(用) SMU.

USENIX Hotsec'11

Security Fusion: A New Security Architecture for Resource-Constrained Environments

Suku Nair, Subil Abraham, Omar Al Ibrahim HACNet Labs, Southern Methodist University

Resource-Constrained Devices

Alien Squiggle 1.1 (EPC C1G2) Iris Mote (IEEE 802.15.4)

Constraint	Value
Gate count	7500 GE
Memory	240 bits
Power consumption	25 uW
Response time	$15 \sim 30 \mathrm{us}$
Bandwidth	$860 \sim 960 \mathrm{MHz}$
Die space	$0.4 \mathrm{~mm} \times 0.4 \mathrm{~mm}$
Physical size	$97 \mathrm{~mm} \times 11 \mathrm{~mm}$

Constraint	Value
Memory	Flash: 128 KB EEPROM: 4 KB RAM: 8 KB
Processor	16 MIPS @ 16 MHz
Power supply	2 AA Batteries
Radio communication	RF230 2.4 GHz IEEE 802.15.4

References:

1) Alien Squiggle family. http://www.alientechnology.com/docs/products/DS ALN 964d.pdf
2) IRIS datasheet. http://www.xbow.com/Products/Product pdf files/Wireless pdf/IR/S Datasheet.pdf

Encryption Algorithms

Algorithm	Key(bit)	Plaintext (bit)	Cycles	GE	Power	Technology $(\mu \mathrm{m})$
AES	128	128	1016	3595	$8.15 \mu \mathrm{~A}$	0.35
TEA	128	64	64	2355	$12.34 \mu \mathrm{~W}$	0.18
SHA-1	L	$192(\mathrm{in})$ $160($ out $)$	405	4276	$26.73(1.2 \mathrm{~V})$	0.13
Stream- cipher (1 LFSR)	Max: 32	64	92	685	$0.1582 \mu \mathrm{~W}$	0.18
DES	56	64	144	2309	$2.14 \mu \mathrm{~W}$	0.18
ECC	Field $=113$	L	195159	$\sim 10 \mathrm{~K}$	L	0.35
IDEA	128	64	320	4660	$3 \mu \mathrm{~W}$	0.18

Reference: R\&D of Gen 2 with enhanced security mechanism, Auto-ID Lab at Fudan, March 2009

SCHOOL OF ENGINEERING

Challenges

- Resource constraints
- Crypto may not be available
- AES/SHA-2 needs 20-30 thousand gates
- Energy constraints
- Proliferated number of devices
- Untrusted environment
- Nodes can be easily compromised
- Wireless medium - inherently broadcast
- Aggregation-based applications

Types of Attacks

- Eavesdropping
- Malicious reads
- Replay attacks
- Cloning
- Brute-force search
- Denial-of-service

Security Fusion: The Concept

State Machine Model

State machine description (Mealy machine):

Transition rules

(Current State, Input) \rightarrow Next State
$\left(S_{i}\right.$, input $\left._{A}\right) \rightarrow S_{j}$
$\left(S_{i}\right.$, input $\left._{B}\right) \rightarrow S_{v}$,
where $(0 \leq i, j, v \leq n)$ and input ${ }_{A} \neq$ input $_{B}$

Output rules

(Current State, Input) \rightarrow Output
$\left(S_{i}\right.$, input $\left._{A}\right) \rightarrow a_{i}$
$\left(S_{i}\right.$, input $\left._{B}\right) \rightarrow b_{i}$,
where $a_{i} \neq b_{i}$ when input $_{A} \neq$ input $_{B}$

Example

Consider a 3-state Finite State Machine (FSM)

- $\mathbf{n}=\mathbf{3}\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}$
- $\quad \mathbf{k}=\mathbf{3}$ [Each state is assigned a set of 3 pseudonyms of which $p(1<=p<k)$ pseudonyms may be used to represent (O) and $q=k-p$ pseudonyms may be used to represent a (1).]

State Diagram

States	Transition on "0"	Transition on " 1 "
S_{1}	1 , or 2	3
$\mathrm{~S}_{2}$	4	5 , or 6
$\mathrm{~S}_{3}$	7, or 8	9

Pseudonyms Assignment

Security Protocol

Denote N: Node, R: Reader
$R \rightarrow N$: Send read query
N : Obtain <transition bit> (0/1)
$N \rightarrow R$: N moves to the next state based on <transition bit> and outputs an pseudonym
R resolves Ns output and syncs

Machine Indexing

k: pseudonyms/state n : no of states N : no of machines $\Theta\left(k^{*} n^{*} N\right)$ entries

Fusion Logic

1. Consensus of the response pattern into one secure metric
2. With N nodes, an intruder needs to derive at least $N / 2$ state machines to influence system behaviour
3. Used to reach a global decision
4. Security complexity is non-linear

Machine Selection Criteria

1. State reachability

- Every state should be reachable to every other state through a sequence of transitions

2. Machine complexity

- NFA-DFA conversion should be non-linear

3. Pseudonym randomness

- Values assigned to states are random and unpredictable.

4. Pattern randomness

- The execution pattern should be random as well

Analysis: Large-Scale Attacks

NFA-DFA State Blowup

Given a natural number m, there exists an m-state NFA whose minimal equivalent DFA has $\geq 2^{m}-1$ states

- n : number of states, k : pseudonyms per state, and $m=n k$
- Attacker builds an NFA with $n k$ states $n k^{2}$ edges
- Hopcroft's Algorithm : $m^{*} \log (m)$ for DFA
- NFA \rightarrow DFA conversion lead to exponential blowup in states for some machines

Analysis: Solution Space

Observation

- With n states, each of which may move to any state depending on two input values, and with nk numbers to be assigned into n states with k elements in each state, of which $p(1 \leq p<k)$ numbers may be used to represent a transition on 0 , and $q(q=k-p)$ numbers may be used to transition on 1 , the total number of possible state machines that can be generated is:

$$
=(n)^{2 n}\left[\sum_{p=1}^{k-1} \frac{k!}{p!(k-p)!}\right]^{n}\left[\frac{n k!}{(k!)^{n}}\right]
$$

Analysis: Malicious Reads

Packet Overhead for 90% Collection Probability

- Estimate the number of packets to determine state values and transitions
- Randomness assumption based on Pascal's equations

Conclusion/Future Work

- New paradigm, namely "security fusion" has been introduced
- Explore finite automata concepts to realize security fusion
- Viable, state-machine based implementation of "security fusion"
- Investigate other models for security fusion to provide strong overall security guarantees for resourceconstrained environments

Questions ?

SCHOOL OF ENGINEERING

