
THE MAGAZINE OF USENIX & SAGE
August 2001 • Volume 26 • Number 5

inside:
CONFERENCE REPORTS

1st JavaTM VM

The Advanced Computing Systems Association &

The System Administrators Guild

&

Special Focus
Issue:Clustering
Guest Editor: Joseph L. Kaiser

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SFirst Java™ Virtual Machine
Research and Technology
Symposium
(JVM ’01)
MONTEREY, CALIFORNIA
APRIL 23-24 2001
KEYNOTE: VIRTUAL MACHINES, REAL TIME

Greg Bollella, Sun Microsystems; David
Hardin, aJile Systems

Summarized by V.N. Venkatakrishnan

The invited talk of the conference was the
presentation on real-time virtual
machines. Greg Bollella introduced the
topic by presenting the scenario in
embedded systems today. The presence of
networking everywhere and the demand
for building large, complex systems are
two of the reasons for the inevitability of
increasing software complexity. In this
scenario, the two paradigms of system

development – the one for business, per-
sonal, and Web computing and the other
for device, scientific, and industrial com-
puting – are moving toward a collision in
this era of computing. Greg pointed out
function migration from large devices to
the hand held is the emerging trend. The
real-time factor in hand-held devices is
important because customers are used to
system response in real time (e.g., a
phone). Greg then presented a case
example of JPL’s mission data system and
explained the role of real-time software
in such an example.

Having motivated the listeners on the
subject, Greg explained the technical

aspects of a real-time system, using a
car’s electrical components as an exam-
ple. He clarified the popular myth that a
real-time system is not a fast system, but
a system which includes time as an inte-
gral part of its computation.

There are several reasons why the Java
language is an ideal choice for imple-
menting such systems. As an advanced
OO language, Java has a large set of
libraries, a common set of APIs, an auto-
matic memory management, and belongs
to all the layers in software abstraction. A
real-time JVM would thus support build-
ing various embedded system software,
not just applications. But there are
numerous barriers to achieving this:
application-level unpredictability, hard-
ware latencies, x86 context switch laten-
cies, and inherent unpredictability due to
various functions in the JVM such as
scheduling and garbage collection.

In David Hardin’s presentation, the
approach taken by aJile is to implement
JVM directly with simple, low-cost, low-
power hardware. JVM bytecodes are
native instructions and this supports
real-time threads in hardware using Java
thread primitives as instructions. This
enables the entire system to be written in
Java, with no C code or assembly
required. Such an implementation has
provided the fastest real-time Java
performance.

Greg continued the discussion with the
Java real-time specification, emphasizing
such issues as scheduling, memory man-
agement, concurrency, and physical
memory access. The implementation of
JSR was scheduled for presentation to the
expert group by April 30, and final
release of the specification is in progress.
The discussion culminated with a spec-
tacular demo-presentation of piano play-
ing robot hands controlled by two
different real-time virtual machines.

After attending the talk, one was con-
vinced that despite the various problems
posed by hardware, OS, and JVM, real-

time applications can be successfully
built using Java.

Further information on this project can
be obtained by contacting Greg at
greg.bollella@east.sun.com.

SESSION: CODE GENERATORS

Summarized by V.N. Venkatakrishnan

THE JAVA HOTSPOT SERVER COMPILER

Michael Paleczny, Christopher Vick, and
Cliff Click, Sun Microsystems

How can the performance of JVM
improve through optimization of fre-
quently executed application code?
Michael Paleczny’s talk addressed this
research question through the presenta-
tion of the Java HotSpot Virtual
Machine. The client version provides
very fast compilation times and a small
footprint with modest levels of optimiza-
tion. The server version applies more
aggressive optimizations to achieve
improved asymptotic performance.
These optimizations include class-hierar-
chy-aware inlining, fast-path/slow-path
idioms, global value-numbering, opti-
mistic constant propagation, optimal
instruction selection, graph-coloring reg-
ister allocation, and peephole optimiza-
tion.

Michael described the runtime environ-
ment that both the compiler and gener-
ated code execute within, followed by the
structure of the server compiler. Then he
described some of the phases of compila-
tion, discussing solutions for specific lan-
guage and runtime issues. Finally, he
outlined the directions for future work
on the compiler which include range
checks, loop unrolling, instruction sched-
uling, and a new inline policy.

Further information about this work can
be obtained from michael.paleczny@
eng.sun.com

CAN A SHAPE ANALYSIS WORK AT RUNTIME?

Jeff Bogda, Ambuj Singh, UC Santa Bar-
bara

13August 2001 ;login: JVM ’01 ●

l to r: Saul Wold, David Hardin,
Greg Bollella

A shape analysis is a program analysis
that can identify runtime objects that do
not need to be placed in the global heap
and do not require any locking. It has
been shown through previous research
that these two optimizations speed up
some applications significantly. Since the
shape analysis requires a complete call
graph, it has not been implemented in
the JVM.

After illustrating the purpose and some
history of shape analysis, Jeff Bogda’s talk
went on with the description of his
approach to build an incremental shape
analysis to analyze an executing program.
The analysis is done through an experi-
mental framework to which the execut-
ing application is instrumented so that
the analysis is performed at key points in
the program execution. Jeff then
described three approaches to perform-
ing shape analysis: immediate propaga-
tion, where the analysis is done before
the method execution; delayed propaga-
tion, which delays the analysis untill an
appropriate time; persistent propagation,
which utilizes results from previous exe-
cutions.

