
Operating Systems must support GPU abstractions

Christopher J. Rossbach1, Jon Currey1, and Emmett Witchel2

1Microsoft Research {crossbac, jcurrey}@microsoft.com
2The University of Texas at Austin {witchel}@cs.utexas.edu

Abstract
This paper argues that lack of OS support for GPU ab-

stractions fundamentally limits the usability of GPUs in
many application domains. OSes offer abstractions for
most common resources such as CPUs, input devices,
and file systems. In contrast, OSes currently hide GPUs
behind an awkward ioctl interface, shifting the burden
for abstractions onto user libraries and run-times. Con-
sequently, OSes cannot provide system-wide guarantees
such as fairness and isolation for GPUs, and developers
must sacrifice modularity and performance when com-
posing systems that integrate GPUs along with other OS-
managed resources. We propose new kernel abstractions
to support GPUs and other accelerator devices as first
class computing resources.

1 Introduction
Three of the top five supercomputers on the TOP500 list
for November 2010 use GPUs: GPUs have surpassed
CPUs as a source of high-density computing resources.
The proliferation of fast GPU hardware has been accom-
panied by the emergence of software frameworks such as
DirectX [3], CUDA [8], and OpenCL [6], enabling tal-
ented programmers to write high-performance code for
GPU hardware. However, despite the success of GPUs
in super-computing environments, GPU hardware and
programming environments are not routinely integrated
into many other types of systems because of program-
ming difficulty, lack of modularity, and lackluster per-
formance.

Current software and system support for GPUs al-
lows their computational power to be used for high-
performance rendering or for high-performance batch-
oriented computations [4], but these tools address a lim-
ited set of application domains. The GPGPU ecosys-
tem lacks rich OS abstractions that can enable a new
class of compute-intensive interactive applications, such
as gestural input, brain-computer interfaces, and interac-
tive video recognition. In contrast to interactive games,
which use GPUs as rendering engines, these applications
use GPUs as compute engines in the processing of user

Figure 1: Technology stacks for CPU vs GPU programs. The 1-to-
1 correspondence of OS-level and user-mode runtime abstractions for
CPU programs is absent for GPU programs

input, which necessarily entails OS support. We believe
these applications are not being built because of inade-
quate OS-level abstractions and interfaces.

The OS safely multiplexes a computer’s hardware and
therefore mediates user access to hardware, especially in
interactive contexts. Even such simple interactive tasks
as delivering mouse input to user application windows
requires the coordination of the kernel with user-level li-
braries. In addition to safety, OSes also export abstrac-
tions that support programming APIs and run-times. In
contrast to most common hardware, kernel-level abstrac-
tions for GPUs are limited. While OSes provide a driver
interface to GPUs, that interface locks away the full
potential of the graphics hardware behind an awkward
ioctl-oriented interface designed for reading and writ-
ing blocks of data to millisecond-latency disks and net-
works. Commonly, communication between GPU run-
times and GPU hardware is performed through shared
memory mapped into both the GPU driver and the user-
mode runtime, making GPU operations completely in-
visible to the OS. In Windows, and other closed-source
OSes, using the GPU from a kernel mode driver is
not even currently supported using publicly documented
APIs.

Interaction with GPUs through ioctl system calls
and/or shared memory typically follows protocols that
are vendor-specific and proprietary. Consequently, de-
velopers wishing to leverage GPUs for general purpose
tasks must use vendor-supplied programming interfaces
and run-times (such as CUDA) that are specialized in

1

Figure 2: A gesture recognition system based on cameras

ways that do not meet the programmer’s needs and in-
troduce layers of run-time support that can frustrate the
programmer’s performance goals.

Because the OS manages GPUs as peripherals rather
than as shared compute resources, the OS cannot provide
guarantees of fairness and performance isolation, mak-
ing GPUs a non-starter for applications that rely on such
guarantees.

This paper advocates new kernel abstractions for man-
aging interactive, high-compute devices. GPUs repre-
sent a new kind of peripheral device, whose computa-
tion and data bandwidth exceed that of the CPU: the OS
should not manage GPUs as simple I/O devices. The
kernel must expose enough hardware detail of GPUs to
allow programmers to take advantage of their enormous
processing capabilities. But the kernel must hide pro-
grammer inconveniences like memory that is incoherent
between the CPU and GPU, and must do so in a way
that preserves performance. GPUs must be promoted to
first-class computing resources, with traditional OS guar-
antees such as fairness and isolation. Finally, the OS
must provide abstractions that promote modularity and
simplify the development of interactive and throughput-
oriented programs.

