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Abstract 

A generally held notion is that high quality code comes with high compilation cost.  As a result, previous 
efforts at minimizing dynamic compilation costs have focused on designing fast, lightweight compilers that sacrifice 
code quality for compilation speed, and resource intensive approaches that combine multiple engines to limit 
expensive optimizations to critical sections.  In this paper, we show one possible way fast compilers can be 
constructed to generate high quality code.  We have implemented microJIT, a small and portable just-in-time (JIT) 
compiler for Java that can produce high quality code 2.5x faster than a comparable dataflow-based compiler and 
30% faster than a compiler that performs only limited optimizations.  We use dataflow techniques, but speed up 
compilation by minimizing the number of major compiler passes given the number of optimizations performed.  
Architectural features of our compiler also allow it to perform instruction set dependent optimizations efficiently.  
microJIT achieves these high compilation rates while still maintaining small static and dynamic memory 
requirements.  This compiler can be highly effective in an embedded system where computing and memory 
resources are highly constrained and where multiple target platforms must be supported. 

1. Introduction 
Dynamic code generators differ from traditional 

compilers because they must carefully consider their 
impact on runtime performance.  It is widely believed 
that generating optimized code comes with high 
compilation times.  Two approaches to reducing 
dynamic compilation overheads have been popularized.   

The first approach uses techniques that focus 
solely on generating code quickly [1][9].  This usually 
involves focusing only on simple optimizations, or 
relying on imprecise analysis or heuristics to speed up 
compilation.  This helps alleviate compilation times, 
but penalizes long-run performance through poor code 
quality.   

The second approach is through lazy compilation.  
A lazy compilation system usually combines a fast, 
non-optimal compiler or interpreter with an expensive 
compiler [10].  The key goal of this system is to 
minimize expensive optimizations.  Runtime profiling 
selects which portions of code to interpret and which 
portions to recompile and optimize aggressively.   

In this paper, we show the gap between high 
quality code and fast compilation may be bridged a 
third way: by improving the compilation performance 
of the dynamic compiler.  We have implemented 
microJIT, a small and portable dataflow compiler for 
Java that produces optimized code 2.5x-10x faster than 

comparable dataflow-based compilers and 30% faster 
than a compiler that performs limited optimizations.  
These compilation rates are achieved while maintaining 
small static and dynamic memory requirements.  The 
major contributions of this paper are: 

• Architecture and implementation of a fast, 
portable, and small optimizing compiler.  
Compilation speedup was achieved by minimizing 
major compiler passes for the number of 
optimizations performed:  global and local code 
optimizations are applied as intermediate 
expressions are generated, registers are allocated 
concurrent with code generation, and dataflow 
information is efficiently communicated between 
compiler passes.  Our compiler also implements an 
extension infrastructure to help support fast 
machine dependent  optimizations. 

• Experimental results that show using this fast 
compiler alone can compete against systems using 
interpreters, lazy compilation, and fast compilers 
on long and short run applications, with less total 
system cost.   

Our compiler can be highly effective in embedded 
systems like PDAs, tablet PCs, and thin clients targeted 
by Sun’s J2ME (Java 2 Micro Edition) platform, using 
the CDC and CVM configuration 
(http://java.sun.com/j2me/).  These environments have 
highly constrained computing (30Mhz – 200MHz) and 



 

memory resources (2MB – 32MB RAM and ROM) 
relative to modern desktop machines, and must support 
many target platforms.  The current standard for these 
devices is to interpret bytecodes, which results in at 
least 10x slowdown relative to native code.  Our fast 
compiler may alleviate tradeoffs that would otherwise 
need to be made in this environment.  Overheads for 
expensive code optimization can be significant for 
slower devices, and a fast, poorly optimizing compiler 
ultimately sacrifices long run performance for code 
generation time.  Alternatively, using multiple 
compilation and/or execution engines required for lazy 
compilation add to code ROM size and require more 
development effort to target different machine 
platforms.   

The rest of our paper is organized as follows.  We 
describe related dynamic compilers and fast 
compilation techniques in Section 2.  We outline the 
major optimizations performed by our compiler in 
Section 3 and discuss how they relate to traditional 
dataflow implementations in Section 4.  In Section 5, 
we compare compilation times and code performance 
with other dynamic compilers.  Finally, we present our 
conclusions in Section 0. 

2. Related Work 
The Sun Hotspot Java virtual machine (JVM) is the 

most widely known system that implements lazy 
compilation [10], although similar research and 
commercial systems by Intel, IBM and SNU exist 
[5][19][16].  We compare the performance of these 
compilers to microJIT in Sections 4 and 5.  An 
interesting extension of lazy compilation is adaptive 
optimization, implemented in the Jalapeño VM [2].  
Written mostly in Java, this VM moves the Java / non-

Java boundary below the VM, providing more 
opportunities for optimization.   

A critical component of fast dynamic compilation 
is fast register allocation.  The Intel JIT compiler uses 
lazy code selection in the context of on-the-fly register 
allocation to speed up compilation [1].  Previously 
encountered bytecode sequences that generated the 
current value in a register are cached, as well as 
possible bytecode aliases, so that future equivalent 
sequences can simply be replaced by an instantiation of 
the register.  In linear scan register allocation [17][4], a 
prepass computes lifetimes and lifetime holes and then 
directs global allocation of registers with a simple 
linear sweep over the program being compiled.  The 
LaTTe JIT compiler uses another potentially effective 
fast register allocation scheme that requires a prepass 
and two sweeps [19].  In Section 4.2, we discuss how 
these allocators relate to the one implemented in 
microJIT. 

There are several well-known research projects 
that use dynamic compilation.  The SimOS project 
includes the Embra execution engine that uses dynamic 
translation to speed up architecture simulations [18].  
`C (“tick-c”) implements language extensions to C to 
support dynamic compilation of critical sections of 
code [14][7][13].  The Digital FX!32 project uses 
dynamic translation to run x86 binaries on the Alpha 
architecture [15].  The Dynamo project optimizes and 
recompiles binaries according to statistics collected 
from runtime profiling [3]. 