Jeff discussed the various trade-offs in
these approaches. The experiments sug-
gest a strategy which consults the results
of the previous executions and delays the
initial analysis untill the end of the first
execution.

For more information on this work, the
reader may visit www.cs.ucsb.edu/~bogda
or contact Jeff at bogda@cs.ucsb.edu.

SABLEVM: A RESEARCH FRAMEWORK FOR

THE EFFICIENT EXECUTION OF JAVA BYTECODE

Étienne M. Gagnon, Laurie J. Hendren,
McGill University

SableVM is an open-source virtual
machine for Java intended as a research
framework for efficient execution of Java
bytecode. The framework is essentially
composed of an extensible bytecode
interpreter using state-of-the-art and
innovative techniques. Written in the C
programming language and assuming
minimal system dependencies, the inter-
preter emphasizes high-level techniques
to support efficient execution.

Sable VM introduces several innovative
ideas: a bidirectional layout for object
instances that groups reference fields
sequentially; this allows efficient garbage
collection. It also introduces a sparse
interface virtual table layout that reduces
the cost of interface method calls to
that of normal virtual calls. Another
important feature is the inclusion of a
technique to improve thin locks by elimi-
nating busy-wait in the presence of con-
tention. In his talk, Gagnon presented
SPEC benchmarks that demonstrated the
efficiency of this research framework.

This paper won the best student paper
award at the conference. Further details
on this work can be obtained from the
author (egagnon@j-meg.com) and at the
Web site (http://www.sablevm.org/).

SESSION: JVM INTEGRITY

Summarized by V.N. Venkatakrishnan

DYNAMIC TYPE CHECKING IN JALAPEÑO

Bowen Alpern, Anthony Cocchi, and
David Grove, IBM T.J. Watson Research
Center

Jalapeño is a JVM for servers. In any
JVM, one must sometimes check whether
a value of one type can be can be treated
as a value of another type. The overhead
for such dynamic type checking can be a
significant factor in the running time of
some Java programs. Bowen Alpern’s talk
presented a variety of techniques for per-

forming these checks, each of these tai-
lored to a particular restricted case that
commonly arises in Java programs. By
exploiting compile-time information to
select the most applicable technique to
implement each dynamic type check, the
run-time overhead of dynamic type
checking can be significantly reduced.

Bowen introduced the topic by going
over the Java type system and the basic
types. He then presented the main con-
tributions of this research. This work
suggests maintaining three data struc-
tures operationally close to every Java
object. The most important of these is a
display of superclass identifiers of the
object’s class. With this array, most
dynamic type checks can be performed
in four instructions. It also suggests that
an equality test of the runtime type of an
array and the declared type of the vari-
able that contains it can be an important
short-circuit check for object array
stores. Together, these techniques result
in significant performance improvements
on some benchmarks.

This code that implements these tech-
niques is not available in the public
domain. The system is available for aca-
demic purposes; one may contact the
author at alpern@watson.ibm.com. More
information about the project is available
at http://www.research.ibm.com/jalapeno.

PROOF LINKING: DISTRIBUTED VERIFICATION

OF JAVA CLASSFILES IN THE PRESENCE OF

MULTIPLE CLASS LOADERS

Philip W.L. Fong, Robert D. Cameron,
Simon Fraser University

Computations involving bytecode verifi-
cation can be expensive. To offload this
burden within Java Virtual Machines
(JVM), distributed verification systems
may be created. This can be done using
any one of a number of verification pro-
tocols, based on such techniques as
proof-carrying code and signed verifica-
tion by trusted authorities. Fong’s
research advocates the adoption of a pre-
viously proposed mobile code verifica-

14 Vol. 26, No. 5 ;login:

Saul Wold presenting Best Student Paper
Award to Étienne Gagnon

http://www.sablevm.org/
http://www.research.ibm.com/jalapeno

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Stion architecture, proof linking, as a stan-
dard infrastructure for performing dis-
tributed verification in the JVM. Proof
linking supports various distributed veri-
fication protocols. Fong also presented an
extension of this work to handle multiple
class loaders.

Further details on this work can be
obtained from the author at
pwfong@cs.sfu.ca.

JVM SUSCEPTIBILITY TO MEMORY ERRORS

Deqing Chen, University of Rochester;
Alan Messer, Philippe Bernadat, and
Guangrui Fu, HP Labs; Zoran Dimitrije-
vic, University of California, Santa Bar-
bara; David Jeun Fung Lie, Stanford
University; Durga Mannaru, Georgia
Institute of Technology; Alma Riska,
William and Mary College; and Dejan
Milojicic, HP Labs

Deqing Chen presented a series of exper-
iments to investigate memory error sus-
ceptibility using a JVM and four Java
benchmark applications. Chen’s work
was woven around the fact that except for
very high-end systems, little attention is
being paid to high availability. This is
particularly true for transient memory
errors, which typically cause the entire
system to fail. To bring systems closer to
mainframe class availability, addressing
memory errors at all levels of the system
is important.

