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UNM CS: We like MacGyver

ENUNM | Scalable Systems Lab

UNM CS has a history of pulling ideas from a diverse set of area and putting them
together in unusual ways to solve problems.



UNM CS: MacGyver is our mascot!
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Scalablability of System Services

» Weak Scaling: Workload grows, do more with more cores
» Strong Scaling: Workload fixed, do it faster with more cores

» We need strongly scalable OS services (but it’s hard!)

o File systems: “Bandwidth? Split your data across multiple files so
the OS can parallelize your requests well”?

o Networking: “6400 Mbps is enough for everyone”?

» TCP on 10G Ethernet already bottlenecks on the CPU
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Current system software focuses on weak scaling where workload grows with
processor count - More processes, open files, network connections

Minimal work on strong scaling in system software - Fixed workload executed faster
with more processors. That means faster individual network connections, file system
updates, etc.

Strongly scalable OS services increasingly important - without it, we either complicate
the work of the application programmer, or worse, limit the services available them
completely.

Example: Strongly scalable single TCP connections.

A single TCP connectios already bottlenecks on CPU speeds, especially at traditional
MTUs

Real parallelization opportunities: data delivery, ack generation, timer expiry, etc.
Small but important inter-request dependencies: window state maintenance

Very fine-grained units of parallelization: 1500 byte packets

Synchronization kills single connection performance at this granularity!
Linux TCP connections faster with 1 core than 2 or more

Solaris doesn’t even try to parallelize individual connections
Well-studied: Bjorkman 1993, Nahum 1994, Willman 2006



Why haven’t we achieved strong scaling?

Sequence of Service Requests MIMD-style parallelism

Sequential Work Work Split Across 2 Cores

(N Wl [ core

Core 2
Parallelizable Work

Added synchronization to
coordinate sequential work

Explicit synchronization is expensive for fine-grained services
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Why haven’t we been able to solve this?

First: We use MIMD parallelism: Related requests split across available cores and
shared state accessed via locks, IPC, transactions, etc.

We generally use classic MIMD parallelism, which relies on explicit synchronization/
communication between processors. That’s expensive compared to the unit of work

at which we want to parallelize some of these services.

So why haven’t the latest and greatest “special snowflake” synchronization
mechanisms solved this problem?

The issue is deeper than that! What happens as you add cores in MIMD parallelism?



Use a better synchronization mechanism?

Sequence of Service Requests MIMD-style parallelism

Sequential Work Work Split Across 2 Cores

Parallelizable Work

Core 1

O(N2) overhead: New cores increase I -
Core 2

synchronization costs on all cores!
\ N | core 3

With non-trivial sequential work, synchronization costs in MIMD
grow faster than parallelization benefits!
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Simply using a “better” synchronization method isn’t good enough — MIMD
fundamentally requires explicitly coordinating N activities, and the cost of that grows
quickly.

Each core you add reduces parallelizable work that has to be done on other cores but
increases synchronization costs on all processors (lock contention, IPC latency,
transaction rollbacks, etc.)

As you add cores, the increase in synchronization overhead is quadratic but the
benefit is linear — at high core counts, any non-zero amount of explicit

synchronization will kill your performance!

MIMD Parallelism kills strong scaling!



Doctor, it hurts when | synchronize!

» Multiple Instruction/Single Data Parallelism (Replication)
o Previously shared state replicated across all cores
o Every core works on every request

» Sequential work replicated to maintain consistency
» Parallelizable work still divided across cores
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work replaces explicit

synchronization
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MISD overhead grows
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So, we need to avoid explicit synchronization but still deal with non-trivial inter-
request dependencies

We repurpose a well-known technique from parallel and distributed computing to
address this problem: MISD parallelization, that is, replicating not just state across
cores as in K42, Tornado, and Barrellfish, but also replicating work on all requests on
all cores.

So how do we get speedup? Like some parallel algorithms and unlike in most classic
distributed systems, we replicate only the sequential work on all cores. Parallelizable
work is not replicated and is still split across cores!

Essentially, we're replacing locking around sequential work with doing all the
sequential work everywhere. This works well whenever it’s cheaper to “just do it
again” than to do explicit synchronization.

Better for fine-grained workloads where any synchronization is prohibitive, or with
large core counts. Unlike MIMD, a new core adds new replicated work (overhead)
only on that new core, not the previously-existing cores. So, MISD overheads grow
linearly with increased core counts instead of quadratically.



Synthetic MISD Performance Test
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The result of this is that for fine-grained workloads, which we expect to be common
in system software, a MISD-based approach tracks the best possible performance as
given by Amdahl’s law much better than approaches based on explicit
synchronization.



» Dominoes: Framework

Outgoing
Messages

Implementing MISD-Parallel Networking

for MISD System Services

» Porting Scout TCP/IP
Stack to Dominoes
framework
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Dominoes: Framework for MISD System Services
Broadcast FIFO channels to distribute requests

Publish/subscribe event-based programming model

More framework details in paper

Porting Scout TCP/IP Stack to Dominoes

Single-threaded stack easy to integrate and parallelize
Evaluate difficulty of using MISD parallelization with a single-threaded event-based

service

Initial result: First-ever strong-scaling of TCP receive processing
1.8x improvement in TCP receive throughput using 4 cores

TCP Send is harder

Working on optimized zero-copy library-level implementation
Only modest changes to scout to get it to run in dominoes




Where else does this make sense?

» Whenever explicit synchronization is “too expensive”
° Fine-grained parallelism (synchronization expensive at N=2)
o Leveraging lots of cores (synchronization scaling problems)

» Specific ideas
o High-throughput file system and data services
o Shared services in virtual machine monitors
o Scalable processing on GPU-style processors
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High-throughput file system and data services
Replicate in-memory metadata (FS state, buffer cache info)
Parallelize data manipulation
Virtual machine services
Shared virtual devices — virtual network switches
Memory page de-duplication and/or compression?
Parallel OS services on GPUs
MISD replication can leverage large amounts of parallelism
Without the locks that are prohibitive on GPUs
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Now that’s a gap...
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Solving these problems without parallelism (or protocol changes!) means exponential

increases somewhere else — for example in MTU,
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