3. Compiler Architecture 
3.1 Overview 

Our compiler only makes three major passes over 
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md_prep()
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md_asm()
assembler macros
instruction delays

control flow graph 
    (CFG)

data flow graph
    (DFG)

native code
machine idioms
instruction scheduler
register allocation

expression local & global 
use count

basic block (BB) joins

Java locals & field 
usage

loop identification

extended basic blocks (EBB)

loop invariant code motion
local & global copy 

propagation
local & global constant 

propagation
local & global CSE
algebraic simplification

Figure 1. Architectural overview of microJIT detailing flow of information through major components and passes. 



 

the code: a fast scanning pass to build the control flow 
graph (CFG), a major pass to generate the data flow 
graph (DFG), and then the final pass to generate the 
code.  We found that organization represents a minimal 
pass configuration that gathers enough good 
information for the following pass to compile 
effectively.  Figure 1 graphically illustrates the high-
level architecture of our dynamic compiler, showing 
specific work done by each pass, ISA specific 
components, and flow of information between the 
major blocks.  The following sections (3.2 – 3.5) detail 
the major compiler passes, and steps we take to 
minimize compilation costs without sacrificing 
generated code quality. 

3.2 CFG Construction 
We generate a CFG of basic blocks (BB) from a 

single pass of the bytecode.  In our compiler, a method 
starts as one block representing all the bytecodes.  
Blocks are split as branches and associated targets are 
found.  During a block split, appropriate control flow 
arcs between blocks are added and adjusted.  In this 
fashion, we can generate the CFG without touching a 
bytecode more than once.   

This scan executes very quickly.  Most bytecodes, 
except for control flow instructions, are not decoded 
during this scan, and most next pc and stack pointer 
offsets can be found simply by indexing the bytecode 
into a static lookup table.  At the end of CFG 
construction, arcs are also added to any defined 
exception handlers for the BB. 

From the CFG, we compute extended basic blocks 
(EBB) and dominator blocks using standard algorithms 
[12].  An EBB is a maximal sequence of BBs with one 
entry and possible multiple exits.  Subsequent passes 
operate on EBBs in order to allow local optimizations 

to be applied to the largest possible region. 

Table 1. Example IR expressions. 

Class Example 
expression 

bytecode 
equivalent(s) Arguments 

Load/ 
store 

load getfield 
getstatic 

1 
“ 

Unary op not not 1 

Binary op add add 2 

Branches 
cbr_eq ifeq 

if_icmpeq 
if_acmpeq 

2 + target 
“ 
“ 

Auxiliary 

call 
 
 

prologue 

invokevirtual 
invokestatic 
invokespecial 

none 

variable 
“ 
“ 
0 

Dominator block information is immediately used 
to detect loops.  Since goto statements with arbitrary 
target labels are not allowed in the Java programming 
language [8] (although it is not formally excluded from 
the VM specification [11]), we can expect all loops to 
have one entry point and be found with a natural loop 
detector [12].   

Basic load/store statistics on local (e.g. iload, 
astore) and field (e.g. getfield, putstatic, 
iaload, aastore) accesses are recorded for each 
BB during CFG construction.  The local and field 
accesses for each BB in a loop are then merged to 
compute their definitions and uses within the loop.  
This is used in the next pass for global optimizations. 

3.3 DFG Generation 
3.3.1 Intermediate Representation 

Within BBs, we use triples to represent IR 
expressions.  Triples are similar to quadruples used by 
most compilers, except that results are not named 
explicitly [12].  In our implementation of triples, 
pointers are used to refer to source argument 

Java bytecode Pointer assignments (@ bpc=16)

bpc
 0  aload_0
 1  getfield count
 4  newarray char
 6  astore_1
 7  getfield count
10  iconst_1
11  iadd
12  putfield count
15  aload 1
16  areturn

Intermediate representation

locals.in locals.out

stack

local0_p:
local1_p:

[L0]
null

[L0]
[5]

stack1_p:
stack0_p:

null
[5]

Key points:

stack_p

1

2

3

4

1

2

3

3

4

4

argument and return registers 
are reserved by md_prep 
for call expression (r:%x 
refers to SPARC ISA 
registers)

local1_p is assigned pointer to 
call expression

CSE opt matches getfield 
count @ pc=1 (safe to 
match through newarray() 
call since it is an internal 
VM function)

load local 1 on stack to be 
returned by this method; 
return argument reg also 
reserved

Equivalent C

L1 = new char[count];
count += 1;
return L1;

3
1

2

bpc eid
   [1]  prologue
 0 [2]  load @( [L0]+16 ) r:%o1
 4 [3]  const 5 r:%o0
   [4]  const 0x48a9c
   [5]  call newarray [4]
          ( [3] [2] ) 
 6         -> [L1] r:%o0
10 [6]  const 1
11 [7]  add [2] [6]
12 [8]  store [7] @( [L0]+16 )
16 [9]  returnarg [5] r:%i0

1

 

Figure 2. Example showing how bytecodes are translated to our intermediate representation 



 

expressions.  Basic expression classes of our IR are 
listed in Table 1.  Our IR expressions more closely 
resemble basic machine instructions than Java 
bytecodes to make mapping to machine code more 
straightforward.  Constants are represented as 
individual expressions so they can be properly 
manipulated on the Java stack as bytecodes are 
processed.  Because we implement triples, expressions 
have no explicit destination.   

3.3.2 Local Optimization 

Our compiler is designed to perform local 
optimizations quickly.  This is important because 
bytecodes sequences often reoccur, a side effect of 
using a stack to hold temporaries, and of complex 
bytecodes such as array accesses that hide repeated 
computations. 
 