2 Motivation
To motivate our proposed reorganization of kernel ab-
stractions we explore a case study: interactive gesture-
recognition. A gestural interface turns a user’s hand mo-
tions into OS input events such as mouse movements or
clicks. Forcing the user to wear special gloves makes
gesture recognition easier for the machine, but it is un-
natural. The gestural interface we consider does not re-
quire the user to wear any special clothing. Such a sys-
tem must be tolerant to visual noise on the hands, like
poor lighting and rings, and must use cheap, commodity
cameras to do the gesture sensing. A gestural interface
workload is computationally demanding, has real-time
latency constraints, and is rich with data-independent al-
gorithms, making it a natural fit for GPU-acceleration.

Figure 2 shows a basic decomposition of the gesture
recognition problem. The system consists of some num-
ber of cameras and software to analyze images captured
from the cameras. Because such a system functions as a
user input device, gesture events recognized by the sys-
tem must be multiplexed across applications by the OS;
to be usable, the system must deliver those events with

Figure 3: Relative GPU execution time and overhead (lower is bet-
ter) for CUDA-based implementation of the xform program in our pro-
totype system. sync uses synchronous communication of buffers be-
tween the CPU and GPU, async uses asynchronous communication,
and async-pp uses both asynchrony and ping-pong buffers to further
hide latency. Bars are divided into time spent executing on the GPU and
system overhead. DtoH represents an implementation that communi-
cates between the device and the host on every frame, HtoD the reverse,
and both represent bi-directional communication for every frame. Re-
ported execution time is relative to the synchronous, bi-directional case
(sync-both).

high frequency and very low latency. The design decom-
poses the system into four components, implemented as
separate programs:
• catusb: Captures image data from cameras con-

nected on a USB bus.
• xform: Uses image-processing algorithms such

as noise filtering and geometric transformations to
transform images in the camera perspective to a
point cloud in the coordinate system of the screen
or user. Inherently data-parallel.

• detect: Detects gestures in a point cloud and fea-
tures significant data parallelism.

• hidinput: Accepts gestures found by the detect pro-
gram and sends them to the OS as human interface
device (HID) input.

Given these four programs, a gestural interface system
can be composed using POSIX pipes as follows:
catusb | xform | detect | hidinput &

This design is desirable because it is modular, (making
its components easily reusable) and because it relies on
familiar OS-level abstractions to communicate between
components in the pipeline. Inherent data-parallelism
in the xform and detect programs suggest they may be
a good fit for GPU-acceleration. We have prototyped
this system, and our measurements show they are not
only a good fit for GPU-acceleration, they actually re-
quire it. The camera data rates combine with compute-
hungry algorithms to saturate modern multi-core CPUs.
The noise-filtering in the xform step alone, which re-
lies on bilateral filtering [10] consumes 100% of a 4-core
2.66GHz Intel Core Quad, but still fails to deliver real-
time frame rates. The system can only deliver real-time
performance at reasonable CPU utilization rates if they
system can offload data-parallel computation to a GPU.

2.1 Why OS abstractions are necessary
No direct OS support for GPU abstractions exists, so
leveraging a GPU for this workload necessarily entails

2

a user-level GPU programming framework and run-time
such as CUDA or OpenCL. Implementing xform and
detect in these frameworks yields dramatic speedups
for the components operating in isolation, but the
composed system (catusb | xform | detect |
hidinput) is crippled by excessive data movement
across both the user-kernel boundary and through the
hardware across the PCI-e bus.

For example, reading data from a camera requires
copying image buffers out of kernel space to user space.
Writing to the pipe connecting catusb to xform causes
the same buffer to be written back into kernel space. To
run xform on the GPU, the system must read buffers out
of kernel space into user space, where a user-mode run-
time such as CUDA must subsequently write the buffer
back into kernel space and transfer it to the GPU and
back. This pattern repeats as data moves from the xform
to the detect program and so on. This simple example in-
curs 12 user/kernel boundary crossings. Excessive data
copying also occurs across hardware components. Image
buffers must migrate back and forth between main mem-
ory and GPU memory repeatedly, increasing latency, and
wasting bandwidth and power.

