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Abstract

To improve performance, computer systems are forcing more microarchitectural and parallel hardware details
to be directly exploited by application programmers, exposing limitations in existing compiler and OS infras-
tructure, which is failing to maintain the software productivity of the past. In this paper we propose a prag-
matic approach, motivated by our experience with BLIS [11], for building applications that tolerate changing
hardware, delivering good performance from the same source across diverse parallel targets. Applications are
coded in terms of generic parallel patterns using a “piggy back” language, embedded into a base sequential lan-
uage by attaching semantics to function calls. Our approach allows programmers to leverage multiple pro-
cessor-specific and domain-specific toolchains encapsulated in specialization modules, which extract their input
information from the semantics of the function calls, creating an isolation layer bewteen application and target
platforms. Developers use existing sequential development tools and languages to code and debug, performing
specialization as a separate step when shipping the code. We show this approach can successfully specialize a
single source to diverse and evolving heterogeneous multi-core targets and enable aggressive compiler optimiza-
tions.

1 Motivation and Overview

Programmers and project managers ask “what parallel
language should I port my application to?” They
want to port it once, and not port it ever again, only
touching the code afterwards for application-driven
reasons, but not for hardware or performance reasons.
This can only be achieved with an isolation layer that
takes away control of deciding when and where a task
runs, hiding these decisions in the isolation layer . To
be efficient on hardware, the isolation layer also needs
control over the work in a task, by fusing or fissioning
task code, and/or by controlling the size of data or
iteration space in the task. Finally, to enable the
lowest overhead scheduling, the isolation layer needs
to be supplied with a model that predicts execution
time and variability of a task, to help it make task-
size and placement decisions.

Most programmers want to know how their code
choices and factoring of the problem will affect perfor-
mance, even when their code will be transformed by
tools in ways they cannot even imagine, to run on
hardware they can’t even imagine at development
time. In addition, project managers want the code to
be well organized for future code-maintenance and
feature enhancement work, and easy to generate the
executables for future hardware targets. This requires
having a methodology, with supporting tools orga-
nized into a platform, to go with the isolation layer.

In this paper we propose an isolation layer and
methodology, with platform, motivated by our experi-
ence with BLIS [11]. It uses a “piggy back” language
embedded into a base language by attaching semantics
to standardized function calls, to express generic pat-
terns in which application code interacts with sched-
uler manifestations. One pattern is data-structure

centric similar in spirit to SPMD programming called
DKU , another, called WorkTable, covers arbitrary
communication, control, and transactions, in the spirit
of software-components with added parallel semantics.

These two allow essentially any program to be
composed hierarchically, capturing the information
that parallelizing and run-time scheduling tools need,
such as dependencies, boundaries of fusable function-
blocks, constraints on accessing shared data, and con-
straints on overlap of tasks. The application sup-
plies “plug-ins” that communicate directly with the
scheduler , to implement constraints and do things like
change task data-size or task iteration-space size
during a run.

The isolation layer is composed of modules, one for
each target hardware, that contain tools applied to
the source in a separate specialization step just before
distributing the product. Development takes place in
a sequential environment, where compile and debug
are done until the application is complete. Then the
specialization step applies the modules for desired tar-
gets, generating an executable for each, using source-
to-source transforms and compilers embedded in the
modules. This separation gives the productivity
advantages of SeJits [5], but with the greater perfor-
mance available with static analyses and transforms.

In essence, the old mental model of programming to
hardware is replaced by the new mental model of pro-
gramming to the standard tool needs . When devel-
oping, the programmers can compare coding choices
for performance impact by knowing what information
the tools need. For example, the finer the grain of
dependency and task they can specify, the more paral-
lelism opportunities are available to the tools, like-
wise, the more places they can enable overlap of tasks,
the more parallelism choices the tools have.
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The piggy-back language uses function-calls for
syntax, that look like library calls, except that mul-
tiple functions are grouped into a pattern according to
a grammar, with a grammar-checker and execution
model included, making it a bona fide language. To
provide the manipulators, some of the function-calls
go in the reverse direction, being implemented by the
application and called (back) by the platform.

