

USENIX Hotsec'11 Security Fusion: A New Security Architecture for Resource-Constrained Environments

Suku Nair, Subil Abraham, Omar Al Ibrahim HACNet Labs, Southern Methodist University

Resource-Constrained Devices

Alien Squiggle 1.1 (EPC C1G2)

Constraint	Value
Gate count	7500 GE
Memory	240 bits
Power consumption	25uW
Response time	15~30us
Bandwidth	860~960 MHz
Die space	0.4mm x 0.4mm
Physical size	97mm x 11mm

Constraint	Value
Memory	Flash: 128 KB EEPROM: 4 KB RAM: 8 KB
Processor	16 MIPS @ 16 MHz
Power supply	2 AA Batteries
Radio communication	RF230 2.4 GHz IEEE 802.15.4

Iris Mote (IEEE 802.15.4)

RFID

Sensors

References:

1) Alien Squiggle family. <u>http://www.alientechnology.com/docs/products/DS_ALN_9640.pdf</u> 2) IRIS datasheet. <u>http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/IRIS_Datasheet.pdf</u>

Encryption Algorithms

Algorithm	Key(bit)	Plaintext (bit)	Cycles	GE	Power	Technology (μm)
AES	128	128	1016	3595	8.15 μΑ	0.35
TEA	128	64	64	2355	12.34 μW	0.18
SHA-1	L	192(in) 160(out)	405	4276	26.73 (1.2V)	0.13
Stream- cipher (1 LFSR)	Max: 32	64	92	685	0.1582 μW	0.18
DES	56	64	144	2309	2.14 μW	0.18
ECC	Field = 113	L	195159	~ 10K	L	0.35
IDEA	128	64	320	4660	3 μW	0.18

Reference: R&D of Gen 2 with enhanced security mechanism, Auto-ID Lab at Fudan, March 2009

Challenges

- Resource constraints
 - Crypto may not be available
 - AES/SHA-2 needs 20-30 thousand gates
 - Energy constraints
- Proliferated number of devices
- Untrusted environment
 - Nodes can be easily compromised
- Wireless medium inherently broadcast
- Aggregation-based applications

- Eavesdropping
- Malicious reads
- Replay attacks
- Cloning
- Brute-force search
- Denial-of-service

State Machine Model

State machine description (Mealy machine):

Transition rules

(Current State, Input) \rightarrow Next State (S_i , input_A) $\rightarrow S_j$ (S_i , input_B) $\rightarrow S_v$, where ($0 \le i$, j, $v \le n$) and input_A \ne input_B

Output rules

(Current State, Input) \rightarrow Output (S_i , input_A) $\rightarrow a_i$ (S_i , input_B) $\rightarrow b_i$, where $a_i \neq b_i$ when input_A \neq input_B

Example

Consider a 3-state Finite State Machine (FSM)

- **n=3** { s_1, s_2, s_3 }
- k=3 [Each state is assigned a set of 3 pseudonyms of which p (1<= p < k) pseudonyms may be used to represent (0) and q = k-p pseudonyms may be used to represent a (1).]
- The total set of pseudonyms available for the 3- finite state machine = nk = 9
- Each state (s₁, s₂, s₃) will have *k* pseudonyms assigned to it.

States	Transition on "0"	Transition on "1"
S ₁	1, or 2	3
S ₂	4	5, or 6
S ₃	7,or 8	9

Pseudonyms Assignment

Security Protocol

Denote N: Node, R: Reader

- $R \rightarrow N$: Send read query
- *N:* Obtain *<transition bit> (0/1)*
- $N \rightarrow R$: N moves to the next state based on *<transition bit>* and outputs an pseudonym
- *R* resolves *N*s output and syncs

Machine Indexing

- 1. Consensus of the response pattern into one secure metric
- 2. With *N* nodes, an intruder needs to derive at least *N/2* state machines to influence system behaviour
- 3. Used to reach a global decision
- 4. Security complexity is non-linear

Machine Selection Criteria

1. State reachability

- Every state should be reachable to every other state through a sequence of transitions
- 2. Machine complexity
 - NFA-DFA conversion should be non-linear
- 3. Pseudonym randomness
 - Values assigned to states are random and unpredictable.
- 4. Pattern randomness
 - The execution pattern should be random as well

SMU, BOBBY B. LYLE School of Engineering

NFA-DFA State Blowup

Given a natural number m, there exists an m-state NFA whose minimal equivalent DFA has $\geq 2^m$ -1 states

- n: number of states, k: pseudonyms per state, and m=nk
- Attacker builds an NFA with nk states nk^2 edges
- Hopcroft's Algorithm : *m* log (m) for DFA*
- NFA → DFA conversion lead to exponential blowup in states for some machines

Analysis: Solution Space

Observation

 With n states, each of which may move to any state depending on two input values, and with nk numbers to be assigned into n states with k elements in each state, of which p (1≤ p < k) numbers may be used to represent a transition on 0, and q (q=k-p) numbers may be used to transition on 1, the total number of possible state machines that can be generated is:

$$= (n)^{2n} \left[\sum_{\rho=1}^{k-1} \frac{k!}{\rho! (k-\rho)!} \right]^n \left[\frac{nk!}{(k!)^n} \right]$$

Analysis: Malicious Reads

- Estimate the number of packets to determine state values and transitions
- Randomness assumption based on Pascal's equations

Conclusion/Future Work

- New paradigm, namely "security fusion" has been introduced
- Explore finite automata concepts to realize security fusion
- Viable, state-machine based implementation of "security fusion"
- Investigate other models for security fusion to provide strong overall security guarantees for resourceconstrained environments

Questions?