The problem of data migration between GPU and CPU
memory spaces is well-recognized by the developers of
CUDA-like frameworks. CUDA, for example, supports
mechanisms such as asynchronous buffer copy, CUDA
streams (a generalization of the latter), pinning and mem-
ory mapping of memory buffers to help tolerate latency
by overlapping computation and communication. How-
ever, to use such features, a programmer must understand
OS-level issues like memory mapping. Using streams
effectively requires a static knowledge of which trans-
fers can be overlapped with which computations; such
knowledge may not always be available statically.

New architectures may alter the relative difficulty of
managing data across GPU and CPU memory domains,
but software will retain an important role, and optimiz-
ing data movement will remain important for the foresee-
able future. AMD’s Fusion integrates the CPU and GPU
onto a single die, however, it leaves CPU and GPU mem-
ory partitioned. Intel’s Sandy Bridge, another CPU/GPU
combination, indicates that the coming years will see var-
ious forms of integrated CPU/GPU hardware coming to
market. New hybrid systems, e.g., NVIDIA Optimus,
with both power-efficient on-die and high-performance
discrete graphics cards, make data management explicit
even with combined CPU/GPU chips. But even a com-
pletely integrated virtual memory system requires system
support for minimizing data copies.

Overheads introduced by run-time systems can
severely limit the effectiveness of latency-hiding mech-
anisms. Figure 3 shows relative GPU execution time
and system overhead per image frame for a CUDA-
based implementation of the xform program in our pro-
totype. The figure compares implementations that use
synchronous and asynchronous communication as well

Figure 4: The effect CPU-bound work can have on GPU-bound
tasks.Current OS abstractions limit the OSes ability to provide perfor-
mance isolation when there is concurrent GPU and CPU work in the
system. H→D is a CUDA workload that has communication from the
host to the GPU device, while H←D has communication from the GPU
to the host, and H↔D has bidirectional communication.

Figure 5: The effect of GPU-bound work on CPU-bound tasks. The
graphs shows the frequency (in Hz) with which the OS is able to deliver
mouse movement events over a period of 60 seconds during which a
program makes heavy use of the GPU. Average CPU utilization over
the period is under 25%.

ping pong buffers, which is another technique that over-
laps communication with computation. The data illus-
trate that the system spends far more time marshaling
data structures and migrating data than it does actually
computing on the GPU. While latency-hiding does im-
prove performance, the improvements are modest at best.

Finally, while user-level frameworks do provide mech-
anisms to minimize redundant hardware-level communi-
cation within a single process’ address space, addressing
such redundancy for cross-process or cross-device com-
munication requires OS-level support and a programmer-
visible interface. For example, currently, USB data cap-
tured from cameras must be copied into system RAM
before it can be copied to the GPU: with OS support, it
could be copied directly into GPU memory1

2.2 Why GPU workloads need OS scheduling:

Modern OSes cannot currently guarantee fairness and
performance isolation for GPUs, largely because GPUs
are not managed as shared computation resources (like
CPUs), but as I/O devices whose interfaces are limited to
a small, known set of operations (e.g. init_module,
read, write, ioctl). This design becomes a se-
vere limitation when the OS needs to use the GPU for its

1Indeed, NVIDIA GPU Direct [1] implements just such a feature,
but requires specialized support in the driver of any I/O device involved.

3

own computation (e.g., as Windows 7 does with the Aero
user-interface). Under the current regime, time-slicing
and timeouts ensure that screen refresh rates are main-
tained, but the OS is largely at the mercy of the GPU
driver when it comes to enforcing fairness and load bal-
ancing the system.

Figure 4 shows the inability of Windows 7 to load bal-
ance a system that has concurrent, but fundamentally un-
related work on the GPU and CPUs. The data in the
figure were collected on a machine with 64-bit Win-
dows 7, Intel Core 2 Quad 2.66GHz, 8GB RAM, and
an nVidia GeForce GT230 GPU. The figure shows the
impact of a CPU-bound process (using all 4 cores to in-
crement counter variables) on the frame rate of a shader
program (the xform program from our prototype imple-
mentation). The frame rate of the GPU program drops
by 2x, despite the near complete absence of CPU work
in the program: xform uses the CPU only to trigger the
next computation on the device.