EXPR_add( expr * e, basic_block * bb ) 
{ 
 // CONSTANT OPTIMIZATION 
 if( constant_arguments( e ) ){ 
  e->const_opt(); 
 } 
 // ALGEBRAIC SIMPLICIATION 
 else{ 
  e->algebraic_opt(); 
 } 
 // LOOP OPTIMIZATION 
 if( in_loop ){ 
  (success, match_e) = bb->loop_opt( e ); 
  if( success ){ 
   return match_e; 
  } 
 } 
 // CONSTANT SUBEXPRESSION ELIMINATION 
 (success, match_e) = bb->cse_opt( e ); 
 if( success ){ 
  return match_e; 
 } 
 else{ 
  (success, match_e)  
   = bb->global_cse_opt( e ); 
  if( success ){ 
   return match_e; 
  } 
 } 
 // SETUP MACHINE DEPENDENT INFO 
 e->md_prep(); 
 // ADD TO BASIC BLOCK 
 bb->add( e ); 
} 

Figure 3. EXPR_add() pseudo code (simplified code). 

Figure 2 illustrates an example of how bytecodes 
are translated into expressions in our IR.  A local 
expression pointer array and a stack pointer array are 
maintained as we interpret bytecodes in a BB.  Java 
locals and stack assignments simply move expressions 
between these two arrays and update the stack pointer.  
Using pointer assignments to mimic the VM stack and 
locals effective performs copy propagation as no 
intermediate copy expressions are generated for these 
operations.  Expressions that are assigned to Java locals 

on BB entry and exit are listed in expressions pointer 
arrays for each BB (locals.in[] and 
locals.out[]). 

Only when we actually encounter a true operation 
is an expression generated for it.  When an expression 
is created, it is submitted to the function EXPR_add() 
(see Figure 3), which checks the expression for 
possible optimizations before adding it to the 
expression list for the BB.   Basic optimizations 
performed include constant propagation, and algebraic 
simplifications and reductions.  Assuming a non-
constant expression, local common-subexpression 
elimination (CSE) is applied to the new expression.  
Our local CSE is implemented as a backward search 
within the EBB for an available matching expression, 
with expressions hashed by operation to eliminate 
searching through expressions that cannot possibly 
match the new expression.   

Most bytecodes that perform simple operations 
simply map to a single corresponding IR expression.  
Complex bytecodes, like array accesses, branches and 
method calls, are decomposed into IR expressions that 
are more representative of the instructions that must be 
executed on the underlying hardware.  Consider the 
array access sequence shown in Figure 4.  
Decomposing allows us to optimize an array bounds 
check with another access to the same array, or allows 
us to use the same index computation for access to a 
different array. 

3.3.3 Inlining and Specialization 

Our inliner supports fast inlining of small methods 
(< 20 bytes) rather than full, and potentially more 
expensive, integration of a callee method into a caller 
method.  Expressions in the inlined method are added 
to the caller context, but maintain a separate 
environment. 

Small methods represent the most common 
opportunities to inline, and result in big performance 
gains by eliminating large calling overheads relative to 
work performed within the inlined call.  Our inliner 
handles nested inlining (e.g. for optimizing subclassed 
object constructors like class.<init>), and 
specialization of virtual and interface methods (e.g. for 
optimizing object accessor methods).  The inliner is 
also responsible for inlining fast, common case 
handlers for the checkcast and instanceof 
bytecodes, which must execute a costly class hierarchy 
search if the object class is not equivalent to the 
requested class. 



 

3.3.4 Global Optimization 

We perform global optimizations non-iteratively, 
but produce results that are equivalent to  a traditional 
iterative dataflow analysis.  This is possible because IR 
expression generation for EBBs is processed in reverse 
post-order traversal (an EBB must be processed before 
any of it sucessors have been).  In this fashion, we can 
propagate forward flow information to successor EBBs 
before IR expressions are generated for them. 

At EBB headers, we merge flow information for 
global copy and constant propagation before generating 
IR expressions in the EBB.  Loop invariant code 
motion and global CSE are handled within the 
EXPR_add() function introduced in the previous 
section.   

If the current BB exists within a loop, a check is 
made to see if the new expression can be hoisted to the 
loop preheader.  For most expressions, this involves 
determining if their arguments are constants or locals 
that are not redefined in the loop.  This later property is 
queried from the loop locals and field access statistics 
computed during the CFG generation pass (Section 
3.2).   

Global CSE is performed on a new expression only 
if local CSE fails and its arguments are locals or globals 
that we have created.  The global CSE optimizer 
searches BBs backwards toward the method entry for 
matching available expressions using the same routines 

used for CSE within an EBB.  
We terminate the search if one 
of the arguments is redefined 
along any of the backward paths 
toward method entry. 

We compare our local and 
global optimizer to other 
implementations in Section 4.1. 

3.3.5 Data Flow Statistics 

During DFG generation, we 
collect additional information 
that will be utilized by the 
register allocator.  Each IR 
expression includes a local and 
global use counter.  The local 
use counter is incremented 
whenever a given expression is 
used as a source in another 
expression.  We also compute a 
flag called 
expr_spans_call which is 

set if a call occurs between an expression definition and 
use. 

The global use counter is accumulated towards the 
expression definition after all expressions have been 
generated using a post-order traversal from method exit 
BBs to the entry BB.  The global use count for a given 
local expression at the exit of a BB is equal to the sum 
of the local and global uses for the local expression at 
the entry to immediate successor BBs.  We do not 
consider this scan a major pass as only expressions in 
Java locals at BB exits and entries are considered. This 
computation is equivalent to a live variable dataflow 
analysis but also includes relative weighting of uses.  
This computation must be iterated when loops are 
present to compute correct liveness values within the 
loop. 

