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1 Introduction

The development of distributed execution engines has

greatly simplified parallel programming, by shielding de-

velopers from the gory details of programming in a dis-

tributed system, and allowing them to focus on writing

sequential code [8, 11, 18]. The “sacred cow” in these

systems is transparent fault tolerance, which is achieved

by dividing the computation into atomic tasks that exe-

cute deterministically, and hence may be re-executed if

a participant fails or some intermediate data are lost. In

this paper, we explore the possibility of relaxing this re-

quirement, on the premise that non-determinism is useful

and sometimes essential to support many programs.

In recent years, the class of problems that distributed

execution engines can solve has grown. The original

MapReduce system addresses problems that can be de-

composed into embarrassingly-parallel map and reduce

phases [8]. Dryad extends MapReduce by supporting

arbitrary directed acyclic graphs (DAGs) of tasks [11].

We recently developed a system called CIEL, which sup-

ports arbitrary DAGs in which a task may spawn a sub-

graph of tasks, hence enabling unbounded iteration [18].

Therefore, the set of all CIEL jobs is a strict superset of

all Dryad jobs, which in turn is a strict superset of all

MapReduce jobs. We have previously argued that CIEL

is universal, since it can execute jobs that are specified

in a Turing-complete language [17]. However, this uni-

versality merely implies that any algorithm can be imple-

mented on CIEL; it does not necessarily follow that the

implementation will be efficient.

Deterministic execution is a conservative requirement,

rooted in the assumption that the participants in a dis-

tributed execution engine fail frequently. We briefly dis-

cuss the fault tolerance benefits of determinism in Sec-

tion 2. While this assumption may be true for the large-

scale clusters on which MapReduce and Dryad were

originally developed, it is less obvious for the smaller

clusters on which they are often deployed [1].

Our high-level argument is that deterministic execu-

tion should not be a requirement at the system level. De-

terministic parallelism can be implemented on a system

that allows non-determinism [4]; non-deterministic par-

allelism cannot be implemented on a system that pro-

vides only deterministic abstractions [3]. As we show in

Section 3, there are several applications that benefit from

non-determinism, and we believe that it would be use-

ful to extend the benefits of distributed execution engines

to these applications. Furthermore, in our proposed ap-

proach (described in Section 4) programs would be “de-

terministic by default” [5]; we simply extend the set of

abstractions in CIEL to allow explicit non-determinism

where desirable. If one must limit an individual job to

deterministic execution, this can be enforced at the lan-

guage level, or with a policy in the underlying engine.

In this position paper, we make three contributions:

1. We survey algorithms and applications for which

non-deterministic parallelism would be useful (§3).

2. We outline a set of non-deterministic features that

can be added to CIEL (§4.2).

3. We describe techniques for dealing with failure dur-

ing a non-deterministic CIEL job (§4.3).

However, we first explain why deterministic execution

has become de rigeur for distributed execution engines.

2 Benefits of determinism

Deterministic execution simplifies the provision of fault

tolerance. The aim is to allow multiple replicas of a

computation to execute (mostly) independently, in order

to protect against one or more replicas failing. Bres-

soud and Schneider showed how a hypervisor could be

used to intercept all “environment” (i.e. potentially non-

deterministic) instructions and ensure that all replicas

agree on the same value [6]. A similar technique was

used in dOS, which extends Linux with the ability to run

“deterministic process groups” [4].
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Figure 1: Task A produces outputs X and Y . If one of

X or Y must be recomputed (due to failure), the system

must ensure that both X and Y are consistent.

Therefore, deterministic execution would appear to be

a natural fit for distributed execution engines—such as

MapReduce, Dryad and CIEL—which decompose com-

putations into many sequential tasks that the engine ex-

ecutes in parallel. Consider the example in Figure 1.

If task A is deterministic, and either of its outputs (X

or Y ) is lost due to failure, the missing data can be re-

constructed by re-executing A. However, if A is non-

deterministic (e.g. it randomly partitions elements into

two sets for parallel processing), its re-execution may

lead to inconsistent results (e.g. there may be elements

missing from X ∪ Y ) [7].

3 Applications of non-determinism

Non-determinism can be used to improve the perfor-

mance of many applications. In this section, we consider

two examples: asynchronous algorithms (§3.1), which

are well-suited to the loosely-coupled clusters on which

distributed execution engines typically run; and adaptive

algorithms (§3.2), which use introspection to make better

decisions at run-time. In addition, we discuss the poten-

tial for implementing interactive jobs (§3.3).