The experiments were done using the
technique of fault injection. To increase
detection of silent data corruption, JVM
data structure checksums were exam-
ined. The results that were presented
indicated that the JVM’s heap area has a
higher memory error susceptibility than
its static data area and that up to 39% of
all memory errors in the JVM and appli-
cation could be detected. Such tech-
niques will allow commodity systems to
be made much more robust and less
prone to transient errors.

For further information on this work, the
author can be contacted by email at
lukechen@cs.rochester.edu.

WORK-IN-PROGRESS REPORTS

Summarized by Chiasen (Charles)
Chung

IMPLEMENTING JNI IN JAVA FOR JALAPEÑO

Ton Ngo, Steve Smith, IBM T.J. Watson
Research Center

This talk addressed the advantages and
implication of JNI implementation in
Jalapeño, which is a JVM written in Java
developed at the IBM T.J. Watson
Research Center.

In order for the JNI functions to reuse
the same internal reflection interface in
Jalapeño, it is written in Java rather than
in C as might be expected. This approach
has two benefits: 1) changes in Jalapeño
are transparent to the JNI implementa-
tion; 2) despite being a native interface,
the JNI functions are portable to any
platform where Jalapeño is installed.

When a native method is invoked in
Jalapeño, a special static method is called
to resolve the native method with the
corresponding native procedure. JVM
then generates the prologue and epilogue
to establish the transition frames from
Java to C code. The code entry from C to
Java is through JNI functions defined in
the specification. In Jalapeño, these are
methods collected in a special Java class,
and they are compiled dynamically, with
special prologue and epilogue to handle
the transition.

To resolve references in Jalapeño JNI,
each Java object to be passed to a native
code will be assigned an ID and then
stored in a side stack. The native code
accesses these objects based on their IDs.
In a garbage collection cycle, Jalapeño
JNI checks for live references in the
native stack frames against the side stack.

The implementation of JNI on the Pow-
erPC/AIX platform has been completed,
while the Intel/Linux platform is still
under development. The group is cur-
rently researching threading for long exe-
cutions of native methods and issues
concerning interaction between Java and

native programs. More information can
obtained at http://www.research.ibm.
com/jalapeno.

JAREC: RECORD/REPLAY FOR

MULTI-THREADED JAVA PROGRAMS

Mark Christiaens, Stijn Fonck, Dries
Naudts, Michiel Ronsse, Koen De
Bosschere, Ghent University

Debugging multi-threaded programs is
difficult because thread races are hard to
reenact, thus introducing non-determin-
ism into the debugging. To solve this
problem, Mark Christiaens suggested a
two-phase “record/replay” technique.

JaRec is a program that records and
replays the interaction sequence between
threads in Java programs using two
(enter and exit) monitors. Every thread
has a Lamport clock which is incre-
mented when the thread leaves or enters
a monitor. During the record phase, a
trace for the interaction between the
threads based on this clock value is gen-
erated.

These Lamport clock values are recorded
in the trace file as a timestamp. By forc-
ing the order in which threads enter the
monitors base on this timestamp, the
thread execution and interaction
sequence can be reproduced exactly. Syn-
chronization is forced by waiting for a
thread to report.

Both the record and replay phase in JaRec
are implemented using the Java Virtual
Machine Profiler Interface. The record
phase is near completion and the group
is currently implementing the replay
phase of the system.

KAFFEMIK – A DISTRIBUTED JVM FEATURING

A SINGLE ADDRESS SPACE

Johan Andersson, Trinity College

Kaffemik is a scalable distributed JVM
based on Kaffe VM. It is designed to run
large-scale Java server applications by
using clustered workstations. The goal of
this project is to investigate scalability
issues in a distributed JVM and to

15August 2001 ;login: JVM ’01 ●

http://www.research.ibm

improve performance in large-scale Java
applications.

Kaffemik is designed as a single JVM
abstraction over the cluster by imple-
menting a single address space architec-
ture across all the nodes based on the
global memory management protocol.
On top of the common local thread
operations, Kaffemik supports internode
synchronization and remote-node thread
creation.

Preliminary benchmark results show that
Kaffemik starts local threads significantly
faster than remote threads, but is much
slower starting local threads compared to
Kaffe. Remote threads are even more
expensive due to the overhead induced
by page-faults.

The current Kaffemik prototype shows
that it is costly to implement distributed
applications over high-speed clusters on
single address space architectures. The
next step in the project is to implement a
two-level (global and local) memory
allocator. A garbage collector for the
global memory is also needed, but it is
not addressed in this paper.

A JAVA COMPILER FOR MANY MEMORY

MODELS

Sam Midkiff, IBM T.J. Watson Research
Center

The Java memory model is heavily cou-
pled into the programming language.In
hopes of overcoming its various flaws, a
new memory model has been proposed.
Instead of fixing the memory model, this
talk focused on defining the memory
model as part of a property of the code
being compiled.

Sam Midkiff proposes a Java compiler
that accepts a “.class” file annotated with
a memory-model specification. The
compiler first represents the program
using the Concurrent Static Single
Assignment (CSSA) form. Escape analy-
sis is applied to determine the order in
which variables should be accessed
according to the memory model. Next,

the program represented in the CSSA
graph is optimized. Finally, the compiler
produces an executable that maps the
program onto the underlying hardware
consistency model.

