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Abstract

Deterministic replay tools offer a compelling approach

to debugging hard-to-reproduce bugs. Recent work on

relaxed-deterministic replay techniques shows that re-

play debugging with low in-production overhead is pos-

sible. However, despite considerable progress, a replay-

debugging system that offers not only low in-production

runtime overhead but also high debugging utility, re-

mains out of reach. To this end, we argue that the re-

search community should strive for debug determinism

—a new determinism model premised on the idea that

effective debugging entails reproducing the same failure

and the same root cause as the original execution. We

present ideas on how to achieve and quantify debug de-

terminism and give preliminary evidence that a debug-

deterministic system has potential to provide both low

in-production overhead and high debugging utility.

1 Introduction

Debugging is hard. A key hindrance is hard-to-reproduce

non-deterministic failures that are immune to traditional

cyclic-debugging techniques. These failures manifest in

production runs and may take months to diagnose man-

ually [9]. After all, debugging entails significant de-

tective work. Thus, practical tools for debugging non-

deterministic failures are sorely needed.

Replay-debugging techniques [2, 4, 5, 6, 11, 12] offer

a compelling approach to dealing with non-deterministic

failures. A replay debugger produces an execution that

is similar to the original failed execution. The hope is

that the developer can then employ traditional cyclic-

debugging techniques or automated analyses on the gen-

erated execution to isolate the defect underlying the fail-

ure. Many kinds of replay techniques have emerged over

the years, differing primarily in how they deal with non-

deterministic events (e.g., inputs, scheduling order, etc.).

Record/replay techniques [2, 5, 6, 11, 12], for example,

record non-deterministic events at runtime. Determinis-

tic execution techniques [4], eliminate non-determinism

(e.g., by precomputing scheduling order) to ensure de-

terministic replay. Finally, inference-based replay tech-

niques [2, 11, 12] provide replay by computing un-

recorded non-deterministic events after the original ex-

ecution has finished.

Despite a plethora of replay techniques, a truly prac-

tical replay debugger remains out of reach. The tradi-

tional obstacle has been high runtime overhead, that is

unacceptable in production environments. Alas, this is

exactly where most unexpected and hard-to-reproduce

bugs often surface. It seems clear now, however, that in-

production overhead is no longer an impenetrable bar-

rier. In particular, recent work on relaxed-determinism

models [2, 12] shows that, by making fewer guarantees

about the execution properties that are reproduced, one

can shift runtime overhead from production time to de-

bugging time. The failure determinism model [12], for

example, guarantees only that the replayed execution ex-

hibits the same final failure state. In so doing, it alto-

gether avoids the need to record non-determinism, but

has to infer it after the failure.
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Figure 1: Trend in relaxation: recent ultra-relaxed systems

reduce runtime overhead, but forego debugging utility.

In this paper, we argue that, while trying to satisfy the

low runtime overhead requirement, designers of modern

replay systems may have ignored another equally im-

portant one: effective debugging. The rush to relax de-

terminism (plotted qualitatively1 in Fig. 1) has left de-

bugging utility by the wayside in favor of low runtime

overhead. Overzealous relaxation (of which the present

authors themselves are guilty [2, 12]) has resulted in a

series of systems with low overhead, but unpredictable

debugging utility.

To remedy the situation, we argue that a replay de-

bugger should strive not only for low runtime overhead,

but also for high debugging utility. This introduces two

1The figure is not based on new measurements. It shows the current

trend in relaxation based on published results.
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questions: what is high debugging utility determinism,

and how do we get it?

Debug Determinism. Our answer to the first question is

a new determinism model we call “debug determinism”.

The key observation behind debug determinism is that,

to provide effective debugging, it suffices to reproduce

some execution with the same failure and the same root

cause as the original. A debug-deterministic replay sys-

tem enables a developer to backtrack from the original

failure to its root cause.

Root Cause-Driven Selectivity. One way to achieve

debug determinism is to record or precompute the por-

tions of the execution containing only the failure and its

root cause(s), while relaxing the recording everywhere

else. Unfortunately, this approach is infeasible, as the

root cause of a failure is not known a priori. To this end,

we give several heuristics that approximate this ideal ap-

proach by predicting the portions of the execution con-

taining the root causes. A preliminary evaluation of

such a heuristic on a data-corruption bug in the Hyper-

table distributed key-value store [1] suggests that this ap-

proach can indeed lead to low runtime overhead and de-

bug determinism for that bug.