3.1 Asynchronous algorithms

Many data-parallel problems can be solved more effi-

ciently using asynchronous algorithms, which relax the

synchronisation between processors, and allow each pro-

cessor to consume data from other processors as the

data are produced. Since the processors communicate

asynchronously, timing variations cause data to be re-

ceived in a non-deterministic order, and these variations

will be magnified in a loosely-coupled environment such

as a data center or cloud computing platform. Here,

we consider two algorithms for which allowing non-

determinism can improve the overall performance.

PageRank The PageRank (power iteration) algorithm

has been studied extensively in the context of distributed

execution engines, because it can be applied to very

large data sets (such as web-hyperlink and social net-

work graphs) [19, 21]. McSherry showed an elegant

approach to computing PageRank, whereby nodes com-

municate the change in their probability (score) instead

of their new value [15]. He also showed that the algo-

rithm converges more quickly without requiring global

synchronisation, and is robust to lost messages.

Kambatla et al. obtain some of these advantages

with “asynchronous MapReduce”, which implements it-

erative algorithms using a combination of determinis-

tic local and global iteration [13]. However, this ap-

proach still suffers from synchronisation overhead in

the global barrier between the map and reduce stages.

If tasks could be non-deterministic, asynchronous—

perhaps even unreliable—messages could replace the

barrier, which would further reduce the execution time.

Branch-and-bound The branch-and-bound algo-

rithms are commonly applied to NP-hard combinatorial

optimisation problems. Since these algorithms are

computationally-intensive and contain large amounts of

independent work, they are a natural fit for distributed

execution engines. As a branch-and-bound algorithm

evaluates solutions, it updates bounds on the cost of the

best solution, which enables large subtrees of the search

space to be pruned. In a parallel implementation, the

bounds are shared between all processors.

Sharing bounds poses a challenge for a deterministic

execution engine, since data can only be communicated

at task boundaries [11]. Thus a processor will update its

bounds locally, before a synchronous aggregation step

that computes the global bounds. Ideally the updated

bound would be transmitted as soon as possible, enabling

other processors to prune the search space immediately

and avoid wasted work. If non-determinism were al-

lowed, a processor could broadcast updated bounds to

other processors as soon as they are calculated. Further-

more, Budiu et al. have observed that many branch-and-

bound algorithms have subproblems that vary greatly in

cost, which makes it challenging to balance the work in

each partition deterministically [7].

3.2 Adaptive algorithms

The optimal execution plan for a distributed computa-

tion is often time-dependent. For example, on a fairly-

shared cluster, the maximum degree of parallelism that

a single user enjoys will vary as other users submit

jobs [12, 22]. Therefore, the optimal task granularity—

e.g. the number of map or reduce tasks in a MapReduce-

style computation—will vary accordingly. One solution

to this problem would be to allow a job to introspect on

the cluster, and discover the current number of free slots

or historical load averages. Of course, introspection is

non-deterministic from the job’s point of view: query-

ing the current load in the future would probably return

a different value.

Timing information could also be used to address im-

balance in the workload. For example, there are many



straggler detection algorithms that attempt to mitigate

long-running tasks that hold up execution before a bar-

rier [2, 8, 11, 24]. The backup task strategy—whereby

a second copy of an individual task is started on another

machine and the two tasks race to completion—relies on

non-deterministic behaviour, and hence must be imple-

mented by the execution engine. If the job itself had ac-

cess to this timing information, it would be able to cus-

tomise its straggler detection algorithm to be more appro-

priate for its workload. For example, in the branch-and-

bound example where the distribution of computation

across tasks is skewed, backup tasks will not improve

performance (and will in fact uselessly consume clus-

ter resources); it would be preferable to suspend execu-

tion after a time-out expires [7]. In this case, the default

policy is undesirable, and non-deterministic abstractions

would enable the separation of policy and mechanism.

Adaptive algorithms raise a challenge about how to

deal with failure, which we will discuss in Subsec-

tion 4.3. Simply recording the results of introspection

and replaying them may lead to undesirable results. For

example, the cluster load may have increased since the

first execution, so that using the previously-optimal task

granularity would lead to the creation of too many tasks,

and, in turn, to an inefficient balance of load.