Also computed concurrent with DFG generation is 
a structure we call a BB join.  A BB join is the union of 
all adjoining BBs entries or exits, with each BB 
identified as whether its entry or exit is part of the join.    
Example BB joins are shown in Figure 6.  A BB may 
be in at most two BB joins, or it may be in only one BB 
join (its entry and exit share common successors and 
predecessors).  A BB join is used to link register 
assignments between dependent BB entry and exit 
points, described in more detail in Section 3.4.2.   

bpc eid
 2 [1]  load @([L0]+8)
   [2]  cmp [L1] [1]
   [3]  cbranch_ult [2] 
   �     --> [5]   
   [4]  call bad_array_idx
   [5]  target
   [6]  const 2
   [7]  sll [L1] [6]
   [8]  const 12
   [9]  add [L0] [8]
   [10] load @([7]+[9])
 3 [11] const 1
 4 [12] add [10] [11]
 7 [13] load @([L0]+8)
   [14] cmp [L2] [11]
   [15] cbranch_ult [14] 
   �     --> [17]
   [16] call bad_array_idx
   [17] target
   [18] const 2
   [19] sll [L2] [18]
   [20] const 12
   [21] add [L0] [20]
   [22] store @([19]+[21])

Java bytecode
Unoptimized

intermediate representation

bpc
0  aload_0
1  iload_1
2  iaload
3  iconst_1
4  iadd
5  aload_0
6  iload_2
7  iastore

Optimized
intermediate representation

bpc eid
 2 [1]  load @([L0]+8)
   [2]  cmp [L1] [1]
   [3]  cbranch_ult [2] 
�     --> [5]
   [4]  call bad_array_idx
   [5]  target
   [6]  const 2
   [7]  sll [L1] [6]
   [8]  const 12
   [9]  add [L0] [8]
   [10] load @([7]+[9])
 3 [11] const 1
 4 [12] add [10] [11]
 7 [14] cmp [L2] [11]
   [15] cbranch_ult [14] 
�     --> [17]
   [16] call bad_array_idx
   [17] target
   [19] sll [L2] [18]
   [22] store @([19]+[9])

header

length

a[0]

0

a[1]

a[2]

8

12

16

20

array object layout

Equivalent C

L0[L2] = 
   L0[L1]+1;

1

1

1

1 instructions removed 
in second array 
access

 

Figure 4. Array accesses bytecodes are decomposed so that optimizations can be 
performed on their components. 



 

3.4 Code Generation Pass 
3.4.1 Code Generation 

For the most part, code is generated in place using 
single pass of the expressions in a BB.  Like expression 
generation, EBBs are processed in reverse post-order 
when generating code.  A patching system is used to fix 
unknown values likes branch targets and variable sized 
method prologues and epilogues (for certain ISAs) after 
the primary code generation pass.  Selective code 
buffering and movement is supported for block-level 
code scheduling.  This facility is currently used to move 
array out-of-bounds throw clauses out of the critical 
code path and to implement loop inversion.   

3.4.2 Register Allocation 

We do not allocate registers in a separate pass, but 
assign registers as code is generated.  Use counters, the 
expr_spans_call flag, and register pre-
assignments are all critical to achieving good register 
allocation.  Pseudo-code for the register allocator is 
shown in Figure 5 and an example allocation pass is 
shown in Figure 6.   
 
REG_alloc( expr * e ) 
{ 
 reg * r; int r_type; 
 
 // HANDLE REGISTER RESERVATIONS 
 if( e->reserved_reg ){ 
  r = e->reg; 
  if( r->is_assigned ){ 
   r->spill_expr(); 
   r->free(); 
  } 
  r->assign( e ); 
 } 
 // NORMAL ALLOCATION 
 else{ 
  // CLASSIFY REG ASSIGNMENT 
  if( e->uses.other > 0  
   || e->spans_next_call ){ 
   r_type = R_caller_saved; 
  } 
  else{ 
   r_type = R_temp; 
  } 
  // ASSIGN REGISTER 
  if( r = get_free_reg( r_type ) ){ 
   r->assign( e ); 
  } 
  else if( r = any_free_reg() ){ 
   r->assign( e ); 
  } 
  else if( r = min_cost_live_reg() ){ 
   r->spill_expr(); 
   r->free(); 
   r->assign( e ); 
  } 
 } 
} 

Figure 5. REG_alloc() pseudo code (simplified code).  

Register allocation starts with any register 
allocated arguments at a method entry.  When a register 

is needed for an expression being generated, allocation 
occurs as follows.  If a register has not been pre-
assigned, we must choose an appropriate register class 
assignment (e.g. temporary or call-preserved register).  
Accounting for whether an expression must survive a 
future call (expr_spans_call flag), whether it 
will survive past the BB it is defined in (global use 
counter), and potential conflicts with registers allocated 
at the BB exit, we can select an appropriate register to 
minimize future moves or spills.   

As each expression is processed and code is 
generated for it, we decrement the local use counter of 
the source arguments to reflect that the argument has 
been “used.”  When the local use counter and the 
global user counter both are zero for a register allocated 
expression, the register can be freed as it can be 
guaranteed that this expression will never be used 
again. 

Once code has been generated for a BB, the BB 
linker is responsible for properly linking register 
assignments between BBs.  The register assignments at 
a BB exit are compared to the assignments in the BB 
join.  Register assignments are added to the BB join or 
a register move or spill is generated match a previous 
BB join register assignment. 

 We will compare our register allocator to other 
schemes in Section 4.2 

3.4.3 Instruction Scheduler 

We use a standard list scheduler for low-level 
instruction scheduling.  To simplify the 
implementation, scheduling is currently limited to a 
given BB.  Despite this limitation, we believe BB 
regions have enough instructions to sufficiently target 
the biggest benefactors of scheduling, filling load and 
branch delay slots.  We schedule instructions only after 
they have been generated because some IR expressions 
may expand into more than one instruction while others 
may not even generate one.  Additionally, the loads and 
spills to the runtime frame of Java locals, which are 
only generated as needed, are not represented as 
explicit expressions in our IR. 

3.5 Fast Optimization of Machine Idioms 
Machine idioms are instructions or instruction 

sequences for a specific ISA that execute more 
efficiently than a similar sequence of instructions 
targeted for a more general architecture.  Common 
machine idioms include immediate arguments, auto-
increment arguments, call argument specifics, leaf 



 

procedure optimization, and condition code (CC) 
usage.   

