
LAWRENCE BERKELEY NATIONAL LABORATORY

Alex Kaiser, Samuel Williams, Kamesh Madduri, Khaled Ibrahim, David Bailey, James Demmel, Erich Strohmaier

{ ADKaiser, SWWilliams, KMadduri, KZIbrahim, DHBailey, EStrohmaier }@lbl.gov, demmel@eecs.berkeley.edu

F U T U R E T E C H N O L O G I E S G R O U P

D
en

se
 L

in
ea

r A
lg

.
S

pa
rs

e
Li

ne
ar

 A
lg

.
S

tru
ct

ur
ed

 G
rid

s
U

ns
tru

ct
ur

ed
 G

rid
s

S
pe

ct
ra

l
P

ar
tic

le
s

M
on

te
 C

ar
lo

G

ra
ph

s
an

d
Tr

ee
s

S
or

tin
g

K
er

ne
l D

ef
in

iti
on

R

ef
er

en
ce

 Im
pl

em
en

ta
tio

n
O

pt
im

iz
ed

 Im
pl

em
en

ta
tio

n
S

ca
la

bl
e

In
pu

ts

Ve
rif

ic
at

io
n

S
ch

em
e

Scalar-Vector Multiplication ✔ ✔ ✔
Elementwise-Vector Mult. ✔ ✔ ✔
Matrix-Vector Mult. ✔ ✔ ✔
Matrix-Matrix Mult. ✔ ✔ ✔
LU Factorization ✔ ✔ ✔ ✔ ✔
Symmetric Eigensolver (QR) ✔ ✔ ✔ ✔
Cholesky Factorization ✔ ✔ ✔
Solve PDE via SpMV (y=Ax) ✔ ✔ ✔ ✔ ✔
SpTS (Lx=b) ✔ ✔ ✔ ✔
Matrix Powers (yk=Akx) ✔ ✔ ✔ ✔
Solve PDE (Conjugate Gradient) ✔ ✔ ✔ ✔
Solve PDE via KSM/GMRES ✔ ✔ ✔ ✔
SpLU
Finite Difference Derivatives ✔ ✔ ✔ ✔
FD/Laplacian ✔ ✔ ✔ ✔ ✔
FD/Gradient ✔ ✔ ✔ ✔ ✔
FD/Divergence ✔ ✔ ✔ ✔ ✔
FD/Curl ✔ ✔ ✔ ✔
FD/Solve PDE (explicit) ✔ ✔ ✔ ✔
FD/Solve PDE (implicit) ✔ ✔ ✔ ✔
FD/Solve PDE (multigrid) ✔ ✔ ✔ ✔

There are a number of other important structured grid methods including lattice Boltzmann (LBM),
finite volume, and AMR that we have yet to enumerate representative kernels for.

1D FFT (complex complex) ✔ ✔ ✔ ✔
3D FFT (complex complex) ✔ ✔ ✔ ✔
Convolution ✔ ✔ ✔ ✔
Solve PDE via FFT ✔ ✔ ✔ ✔
2D N2 Direct ✔ ✔ ✔
3D N2 Direct ✔ ✔ ✔

✔ ✔ ✔ ✔
✔ ✔ ✔ ✔

2D Particle-in-cell (PIC)
3D Particle-in-cell (PIC)
2D Barnes Hut ✔ ✔ ✔ ✔
3D Barnes Hut ✔ ✔ ✔ ✔
2D Fast Multipole Method
3D Fast Multipole Method ✔
Quasi-Monte Carlo Integration ✔ ✔ ✔ ✔
EP Summation ✔ ✔ ✔ ✔
Graph Traversal ✔ ✔ ✔ ✔
Betweenness Centrality ✔ ✔ ✔ ✔
Integer Sort ✔ ✔ ✔ ✔
100 Byte Sort ✔ ✔ ✔ ✔
Spatial Sort ✔ ✔

2D N2 Direct (with cut-off)
3D N2 Direct (with cut-off)

Our kernel selection predominantly reflects scientific computing applications. There are numerous
other application domains within computing whose researchers should enumerate their own
representative problems. Some of the problems from other domains may be categorized using the
aforementioned motifs, some may be categorized into other Berkeley Motifs not listed above (such
as branch-and-bound, or dynamic programming), while others may necessitate novel motif
creation.

Although even within our community unstructured grids are commonly used, we have yet to
enumerate any concise representative kernels.

Kernel

Motivation
Current research is focused on how to effectively use an
ever diversifying array of parallel processors. As such,
the community is being driven into an evolutionary and
architecturally-driven mindset. We believe this will yield
suboptimal results.

For hardware/software co-design to truly be effective, we
must start from the core computational methods we wish
to accelerate, not code extracted from existing
applications.

Thus, this project is focused on creating a kernel testbed
based on the core computational methods found in high-
performance computing. We believe the core
methodology (if not some of the kernels) are applicable in
other domains. Previous attempts have create
benchmarks that may not fully enable inter-disciplinary
research.