Figure 5 shows the impact of GPU-bound work on
the frequency with which the system can collect and
deliver mouse movements. In our experiments, signif-
icant GPU-work at high frame rates causes Windows 7
to be unresponsive for seconds at a time. To measure
this phenomenon, we instrumented the OS to record the
frequency of mouse events delivered through the HID
class driver over a 60 second period. When no concur-
rent GPU work is executing, the system is able to deliver
mouse events at a stable 120 Hz. However, when the
GPU is heavily loaded, the rate at which the system can
deliver mouse events plummets, often to below 30 Hz.
The GPU-bound task is console-based (does not update
the screen) and performs unrelated work in another pro-
cess context. Moreover, CPU utilization is below 25%,
showing that the OS has compute resources available to
deliver events. The inability of the OS to manage the
GPU as a first-class resource inhibits it’s ability to load
balance the entire system effectively.

GPUs need to be treated as a first-class computing re-
source and managed by the OS scheduler like a normal
CPU. User programs should interact with GPUs using
abstractions similar to threads and processes. Current
OSes provide no abstractions that fit this model. In the
following sections, we propose abstractions to address
precisely this problem.

3 New OS abstractions
We propose the following new OS abstractions which
can make GPUs applicable across a broader set of appli-
cation domains. These abstractions allow efficient data
movement and efficient and fair scheduling by allowing
computation to be expressed as a directed graph.

PTask. A PTask is analogous to the traditional OS
process abstraction, but a PTask runs substantially on a
GPU. A PTask requires some orchestration from the OS
to coordinate its execution, but does not require a user-
mode host process. A PTask has a list of input and output

Figure 6: A dataflow graph for the gesture recognition system using
the ptask, port, and channel OS abstractions.

PTask system call Description
sys_open_graph(name) Open or create a PTask graph
sys_open_port(name,
type, template)

Open or create a port

sys_open_ptask(name,
kernel, graph, portlist)

Open or create a new PTask
bound to a graph and ports

sys_open_channel(name,
src, dest)

Open or create channel
bound to given ports

sys_push(channel|port) Write to a channel or port
sys_pull(channel|port) Read from a channel or port
sys_run_graph(graph) Move graph to running state
sys_terminate_graph(graph) Terminate graph execution
sys_set_ptask_prio(name,
prio)

Set the priority for a node in
a PTask graph

Table 1: Proposed new system calls to support PTasks.

resources (analogous to the POSIX stdin, stdout,
stderr file descriptors) that can be bound to ports.

Port. A port is an object in the kernel namespace that
can be bound to PTask input and output resources. A
port is a data source or sink, that provides a way to ex-
pose data and parameters in GPU code that must be dy-
namically bound, and can be populated by, for example,
buffers in GPU or CPU memory.

Channel. A channel is analogous to a POSIX pipe: it
connects ports to other ports, or to other data sources and
sinks in the system such as I/O buses, files, and so on.
Channel has sub-types GraphInputChannel, GraphOut-
putChannel, and GraphInternalChannel.

Graph. A graph is collection of PTask nodes whose
input and output ports are connected by channels. Multi-
ple Graphs may be created and executed independently,
with the PTask runtime being responsible for scheduling
them fairly.

Supporting these new abstractions at the OS inter-
face entails new system calls for creating and managing
ptasks, ports, and channels, shown in Table 1. The ad-
ditional system calls are analogous to the process API,
inter-process communication API, and scheduler hint
API in POSIX.

3.1 Scheduling the GPU for efficiency and fairness

The two chief benefits of coordinating OS scheduling
with the GPU are efficiency and fairness. By efficiency
we mean low latency between when a ptask is ready and
when it is scheduled on the GPU, and scheduling enough
ptask work on the GPU to fully utilize its computational
bandwidth. By fairness we mean that the OS scheduler
balances GPU utilization with user interface responsive-

4

ness. Also, ptasks competing for the GPU all get some
reasonable share of its computational bandwidth. Not
all ptasks have all of these scheduling requirements. A
typical CUDA program does not care about low latency
scheduling. Gestural interfaces require all of these mech-
anisms.

While a ptask can exist without a dedicated user-mode
host process to manage it, parent-child relationships can
exist between processes and ptasks. In such a case, a
ptask is associated with the process that creates it and
a process may have any number of concurrent ptasks.
The scheduling needs of ptasks may be different from
the scheduling needs of the process with which they are
associated. For example, it may be desirable to gang
schedule a ptask and threads: if threads are waiting for
a low-latency computation to complete the CPU thread
may wish to busy-wait for it to minimize overall latency
for that application, or may wish to overlap some of its
own computation with ptask computation. Conversely,
a ptask that is executing a long latency computation on
whose results some thread depends may be better served
by scheduling the ptask when the process’ CPU thread(s)
are blocked.