The platform provides a base implementation of
the piggy-back language for each hardware target,
with a run-time system that does dynamic scheduling.
During a run, the scheduler tunes task size by calling
the application-provided manipulators. It also has
available “overrides” generated by static tools, that
have their own scheduling code that takes control of
the hardware for a specific portion of the application.
Domain-specific frameworks and hardware-specific
tools filter the code to recognize portions they can do
very high performance transforms on, then generate
the override and a performance model the scheduler
uses to decide which version is best under the
dynamic circumstances.

For practical performance reasons, application
developers may also write hand-tuned, non-portable,
implementations of selected hot-spots in an applica-
tion for specific hardware. They develop with 3rd
party hardware-specific tools then wrap their code as
an override and provide a cost model for the plat-
form’s dynamic scheduler to use.

Section 2 follows an example application. Section 3
presents observations from hardware, compilers, and
parallel programming practices that motivate the pro-
posed approach, while Section 4 discusses practical
aspects and Section 5 displays evidence of the
approach’s potential. Section 6 summarizes the
lessons learned.

2 Methodology

H264 video decoding is used as a running example.
Here a frame is (essentially) composed of macro
blocks, which undergo computation of their motion
vectors, followed by gathering the target pixel infor-
mation and combining it with the the macro-block’s
pixel information. The result goes to a deblocking
filter, after which it may be the target of motion vec-
tors in succeeding frames. Motion vector calcuation
depends on macro-blocks in a 30 degree diagonal
above and left, as well as possibly several previous
frames. Meanwhile Deblocking depends only on the
macro blocks, in the same frame, above and left.

This can be encoded using BLIS’s WorkTable pat-
terns, which encode a graph where work-units flow.
The nodes are either application code, called work-
piles , or one of the forms of scheduler node, which
take plug-ins provided by the application. The plug-

ins perform the application-to-scheduler communica-
tion.

In H264 a WorkDivider scheduler node would be
placed at the entrance to the graph, and given a plug-
in that divides each video frame into individual
macro-blocks, to which it adds an ID and bookkeeping
data. The 30 degree motion-vector dependencies are
enforced by placing a HoldUntil scheduler node just
before the work-pile that calculates the motion-vec-
tors. It holds macro blocks back until all propendent
macro blocks have appeared at the exit of the motion-
vector work-pile. The app supplies the HoldUntil a
plug-in that specifies the location to watch and calcu-
lates the IDs of propendents to watch for.

The completed motion vectors fetch their target
macro blocks, stored in a Keeper which keeps around
data that might be used at some point, much the way
databases do. This fetched pixel data gets paired up
with the inverse transformed pixel data using a
ReJoiner to make sure the motion vector data and
inverse transform data are for the same macro block.

Such an approach covers much more than just
embarassingly parallel algorithms; in contrast to
MapReduce [6], it allows a single arbitrary data struc-
ture, such as a mesh, to be divided into pieces that
communicate with each other, and so cleanly handles
the same kind of irregular problems as Galois [14].

The ReJoiner and, at the exit of the graph, the
WorkUndivider accomplish the same logical effect as a
join or barrier operation, but without causing idle
time. Further, partial results are available, to be used
in parallel with the still-in-progress computation.

The simpler, DKU, pattern may also be used. In
H264 it has been applied to deblocking [1], where each
45 degree diagonal is made available for sub-division.

The graph makes available, to tools, the flow of
data, and the HoldUntil and ReJoiner functions
supply overlap-of-computation and access-of-shared-
data information. This is useful for efficient hardware
usage, for Formal Verification of race conditions, and
for exposing difficult to recognize parallelism to tools.

The WorkTable (WT) patterns have the software
engineering benefits of software components. Standard
sequential programming takes place within the func-
tion for a work-pile. Only at the point when com-
posing piles in a graph are inter-function and inter-
data dependencies considered, adding HoldUntil and
ReJoiner piles to establish a partial-ordering.

Returning to the H264 example, in the reference
code the dependencies are enforced by completing
entire frames in-order. With BLIS’s WorkTable, the
order of completion is data-driven. As soon as a
macro block finishes deblocking, it becomes available
immediately to both motion compensation and the
following diagonal, exposing higher parallelism [3].
To ensure correctness, the ID attached to each work-
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unit, plus the plug-ins, get used to state the partial
ordering in a natural way that makes intuitive sense.