2 Perils of Over-Relaxation

In this section we describe several replay determinism

models and the dangers of over-relaxing determinism.

Failure determinism, implemented by ESD [12], en-

sures that the replay exhibits the same failure as the orig-

inal run. ESD does not do any recording. Instead, it ex-

tracts the failure information from a bug report or core-

dump and uses post-factum program analysis to infer an

execution that exhibits the same failure.

Output determinism, implemented by ODR [2], en-

sures that the replay produces the same output as the

original run. ODR uses several recording schemes. In

the most lightweight scheme, ODR records just the out-

puts of the original run and infers all unrecorded non-

determinism. Scaling this inference process is hard,

therefore ODR provides another scheme that also records

the program inputs, the execution path, and the schedul-

ing order. However, ODR does not record the causal or-

der of the racing instructions running on different CPUs.

Instead, it uses symbolic execution to infer the values that

were read by the racing instructions.

Value determinism, implemented by iDNA [5], en-

sures that a replay run reads and writes the same val-

ues to and from memory at the same execution points

as the original run. Value determinism does not guaran-

tee causal ordering of instructions running on different

CPUs, thus requiring more effort from the developer to

track causality across CPUs.

Ultra-relaxed determinism models (e.g., ODR [2],

ESD [12], PRES [11]) assume that debugging is possi-

ble regardless of the degree of relaxation performed. For

some bugs, this is not true: ultra-relaxed models may

not be able to reproduce the failure, hence making it

hard to backtrack to and fix the underlying defect (i.e.,

root cause). For other bugs, these models will repro-

duce the failure, but may not reproduce the original root

cause (indeed, multiple root causes are possible, see §4),

hence potentially deceiving the developer into thinking

that there isn’t a problem at all. Finally, for some bugs,

a significant amount of runtime information may need

to be reconstructed, leading to prohibitively large post-

factum analysis times.

To see why some failures may not be reproduced under

ultra-relaxed determinism models, consider a program

that outputs the sum of two numbers. Suppose, however,

that the program has a bug such that for inputs 2 and 2,

it outputs 5. To replay this execution, an output deter-

ministic replay system (which guarantees only that the

replay run exhibits the same outputs [2]) may produce an

execution in which the output is 5 (like the original), but

the inputs are 1 and 4. 1 plus 4, however, is 5 and thus

is not a failure at all, much less the original failure. Un-

fortunately, without an execution exhibiting the original

failure, developers cannot determine the true root cause

of the faulty arithmetic (e.g., an array indexing bug).

To see how root causes may not be reproduced under

ultra-relaxed determinism models, and why that can trick

the developer into thinking there isn’t a problem at all,

consider the case of a server application that drops mes-

sages at higher than expected rates. Unbeknownst to the

developer, the true root cause of this failure is a race con-

dition on the buffer holding incoming messages. How-

ever, an output or failure deterministic replay debugger

may not reproduce the true root cause. Instead, it may

produce an execution in which the packets were dropped

due to network congestion. Network congestion is be-

yond the developer’s control and thus she naturally, yet

mistakenly, assumes nothing more can be done to im-

prove the program’s performance. In the end, the true

root cause (a race condition) remains undiscovered.

3 Debug Determinism

We argue that the ideal replay debugging system should

provide debug determinism. Intuitively, a debug-

deterministic replay system produces an execution that

manifests the same failure and the same root cause (of

the failure) as the original execution, hence making it

possible to debug the application. The key challenge in

understanding debug determinism is understanding ex-

actly what is a failure and what is a root cause:

A failure occurs when a program produces incorrect

output according to an I/O specification. The output in-

cludes all observable behavior, including performance

characteristics. Along the execution that leads to failure,

there are one or more points where the developer can fix
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the program so that it produces correct output. Assuming

such a fix, let P be the predicate on the program state that

constrains the execution—according to the fix—to pro-

duce correct output. The root cause is the negation of

predicate P.