This work explores the development that
supports programmable memory mod-
els. Relative efficiency of different mem-
ory models running on a common
hardware can be investigated. More
information can be obtained from
http://www.research.ibm.com/people/m/midkiff/.

STATE CAPTURE AND RESOURCE CONTROL

FOR JAVA: THE DESIGN AND IMPLEMENTATION

OF THE AROMA VIRTUAL MACHINE

Niranjan Suri, University of West Florida

Aroma VM is a research VM designed to
address some of the limitations of cur-
rent Java VMs. The capabilities for
Aroma were motivated by the needs to
mobilize agent systems and distributed
systems.

Aroma provides two key capabilities: the
ability to capture the execution state (of
either the complete VM or individual
threads) and the ability to control the
resources used by Java programs running
within the VM. The state capture capabil-
ities are useful for load-balancing and
survivable systems. The resource-control
capabilities are useful for protecting
against denial of service attacks, account-
ing for resource usage, and as a founda-
tion for quality of service. Aroma
currently provides both rate and quantity
controls for CPU, disk, and network
resources.

There is no Just-in-Time compiler for
Aroma currently, but there are plans to
integrate freely available JIT compilers
(such as OpenJIT) in the future. More
information on Aroma VM can be
obtained from
http://nomads.coginst.uwf.edu/.

OPENJIT2: THE DESIGN AND IMPLEMENTA-
TION OF APPLICATION FRAMEWORK FOR JIT
COMPILERS

Fuyuhiko Maruyama, Satoshi Matsuoka,
Hirotaka Ogawa, Naoya Maruyama,

Tokyo Institute of Technology; Kouya
Shimura, Fujitsu Laboratories

OpenJIT2 is a JIT compiler for Java writ-
ten in Java that is based on “open compil-
ers” construction technique. It not only
serves as a JIT compiler but also as an
application framework for JIT compilers.
This framework allows multiple coexist-
ing JITs to compile different parts of a
program.

In the OpenJIT system, each instantiated
compiler is a set of Java objects that com-
piles at least one method. The selection
of methods to be compiled is determined
through an interface that is based on
method attributes. If the attribute does
not specify a particular compiler (a set of
compilet objects) to be used, the default
baseline compiler will be selected.

Both baseline compiler and compilets are
constructed using the OpenJIT2 frame-
work and class library. Without the limi-
tations of OpenJIT1’s relatively simple
internal structure, OpenJIT2 uses com-
plex compiler modules to carry out
analysis, program transformation, and
optimization during compilation. The
preliminary result shows that the baseline
compiler will have reasonable compila-
tion speed as an optimizing compiler
compared with IBM’s jitc and Jalapeño’s
optimizing compiler.

The first version of OpenJIT2 is expected
to be completed by the second quarter of
2001. Once OpenJIT2 is complete, a
more comprehensive runtime perfor-
mance will be evaluated.

SESSION: THREADING

Summarized by Okehee Goh

AN EXECUTABLE FORMAL JAVA VIRTUAL

MACHINE THREAD MODEL

J. Strother Moore and George M. Porter,
University of Texas at Austin

This presentation describes a research
project in which formal methods are
applied to Java Virtual Machine
(JVM). “Formal methods’’ is the idea of

16 Vol. 26, No. 5 ;login:

http://www.research.ibm.com/people/m/midkiff/
http://nomads.coginst.uwf.edu/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Susing mathematics to model and prove
things about computing systems. Certain
aspects of the JVM are modeled, includ-
ing classes, objects, dynamic method res-
olution, and threads. A benefit of
modeling software in a mathematical
notation is that theorems can be proved
about the model. These proofs can be
checked mechanically via a theorem
prover. This paper discusses several such
theorems about the JVM and byte-code
programs for it. The theorems were
proven with the ACL2 theorem prover.

ACL2 (A Computational Logic for Appli-
cation Common Lisp) is a theorem
prover for a functional programming
language based on Common LISP. The
JVM is modeled in ACL2 by defining a
simulator for it. The state of the JVM
consists of three components, including a
collection of threads, a heap, and a class
table. The semantics of each bytecode is
represented as a function that transforms
the state.

There are certain differences between this
model and the JVM. For example, the
model does not support bounded arith-
metic or exceptions. Many such features
were omitted to make it easier to explore
alternative modeling and proof tech-
niques. There is ample evidence from
other ACL2 case studies that such fea-
tures can be added without unduly com-
plicating the analysis.

Complicated features of JVM bytecode
programs, such as thread synchroniza-
tion, can be analyzed using this mathe-
matical model. Eventually, it should be
possible to prove properties about the
JVM itself, such as that the bytecode veri-
fier is correct. Because the JVM is a very
good abstraction of Java, models such as
this will eventually permit mechanically
checked correctness proofs about Java
software.

More details about ACL2 are available at
http://www.cs.utexas.edu/users/moore/acl2
The case studies using ACL2 are at
http://www.cs.utexas.edu/users/moore/publications.

TRADE: A TOPOLOGICAL APPROACH TO ON-
THE-FLY RACE DETECTION IN JAVA PROGRAMS

Mark Christiaens and Koen De
Bosschere, ELIS, Ghent University,
Belgium

The worst type of bug occurring in
multi-threaded programs is a data race,
which occurs when multiple threads exe-
cute while they modify a common vari-
able in an unordered fashion. Normally it
is hard to find a data race because they
are non-deterministic and non-local.