This degree of parallelism, due to overlap of partial
results from multiple loop nests, is unavailable to
approaches that place scheduling inside the tools but
don’t provide direct interaction between scheduler and
application code, including OpenMP [17], OpenCL [9],
Sequoia [8], Cilk [10], and Map Reduce. It can, of
course, be exploited using Threads (like TBB [7]) or
message passing (MPI [16]), or Merge [15], but at the
cost of losing portability, due to exposing details such
as pinning Threads to cores, location of results, cur-
rent load on cores, size of productive task, structure of
Kernel and so forth, which change with target.

CnC [13] can express this level of concurrency for
some applications, but not H.264 due to the motion-
vectors, which are data-determined dependencies. In
addition, debug is difficult as CnC’s translation tool is
in the compile-test-bug-fix cycle, plus CnC requires
more extensive modifications of the base serial code to
convert loop-nests to tag-collections and eliminate
side-effects, which BLIS allows, and some nests in
H.264 do not fit CnC’s straight-forward dependency
structures.

The proposed platform is designed to support the
static tools in the specialization modules. For
example, the WT patterns make work-pile function
boundaries and communication among them available
for task-enlarging decisions. As another example, the
data-flow graph can be extracted and transformed to
the input format of a domain-specific and HW specific
tool like that of Sundaram et al. [19] that finds a
near-optimal scheduling of GPU kernels for large
data-sets. Kernel optimization tools [4][18][2] can then
be placed into the same specialization module, to
improve the individual kernels. Such tools may also
be tuned at the time they get added to a module, by
running experiments to gather parameters such as
copy-to-GPU time, network bandwidth, or perfor-
mance of data-layouts in auto-tuners. Because the
specializaiton step is outside the development cycle,
longer-running builds that use profile-driven tech-
niques and iterative optimization become practical.

For decisions better made at run-time, the same
information supports the dynamic scheduler, pro-
viding it with the communication pattern and perfor-
mance models, to predict locality and better overlap
communication. When not enough tasks are available,
the app-to-scheduler interaction approach allows in-
progress tasks to be taken back and re-divided, as
demonstrated in DKU on Hamiltonian Path [12], sig-
nificantly improving load-balance, especially on NP
and other difficult-to-predict problems.

As another example of application-to-scheduler
interaction, real-time applications may ask the isola-
tion layer for decisions that involve hardware configu-
ration and availability. For instance, it can ask what
size of data will take a specified amount of time to

complete, in a kernel with supplied performance pre-
dictor. This allows latency-sensitive applications to
build a WorkTable graph suited to the machine,
without knowing HW details. In this example, it
would build a tree of work-piles for ever larger data-
blocks, adjusting fan-out to HW. Such scheduler-to-
app interaction provides a HW neutral interface that
can handle latency requirements in complex ways.

3 Fundamentals of the Problem

At the heart of performance portable parallelism lies
the modification of the patterns observed in a running
application, to fit them onto the structures in the
hardware. As a simple example from sequential tools,
loop unrolling modifies the code’s use of registers to
express multiple of the same operation, to increase
utilization of wide-issue function units. Likewise, loop
interchange modifies the sequence of visitation of
points in iteration space such that addresses cluster
differently, reducing the number that map to the same
cache location between re-uses, to reduce conflict
misses.

The same holds true in the parallel world: perfor-
mance improvements come from re-arranging the pat-
terns of operations, and addresses, for a “better” fit to
hardware structures. The main difference between
sequential and parallel optimization lies in the size,
and so scope, of the state-evolution pattern that must
be considered, and in the scheduling process.

Parallel hardware forces larger-scale structures in
the application-evolution pattern to be considered,
due to the larger scale of parallel hardware structures,
and the larger overhead of scheduling onto them. In a
nutshell, the larger the communication time plus
scheduling overhead, the larger the scale of applica-
tion-evolution pattern required to realize speedup on
the hardware structure.

Hence, the piggy-back language includes interac-
tions between scheduler and application which enable
modifications of the application’s state-evolution pat-
terns in ways otherwise unavailable to the run-time.
Due to the interaction, the dynamic scheduler gains
the ability to choose state-evolution patterns that fit
best to the hardware size and state.