A perfect implementation fully satisfies the I/O speci-

fication, that is, for any input and execution it generates

the correct output. A deviation from the perfect imple-

mentation may lead to a failure. So, more intuitively, this

deviation represents the root cause.

In identifying the root cause, a key aspect is the bound-

ary of the system: e.g., if the root cause is in an external

library (i.e., the developer has no access to the code), a

fix requires replacing the library. Else, if the library is

part of the system, the fix is a direct code change.

Debug determinism is the property of a replay-

debugging system that it consistently reproduces an ex-

ecution that exhibits the same root cause and the same

failure as the original execution.

For example, to fix a buffer overflow that crashes the

program, a developer may add a check on the input size

and prevent the program from copying the input into the

buffer if it exceeds the buffer’s length. This check is

the predicate associated with the fix. Not performing

this check before doing the copy represents a deviation

from the ideal perfect implementation, therefore this is

the root cause of the crash. A debug-deterministic sys-

tem replays an execution that contains the crash and in

which the crash is caused by the same root cause, instead

of some other possible root cause for the same crash. We

give examples of failures with multiple root causes in §4.

The definition of the root cause is based on the pro-

gram fix, which is knowledge that is unlikely to be avail-

able before the root cause is fixed—it is akin to having

access to a perfect implementation. We now discuss how

to achieve debug determinism without access to this per-

fect implementation.

3.1 Root Cause-Driven Selectivity

The definition of debug determinism suggests a simple

strategy for achieving it in a real replay system: record

or precompute just the root cause events and then use in-

ference to fill in the missing pieces. However, the key

difficulty with this approach is in identifying the root

cause. One approach is to conservatively record or pre-

compute all non-determinism (hence providing perfect

determinism during replay), but this strategy results in

high runtime overhead. Another approach is to lever-

age developer-provided hints as to where potential root

causes may lie, but this is likely to be imprecise since it

assumes a priori knowledge of all possible root causes.

To identify the root cause, we observe that, based on

various program properties, one can often guess with

high accuracy where the root cause is located. This mo-

tivates our approach of using heuristics to detect when

a change in determinism is required without actually

knowing where the root cause is. We call this heuristic-

driven approach root cause-driven selectivity (RCSE).

The idea behind RCSE is that, if strong determinism

guarantees are provided for the portion of the execu-

tion surrounding the root cause and the failure, then

the resulting replay execution is likely to be debug-

deterministic. Of course, RCSE is not perfect, but pre-

liminary evidence (§4) suggests that it can provide a

close approximation of debug determinism.

Next, we present several variants of RCSE.

3.1.1 Code-Based Selection

This heuristic is based on the assumption that, for some

application types, the root cause is more likely to be con-

tained in certain parts of the code. For example, in dat-

acenter applications like Bigtable, a recent study [3] ar-

gues that the control-plane code—the application com-

ponent responsible for managing data flow through the

system—is responsible for most program failures.

This observation suggests an approach in which we

identify control-plane code and reproduce its behavior

precisely, while taking a more relaxed approach toward

reproducing data-plane code. Since control-plane code

executes less frequently and operates at substantially

lower data rates than data-plane code, this heuristic can

reduce the recording overhead of a replay-debugging

system. The key challenge is in identifying control-plane

code, as the answer is dependent on program semantics.

One promising approach is suggested in [3]: deem low-

data rate code as control-plane, since data-plane code of-

ten operates at high data rates. The same study empiri-

cally shows that such automated control-plane selection

has high accuracy for several typical datacenter applica-

tions, such as Hypertable and CloudStore.

3.1.2 Data-Based Selection

Data-based selection can be used when a certain condi-

tion holds on program state. For instance, if the goal is

to reproduce a bug that occurs when a server processes

large requests, developers could make the selection based

on when the request sizes are larger than a threshold.

Thus, high determinism will be provided for debugging

failures that occur when processing large requests.

A more general approach is to watch for a set of in-

variants on program state: the moment the execution vi-

olates these invariants, it is likely on an error path. This

is a signal to the RCSE system to increase the determin-

ism guarantees for that particular segment of the execu-

tion. Ideally, assuming perfect invariants (or specifica-

tion), the root cause and the events up to the failure will

be recorded with the highest level of determinism guar-

antees. If such invariants are not available, we could use

dynamic invariant inference [7] before the software is re-

leased. While the software is running in production, the
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replay-debugging system monitors the invariants. If the

invariants do not hold, the system switches to high de-

terminism recording, to ensure the root cause is recorded

with high accuracy.