TRaDe models the ordering of instruc-
tions performed by threads through the
use of vector clocks. To detect data races,
an access history for every object is con-
structed. When a new read or write oper-
ation occurs, it is compared to the
previous operations to uncover data-race
conditions. However, because the size of
each vector clock is proportional to the
number of threads, the memory and time
consumption is very costly. One way to
minimize this cost is to reduce the num-
ber of objects for which an access history
must be maintained. Objects are distin-
guished into two types: local objects
accessible to one thread and global
objects accessible to several threads.
Because “global objects” have the poten-
tial to be involved in a race, access to
those objects must be checked, and the
JVM instructions that can change the
topology of the object interconnection
graph must be observed.

Relative to the benchmark created by
using an implemented TRaDe method in
the Sun JVM1.2.1, TRaDe is 1.62 times
faster than existing commercial products
with comparable memory requirements.

The overhead of data-race detection is
still large when compared to normal exe-
cution. The authors plan to reduce this
gap, applying static analysis techniques
such as “escape analysis.”

SESSION: JVM POTPOURRI

Summarized by Johan Andersson

THE HOTSPOT SERVICEABILITY AGENT: AN

OUT-OF-PROCESS HIGH-LEVEL DEBUGGER

FOR A JAVA VIRTUAL MACHINE

Kenneth Russell, Lars Bak, Sun
Microsystems

This talk demonstrated a really useful
Java debugging tool, built with the
HotSpot Serviceability Agent (SA). This
is a set of APIs for the Java programming
language, developed to help developers
recover to a high-level state from a
HotSpot JVM or core file, to make it pos-
sible to examine high-level abstract data
types. When examining a JVM with a tra-
ditional C/C++ debugger, all this high-
level information is gone, since these
debuggers only deal with raw bits.

The SA can attach a remote process or a
core file, read remote-process memory,
and symbols lookup in remote processes.
In principle, the Solaris version of SA
launches a native debugger called dbx to
actually interface with a remote process.
It then loads a core file or attaches to a
running HotSpot JVM process. This
allows transparent examination of either
live processes or core files, which makes it
suitable to debug the JVM itself or Java
applications. In order to examine the
high-level data types in Java, the APIs in
the SA mirrors the C++ structures found
in the HotSpot JVM.

Kenneth Russell demonstrated the fea-
tures found in the SA’s APIs, which
seemed to be very useful. It was very easy
to traverse the heap and the stack, get
histograms of allocated objects, and look
up symbols.

In the future, the SA APIs, which are cur-
rently available for Solaris and Windows,
will be ported to Linux. Russell said the
APIs haven’t been included in the JDK
yet, but they are working on making this
technology available for end users. The
SA sources are currently available to
licensees in the HotSpot source bundles.

17August 2001 ;login: JVM ’01 ●

http://www.cs.utexas.edu/users/moore/acl2
http://www.cs.utexas.edu/users/moore/publications

MORE EFFICIENT NETWORK CLASS LOADING

THROUGH BUNDLING

David Hovemeyer, William Pugh,
University of Maryland

David Hovemeyer presented bundling, a
technique for transferring files over a
network. Files that tend to be needed in
the same program execution and that are
loaded close together are placed together
into groups called bundles. Hovemeyer
presented an algorithm to divide a collec-
tion of files into bundles based on pro-
files for file-loading behavior. The main
motivation for bundling is to improve
the performance of network class loading
in Java, by transferring as few bytes as
possible to make best use of available
bandwidth. This is very useful in areas of
wireless computing, where bandwidth is
a scarce resource.

Before Hovemeyer introduced the
bundling algorithm, he discussed the
alternatives. The first alternative involves
downloading individual files: no
unneeded files are transferred, but for
each file that is, the cost is high in terms
of network latency. The other alternatives
are to use monolithic archives such as
JAR, thus risking transfer of unwanted
files, or to use individual-class loading
with on-the-fly compression, which can
be time-consuming.

Hovemeyer and Pugh’s bundling
approach is a hybrid of the above alterna-
tives, combining the advantages of each.
The collection of files making up the
application is divided into bundles,
which are then compressed. The basic
idea is to avoid files that are not used and
to transfer files to match the order of
request by the client. The problem is to
divide the collection of files into bundles.
To solve this, Hovemeyer talked about
establishing class-loading profiles, which
can be determined by using training sets
of applications to record the order and
time at which each class was loaded dur-
ing execution. The bundling algorithm
then uses this information to group the

files into bundles, according to the aver-
age use in the class-loading profiles.

The experimental results indicated that
bundling is a good compromise between
on-demand loading and monolithic
archives. The results also showed that
bundling is no worse than the JAR for-
mat, when used on an application not
included in the training set.

The bundling algorithm is described in
detail in the paper. Links to related
research done at the University of Mary-
land can be found at
http://www.cs.umd.edu/~pugh/java/.