Optimizing for machine idioms is often left to the 
end of the compilation process, after one has generated 
machine specific code, using a peephole optimizer [12].  
A peephole optimizer searches code for instruction 
patterns it knows how to replace with an equivalent 
sequence that requires less instructions or cycles.  
Using peephole optimization is expensive because it 
usually requires at least one additional pass across all 

instructions generated with a pattern matcher.   

In our dynamic compiler, we handle machine 
idioms as well as other miscellaneous opportunities to 
reduce instruction sequences by providing machine 
dependent (MD) code an opportunity to access an 
expression as soon as it is created.  This allows us to 
perform preliminary analysis and set flags which can be 
accessed at code generation time to help generate 
machine idioms.  A common use of this facility is for 
generating immediate arguments.  In the md_prep 

access, the MD code can flag constants that 
can fit into immediate fields for that ISA.  
When the actual pass to generate code 
occurs, only constants that cannot fit into 
immediate fields will be register allocated. 

Another important use of this facility 
is for satisfying calling argument 
conventions.  We implement a register 
reservation system where register 
assignments can be made before the code 
generation pass.  Using this system, we can 
pre-assign registers to expressions that will 
be used as a call argument, which prevents 
a possible expression assignment to an 
unknown register and then an extra move 
to the correct argument register during 
code generation. 

For more complex idioms, we can 
make minor adjustments to the IR to 
simplify certain optimizations.  For 
example, we provide a special branch IR 
representation to accommodate 

Java bytecode
Intermediate 
representation 1

bpc
0  aload 0
1  iload 1
2  iaload
3  istore 3
4  aload 0
5  iload 2
6  iaload
7  istore 4

Intermediate 
representation 2

bpc eid
(bounds check omitted
   for clarity...)
 2 [1]  const 12
   [2]  add [L0] [1]
   [3]  const 2
   [4]  lsl [L1] [3]
   [5]  load @( [2]+[4] )
 6 [6]  lsl [L2] [3]
   [7]  load @( [2]+[6] )

bpc eid
(bounds check omitted
   for clarity...)
 2 [1]  const 2
   [2]  lsl [L1] [1]
   [3]  add [L0] [2]
   [4]  load @( [3]+12 )
 6 [5]  lsl [L1] [1]
   [6]  add [L0] [2]
   [7]  load @( [3]+12 )

add  %i0, 12, %g1
sll  %i1, 2, %g2
ld   [%g1+%g2], %g3
sll  %i2, 2, %g2
ld   [%g1+%g2], %g4

SPARC code

add  r3, r0, 12
ldr  r4, [r3, r1, LSL#2]
ldr  r5, [r3, r2, LSL#2]

ARM code

lsl  $t1, $a1, 2
add  $t0, $t1, $a0 
lw   $s0, 12($t0)
lsl  $t1, $a2, 2
add  $t0, $t1, $a0 
lw   $s1, 12($t0)

MIPS code

header

length

a[0]

0

a[1]

a[2]

8

12

16

20

array object layout

Equivalent C

L3 = L0[L1];
L4 = L0[L2];

1 ARM and SPARC support 
[r1 + r2] addressing

2 MIPS only supports [r + offset] 
addressing; note that offset 
can be merged directly into 
the expression since these 
cannot change during 
compilation

 

Figure 7. Idiomatic optimizations can be performed more quickly by 
having different IRs for different ISAs. 
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Legend:

L1

L2

B1

L1:U{0,2}
L2:U{0,1} (def)

L2 = L1 + 1
if( L1 != 0 )

L0: U{0,0}
L1: U{2,2}

B2

L1: U{0,1} (def)

L1 = L1 + 1

B3

L3: {0,1} (def)

L3 = L1 + L2

L1: U{1,0}
L2: U{1,0}

B5
(exit) return L3 r:%i0

L3: U{1,0}

B4

L3: U{0,1} (def)

L3 = L0 + 2

L0: U{1,0}
L1: U{0,0}

L1: U{1,0}

Y

N

N

Y

J0: predB0, succB1, succB4
    L0:R=%i0
    L1:R=%i1

J1: predB1,predB2,succB2,succB3
    L1:R=%i1
    L2:R=%i0

L3 J2: predB3, predB4, succB5
    L3:R=%i0

Bn
(block)

Ln:U{block_use,global_use}
Lx:U{block_use,global_use} (redefinition)

statement

Ln:U{block_use,global_use}

Allocation step-by-step:

before code 
generated

after code 
generated or 
defined in block

Incoming arguments L0=%i0, L1=%i1
B0 code generated, L0 & L1 assignments 

propagated by J0 (join 0)
%i0 is freed since there are no L0 uses 

down this path; L2=%i0 as B1 code 
generated; L1 & L2 assignments 
propagated by J1

L1=%i1 reserved from J1 before B2 code 
generated;  note that L1 is redefined in 
this block so L1in expression is distinct 
from  L1out expression

L3=%i0 from return argument reservation as 
B3 code generated or B4 code generated, 
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Figure 6. Register allocation example 



 

architectures that set CCs.  Also useful is altering array 
access decompositions to target addressing modes 
available for the ISA, as illustrated in Figure 7. 

Using this approach, we do not need to make an 
additional pass to optimize for machine idioms.  This 
system appears sufficiently robust, as we have been 
able to accommodate all the low-level optimizations 
that we have wanted to perform on the ISAs we have 
targeted so far. 

Initial design of the compiler was done on a MIPS 
IV ISA.  So far, we have ported the compiler to the 
SPARC v9 and StrongARM ISAs.  An ISA port 
requires defining a register file, assigning register 
classes and coding md_prep  (when required) and 
md_asm functions for each IR expression type (see 
Figure 1).  MD code represents about 1/4 – 1/3 of the 
total binary size of our dynamic compiler. 

As a demonstration of the portability of our design, 
each port, with some MD optimizations, only took 
about 2 man-weeks to complete.  As RISC style 
machines, the SPARC and MIPS ports are similar, but 
there are still significant differences in the register file 
and calling convention models.  The ARM architecture 
provides for unusual source argument arrangements, 
load/store addressing modes, and full instruction 
predication.  The current port does not use the more 
exotic aspects of the ARM architecture, but support 
could be added in future revisions.  A x86 port is 
planned, though not currently implemented.  