3.1.3 Combined Code/Data Selection

Another approach is to make the selection at runtime us-

ing dynamic triggers on both code and data. A trigger

is a predicate on both code and data that is evaluated at

runtime in order to specify when to increase recording

granularity. An example trigger is a “potential-bug de-

tector”. Given a class of bugs, one can in many cases

identify deviant execution behaviors that result in poten-

tial failures [13]. For instance, data corruption failures

in multi-threaded code are often the result of data races.

Low-overhead data race detection [10] could be used to

dial up recording fidelity when a race is detected.

Therefore, triggers can be used to detect deviant be-

havior at runtime and to increase the determinism guar-

antees onward from the point of detection. The primary

challenge with this approach is in characterizing and cap-

turing deviant behavior for a wide class of root causes.

For example, in addition to data races, data corruption

may also arise due to forgetting to check system call ar-

guments for errors, and increasing determinism for all

such potential causes may increase overhead substan-

tially. A compelling approach to create triggers is to use

static analysis to identify potential root causes at compile

time and synthesize triggers for them.

All heuristics described above determine when to dial

up recording fidelity. However, if these heuristics mis-

fire, dialing down recording fidelity is also important

for achieving low-overhead recording. For code-based

selection, we can dial down recording fidelity for data-

plane code. For trigger-base selection, we can dial down

recording fidelity if no failure is detected and no trigger

fired for a certain period of time.

3.2 Assessing Debug Determinism

So far, work on replay-debugging has not employed met-

rics that evaluate debugging power. Instead, the compar-

ison was mainly based on recording performance figures

and ad-hoc evidence of usefulness in debugging. Instead,

we propose a metric aimed at encouraging systematic

progress toward improving debugging utility.

Debugging fidelity (DF) is the ability of a system to

reproduce accurately the root cause and the failure. If a

system does not reproduce the failure, debugging fidelity

is 0, because developers cannot inspect how the system

reaches failure. If the system reproduces the original

root cause and the failure, debugging fidelity is 1. If the

system reproduces the failure, but a different root cause

from the original, debugging fidelity is 1/n, where n is the

number of possible root causes for the failure observed in
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Figure 2: For the Hypertable bug, RCSE based on control-

plane code selection enables escaping the relaxation trends

shown in Fig. 1: it incurs slightly higher overhead than ultra-

relaxed models, yet it achieves maximum debugging fidelity.

the original execution. This definition takes into account

the fact that a replayed execution is still useful for debug-

ging even if it reproduces the failure through a different

root cause, yet the replay is useless for debugging if it

does not reproduce the failure.

It may be difficult to analytically determine a replay

system’s debugging fidelity. However, it is possible to

determine it empirically. For instance, static analysis

could be used to identify the location of all possible root

causes for a certain failure, potentially including false

positives. One can then manually weed out the false pos-

itives and check if the system can replay all of the true

positives. Another approach is to empirically test if a

replay-debugging system correctly replays in the cases

when given root causes are guaranteed to be present in

the original execution through some other means (e.g.,

deterministic execution).

Debugging efficiency (DE) is the duration of the orig-

inal execution divided by the time the tool takes to repro-

duce the failure, including any analysis time. Normally

this metric has values less than 1, but it is possible for

techniques such as execution synthesis [12] to synthe-

size a substantially shorter execution. If this shorter ex-

ecution compensates for post-factum analysis time, de-

bugging efficiency can have values greater than 1.

Debugging utility (DU) is the product of debugging

fidelity and debugging efficiency: DU = DF×DE.

4 A Case Study

In this section, we present preliminary evidence that in-

dicates replay-based tools can advantageously break out

of the relaxation curve shown in Fig. 1. To acquire this

evidence, we compared the recording overhead and de-

bugging fidelity of RCSE against two other determinism

models on a hard-to-reproduce data-corruption bug from

the Hypertable distributed key-value store. We chose

RCSE based on control-plane code selection (§3.1).