DETERMINISTIC EXECUTION OF JAVA’S PRIMI-
TIVE BYTECODE OPERATIONS

Fridtjof Siebert, University of Karlsruhe;
Andy Walter, Forschungszentrum
Informatik (FZI)

Siebert started his talk by presenting the
problems with real-time Java and gave a
brief definition of Java real-time. To pro-
vide Java with real-time support, all
operations must be carried out in con-
stant time, or at least the upper bounds
for the execution times of Java bytecode
operations must be known. Essentially,
the worst-case execution time for object
allocations, dynamic calls, class initializa-
tion, type checking, and monitors must
be determined.

The talk presented a JVM called Jamaica,
which implements a deterministic JVM
and a hard real-time garbage collector
(GC). First, Siebert discussed the typical
mark-and-sweep GC, followed by a pres-
entation on how garbage collection and
memory allocation are implemented in
Jamaica to guarantee a hard upper bound
for an allocation. To avoid memory frag-
mentation, compacting or moving
garbage collection techniques are usually
employed. However, Jamaica takes a new
turn on this issue in order to avoid frag-
mentation altogether. The heap is divided
into small, fixed-sized blocks (32 bytes).
An object, depending on the size, is
assembled as a linear list of possibly non-

contiguous objects. With this model
there is no need to defragment memory
and move objects. When a block is allo-
cated, the GC scans a certain number of
blocks. This approach can guarantee that
the system does not run out of memory,
as well as guaranteeing an upper bound
for the garbage collection work for the
allocation of one block of memory.

The rest of the talk focused on how to
obtain deterministic bytecode execution.
Most bytecode operations can be imple-
mented directly as a short sequence of
machine instructions that executes in
constant time. These operations include
access to local variables and the Java
stack, arithmetic instructions, compar-
isons, and branches. Siebert briefly dis-
cussed this but focused more on the
bytecodes where deterministic imple-
mentation is not straightforward: for
example, class initialization, type check-
ing, and method invocation. The details
of this can be found in the paper.

Finally, Jamaica’s performance was com-
pared to Sun’s JDK implementation
using SPECjvm98. The results suggested
that performance comparable with Sun’s
non-deterministic implementations can
be reached, by tuning the compiler, for
example, and by direct generation of
machine code instead of using C as the
current intermediate representation.

For more information, contact the
authors or visit http://www.aicas.com.

SESSION: GARBAGE COLLECTION

Summarized by Hughes Hilton

MOSTLY ACCURATE STACK SCANNING

Katherine Barabash, Niv Buchbinder,
Tamar Domani, Elliot K. Kolodner, Yoav
Ossia, Shlomit S. Pinter, Ron Sivan, and
Victor Umansky, IBM Haifa Research
Laboratory; Janice Shepherd, IBM T.J.
Watson Research Laboratory

A garbage collector must scan registers
and the stacks in order to find objects
which can be collected. Typically, there
are three types of garbage collector: con-

18 Vol. 26, No. 5 ;login:

http://www.cs.umd.edu/~pugh/java/
http://www.aicas.com

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sservative, type-accurate, or conservative
with respect to roots. All three have
advantages and disadvantages.

A conservative collector is very simple to
implement and has a low performance
penalty. However, it must retain some
garbage because it is not absolutely posi-
tive about what is garbage and what is
not. This uncertainty also prohibits
object relocation, which means that the
stack cannot be compacted, degrading
performance over time.

A type-accurate collector is much more
complex to implement and is very expen-
sive in terms of performance. However,
all object-references are known with cer-
tainty and therefore all garbage is col-
lected. Objects can also be moved so that
memory may be compacted.

Type-accuracy also adds the factor that
threads may be stopped only where type
maps exist. Creating maps at every
instruction can be very voluminous
(although maps may be compressed
somewhat). Certain algorithms, such as
polling and patching, allow for better
performance but are still comparatively
expensive.

Lastly, a conservative approach with
respect to roots scans the stack conserva-
tively, but uses object type information to
scan objects accurately. This is a compro-
mise of the other two types of garbage
collectors and works well. It allows object
relocation and is used widely in Java Vir-
tual Machines. However, compaction and
some other GC algorithms are still diffi-
cult with this method of scanning.

The contribution of this paper is to pro-
pose another type of stack scanning:
mostly accurate with respect to roots. In
this method, the stack is only scanned
accurately where it is easy to do so (most
stack frames) and scanned conservatively
otherwise. Therefore most objects can be
relocated (allowing compaction), and the
performance hit is minimal. Also, threads
can be stopped anywhere. Further infor-

mation about projects of IBM’s Haifa
research group is available at
http://www.haifa.il.ibm.com/projects/systems/Runtime_Subsystems.html.

HOT-SWAPPING BETWEEN A MARK&SWEEP

AND A MARK&COMPACT GARBAGE COLLEC-
TOR IN A GENERATIONAL ENVIRONMENT

Tony Printezis, University of Glasgow

Two algorithms for generational garbage
collection that are often implemented in
JVMs are Mark&Sweep and Mark&Com-
pact. The main difference between the
two is that Mark&Compact compacts the
remaining objects to consolidate free
space after garbage collection. These two
algorithms are being considered when
they are applied to the old generation of
the system; they share the same algo-
rithm for young garbage collections (that
is, copying).

The Mark&Sweep algorithm is slightly
faster than Mark&Compact, in most
cases, because Mark&Sweep provides
200-300% faster collection for old
objects, although old objects are usually
not garbage collected as often as young
objects. However, memory fragmentation
can occur in a Mark&Sweep system,
which can affect long-term performance.