4. Comparisons To Other Compilers 
4.1 Dataflow Analysis 

Our compiler implementation of dataflow 
algorithms differs significantly from most modern 
optimizing compilers.  In this section, we discuss how 
our approach compares against traditional 
implementations. 

Optimizing compilers like the Sun-server compiler 
[6] and LaTTe JIT compiler [19] implement traditional 
dataflow analysis using lattices and flow functions [12].  
Traditional implementations can be computationally 
expensive for several reasons.  Setting up a problem for 
dataflow analysis often requires scanning the entire 
method to set up initial conditions. Additionally, some 
optimizations require more involved auxiliary data 
structures than bit vectors alone, may be iterative, or 
may require solving more than one dataflow problem. 

Rather than setting up separate dataflow problems, 
we apply several optimizations concurrently as IR 

expressions are generated.  Forward flow information 
required by these optimizations is communicated by 
processing EBB in reverse post-order when generating 
IR expressions  

When performing traditional iterative dataflow 
analysis, blocks are also processed in reverse post-order 
to minimize required iterations to reach a fixed point 
[12].  If A is the maximal number of loop back edges in 
the CFG, the bound on the maximum number of times a 
block may be visited before reaching a fixed point is 
A+1.  Logically, this is required to propagate forward 
flow information through loops so a fixed point can be 
found at the loop header.  In our implementation, we 
can use the per loop Java local load and store usage 
statistics collected in the CFG generation pass (Section 
3.2) to compute forward flow information through loop 
back edges without iterating.  For example, a local V 
can be copy or constant propagated to successor blocks 
outside the loop if V is not redefined within the loop 
(no stores to V within the loop). 

Our loop invariant code motion optimizer is also 
non-iterative.  Normally, a loop has to be scanned 
multiple times as loop invariant code motion of one 
expression inevitably can cause other expressions 
dependent on it to become loop invariant [12].  We 
generate IR expressions in a BB in order, and 
predecessor loop BBs are always processed first.  As a 
result, when loop invariant code motion is applied to an 
expression, this change is immediately communicated 
to successive, dependent instructions of the loop.   

What might be considered a major limitation to our 
approach is that it is largely restricted to optimizations 
that rely primarily on forward flow information.  Since 
most basic optimizations are based on forward flow 
information (e.g. reaching definitions, available 
expressions, copy propagation, constant propagation) 
[12], we do not consider this a serious restriction.   

4.2 Register Allocation 
In this section, we compare our on-the-fly register 

allocation scheme with graph coloring and other 
proposed fast allocation schemes.  Most register 
allocation algorithms work with liveness information, 
the span between a variable’s definitions to all its uses. 

While graph coloring usually generates the best 
results, it can be expensive.  Register coalescing and 
spill points cause the algorithm to iterate, which can 
result in high register allocation times, particularly for 
methods that are large or are not initially colorable [12]. 



 

All the fast register allocation schemes share more 
with each other than with graph coloring.  The most 
important common characteristic is that they consider 
allocation using a limited view of interference.  
Additionally, these algorithms handle spills 
dynamically at points in the program where there are no 
free registers.  

LaTTe’s register allocation system probably bears 
the closest resemblance to our implementation [19].  
Their algorithm uses three passes for each block: a scan 
that computes estimates of live variables and their last 
uses, a backward sweep that computes preferred 
register assignments, and a final forward sweep which 
allocates registers and removed unnecessary copies.  

Compared to the LaTTe JIT, our on-the-fly 
allocator requires one less pass over the code.  We 
compute liveness (derived from our local and global 
use counters) and perform register preallocation in the 
same step.  Additionally, we integrate these two 
computations into the DFG generation stage so that 
only one pass is required for register allocation 
(concurrent with code generation).  At each allocation 
point, the LaTTe allocator also has less information to 
make good spill decisions and register class selections. 

Linear scan allocators direct global allocation of 
register using a linear sweep of the program being 
compiled [4][17].  The basic linear scan allocator uses a 
simple view of liveness known as a lifetime interval, 
which spans from a variable definition to where it is 

last live in linear program order.   Each step of the 
algorithm tracks the active lifetimes at a given program 
point.  When there are more active lifetimes than 
available registers, the longest active lifetime is spilled.   

Although the basic linear scan algorithm is 
probably the fastest allocator we describe here, its 
representation of liveness is probably the most 
imprecise.  An algorithm has been proposed to improve 
the precision of lifetime intervals [17], at the cost of an 
additional dataflow analysis pass, and a scan to resolve 
assignment conflicts at basic block boundaries. 

5. Experiment Results 
5.1 Setup 

The microJIT was developed on a commercial 
version of the open source Kaffe virtual machine 
(http://www.transvirtual.com). We compared our JIT 
compiler against three other compilers that target the 
SPARC ISA.  Characteristics of these compilers are 
shown in Table 2.  The SPARC architecture was 
chosen because it had the largest availability of good 
compilers for which source code could be found, and 
because we wanted performance results from a neutral 
RISC architecture.  We could have also chosen the x86 
platform, but we were concerned that its small register 
file might skew the results by eliminating most 
possibilities for register allocation. 

We included the two dynamic compilers from the 
Sun JDK, the client and server compilers [9][6].  The 
server compiler uses the powerful, but expensive static-

Table 2. Features and characteristics of compilers evaluated. 