Testbed Components
  Our testbed is composed of a series of kernels.
  For each kernel, the testbed mandates creation of:

1.  a formal problem specification in a mathematical,
or domain-appropriate language

2.  a scalable input generator
3.  a scalable verification scheme

  Optionally, we provide a reference implementation in
commonly used programming languages.

  Additionally, we may provide an optimized reference
implementation that provides insights into the
bottlenecks on existing hardware and researcher’s
optimizations to eliminate, hide, or mitigate them.

Intended Usage
  We use the taxonomy that researchers should produce

a HW/SW “solution” that efficiently implements the
”problem” as specified using a domain-specific
mathematical language.

  We believe researchers will be able to take our testbed
and create benchmarks that foster research in many
fields.

  One may gauge the quality of the solution through a
variety of existing metrics based on performance,
energy, power, cost, productivity, etc…

Kernel Testbed Today
  To date, we have created a testbed of over 40 kernels
  Virtually every non-trivial kernel has an associated

scalable verification scheme.
  Additionally, we have created sequential C or MATLAB

reference implementations for most of them.
  We list their status below and categorize them based

on the seven dwarfs.

(1) Problem Specification
  The problem specification for a kernel mathematically

or quantitatively defines the functional relationship
between input and output.

  We strive not to use array notation or other
programming language-based constructs (e.g. loops
for parallel constructs) in our definitions.

  For example, in numerical linear algebra, we define
problems using the well developed lexicon of operands
(scalars, vectors, matrices) and operators (addition,
multiplication, transpose, inverse, summation, etc…)

(2) Scalable Input Dataset
  Wherever possible, each kernel problem definition is

accompanied by a scalable input generation scheme
  They should be amendable to straightforward and

independent verification while guaranteeing the
existence of a solution (random inputs may not suffice).

  When performing distributed or novel HW/SW design,
researchers should re-implement the input generators.

(3) Verification Scheme
  We wish to verify problems independently from their

definitions. (one shouldn’t use reference codes to
verify novel hardware/software designs)

  In many domains, for carefully constructed inputs, we
may provide an analytic solution based on the calculus
of the underlying mathematics.
 (see example in next column)

  Some kernels are simple functions (they’re not
solvers). For them, complex verification schemes are
usually not needed.

Optional Reference Implementation
  To provide some guidance as how one might

implement such a kernel using existing languages,
programming models, and hardware, we provide a
reference implementation for each kernel.

  The reference implementation is either a sequential C
or MATLAB program including the input generation and
verification components (where applicable)

  The reference implementations should never be
used as the basis for benchmarking. It is
incumbent upon researchers to produce
appropriate implementations for their field of
research.

Input/Verification Example
  Consider solving the heat equation PDE on a

rectangular N-dimensional domain.
  By carefully selecting the initial and boundary

conditions, we may analytically solve the problem.
  Conversely, we may solve the problem numerically

using one of 6 different methods (spanning three
dwarfs)

  All methods should produce the same answer as a
sampling of the analytic solution.

  We may aggressively push the complexity in the
sparse arena by permuting the grid enumeration (rows/
columns) or randomly adding explicit zeros.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Solve
(FFT)

Solve
(explicit)
w/stencils

Solve
(iterative)
w/stencils

Solve
(multigrid)
w/stencils

Solve
(explicit)
w/SpMV’s

Solve
(iterative)
w/SpMV’s

Solve
Problem

Analytically

Structured
Grids

Spectral
Methods

A
na

ly
tic

 S
ol

ut
io

ns

N
um

er
ic

 S
ol

ut
io

ns

Sa
m

pl
ed

 A
na

ly
tic

 S
ol

ut
io

n

=?

=?

=?

=?

=?

=?

Quality of HW/SW Solution
  If this testbed were used only for SW optimization, then

the quality of the optimized implementations is
primarily time or energy.

  If used for HW/SW co-design, hardware design cost
and portability should be considered

  If used for programming model or language research,
productivity might be of interest.

✔ Fixed Binary

✔ ✔ ✔ Fixed Source Code

✔ ✔ ✔ ✔ Fixed Interface, but may optimize code

✔ ✔ ✔ ✔ ✔ Code-Based Problem Definition

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ High-Level Problem Definition B
en

ch
m

ar
k

S
ty

le

M
ic

ro
-a

rc
h.

C
om

pi
le

rs

In
st

ru
ct

io
n

S
et

S
W

 O
pt

im
iz

at
io

n

P
ro

g.
 M

od
el

s

La
ng

ua
ge

s

M
em

or
y

A
rc

h.

A
lg

or
ith

m
s

Enabled Fields of Research
Benchmark limitations vs. fields of

research enabled by the benchmark

Problem:
Solve

Heat Eqn.

Sample
the Analytic

Solution

Sample
Initial

Conditions

Create
Sparse
Matrix

Permute
(scramble)

Enumeration
and Add Zeros

Sparse
Linear

Algebra

✔ ✔