Like processes and threads, ptasks have scheduling
priority and policy, allowing the OS to provide the same
priority guarantees for GPU computation as it provides
for processes and threads. Natural scheduling semantics
are clearly desirable and some user-mode GPGPU frame-
works like CUDA provide APIs to allow applications to
specify scheduling constraints. However, because the OS
does not mediate interaction between these frameworks
and GPU devices, system-wide guarantees are difficult to
deliver without OS support. Scheduling ptasks at the OS-
level is complicated by the fact that GPU hardware can-
not currently be preempted or context-switched, ruling
out traditional approaches to time-slicing hardware. As a
result ptask guarantees are necessarily “best-effort”. On
average, ptasks will see throughput that reflects a share
of GPU-compute proportional to its priority.

3.2 Gestural interface graph
The gestural interface system can be recast as a graph us-
ing these abstractions, yielding multiple advantages (see
Figure 6). First, the graph eliminates unnecessary com-
munication. A channel connects the USB source port
(“usbsrc”) to the image input port (“rawimg”). Data
transfer across this channel goes directly from the USB
device to GPU memory, rather than taking an unneces-
sary detour through system memory. A channel con-
necting the output port of xform (“cloud”) to the ges-
ture input (“g_input”) port of detect can avoid copy al-
together by reusing the output of one ptask as the in-
put of the next. The design also minimizes involvement
of host-based user-mode applications to coordinate com-
mon GPU activities. For example, the arrival of data at
the raw image input of the xform program can trigger the
computation for the new frame using interrupt handlers
in the OS, rather than waiting for a host-based program

to be scheduled to start the GPU-based processing of the
new frame.

4 Related work
The Hydra framework [11] provides a dataflow program-
ming model for offloading tasks to peripheral devices.
Hydra components communicate through a common run-
time and API that cannot be supported by current GPU
hardware. Helios [7] and Barrelfish [2] address the prob-
lem of OS support in heterogeneous platforms, propos-
ing abstractions that current GPUs cannot support be-
cause they lack architectural features to run OS code or
use RPC.

Monsoon [9] targets environments in which dataflow
execution is supported directly by the processor hard-
ware, while we propose kernel-level abstractions. The
Dryad [5] execution engine provides a graph-based fault-
tolerant programming model for managing distributed
parallel execution in data center environments. While we
espouse a similar model for representing parallel execu-
tion as a graph, the target platforms are entirely different.

5 Conclusion
This paper advocates a fundamental reorganization of
kernel abstractions for managing interactive, massively
parallel devices. The kernel must expose only enough
hardware detail as required to enable programmers to
achieve good performance and low latency, while pro-
viding communication abstractions that encapsulate and
specialize according to the topology of the machine.
GPUs are a general-purpose, shared compute resource,
and must be managed by the OS as such to provide fair-
ness and isolation.

References
[1] NVIDIA GPUDirect. 2011.
[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Pe-

ter, T. Roscoe, A. Schüpbach, and A. Singhania. The multiker-
nel: a new OS architecture for scalable multicore systems. In
SOSP ’09.

[3] D. Blythe. The Direct3D 10 system. ACM Trans. Graph.,
25(3):724–734, 2006.

[4] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hard-
wick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov. Parallel
Computing Experiences with CUDA. Micro, IEEE, 28(4):13–
27, 2008.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequential build-
ing blocks. In EuroSys 2007.

[6] Khronos Group. The OpenCL Specification, Version 1.0, 2009.
[7] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and

G. Hunt. Helios: heterogeneous multiprocessing with satellite
kernels. In SOSP 2009.

[8] NVIDIA. NVIDIA CUDA Programming Guide, 2011.
[9] G. M. Papadopoulos and D. E. Culler. Monsoon: an explicit

token-store architecture. SIGARCH Comput. Archit. News, 1990.
[10] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color

images. In ICCV 1998.
[11] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, and P. Wyck-

off. Tapping into the fountain of CPUs: on operating system sup-
port for programmable devices. In ASPLOS 2008.

5

	Introduction
	Motivation
	Why OS abstractions are necessary
	Why GPU workloads need OS scheduling:

	New OS abstractions
	Scheduling the GPU for efficiency and fairness
	Gestural interface graph

	Related work
	Conclusion