The Mark&Compact algorithm is 10-
20% faster in collecting the younger gen-
eration of objects because it provides
faster allocation of objects to old space
(which occurs during young garbage col-
lection). Young garbage collection can
occur up to 1000 times more often than
old garbage collection, and it must also
be taken into account that Mark&Com-
pact defragments memory.

The performance difference between
these two types of generational collection
is fairly minimal and depends on the
behavior of the application involved.
However, what if a garbage collector
could hot swap between the two types
and get the best of both worlds? That was
the question that Tony Printezis asked,
and the subject of his paper.

The requirements set forth by Printezis
for a hot-swapping garbage collector are
fairly rigid. It must swap back and forth
in constant time, incur a minimal perfor-
mance penalty from swapping, be time
flexible, and make minimal changes to
the Mark&Sweep and Mark&Compact
algorithms.

In order to develop the switching algo-
rithm, Printezis had to use a fake byte
array class to make a free chunk of mem-
ory look like garbage to the Mark&Com-
pact collector, while still looking like a
free chunk to the Mark&Sweep collector.
He used a simple heuristic for when to
swap. Mark&Sweep was used mostly for
old garbage collections, but if linear allo-
cation of objects from the young genera-
tion to the old generation failed a lot, one
pass was made with Mark&Compact to
defragment the memory.

In benchmarks, the hot-swapping algo-
rithm fared well. It was the fastest of the
three garbage collectors in two of the six
benchmarks, and those benchmarks it
did not win were very close. Also, the fact
that the algorithm prevents memory
fragmentation must be taken into
account when considering the results. In
the future, Printezis wants to develop
more complex swapping heuristics, but
preliminary results look very promising.

PARALLEL GARBAGE COLLECTION FOR SHARED

MEMORY MULTIPROCESSORS

Christine H. Flood, David Detlefs, Sun
Microsystems Laboratories; Nir Shavit,
Tel-Aviv University; Xiolan Zhang, Har-
vard University

Since Java is being used increasingly with
shared-memory multiprocessor systems,
it makes sense that those systems should
employ garbage collection algorithms
that can take advantage of multiple
processors to increase performance. This
paper describes how Christine Flood and
her fellow researchers parallelized two
sequential, stop-the-world garbage col-
lection algorithms: a two-space copying
algorithm (semispaces) and a

19August 2001 ;login: JVM ’01 ●

http://www.haifa.il.ibm.com/projects/systems/Runtime_Subsystems.html

Mark&Sweep algorithm with sliding
compaction (Mark&Compact).

Load balancing is a big problem for par-
allel garbage collection. The key to load
balancing is correctly and efficiently par-
titioning the task of tracing the object
graph. This task does not lend itself to
static partitioning, which is too expen-
sive. Another solution might be over-par-
titioning by making more chunks than
needed and having each processor get a
chunk and come back for more. The
problem with this algorithm is that the
size of the problem is not necessarily
known. The solution is a work-stealing
algorithm. In work stealing, threads that
have work copy some of it to auxiliary
queues, where it is available to be stolen
by other threads that do not have work to
do.

In parallelizing the semispaces algorithm,
Flood and her team used work-stealing
queues to represent the set of objects to
be scanned, rather than Cheney’s copy
and scan pointers (used traditionally). To
avoid contention when many threads
were allocating objects into space at the
same time, they had each thread allocate
relatively large regions called local alloca-
tion buffers (LABs).

Mark&Compact consists of four phases
that must be parallelized: marking, for-
ward-pointer installation (sweeping), ref-
erence redirection, and compaction. The
researchers did the mark phase in parallel
using work-stealing queues. They han-
dled the forward-pointer installation by
over-partitioning the heap. They imple-
mented the reference redirection phase
by treating the scanning of the young
generation as a single task and reusing
the previous partitioning done in the for-
ward-pointer installation phase for the
old generation. Finally, they parallelized
the compaction phase by using larger-
grained region partitioning.

In benchmarks it was found that with the
teams’ algorithms, the more processors
working, the greater the advantage in

garbage collection. With eight processors,
there was as much as a 5.5x performance
gain. The team concluded that parallel
garbage collection must be used to avoid
bottlenecks in large, multi-threaded
applications. The contents of this paper
and other works appear on Sun’s site at:
http://www.sun.com/research/jtech/.

SESSION: SMALL DEVICES

Summarized by Chiasen (Charles)
Chung

AUTOMATIC PERSISTENT MEMORY

MANAGEMENT FOR THE SPOTLESS JAVA

VIRTUAL MACHINE ON THE PALM CONNECTED

ORGANIZER

Daniel Schneider, Bernd Mathiske,
Matthias Ernst, and Matthew Seidl, Sun
Microsystems, Inc.

PalmOS does not support automatic
multi-tasking capabilities. To achieve
that, programmers have to implement
low-level event callbacks using the OS
database API to suspend and reload their
applications. The talk proposes an alter-
native approach to allow transparent
multi-tasking support for Java programs
running on Spotless VM, a predecessor of
KVM.

