
Capturing and Composing Parallel Patterns with Intel CnC

Ryan Newton, Frank Schlimbach, Mark Hampton, Kathleen Knobe

Intel Corporation

1. Introduction 4. In-Place Memory Operations with CnC--

<TDtag> <BUtag>

(TDstep) (BUstep)

[TDitem] [BUitem]

2. What is CnC?

Computation Step

Data Item

Control Tag

[x]

(foo)

<T>

• Intel Concurrent Collections (CnC) is a deterministic parallel

programming model that supports task and data parallelism

It does not explicitly specify the parallel execution of operations

Only an application’s semantic ordering constraints are specified

• There is a separation of concerns between the domain expert—who

focuses on the semantic constraints—and the tuning expert—who

maps the application to the target platform

3. Using Modules in CnC

• CnC provides three types of static

collections:

Computation steps are high-level

operations ordered according to their

semantic constraints

Data items are the data produced and

consumed by computation steps

Control tags prescribe steps, i.e. cause

them to execute

• Collections are connected via data

and control dependences that specify

the program’s ordering constraints

• For each static collection, a set of

dynamic instances is generated at

runtime; each data item instance is

uniquely tagged, supporting

determinism

• The execution of the CnC graph is

invoked by the environment, which

can produce and consume data items

and control tags

Producer - consumer

(step1) [item] (step2)

Data Dependence

CnC Collections

Controller - controllee

<t2>

(step1) (step2)

Control Dependence

• Previously, all CnC graphs

were flat, and there was no

code reuse, so even if steps s1

and s2 performed identical

computations, the

programmer had to write the

same code twice

• By abstracting the step as a

single module s, the

programmer only needs to

write the computation code

once, allowing for code reuse

• Programmer productivity can be improved by encapsulating

structured, well-understood parallel algorithms, i.e. parallel patterns

• We believe it is important to support these parallel patterns within a

high-level framework that can deliver semantic guarantees such as

determinism while still providing flexibility for performance tuning

• In this work, we present Intel CnC as a candidate substrate for

capturing and combining parallel patterns

(s1) [out1] (s2)[in] [out2]

<t1> <t2>

(s) [out1] (s)[in] [out2]

<t1> <t2>

• A module takes arguments at its instantiation point (resembling a

function) and generates a subgraph as a result

• In addition to code reuse, our module system provides the following

benefits:

A scoping mechanism for unsafe features

An isolation mechanism to reason about patterns’ invariants separately from

the larger environment

• CnC data items are single-assignment, enabling determinism, but

preventing the implementation of in-place parallel algorithms

• We address this issue by using a lower-level CnC layer, CnC--

CnC-- can be used by modules which internally violate the rules of CnC

The module system safely isolates the portion of the code that contains in-

place memory operations, maintaining determinism for the entire program

• Consider the following module which defines a divide-and-conquer

pattern (the squiggly lines indicate input from or output to the

module’s external environment, i.e. the module arguments):

Divide-and-Conquer

5. Step Scheduling Controls in CnC--

• The module receives an initial

TDitem instance

• TDstep will descend the tree,

dividing its TDitem input data

into smaller chunks

• When the threshold size is

reached, TDstep will work on

the chunk and a BUitem

instance will be generated

• BUstep combines the BUitem

instances as it progresses

back up the tree

• The final BUstep will output

the finished data to the

environment

Except for the initial input and final output, the

TDitem and BUitem data are completely private to

the module, and can be safely operated on in-place

• CnC-- can also be used to provide low-level scheduling control,

facilitating performance tuning for a wide range of patterns

• The scheduling controls of CnC-- include priorities, ordering

constraints, dynamic chaining, and affinity

• Scheduling controls are composable and are represented as

declarative functions on tags, making them amenable to static analysis

• We illustrate the application of two scheduling controls below

(s:0)

<t:0>

(s:2)

<t:2>

(s:6)

<t:6>

(s:5)

<t:5>

(s:1)

<t:1>

(s:4)

<t:4>

(s:3)

<t:3>

Priorities

• A partial dynamic instance

graph is shown to the

left—each step instance in

the collection s generates tag

instances in the collection t

for its left and right children

• If we want to achieve a

parallel breadth-first

schedule, we can specify that

the step instance with the

lowest-numbered tag should

have highest priority

Dynamic Chaining

(sa:0)

<ta:0>

(sb:0)

<tb:0>

[tmp:0]

(sa:1)

<ta:1>

(sb:1)

<tb:1>

[tmp:1]

• The partial dynamic instance graph to

the left represents independent iterations

of a loop that performs a computation

step sa and a dependent step sb

• By chaining sa:i with sb:i, we can

improve memory locality by forcing

each consumer to execute immediately

after its producer