JIT Sun - Client Sun - Server SNU LaTTe MicroJIT 

Source C++ C++ C C 

64b ops Full Full Some Some 

Intermediate 
representation Simple SSA dataflow Dataflow Dataflow 

Major  compiler 
passes 4 Iterative 7 4 

Optimizations 

Block merging/elimination 
Simple constant 

propagation 
Inlining & specialization 

Loop invariant code motion 
Global value numbering 
Conditional constant 

propagation 
Inlining & specialization 
Instruction scheduling 

EBB value numbering 
EBB constant propagation 
Loop invariant code 

motion 
Dead code elimization 
Inlining & specialization 
Instruction scheduling 

CSE 
Copy propagation 
Constant  propagation 
Loop invariant code 

motion 
Dead code elimization 
Inlining & specialization 
Instruction scheduling 

Register 
allocation 1-pass dynamic Graph coloring 2-pass dynamic 1-pass dynamic 

Garbage 
collection Incremental copying Incremental copying Incremental  

mark & sweep 
Incremental  

mark & sweep 

Compiler size 700KB 1.5Mb 325KB 200KB 

Interpreter size 220KB 220KB 65KB None 



 

single assignment (SSA) representation 
internally.  This compiler is not optimized 
for fast compilation times, but generates 
extremely good code through traditional 
dataflow analysis.  The client compiler 
does not perform any advanced analysis, 
but focuses on basic register allocation and 
inlining optimizations.  Both of these 
compilers run under the HotSpot VM, 
which only compiles frequently called 
methods and interprets otherwise. 

The other compiler included in our 
experiment is the LatteVM [19].  This 
relatively fast dataflow compiler 
implements many of the optimizations 
performed by the Sun-server compiler.  
This VM also supports lazy compilation, 
although it appears to use very little 
interpretation during exeuction.  This 
compiler was not designed to be ported to 
different ISAs as the IR maps closely to the 
SPARC ISA. 

We used perfmon 
(http://web.cps.msu.ed/~enbody/perfmon.h
tml),  a library interface to the UltraSparc2 
hardware counters, to time compilations.  This was 
necessary to get accurate times for the compilation of 
smaller methods.  The UNIX time command was 
accurate enough for code execution times.  All VMs 
ran on the same machine (200MHz UltraSparc2 w/ 
Solaris 8). 

Table 3 lists the benchmarks used to evaluate the 
performance.  In choosing benchmarks, we tried to 
include a variety of programs to represent both 
numerical and object-oriented programs.  Most the 
larger benchmarks are part of the Spec JVM98 
(http://www.spec.org/) and Java Grande 
(http://www.epcc.ed.ac.uk/javagrande/javag.html) 
benchmark suites.  Scimark2 and jBYTEmark are 
benchmarks suites comprised of smaller kernels. 

5.2 Compilation Time 
Compilation times, decomposed by method 

bytecode size, are shown in Figure 8.  We normalized 
to bytecodes processed per 1k cycles to accommodate 
varying method bytecode sizes within each bin.  In this 
figure (and subsequent figures), two bars show 
microJIT’s compilation performance: advanced 
optimizations (scheduling, inlining, loop opt) are 
enabled for microJIT1 and disabled for microJIT2.  For 
methods <1000b, microJIT’s compilation times are 

always better, averaging over 2.5x faster than the 
closest dataflow compiler, LaTTe, and 12x faster than 
the Sun-server compiler.  Relative compilation times 
may be even better against the LaTTe compiler because 
it is heavily optimized for SPARC, and may incur 
additional overheads to support multiple target ISAs.  
While we are only about 30% faster than the Sun-client 
compiler, the client compiler performs fewer 
optimizations than the microJIT, LaTTe, and Sun-
server compiler. 
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Figure 8. Compilation rate for given method bytecode 
sizes in bytecodes processed per 1k cycles. 

Table 3. Method bytecode sizes by benchmark. 
Method bytecode size 

Benchmark 
<50B 50-

250B 
250B - 
1KB 

1K – 
5KB >5KB 

mp3 – mp3 decoder 131 70 17 4 1 

mtrt – raytracer 128 34 13 2 1 

jess – expert system 289 60 11 0 0 

compress – compression 35 8 4 0 0 

db – database 16 9 0 0 0 

jlex – parser gen.  47 33 23 3 3 

deltablue – planner 52 15 1 0 0 

richards – task simulator 306 54 4 0 0 

java_cup – parser gen. 122 30 7 0 0 

moldyn – particle simulation 13 15 3 1 0 

search – alpha beta search 15 20 4 0 0 

h263dec – video decoder 40 24 20 11 3 

pizza – java compiler 327 194 40 9 0 

euler – fluid dynamics 14 14 4 5 0 

jpeg – image compression 237 75 54 16 0 

mips_sim – cpu simulator 25 25 9 2 0 

scimark2 – fp loops 14 13 2 0 0 

jbytemark – int & fp loops 47 64 15 0 0 



 

Figure 9 shows the effect of various optimizations 
on compile time (CSE is always on by default).  
Inlining results in about a 10% slowdown and 
scheduling caused an average 15% penalty.  The cost of 
loop optimizations are relatively cheap expect for large 
methods, where it adds over 20% to the compilation 
time. 
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Figure 9 Compilation rate for microJIT with different 
optimizations disabled, in bytecodes processed per 1k 

cycles. 

Figure 10, also decomposed by method bytecode 
size, breaks down time spent in each pass of our 
compiler.  For very large methods (>1000b), time spent 
in DFG generation dominates almost 70% of 
compilation time.  We attribute this shift to the high 
cost of CSE.  As methods get large, we expect regions 
searched for CSE will grow, along with the number of 
expressions on which CSE is applied, resulting in non-
linear computational cost.  We believe this is also the 
primary cause of decreasing compilation speeds for 
larger methods.  If this effect is undesirable, one 
possible fix is to limit the depth of backward searches 

performed by CSE.  
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Figure 10. Times spent in each pass of microJIT. 

5.3 Generated Code Performance 
 Performance of the code generated by the 

compilers is shown in Figure 11 (long running 
applications, large data sets) and Figure 12 (short 
running applications, small data sets).  Benchmarks 
included in both graphs (like compress, db, jess, mp3, 
and mtrt) are run with different input data set sizes.  
Reported performance times are for total running time, 
including compilation, interpretation (if any), garbage 
collection, and native execution.  For comparison, 
performance of the original Kaffe JIT and a Sun JDK 
using only interpretation are also included.  The 
performance in Figure 11 is expressed as speedup 
normalized to the JIT compiler used in the JDK1.1 to 
compensate for the different sizes of each benchmark.  
This JIT compiler is a suitable baseline because it is a 
relatively conservative dynamic compiler that does not 
attempt any advanced optimizations.  Short run 
execution times in Figure 12 are represented in seconds 
and have been divided into interpretation, compilation 
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Figure 11. Speedup of large benchmarks relative to JDK1.1 (Sun’s pre-Hotpot JIT). 