For example, in the DKU pattern, the Divider sub-
divides a DKU “task” into smaller ones. The isolation
layer calls the Divider, telling it how many sub-tasks
to make. Because the work performed by a Kernel, or
the function attached to a work-pile, is often domi-
nated by a loop-nest, the work in a task (work-unit) is
often encoded as start and end values of iteration vari-
ables. Hence dividing the work just means divying up
the start and end values. The effect on the evolution
of state can be visualized by the addresses generated
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by a work-unit, where the size of the stream of
addresses is set by the start and end values.

On a multi-core machine with two levels of cache,
the dynamic scheduler calls the divider twice on large
data structures. The first time it makes streams con-
taining the same number of unique data-addresses as
fills up the L2 cache with data. The second time sub-
divides each of those streams into smaller ones that
fill only the L1 cache of each core.

This demonstrates how dynamic schedulers, which
implement a portion of the piggy-back language’s
semantics, use the plugins implemented by an applica-
tion to adjust the size of patterns in the state-evolu-
tion to fit well to hardware structures.

The scheduling process lies at the heart of paral-
lelism. A close look at the hand-tuning of parallel
code reveals that most tuning work involves modifying
the scheduling of work-units (tasks), where a work-
unit consists of a snippet of code plus data to apply
the code to. The hand-tuning often changes the code
in a work-unit, such as when going from multi-core
code to GPU code. Multi-core hardware favors large
complex kernels that perform as much computation as
possible between inter-thread synchronization events.
In contrast, GPU hardware favors small, highly reg-
ular kernels that run well in SIMD fashion. Thus,
hand-tuning breaks up the single multi-core kernel
into multiple GPU kernels. It also changes the
scheduling process by changing pthreads synchronized
with locks into GPU kernel invocations.

This motivates our choice to place scheduling
inside the isolation layer and express in application
code only the constraints on scheduling. The Work-
Table patterns specify constraints via plug-ins, to
scheduler nodes, that calculate the IDs of propendent
work-units, and the DKU pattern implies them inside
the DKUPieceMaker and uses an explicit call to the
scheduling process to intiate the work, keeping the
actual scheduling under the isolation layer.

The patterns trade the programmer need for nat-
ural expression of an application against the tool
needs for deduceable scheduling constraints, resulting
in neither the most natural expression of the applica-
tion nor the most straightforward expression of
scheduling constraints, but effective for both sides of
the isolation layer none the less.

4 Practical Considerations

BLIS handles the practical aspects of development,
including quality of tools, the experience of debug-
ging, and learning curve, by using existing sequential
development tools with existing languages. The
development cycle of code-compile-test-bug-fix

remains the same as current practices, including sym-
bolic debugging of the original source. BLIS makes
just three changes: 1) a BLIS directory is added to the
application source tree and becomes part of the build
2) debug is split into three phases to isolate types of
bugs from each other, and 3) an additional specializa-
tion step gets performed once development is com-
plete, just before shipping.

The BLIS directory supplies the behavior needed
to debug the parallel-patterns, within the sequential
environment, by supplying an implementation of the
piggy-back language that divides debug into phases
for, functionality, then distributed memory, then race
conditions. The directory also isolates hardware
details that may differ between development vs target
machine, such as pointer size and data alignment.

BLIS adds a separate specialization step in which
a completed application gets sent to a server that
applies a specialization module for each target hard-
ware configuration, each of which generates its own
executable. Install-clients on target machines extract
the appropriate executable, hiding the multiplicity
behind the familiar “install shield” method used today.
Software-development firms may maintain their own
server and provide distribution, or leverage a central-
ized one, presumably provided by a not-for-profit
organization that charges a nominal fee for the service
and enforces a workable standard for wide compati-
bility, which has been a challenge for past standards.

The specialization modules have been designed for
easy integration of stand-alone tools, both commercial
efficiency tools and current research, which would
communicate with the other tools in the module via
pipes or files. We hope to make an environment that
simplifies performing research on specialization and
scheduling by freeing research teams from the onerous
task of building their own infrastructure. The growing
suite of applications written for the platform by end-
users would provide a realistic suite with which to
measure the effectiveness of proposed approaches. We
hope to found a non-profit that would provide the
final polish on such tools, making them industry-ready
and releasing them open-source, with authors’ permis-
sion, as part of the platform.

