# Analyzing Performance Asymmetric Multicore Processors for Latency Sensitive Datacenter Applications

HotPower'10 October 3<sup>rd</sup>, 2010

Vishal Gupta\* (Georgia Tech) Ripal Nathuji (Microsoft Research)

\* Work done during summer internship at Microsoft Research

#### What are AMPs?



## Why AMPs?



#### Goals

- How good are AMPs as compared to SMPs?
- Can datacenter applications save power using AMPs?

#### Datacenter Model



## Objective

$$P_{datacenter}^{AMP} < P_{datacenter}^{SMP}$$
?

- Constant work
- Meet latency SLA

#### **AMP Use Cases**

Energy Scaling



Sequential execution

Parallel Speedup



Parallel execution

### Energy Scaling (ES)



## Energy Scaling (ES)



Smaller core = lesser power

### Parallel Speedup (PS)

Parallel application





### Parallel Speedup (PS)



Speedup = Higher throughput

### Queuing Model for Server



M/M/1 Queuing Model

Avg. 
$$E[T] = \frac{1}{\mu - \lambda}$$
  
Response Time

### Modeling Service Rate (µ)

Parallel Speedup (PS) (refer to paper for ES)

Parallel application





Amdahl's Law for Multicores

#### Amdahl's Law for Multicores

$$r = Area(Big/Core)$$



$$Area = r$$
$$Perf = perf(r)$$

$$n = Chip area$$

| P | P | P | P |
|---|---|---|---|
| P | P | P | P |
| P | P | P | P |
| P | P | P | P |



f = fraction of computation that can be parallelized

#### Amdahl's Law for Multicores

$$\mu_{SMP}(f,n,r) = \frac{1}{\frac{1-f}{perf(r)} + \frac{f}{\frac{n}{r} * perf(r)}}$$

$$\mu_{AMP}(f,n,r) = \frac{1}{\frac{1-f}{perf(r)} + \frac{f}{n-r}}$$

Ref: Hill and Marty, Amdahl's law in the multicore era (IEEE Computer'08)

### Server Throughput (λ)

$$\lambda_{server}^{peak} = \mu - \frac{1}{T_{SLA}}$$

Datacenter capacity = No. of servers \* Server throughput

Constant Work 
$$\lambda_{datacenter} = N_{server}^{SMP} * \lambda_{server}^{SMP}$$

$$\lambda_{datacenter} = N_{server}^{AMP} * \lambda_{server}^{AMP}$$

#### Datacenter Power Consumption

Datacenter power (P) = No. of servers \* Server power

$$P_{datacenter}^{SMP} = N_{server}^{SMP} * P_{server}^{SMP}$$

$$P_{datacenter}^{AMP} = N_{server}^{AMP} * P_{server}^{AMP}$$

### Modeling Server Power



Ref: The Case for Energy-Proportional Computing, Barroso & Hölzle, IEEE Computer 2007

### Modeling Server Power



$$P_{server} = \sum W_{load}(U) * P_{server}(U)$$

### Results

$$P_{datacenter}^{AMP} < P_{datacenter}^{SMP}$$
?

### PS: Power Savings

#### Upto 52% power savings



Fraction of work that can be parallelized (f)

### ES: Power Saving

#### Upto 14% power savings



### AMP Power Savings

PS looks more promising that ES

Can we achieve these savings in reality?

### H/W & S/W Design Challenges

High (but not too high!) f



Fraction of work that can be parallelized (f)

#### **Practical Considerations**

- Scalability: Amdahl's law assumes unbounded scalability
- Migration overhead: zero migration overhead
- Perfect scheduling: oracle scheduler

Actual savings are going to be lower

#### Conclusions

- Potential for power savings in datacenters using AMPs
- Parallel Speedup more promising than Energy Scaling
- Practical considerations to realize full benefits

#### Future work:

Extend our analysis to functional asymmetry