the SPECjvm98 benchmarks.

Benchmarks Prior New Only Only Only Only
DTC DTC Classes Interfaces Arrays AAStore

compress 41.16 40.95 (1.01) 41.17 (1.00) 41.82 (0.98) 41.60 (0.99) 42.51 (0.97)

jess 24.66 23.09 (1.07) 24.63 (1.00) 23.35 (1.06) 24.53 (1.01) 24.58 (1.00)
db 66.66 63.66 (1.05) 67.13 (1.00) 66.70 (1.00) 67.97 (0.98) 63.79 (1.04)
javac 42.63 35.33 (1.21) 38.80 (1.10) 41.81 (1.02) 42.91 (1.00) 42.17 (1.01)

mpegaudio 22.55 22.24 (1.01) 22.00 (1.03) 23.33 (0.97) 23.89 (0.94) 22.57 (1.00)
mtrt 19.42 19.12 (1.02) 19.66 (0.99) 19.04 (1.02) 18.81 (1.03) 19.20 (1.01)
jack 35.82 35.43 (1.01) 36.66 (0.98) 35.66 (1.00) 35.88 (1.00) 37.12 (0.96)

opt-compiler 146.29 95.76 (1.53) 119.47 (1.22) 153.14 (0.96) 148.37 (0.99) 124.42 (1.18)

Table 2: Execution times in seconds. The second column gives the execution times using
Jalape~no's prior implementation of dynamic type checking. The third column shows the total
impact of the new dynamic type checking implementation. The last four columns show the
performance obtained by selectively enabling the new dynamic type checking implementations
only for proper classes, interfaces, arrays, and array store checks. The number in parenthesis
is the speed relative to the Prior DTC con�guration.

If a program's type hierarchy were available
when the JVM started executing, type check-
ing information could be encoded as a two-
dimensional typecheck array, the i,j-th entry
being on if, and only if, the i-th type were a
subtype of the j-th. It would be convenient to
keep a row of this array in a slot in i's TIB.
Where the LHS type of a type check is known
at compile time, the tests would require three
dependent loads, a rotate and mask (to un-
pack the j-th bit), and a comparison. Object
array store checks would require one or two ex-
tra loads to obtain j's index from its VM Type
object. A major drawback to this approach is
that the size of the type check array is N2 in
the number of types.

The typecheck array is mostly sparse. A sig-
ni�cant compression arises as a by product of a
di�erent type check procedure. Krall et.al. [11]
propose associating with each type a small set

of integers such that RHS is a subtype of LHS
if, and only if, the set associated with LHS is
a subset of the set associated with RHS. They
consider various methods of constructing such
sets. The two-dimensional array of answers to
these subset questions encodes the type-check
array at an impressive space savings.

An obvious drawback to both these schemes
is that a Java program's type hierarchy is not
available a priori. Thus, a three-valued ar-
ray element (as with the implements trits ar-
ray used above for interfaces) seems to be re-
quired. And, as even the number of types
is not known in advanced, an array bounds
check may also be needed with every type
check. Krall et.al. give an incremental algo-
rithm for computing their type sets, but only
if the sets for a type's immediate parents are
known when the type is loaded. Because the
interfaces a class implements are not loaded



with it, this condition does not hold for Java.

7 Conclusions

Dynamic type checking can contribute a sig-
ni�cant component to the overall runtime of a
Java program. It is, therefore, important that
the most common instances of such tests be
executed as e�ciently as possible when they
are executed frequently. This paper presents
techniques for exploiting the peculiarities of
the Java language, and its type system in par-
ticular, to perform these tests e�ciently.

It suggests maintaining three data struc-
tures within easy striking distance of an ob-
ject.

The �rst, and most important, of these is
a display of the ids of the superclasses of a
type. In most cases where the prospective
supertype is known at compile time, this al-
lows a dynamic type check to be performed
in four instructions. (Padding this array out
to a known minimum size eliminates most ar-
ray bounds checks.) This array is also useful
when the prospective supertype is not known
at compile time (e.g. the aastore bytecode).

The second is an array that tells whether
the object's class implements a particular in-
terface. Since this question cannot be de�ni-
tively answered before the �rst time it is asked,
entries in the array must be three valued.
Dynamic type checking questions where the
prospective supertype is an interface type are
answered e�ciently using this array.

The third data structure is only used to
determine whether it is legitimate to store a
particular object in a particular array. It al-
lows quick access to information about the el-
ement type of an array from the array object.
Jalape~no uses the TIB of the element type, but
the class object of the element type could be
used instead.

The paper also suggests that testing for the
equality of a runtime array with the declared
type of the variable that contains it (where
possible) is an important short-circuit test for
object array stores.

The resultant dynamic type checking sys-
tem is much more space e�cient than those
based on two-dimensional typecheck arrays, is
more friendly to dynamic class loading (and

more space e�cient) than those based on com-
pressed typecheck arrays, and, on some bench-
marks, performs signi�cantly better than the
earlier Jalape~no system.
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