We recognize that the BLIS approach of attaching
semantics to standardized function calls, especially for
application-to-scheduler interaction, represents a com-
promise between automatic tuning and manual hand-
tuning. The application programmer expends extra
effort to implement the plug-ins that perform sched-
uler interaction, while in compensation they receive,
automatically, decent performance on all viable target
hardware. As more tools become integrated into the
platform, the performance of the same application
code will increase, and performance of BLIS library
functions will increase. Meanwhile the need to over-
ride hot-spots with hand-tuned code for specific hard-
ware will decrease.
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5 Demonstration of Effectiveness

Figures 1 and 2 show efficiency of hardware-usage
across machines with differing numbers of threads.
To allow direct comparison, the graphs use “percent

ideal” speedup, defined as
TS

TP

− 1

p− 1
· 100, and plot the

percent of ideal against sequential execution time over
ever-larger problems. One of these graphs gives the
relevant numbers: time of sequential execution, time
of parallel execution, time of execution at break-even,
size of input, size of input at break-even, absolute
speedup, percent of linear speedup.

Time of sequential execution is read directly off
the x-axis; time of parallel execution time is calcu-
lated, by converting percent linear into absolute
speedup then dividing the sequential time by that;
time at break-even is the zero crossing (this definition
makes slowdown a “negative speedup”); and size of
input data is found by matching data-points along the
curve to the sizes stated in the caption.

In the experiments, we used the following
machines: a one-socket 2 core, denoted “1x2”, a 2
socket by 4 core each, denoted “2x4”, a 4 socket by 4
core each, denoted “4x4”, and a heterogeneous collec-
tion of those connected by 100Mbit LAN, which
demonstrates the use of both hierarchical division and
distributed memory, from the same source.

Figures 1 and 2 show efficiency of HW usage
across the four machines on the same two sources
written in Java with BLIS’s DKU pattern used.

For Matrix Multiply, break even matrix size for
the multicore machines lies at around 100x100 cells,
double precision, and at around 200x200 on the LAN-
connected collection. The small-matrix slow-down
will be avoided when an execution-time predictor is
supplied, allowing the schedulers embedded by the
specialization modules to predict performance loss and
choose the serial version.
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Figure 1. Efficiency of HW usage across four machines
for Matrix Multiply, on matrices of size: 9x9 (not seen),
81x81, 162x162, 324x324, 648x648, 1296x1296

All input graphs for Hamiltonian Path have no
path, so the amount of work stays constant across
machines [12]. The plot shows that the speedup

approaches perfect on each machine once the serial
time becomes large enough.
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Figure 2. Efficiency of HW usage across four machines
for Hamiltonian Path on input graphs of size: 14, 16,
18, 20, 20, 20, all have no path.

These figures indicate that applying specialization
modules, containing discrete command-line tools that
automatically generate multiple executables from a
single source written with generic patterns, success-
fully delivers decent performance.

6 Conclusion

A hardware-isolating platform should, 1) have a
specialization phase that analyzes and transforms the
code, and uses or inserts a dynamic scheduler that can
further transform the state-evolution patterns to fit
onto hardware patterns; 2) end the thread program-
ming model in applications, by hiding it below the
isolation layer, which exposes only scheduling con-

straints ; 3) state scheduling constraints, by implied
semantics attached to function-call names (or key-
words) and by explicitly stating code or rules for
overlap of work; 4) make state-evolution transform
plug-ins available to specialization; and 5) have
application code explicitly interact with the isolation
layer and its scheduling process, by making them first-
class entities.

For practical reasons, such a platform should 1)
reuse existing sequential environments and languages,
for highly productive development and debugging;
2) provide generic all-inclusive patterns that deliver
decent performance on the whole application on all
hardware, and also provide a gentle learning curve, for
incremental performance improvement; 3) absorb
third-party tools, even ones for domain-specific pat-
terns and hardware-specific transforms that only
boost performance on some portions of an application
for some hardware; and 4) automate the specializa-
tion step, for example by collecting the tool chain for
each hardware configuration into a standalone special-
ization module, and using an install-client that runs
on the end-hardware to select the correct executable,
hiding the existence of multiple versions.
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