3.3 Supporting interactivity

Most execution engines were developed for batch-

oriented computation [8, 11, 18], but there has re-

cently been interest in interactive querying of large

data sets. The state of the art solutions either use a

non-deterministic, interactive “driver program”—e.g. a

command-line shell—to submit jobs to a deterministic

execution engine [23], or a special-purpose distributed

system that may return non-deterministic results [16].

In interactive applications, minimising the user-

perceived latency is important. However, when the appli-

cation combines results from distributed resources, strag-

glers can have a devastating effect on latency. To this

end, special-purpose systems such as Dremel and Ama-

zon’s e-commerce platform achieve low latency by sac-

rificing determinism (and, in some cases, consistency).

Dremel supports queries that return when any x% of

records have been processed [16]. Requesting an Ama-

zon web page causes many parallel requests to be made

on the back-end, but the response must be sent before a

hard deadline expires [9].

If computation and interaction can be overlapped,

there is an advantage to supporting interactivity in a

distributed execution engine. As an example, interac-

tive web applications can use continuations to capture

the control flow at the points where interaction with

the browser is required [20]; Skywriting uses a simi-

lar technique to represent parallel algorithms with data-
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Figure 2: Example task graphs in CIEL.

dependencies [17]. Many web applications—such as

airfare search engines—must perform a large amount

of computation and incorporate data from a variety of

sources, including user feedback. Therefore, there is po-

tential synergy between continuation-based web servers

and distributed execution engines, which an interactive

execution engine could support.

Non-deterministic interactive applications are the next

frontier for what an execution engine can compute.

Though CIEL can simulate a Turing machine, Goldin

and Wegner have proposed “interactive computation” as

a more expressive model than Turing-computability [10].

The key insight is that Turing machines can compute

mathematical functions of their inputs, whereas many in-

teractive applications—e.g. consider an operating system

or a word processor—cannot be represented as functions.

4 A non-deterministic execution engine

Having motivated the case for non-determinism in a dis-

tributed execution engine, we now propose extensions to

CIEL that support non-determinism and enable a larger

class of applications.

4.1 CIEL recap

CIEL is a distributed execution engine that executes dy-

namic task graphs across a loosely-coupled cluster of

commodity machines [18]. For simple jobs, CIEL ex-

ecutes a DAG of tasks and their dependencies (Fig-

ure 2(a)) in the same manner as Dryad: i.e. by topolog-

ically sorting the tasks according to their dependencies,

and executing runnable tasks in parallel [11]. However,

CIEL also enables data-dependent control flow, by allow-

ing tasks to spawn child tasks and delegate production of

their outputs to their children (Figure 2(b)). This allows

CIEL to execute iterative and recursive jobs.

CIEL jobs are typically specified as Skywriting

scripts [17]. Skywriting is a language that facilitates

the construction of task graphs with its built-in spawn()

function. This function returns a future, which can be

passed to subsequent tasks in order to build a dependency

graph. Data only flows via the dependency graph, which

ensures that Skywriting is deterministic by default.



4.2 Adding non-determinism to CIEL

To support non-determinism, we propose adding the fol-

lowing features to CIEL and Skywriting:

Non-deterministic references In CIEL, the inputs to

and outputs from each task are represented by references.

Non-deterministic tasks will produce non-deterministic

outputs, so it is necessary to taint the relevant references

(and, by induction, the outputs of tasks that depend on

non-deterministic inputs) so that special failure-handling

routines may be employed (see §4.3). For example, user

interaction could be represented by a task that produces

a non-deterministic reference.

Select In a deterministic execution engine, if a task

has d dependencies, the scheduler must block that task

until all d dependencies are fulfilled [3]. However, it

may be possible to begin some work when some sub-

set of the dependencies are available. Therefore, we

could add to Skywriting a select() function, which

takes a set of references and an optional timeout, and re-

turns when at least one of the references becomes avail-

able, or else the timeout expires (Figure 2(c)). Using

select() would taint the outputs of the selecting task

as non-deterministic.

Signals To send data to a task asynchronously, we

could add a signal() function, which takes a reference

to a task’s output, and an arbitrary data structure. The

data structure would be delivered asynchronously to the

task. This could be used to implement asynchronous al-

gorithms: a monitor task would select() on outputs

from tasks, and signal() the new data to other tasks.

Signals could also be used to abort a task if its output is

no longer needed. Sending a signal to a task would taint

the outputs of the receiving task as non-deterministic.