 

and native execution times.  (Note: missing bars in the 
graphs represent programs that we could not collect 
results for) 

For long running applications, microJIT performs 
well on numerically intensive applications (e.g. mp3, 
euler, moldyn, jpeg, h263dec, jBYTEmark, and 
scimark2).  While the LaTTe and Sun-server compilers 
still produce better code, microJIT is able to outperform 
the Sun-client compiler on many applications.  On short 
running applications, microJIT’s low compilation times 
allow it to keep total execution time small relative to 
the other systems. 

Overall, we are most disappointed by our 
performance on object-oriented applications like db and 
jess.  db’s execution time is largely dominated by a 
loop nest within a shell sort 
routinue.  For this benchmark, 
we suspect aggressive array 
bounds check elimination 
within the loop nest allows 
LaTTe to perform particularly 
well on this program.  

To understand further the 
quality of code generated by 
our compiler, we also 
decomposed execution times of 
some of the long running 
benchmarks, given in Figure 13.  
Results are normalized to the 
Sun-server compiler and 
include garbage collection 
times.  This graph suggests that 
one factor limiting performance 

of microJIT code is inefficiencies in our garbage 
collector.  On applications that allocate memory 
intensively, our system spends a larger percentage of 
time in collection than other virtual machines, 
deteriorating its relative performance.  

Another performance limitation could be from our 
naïve implementation of specialization.  The Sun-client 
and server compilers support a particularly fast form of 
specialization using class hierarchy analysis (CHA) and 
deoptimization [9].  Non-final, public virtual and 
interface calls that have only one target class can be 
inlined directly without a check to verify the correct 
target object class.  If dynamic class loading causes this 
virtual or interface call to have more than one target 
class, the methods can be recompiled with these 
optimizations removed, including those on the current 
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Figure 13. Performance of large benchmarks normalized to Sun-server. 
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call stack, so that the program will run correctly.  

5.4 Static Memory Usage 
Total size of the compilers and associated 

interpreter (if any) are shown in Table 2.  These 
numbers were obtained by taking associated object files 
and applying the UNIX strip to them to remove 
unnecessary symbols.  At 200KB, microJIT’s static 
memory requirements are smaller than the other 
compilers.  Total static memory requirements are 
further improved by omission of an interpreter in our 
system.  While Sun-server and Sun-client may be larger 
because they are written in C++, and support the 
profiling (JVMPI) and debugging  (JVMDI) interfaces, 
we believe these differences should not dramatically 
affect static memory comparisons. 

5.5 Dynamic Memory Usage 
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Figure 14. Dynamic memory required during compilation. 

An important consideration for dynamic 
compilation in an embedded system is the limited 
dynamic memory available to the compiler.  Figure 14 
shows dynamic memory used by the compilers during 
compilation.  On average, microJIT uses 25% of the 
memory required by the LaTTE compiler and 12.5% of 
the memory required by the Sun-server compiler, but it 
uses twice the memory required by the Sun-client 
compiler.  These numbers suggest a 250KB buffer is 
sufficient memory for microJIT to compile method 
bytecodes less than 1KB. 

To limit the dynamic memory required by the 
compiler for larger method bytecodes (> 1KB), 
microJIT could be amended to support partial 
compilation.  In this mode, microJIT’s first pass (CFG 
construction) would execute normally and generate the 
CFG of all the BBs in the method.  The DFG 
generation and code generation passes would then 
execute as before, but only on sections of the CFG at 

one time (e.g. one EBB or loop nest).  This relies on the 
observation that the bulk of dynamic memory used by 
the compiler is for the intermediate representation of 
the bytecodes.  By only generating the intermediate 
representation for subsections of a method at one time, 
we can reduce total dynamic memory requirements.  
This possible improvement to microJIT would reduce 
dynamic memory requirements at the cost of limiting 
some global optimizations for large bytecode methods. 
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Figure 15. Code expansion of native code after translation 
of bytecodes. 

The other important dynamic memory 
consideration in an embedded system is memory used 
to store translated code.  The effects of a limited code 
buffer on total system performance were beyond the 
scope of our study (e.g. choosing which translated 
methods to discard and factoring the cost of 
recompilation when the code buffer is full), but we did 
collect statistics on code expansion resulting from 
translation.  Figure 15 shows the average number of 
bytes of native code (code and data segments) 
generated per bytecode translated by mciroJIT.  
microJIT1 (with all optimizations enabled) generated 
less code primarily due to filling of branch delay slots 
by the instruction scheduler.  We also did not observe 
any dramatic differences in code expansion between the 
compilers evaluated.  We found the largest benchmarks 
evaluated here (jpeg and pizza compiler) generated at 
most 300KB of native code. 

6. Conclusions 
We have demonstrated how a fast dynamic 

optimizer can be constructed that includes advanced 
optimizations without incurring high compilation costs 
or having high memory requirements.  This was 
accomplished by minimizing compiler passes while 
optimizing aggressively and by efficient 
communication and representation of flow information.  
Unlike traditional dataflow compilers that solve 



 

dataflow equations and apply optimizations 
successively, we perform local and global 
optimizations as the IR expressions are generated.  
Additionally, we allocate registers concurrently with 
code gneration using an on-the-fly allocator that utilizes 
local interference, liveness, and register classes when 
making allocation and spill decisions.   

Our experiment shows that the tradeoff between 
short compile times and high code quality may be less 
pronounced than commonly believed.  This result 
suggests that we can incorporate small dynamic 
compilers into resource-constrained environments 
where high compile times, poor code quality, and the 
cost of more expensive systems cannot be tolerated. 
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