The results in Fig. 2 show that RCSE has the poten-

tial to provide both low overhead recording and debug-

deterministic replay.

We conducted our experiments on a previously-solved

Hypertable defect. The failure is that updates to a
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database table are lost when multiple Hypertable clients

concurrently load rows into the same table. The load op-

eration appears to be a success: neither clients nor slaves

receiving the updates produce error messages. However,

subsequent dumps of the table do not return all rows—

several thousand are missing.

Root cause. The data loss results from rows being

committed to slave nodes (i.e., Hypertable range servers)

that are not responsible for hosting them. The slaves

honor subsequent requests for table dumps, but do not

include the mistakenly committed rows in the dumped

data. The committed rows are merely ignored. The er-

roneous commits stem from a race condition in which

row ranges migrate to other slave nodes at the same time

that a recently received row within the migrated range is

being committed to the current slave node.

Fig. 2 shows results for debugging fidelity, not full de-

bugging utility. The latter requires that we empirically

derive debugging efficiency (recall that debugging utility

is a product of fidelity and efficiency). Empirical deriva-

tion at this early stage is hard, as it depends on the details

of the particular inference engine. Debugging fidelity, in

contrast, can be evaluated independently of an inference

mechanism. Although high fidelity alone does not imply

high utility, it suggests encouraging potential.

Debugging fidelity. Our measurement method for de-

bugging fidelity depends on the determinism model.

Value determinism. Our approach was direct: we re-

played the execution using Friday [8] and determined

whether the replay indeed exhibited the original failure

and root cause as described in the bug report. For our

chosen bug, it always did, thus debugging fidelity is 1.

RCSE. Our approach was indirect: we determined

whether the observed failure and its root cause were con-

tained in the control-plane code. We classified applica-

tion code into control and data-plane using the taint flow

analysis described in [3]. If the root cause was recorded,

we deemed the failure and root cause to be reproducible

by an RCSE system based on control-plane code selec-

tion: such a system ensures that control-plane code be-

havior is reproduced consistently. For this bug, both the

root cause and failure were in the control plane, hence

the debugging fidelity of 1.

Failure determinism. By definition, failure-

deterministic systems reproduce the failure and

only one root cause. We computed fidelity as 1/3,

because the failure has at least 3 potential root causes,

any of which may be reported by a failure-deterministic

system. Specifically, another potential root cause is that

a Hypertable slave responsible for a part of the table

crashes after the data is uploaded, causing subsequent

table dumps to return less data than expected (an

expected behavior). Another potential root cause is that

the client responsible for retrieving the previously stored

table data runs out of memory before it has had a chance

to finish the dump, resulting in apparent data corruption.

Recording overhead. We measured each model’s

recording overhead by modifying existing replay sys-

tems (Friday [8] for value determinism and RCSE, and

ESD [12] for failure determinism). For RCSE, this meant

recording just the data on control-plane channels and

the thread schedule. For failure determinism, this meant

recording only the failure state. For value-determinism,

we recorded all inputs and thread interleavings, similarly

to SMP-ReVirt [6].

5 Open Questions

Debug determinism assumes that the developer is inter-

ested solely in the original failure and root cause. It is

possible, however, that a developer may want to find all

potential root causes for a given failure. Thus, a sys-

tem that records just the failure and finds all root cause-

equivalent executions that exhibit the failure would be

ideal. The challenge is scaling this approach to real pro-

grams.

Finally, while debug determinism may be the sweet

spot in the problem domain of debugging, it is unclear

what the sweet spot is for other replay-amenable prob-

lem domains. In particular, what are the ideal determin-

ism models for replay-based forensic analysis and fault

tolerance? Can the same principles behind debug deter-

minism be applied to these problems?

References
[1] Hypertable issue 63. http://code.google.com/p/hypertable/issues/.

[2] G. Altekar and I. Stoica. ODR: Output-deterministic replay for
multicore programs. In Symp. on Operating Systems Principles,
2009.

[3] G. Altekar and I. Stoica. Focus replay debugging effort on the
control plane. In Workshop on Hot Topics in Dependable Sys-
tems, 2010.

[4] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Symp. on Operating Sys-
tems Design and Implementation, 2010.

[5] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray,
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