Introspection Each piece of information that the clus-

ter exposes would be implemented as a Skywriting func-

tion, e.g. current load(). Furthermore, introspection

could be used to query the local machine about its ca-

pabilities: in a heterogeneous cluster, this would allow a

job to specialise its code based on, for example, whether

the current machine has a GPGPU or a large amount of

RAM. Using any of the introspection functions would

taint the outputs of the current task as non-deterministic.

4.3 Handling failure

The main challenge that non-determinism poses is how

to deal with failure. If a deterministically-computed

object is lost, it can simply be reconstructed by re-

executing the task that produced it. However, it may not

be safe to do this for an object that is computed non-

deterministically (as we discussed in §2). In this sub-

section, we sketch some of the possible solutions, and

discuss their relative advantages and disadvantages.

Record and replay The most conservative approach

is to record the non-determinism and deterministically

replay it upon failure [14]. The main advantage of

this approach is that it enables transparent fault toler-

ance with no programmer intervention. However, as

we discussed in §3.2, naı̈vely replaying the same results

may lead to a sub-optimal outcome when introspection

is used. Moreover, depending on the source of non-

determinism, this approach may require a large amount

of input to be recorded, and this record must be stored

durably since it is not possible to reconstruct it. There-

fore, the performance overheads of this approach prob-

ably outweigh any advantages due to exploiting non-

determinism, though it would be useful to support some

form of replay for debugging purposes.

All-or-nothing The opposite extreme would be to con-

sider any failures to be fatal to the whole job. Such an ap-

proach would only be practical in an extremely-reliable

system where data loss is highly unlikely. However, it

may be appropriate for systems that are implemented en-

tirely within a single failure domain, such as an individ-

ual multi-processor computer. In such cases, the all-or-

nothing approach could be implemented in a lightweight

manner that gives better performance than the existing

CIEL implementation.

Bounded non-determinism Some computations have

deterministic outputs, but may use non-determinism in-

ternally to obtain a result more efficiently. For exam-

ple, a commutative and associative aggregation function

of several inputs may be computed in any order, but

will yield the same result [8, 11]. Therefore, the de-

veloper could specify annotations that bound the non-

determinism within a subgraph of the overall task graph,

and remove non-deterministic taint after the boundary.

CIEL would re-execute the whole subgraph if either an

intermediate value or the result were lost during subse-

quent computations.

Checkpointing If it were impossible to reconstruct the

result of a bounded non-deterministic subgraph by start-

ing from scratch, we could checkpoint its outputs, and (if

necessary) replicate its storage across multiple machines.

This approach is used in DryadOpt, which divides

a branch-and-bound computation into multiple Dryad

jobs, each of which is internally non-deterministic, and

materialises the results after each round [7]. It is also

the only fault-tolerance mechanism in Piccolo, which has

a programming model based on updates to partitioned

key-value tables [19]; hence Piccolo can support non-

deterministic jobs such as web crawling.

Application-specific handling The final alternative is

to expose failure to the application developer, who is best

able to handle it. For example, CIEL already uses error



references to signify that an application-level error has

occurred, and these could be extended to cover missing

non-deterministic objects. This would necessitate error-

checking code wherever a non-deterministic reference

could arise. Alternatively, if failure is deemed unlikely,

we could extend Skywriting with exception blocks.

The appropriate failure-handling technique will de-

pend on the characteristics of the job (e.g. its expected

duration and the source of non-determinism) and the

cluster (e.g. the mean time between failure).

5 Conclusions

In this paper, we have argued that non-determinism de-

serves first-class treatment in distributed execution en-

gines. We believe that there exist sufficiently capable

developers who can use these features to develop better

programs on top of distributed execution engines. More-

over, we note that systems like MapReduce and Dryad

have led to many unexpected applications, and we be-

lieve that adding more expressivity to CIEL will improve

developers’ ability to devise creative solutions that we

have not yet imagined.

We have started out with a language, Skywriting, that

is deterministic by default, and these proposals do not

weaken that property. Existing Skywriting programs will

continue to work as expected, and—unlike in the shared-

memory multithreaded case—developers are not forced

to contend with non-determinism in order to achieve sim-

ple tasks. Non-determinism has been unfairly tarnished

by the challenges of writing correct multithreaded pro-

grams: we hope that the arguments and simple abstrac-

tions herein will rehabilitate it, and lead to more efficient

and diverse parallel programs.
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