To restrict open memory access, the OS
provided a simple database API. The API
not only accesses a small subset of RAM
for the application program but is also
costly. Thus, the database API is bypassed
by calling an undocumented system call
to disable memory protection. The byte-
code interpreter in the persistent Spotless
VM still resides in the dynamic memory,
but all the Java data (including the byte-
codes and thread data) are stored in the
static memory.

A program is first started by creating a
new Store in the resource database tag of
the type “appl.” When the program is sus-
pended, the VM automatically saves the
current state of the application by closing
the persistent Store in a controlled man-
ner. To resume the suspended Spotless
VM, it will be retrieved from the Store

database. Next the VM will restore each
heap record. Since the OS can move Store
records in the heap segments, VM needs
to update the pointers. After all the
pointers have been updated, each module
of the VM restores their state from the
content in the Store header field before
execution of the application continues.
When a program finally terminates, the
VM will remove the Store data from the
database.

A program often needs external states or
data that are not under the control of the
program runtime system. Spotless VM
supports persistence in these states
through the implementation of an inter-
face “External.” External data have to syn-
chronize with the internal data when the
program is suspended or resumed. To
achieve this, Spotless uses a protocol
adopted from the Tycoon-2 system.

Disabling write protection creates a new
dimension of safety issues for PalmOS. It
is arguable whether a well-implemented
VM will not cross its boundary, but hard-
ware restriction is suggested. More infor-
mation on Spotless Java Virtual Machine
is available at
http://www.research.sun.com/spotless/.

ENERGY BEHAVIOR OF JAVA APPLICATIONS

FROM THE MEMORY PERSPECTIVE

N. Vijaykrishnan, M. Kandemir, S. Kim,
S. Tomar, A. Sivasubramaniam, and M.
J. Irwin, Pennsylvania State University

With mobile and wireless computing
gaining popular ground, battery lifespan
has become a growing concern. N.
Vijaykrishnan’s presentation addressed
the energy behavior of the memory sys-
tem during the execution of Java pro-
grams. It has been observed that memory
systems consume a large fraction of the
overall memory energy. Load/store are
the instructions that access the most
memory, consuming more than 50% of
the total energy in both interpreted and
JIT-compiled programs. As data them-
selves, byte-codes need to be fetched
from memory, and so interpreters are

20 Vol. 26, No. 5 ;login:

http://www.sun.com/research/jtech/
http://www.research.sun.com/spotless/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Smore memory-intensive than JIT-com-
piled code.

ExactVM (EVM) is the JVM from Sun
Labs Virtual Machine for Research used
in experiments. The experiment is based
on the seven applications from the SPEC
JVM98 benchmark suite, with emphasis
on “javac” and “db.” Beside the actual
execution of Java applications, EVM uti-
lizes memory heavily in three areas: class-
loading, dynamic method compilation,
and garbage collection. Other than the
frequency of memory accesses, energy
consumption is also dependent on fre-
quency of cache misses since off-chip
memory accesses are more expensive
than on-chip accesses; thus data locality
is an issue. It was found in their experi-
ment that energy consumption is
inversely proportional to the cache size

To improve energy consumption, it was
recommended that class files should be
reused across different applications and
that heap allocators and garbage collec-
tors be energy aware. Although energy
consumed by dynamic compilation in
JIT mode is quite significant, a well-
designed compiler will produce native
code that actually reduces energy con-
sumption. More information on the talk
can be found at http://www.cse.psu.edu/
~mdl/.

ON THE SOFTWARE VIRTUAL MACHINE FOR

THE REAL HARDWARE STACK MACHINE

Takashi Aoki, Takeshi Eto, Fujitsu
Laboratories Ltd.

This talk focused on using picoJava-II as
a software virtual machine running on a
real hardware stack machine. picoJava-II
is a Java chip developed at Fujitsu. Unlike
traditional JVM, which uses a straight-
forward memory area as a Java stack,
picoJava-II takes advantage of the hard-
ware cache for the stack to improve the
bytecode execution performance. Sun’s
PersonalJava 3.02 is ported onto pico-
Java-II, which is running on REALOS.

picoJava-II has a different engine archi-
tecture from traditional JVMs. Numer-
ous modifications have to be made in
order to port PersonalJava onto the direct
bytecode execution engine of picoJava-II.
picoJava-II has a 64-word stack cache to
improve bytecode execution perfor-
mance. Since there is no coherency
between the stack and the data cache, the
former has to be flushed frequently
before accessing the stack frame. Another
issue is that the stack grows in the oppo-
site direction (downward), requiring
additional computation to resolve the
start of the next frame. JavaCodeCom-
pact (JCC) is a tool available on Person-
alJava to improve class-loading
performance and reduce code size. The
internal data structure of JCC has to be
modified before the hardware can accept
it.

The testing indicates that the Java micro-
processor is significantly better than the
conventional C interpreter. It is also com-
petitive with JIT-compiled code. How-
ever, there are a number of open
problems encountered in the research.
First, the lack of coherency between stack
and data caches complicates software
design. Next, the JNI implementation can
be more efficient if the C compiler of
picoJava-II follows the calling convention
of the Java method. Lastly, the presence
of aggregate stacks for solving the stack
cache incoherency problem complicates
system programming.

21August 2001 ;login: JVM ’01 ●

Saul Wold & Étienne Gagnon

http://www.cse.psu.edu/

